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1. Let DT be the lattice of degrees of interpretability defined in [4] (cf. also [7]). 

Let r be a set of sentences. A degree a E D, is r if there is a r sentence 97 such 

that a = d(T + q). All degrees are II2 and & (cf. [3], [4]). This was improved by 

Franc0 Montagna (private communication) who observed that all degrees are A2 

(Theorem 1). But then it is natural to ask if all degrees are B,, where B, is 

the set of Boolean combinations of ,X1 sentences. Not unexpectedly the answer is 

negative (Theorem 2(i)); in fact, every nontrivial interval [a, b] (= {c: a G c G b}, 

where a <b) has a nontrivial subinterval containing no B, degree (Theorem 

2(ii)). We also show that there are 2, degrees ao, a, such that a,, U al is not B1 

(Theorem 2(iii)). This would follow trivially from Theorem 2(i) if every degree is 

the least upper bound (1.u.b) of two (finitely many) _Z, degrees. Thus it is relevant 

to show that that is not true (Corollary 1); in fact, there is a II1 degree which 

cannot be obtained from 0 by taking finite 1.u.b.s and g.1.b.s (greatest lower 

bounds) and E,-extensions (defined below) (Theorem 3). We then go on to prove 

(a result implying) that there is a degree which is not the 1.u.b. of a finite set of .X1 

and II1 degrees (Theorem 4). A degree a is said to cup to b if there is a c < b such 

that a U c = b. One way to improve Corollary 1 would be to show that there is a 

n, degree a > 0 such that no 2, degree cups to a. We prove (a result implying) 

that there is no such degree (Theorem 5). In [4] it is shown that there is a degree 

a < 1 which cups to every degree b such that a s b < 1. We improve this by 

showing that a can be taken to be _X1 (Theorem 6). The above mentioned 

consequence of Theorem 4 leads to the question if there is a degree a > 0 such 

that no II1 degree cups to u. We show that the answer is affirmative (Theorem 7; 

this result was not obtained until after the PIA conference at Utrecht). Finally we 

consider the existence of pseudocomplements. In [4] it is shown that there is a 
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degree which has no pseudocomplement (p.c.). We now improve this by showing 

that there is a Z1 degree with no p.c. (Theorem 8). Trivially every fl, degree has 

a p.c. This leads to the question if there is a 2, and non-n, degree which has a 

p.c. We show that the answer is affirmative (Theorem 9). We mention several 

open problems. * (See Note added in proof.) 

2. As in [4] T is a consistent primitive recursive essentially reflexive extension of 

Peano arithmetic PA. (A theory is identified with the set of its axioms.) Let t(x) 

be a PR binumeration of T. A, B, etc. are primitive recursive extensions of T in 

the language of T. Thus A, B, etc. are essentially reflexive. We write A tX or 

X -I A, where X is a set of sentences, to mean that all members of X are provable 

in A. Thus A -I B means that A is a subtheory of B. We write A -I,- B, A is a 

r-subtheory of B, to mean that every sentence in r provable in A is provable in 

B. A sentence Q, is r-conservative over A if A + rp i,- A (cf. [2]). A is a 

r-conservative extension of B if B -I A ir B. A c B means that A is interpretable in 

B, A<B that AcB=~zA, and A=B that A =S B =Z A. The basic lemma of the 
subject is the result that A c B iff A in, B. This lemma will be used in what follows 

without further comment. (If we drop the assumption that T is (essentially) 

reflexive our results remain true provided G is replaced by in,.) = is an 

equivalence relation; its equivalence classes are called degrees (of interpretability) 
and are written a, b, c, etc. a s b iff A s B where A E a and B E b. d(A) is the 

degree of A. Dr is the partially ordered set of degrees thus defined. As is easily 

verified D, is a distributive lattice (cf. [4, Theorem 11). a II b and a U b are the 

g.1.b. and the 1.u.b. of a and b, respectively. DT has a smallest element 0 = d(T) 
and a largest element 1, the common degree of all inconsistent theories. 

SoJS,={q?v~: ~~E,!$,&~/JES,} and so d(AJB)=d(A)fld(B); AfB is a 

theory such that d(A t B) = d(A) U d(B) (cf. [4, Lemma 81). When there is no 

risk of confusion we use q~ and X in place of T + Q, and T + X. Thus d(q) is 

d(T + cp), X G Q, means that T + X 6 T + QJ, etc. We use a << b to mean that 

a < b and for every c, if b fl c = a, then c = a. A << B means that d(A) << d(B). a, 
a,, etc. denote Z1 sentences and JZ, *7dg, etc. denote 17r sentences. Notation and 

terminology not explained here are standard (cf. [l]). 

