careful review of cardiac catheterization assists in determining this risk. Preemptive right axillary artery and/or femoral vessel access or exposure is performed selectively in at-risk patients. Further details of the operative approach are described in Appendix E4 of the manuscript.

Eric E. Roselli, MD
Department of Thoracic and Cardiovascular Surgery
Cleveland Clinic
Cleveland, Ohio
doi:10.1016/j.jtcvs.2008.03.021

Redon drains and underwater seal: The better of two worlds?

To the Editor:

We read with interest the recent article of Gwozdziewicz, Némeč, and Steriovsky\(^1\) describing a technique of chest drainage after cardiac surgery with Redon drains (B. Braun Melsungen AG, Melsungen, Germany). Five Redon drains are placed in an elaborate fashion into the pericardial space and further drains are added if the pleura are opened and require drainage. The drains are attached to a reservoir under suction of −800 mbar (816 cm H\(_2\)O).

On one hand, we fully agree with the advantages of using Redon drains and add the following to those already cited by the authors: (1) the ease with which these drains are removed, being less painful and requiring minimal or no analgesia, and (2) the fact that only one suture is needed to fix them and no closure is necessary after removal as compared with standard chest tubes. On the other hand, we use only two Redon drains, which correspond to drains 2 and 5 according to Gwozdziewicz’s scheme, with number 5 being placed more toward the right ventricle. Occasionally, a third mediastinal Redon drain is added if the patient is at a particular risk for bleeding complications. It is often placed in regard to the culprit site, for example, the left atrium in mitral valve surgery. In case of pleural space drainage, one Redon drain is placed into each pleura as necessary. Moreover, in one of our patients, suction necrosis developed on a venous graft that was in direct contact with one of these Redon drains. This was attributed to the high suction pressure attained by connecting these drains to the reservoir as described in the article. We, therefore, connect the Redon drains to a sterile underwater valve seal system, pleur-evac chest drainage unit or Pleur-evac Sahara chest drainage dual tube (Teleflex Inc, Research Triangle Park, NC) when the pleura are intact or open, respectively (Figure 1). These systems are completely silent and produce no bubbling sound. They evidently require an external source of suction but control the suction pressure of the Redon drains to around −20 cm H\(_2\)O, minimizing considerably the risk of a suction lesion on the heart or coronary grafts. We have not encountered such a lesion in our experience with more than 2000 patients in whom this system was applied.

We congratulate the authors on their work and look forward to their feedback on the points we raised.

Navwar Al-Attar, FRCS, FETCS, PhD
Richard Raffoul, MD
Patrick Nataf, MD
Bichat Hospital
Paris, France

doi:10.1016/j.jtcvs.2008.02.050

Figure 1. Redon drains attached to an underwater seal system. The suction pressure is regulated at −20 cm H\(_2\)O. Inset shows connection of drains to system tubing.

Reference

doi:10.1016/j.jtcvs.2008.02.050

Reply to the Editor:

I greatly appreciate the comments of our French colleagues on our article describing an alternative approach to chest drainage using Redon drains. The main concern they raised was that the high suction used in our system could cause suction lesions on the heart or coronary grafts. They have experienced one case of bypass necrosis resulting from the high suction, but no such complications occurred in our cohort of 4297 patients. I have occasionally observed suction lesions on the heart or even the grafts during reoperations for bleeding when removing a drain that was in direct contact with them, but such lesions always appeared harmless and never led to any problems. In my opinion, the case of bypass necrosis described by Al-Attar, Raffoul, and Nataf was due to the coincidence of direct contact of the drain with a deficient wall of the venous graft.

Their interesting but certainly isolated case report of graft necrosis does not convince me to abandon our technique. I have also seen some isolated complications when using standard 32F chest tubes over the years, including graft thrombosis caused by tube compression or even fatal hemorrhagic shock caused by bleeding from the intercostal vessel in the posterior chest wall that was eroded by the chest tube. However, there is no surgical procedure that carries no risks.

When using our technique, care should be taken to avoid direct contact of the Redon drains with the grafts, and this can be achieved by positioning the drains as described in our article: on the bottom of the opened pericardial cavity and leaning against the pericardium rather than lying on the surface of the heart. The only situation in which the drains...