In what follows r is either Q or .Z,,, y1> 0, and I“’ is the dual of r. r-true(x) is 

a r partial truth-definition for r sentences. (u(x) is a PR binumeration of A. Let 

[T],(x, y) be the formula 

VUV Gy (u is r A Prf,(,),,=,(u, v)-+ r-true(u)). 

The following lemma is then easily verified (cf. [3, Lemma 11). 

Lemma 1. [I’]&, y) is a rformula such that 

(i) PA t ]r],(x, Y) A z CY + m,(x, 4 
(ii) A + cp t [T],(@, m) for all Q? and m, 

(iii) if $I is r and A + Q? t IJJ, then there is a q such that PA + [T],(@, 4) F ?j. 
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If r = n, let c(x) be such that 

PA 1 E’(&+tly GJ&X~)~ Y)+x(% Y)). 

If r = Z,, let E(n) be such that 

PA 1 E(g) tf 3~ W&laG(~), Y) A v.z c Y x(k 2)). 

From Lemma 1 we get (cf. [3], Lemma 2): 

Lemma 2. Zf x(x, y) is r, then E(x) is rand 

(9 A + E(i) l-x(f, fi), 
(ii) A + E(i) ip A + {x(i, 4): q E N}. 

Clearly, if for some m, A tl~(k, rFz>, then A 1$(k). Also note that if 

A tx(R, Fz), for all m, then (ii) implies that t(E) is p-conservative over A. 
A set x of sentences is monoconsistent with A if A + cp is consistent for every 

Q, E X. Suppose X is recursively enumerable (r.e.) and let R(k, m) be a primitive 

recursive relation such that X = {k: 3mR(k, m)}. Let p(x, y) be a PR 

binumeration of R(k, m). Let E(x) be as in Lemma 2 with X(X, y) := lp(x, y) and 

let q be such that PA t Q, c, E(g). Then (cf. [3, Corollary 11): 

Lemma 3. If X is r.e. and monoconsistent with A, then there is, and we can 
effectively find, a r sentence Q, such that Q, 4 X and ~1 is P-conservative over A. 

Let Y be any primitive recursive set and let r](x) be a PR binumeration of Y. 

Then, by Lemma 2 with x(x, y) := q(y) + r-true(y) we get (i) of our next lemma 

(cf. [3, Theorem 41); (ii) and (‘“) 111 are obtained by a straightforward extension of 

this construction. 

Lemma 4. (i) To any r. e. set Y of r sentences, there is a I’ sentence q? such that 
T + Q, is a p-conservative extension of T + Y. 

Let R(k, m) be an r.e. relation such that X, = {m: R(k, m)} is a set of r 
sentences. 

(ii) There is a r formula y(x) such that for every k, A + y(E) is a 
p-conservative extension of A + X,. 

(iii) There is a r formula y(x, y) such that for every k and every sentence q, 
A + Q, + y(@, 4) is a p-conservative extension of A + X, + q. 

The following lemma is an immediate consequence of Lemma 4(i) (cf. [3, 

Theorem 111). 

Lemma 5. To every r.e. set X of 2, sentences, there is a Z:, sentence o such that 
A + o is a II,-conservative extension of A + X and consequently A + o = A + X. 
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From a slight generalization of Lemma 2 for r = 2, we also get the following 
(cf. [4, Lemma 61): 

Lemma 6. Let X be an r.e. set. There is then a PR formula n(y, x, z) such that for 
all k and 8, 

(i) ifkEX, then T + 8 IYIZ q(8, R, z), 
(ii) if k $ X, th en 3z ~(0, k, z) is II,-conservative over T + 8. 

3. Let us begin with Montagna’s observation. 

Theorem 1. Every degree is A*. 

Proof. Let a be any degree. Using Craig’s trick, there is a primitive recursive set 
X of n, sentences such that a = d(X). Let E(x) be a PR binumeration of X and 
let (p be such that 

PA t- (P ++Vz ([n&(@, z)-+ (E(z)+ fl,-true(z))>. 

Then q is II2 and T + (p is a f17,-conservative extension of T + X (cf. the above 
proof of Lemma 4(i)). It follows that a = d(q). By Lemma l(i), 

[17115(X~ z) A u s z + [II,]&, u). 

Using this it is easily verified that 9, is also &: 

PA t q *Vz (E(z) * 27,-true(z)) v 32 (l[n,],(@, z) 

h Vu <z (E(u)+ n,-true(u))). 

Thus rp is AZ. 0 

In much the same way and using Corollary 3 of [5] it can be shown that for 
every A, there is a A2 sentence Q, such that A and T + rp are mutually faithfully 
interpretable (defined in [5]) thus somewhat improving Corollary 4 of [5]. 

We now show that Theorem 1 is optimal in the sense that A2 cannot be 
replaced by Br. 

Theorem 2. (i) Not all degrees are B,. 
(ii) Every nontrivial interval [a, b] has a nontrivial subinterval containing no 

B1 degree. 
(iii) If T is Z,-sound, then there are 2, degrees aO, a, such that a, U a, is not 

B1. * 

To prove Theorem 2 we need Lemmas 8 and 9 below. The following easy 
lemma will be used repeatedly (cf. [4, Lemma 141). 
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Lemma 7. A << B iff A < B and for every a, if B d A + o, then A F lo. Thus, in 
particular, if A is consistent and ln is II,-conservative over A, then A << A + n. 

Lemma 8. Suppose CJI is B, and X is r.e. and for every k, X 1 k <<X. 
(i) Zf X d q, then X << q. 

(ii) If Q, G X, then Q? <<X. 

Proof. (i) cp can be written in the form (q, A a,,) v . . . v (q A a,). Now for any 

degrees a, b, c, if a <<b and a <<c, then a << b fl c. Thus it suffices to show that if 

X<~no, then X<<nr\o. Let x be a 2, sentence such that ?cr\aCX+~. 

Then, by Lemma 7, it suffices to show that T +X 11~. Now, by assumption, 

there is a ksuch that TtX rk+Xkn. Hence T+nr\oiT+X lk+(XAa) 
andsoX~Xrk+(Xr\a).ButthensinceXrk<<X,byLemma7,T+Xtl 

(x A a). But X C n A CT. It follows that T + x A 0 bx, whence T + X t ix, as 

was to be shown. 

(ii) Let o be such that X c Q, A CT. It suffices to show that T + v, Fla. Now 
p, A u is B,. Hence, by (i), X << q A o. It follows that q~ << 91 A CT. But this is 

possible only if T + Q, F-W. •i 

To prove part (iii) of Theorem 2 we need the following lemma from [4] 

(Lemma 11). 

Lemma 9. Given a true IT, sentence 6’ and an r.e. set X monoconsistent with PA 

we can effectively find II, sentences t3i such that 
(i) PA t 8rj v 8,, 

(ii) PA t @I A 8, ---, 8, 

(iii) 19, $X, i = 0, 1. 

Proof. The following proof is a bit more elegant than the one given in [4]. Let 

0 := Vy y(y) where y(y) is PR. Let p(x, y) be a PR formula such that 

X = {k: 3n PAt p(k, fi)}. Finally let 0,) and 8, be such that 

PAt %@VY ((P(%, Y) v~Y(Y))*=<Y P(& 2)) 

PAt 0, wvz (~(6, z)+ 3~ c= (~(6 Y) v~Y(Y))). 

Then 8” and 8, are as desired. q 

Proof of Theorem 2. (i) By Lemma 3 with X = Th(T + {nk: k <n}), we can 

effectively construct sentences .n, such that ink is n,-conservative over but not 

provable in T + {JC~: k <n}. Let X = {zk: k E N}. Then, by Lemma 7, X 1 k CCX 
for all k, so, by Lemma 8(i), d(X) is not B,. 

(ii) Let e be such that a <e < b. Let A E a, B E b, E E e. Let Y be the set of n, 

sentences provable in A. Set AT = T + Y. (AT is the deductively weakest 

extension of T of degree a (cf. [4]).) By Orey’s compactness theorem [4, Lemma 



41, there is an m such that B 1 m + E and E 1 m =$A. We now effectively define 
Ii, sentences r& such that 

(1) B ~m~(Q+~o)~~E, 

and for every k, 

(2) E f m +AT + $J(, A . - * A $Q, 

(3) l?j~~+r is II1 conservative over AT + y. A - - - A I/J~. 

The set {cp: B r m & (Q + cp) =S E} U {rp: E f m <AT + --yj is r.e. and monocon- 
sistent with Q. Hence, by Lemma 10 of [4], there is a 17, sentence q0 such that 
(1) holds and (2) holds for k = 0. Now, suppose (2) holds for k = n and (3) holds 
for k=n-1, if n>O. Let A,=AT+qOA---hqtn. The set Z={rp:E pm< 
A, f-y} is then r.e. and monoconsistent with A,. Hence, by Lemma 3, we can 
effectively find a 2, sentence IT 4 2 which is III-conservative over A,. Let 

r/J ll+1 = lo. Then (2) holds for k = n + 1 and (3) holds for k = n. 
Now let X = Y U {qk: k E RJ}. Then ta s d(X). Also, by (2), e + d(X), by (I), 

d(X) n b > d(X) n e, and, by (3) and Lemma 7, X r k <cX for every k. Let 
c=d(X)ne and d =d(X)flb. Then a SC <d G b. Also if c~f cd, then 
f 6 d(X) and not f << d(X), since d(X) n e sz f and e +$ Hence, by Lemma 8(ii), 
fis not Br. 

(iii) We effectively construct sentences nk, oi,k such that for all k, 

0) T C- Oj,k+*+ (Fi,kp i = 0, 1, 

(2) T + ffi,k is consistent, i = 0, 1, 

(3) T + nk is consistent, 

(4) Tt-%t,+Jt;kr 

(5) i;n,+, is III-conservative over T + nk, 

(6) T+ xkc(T+ %,k) t CT+ %,kh 

(7) (T+ %,k> t V+ %,kjG T+ nk+t. 

Let on,o := (T~,~) := 3to := 0 = 0. Then (2), (3), and (6) hold for k = 0. Suppose oo,n 
and aISn have been defined and that (2), (3), and (6) hold for k = n. Since T is 
&-sound, (2) implies that (T + CJ~,~) t (T + a,,,) is consistent. But then we can 
find a II, sentence 8 such that 

(8) T -I- f3 is consistent, 

(9) (T -t oo,,) t (T + or+) c T + 0. 

(For instance let 8 := Con,, where y(x) is a PR binumeration of (T + ao,,) 1‘ (T + 
a,,,).) From (9) and (6) for k = pz it follows that 

(10) T-t 8Fn,,. 
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Hence, by (8) and Lemma 3, we can find a II, sentence $J such that 

(II) T+Bttlll, 

(12) 11# is J7,-conservative over T f JC~. 

Let ~d,+~ = 8 A $J. Then, by (lo), (4) holds for k = n and, by (9), (7) holds for 

k = n. Also, by (ll), (3) holds for k = n + 1 and, by (12), (5) holds for k = n. 
n n+l is true, since otherwise (3) would not hold for n = k + 1. Hence, by (2) for 

k = n and Lemma 9, we can find KI1 sentences Bi such that 

(13) PA t 8,, v 8,) 

(14) PAt 8, A @,+~d,+,, 

(15) 0, $ Th(T + u;,,), i = 0, 1. 

Let Oii,n+l := 16, A a,,,. Then (1) holds for k = n and, by (IS), (2) holds for 

k=n + 1. Finally, by (13), PA + oi,n+l t 0,+, i = 0, 1. Hence, by (14), (6) holds 

fork=n+l. 

NOW let a; = d( { 0i.n : r~ E N}) and b = d( { JC,: n E N}). Then, by (1) and Lemma 

5, ai is 2,. By (3) (4) (5), and Lemmas 7 and 8(i), b is not B1. Finally, by 

(1) (6) and (7), a,,Ua, = b. q 

I don’t know if Theorem 2(iii) holds without the assumption that T is X,-sound. 

A more interesting question is if (assuming that T is Z,-sound) there are degrees 

aandbsuchthatuisZ,,bisIT,,andaUbisnotB,. * 

4. Part (iii) of Theorem 2 would follow trivially from part (i) if we could show 

that every degree is the 1.u.b. of two (finitely many) 2, degrees. (In the proof of 

Theorem 6 below we define 2, degrees a,, and a, such that a,, U a, = d(Con,).) 

We now prove that this is not the case (and more). (Note that, by Theorem 8 of 

141, for every degree a > 0, there is a Z1 degree b such that 0 <b c a.) If A c B, 
then for any a, A + us B + u. Thus d(A + a) is uniquely determined by d(A); it 

will be said to be a Z,-extension of d(A). Let E, be the least set of degrees 

containing 0 and closed under U, rl, and Z’,-extensions. 

Theorem 3. There is u II, degree not in ET. 

This is an immediate consequence of the following two lemmas. 

Lemma 10. To every a E ET there is a smallest 2, degree 2 a. 

Proof. It is easily shown by induction that if a E ET, then there are o(,, . . . , a,, 

such that 

(1) d(oo) U . . - U d(u,) s a 6 d(q, A . . . A a,). 
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Now 

(2) d(q) A. *. A on) is the smallest _Z, degree 2 d(a,J U . * * U d(o,). 

This can be seen as follows. Suppose d(o,,) U * . . U ~(cJ,) c d(u). Let Ed be such 

that T + q, A * . . ~u,,tn. Then T+u,~u,A-.-r\u,-,n. Now u~A-.-A 

a,+ n is a n, sentence. It follows that T + u t u1 A . - . A a,, -+ n. But then 

T+u,~uAu,A*** AU,,+K and so T+u~u,A..-AU,,+J-C. Continuing in 

this way we eventually get T + u t n, as desired. 

Finally, by (1) and (2), d(q) A * - . A a,) is the smallest 2, degree 3 a. 0 

Lemma 11. There is a II, degree a for which there is no smallest 2, degree 2 a. 

Proof. We can effectively construct sentences a, such that for every k, 

(1) T + uk+lt u,, 

(4 Ok < ok+]. 

Let a0 := 0 = 0. Given ok such that T + uk is consistent let X = Th(T + ok). By 

Lemma 9, we can find IT, sentences 8; such that P t 8. v 13, and 8; $ X, i = 0, 1. 

(Let 8 be any true n, sentence.) Let ok+i := ok A i80. Then T + uk+, is 

consistent and (1) holds trivially. Finally T + uk+l 1 8, and T + uk t+ 8, and so (2) 

is true. 

By Lemma 5, there is a sentence u such that 

(3) T + u is a ~7,-conservative extension of T + { uk: k E N}. 

Let a = d(lu). Then a is II,. Now let x be any 2, sentence such that a <d(X). 

Then T + x 11~ and so T + u klx. But then, by (1) and (3), there is a k such 

that T + uk Fix and so 

(4) T +X J-1$. 

Also, by (2) and (3), there is a sentence Ed such that T + u t n and T + uk H-z It 

follows that 

(5) 

(6) 

T+xw, 

T + 17C Flu,. 

But then, by (5), a 6 d(lx) and, by (4) and (6), d(X) =$ d(lJt). Thus d(X) is not 

the smallest 2, degree 2 a. 0 

Corollary 1. There is a Il, degree which is not the 1.~. b. of finitely many Z1 
degrees. 

Suppose u 4 ET. Then 0 <a < 1. But then, by Theorem 3 of [4], there are bo, 
b,<asuchthatb,,Ub,=aandc,,c,~asuchthatc,,~c,=a.NowE,isclosed 

under II and U. It follows that either [b,,, a] or [b,, u] is disjoint from ET. Let b 
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be the 6, for which this holds. Then either [b, q,] or [b, c,] is disjoint from E,. 
Let c be the ci for which this holds. Then [b, c] is disjoint from ET. Thus 

to every a $ ET, there are 6, c such that b < a < c and [6, c] fl E, = 0. 
The degree a defined in the proof of Lemma 11 can be made arbitrarily small: 

let ir be such that T hL n and let o,, := in. Then a d d(n). However a cannot be 

made arbitrarily large since to every degree b >> 0, there is, by Lemma 7, a 

smallest 2, degree 3 b, namely 1. It is an open problem if there are arbitrarily 

large (n,) degrees not in ET. * 
At this point it is natural to ask if there are degrees which cannot be written as 

the 1.u.b. of a finite set of 2, and 17, degrees. We now prove that the answer is 

affirmative (and more?). Let IT be the set of degrees a for which there are 

Jd, oo, . . . , on such that d(n) U d(o,,) U . . . U d(q) G a c d(x + a0 A . . . A 0,). 
We shall also need the following definition: A +ZC B iff A < B and for every set X 

of 2, sentences, if B in, A + X, then A +X is inconsistent. (Here X need not be 

r.e.) We write a 6~ b to mean that A K B where A E a and B E b. By Lemma 7, 

A <<< B implies A << B. As will become clear, the converse of this is not true. 

Lemma 12. Suppose a E IT and for all n, if d(x) c a, then d(n) << a. Then 0 <<< a. 

Proof. By assumption there are z, a,,, . . . , a, such that d(x) U d(o,,) U. . * U 
d(o,J~u<d(n+o,,/\..~ A a,). Also d(n) <<a. Let A E a. Then 

(I) T+o,sA foricn. 

Moreover, d(x) <<~(JG + q, A * . . A a,) and so, by Lemma 7, T + JZ PICJ,, v 
. ..vlo.. ButAtnandso 

(2) A FYJ~, v . . . v 10,. 

Let X be any set of 2, sentences such that 

(3) A-In, T+X. 

Then, by (2), T + X tloo v . . * v lan, whence there is a k,, such that T 
+q,Fl/l\x ~k,,vla,v.-*vv,, and so, by (1) and (3), T +X lla, v . . . v 

10~. Continuing in this way we eventually obtain the desired conclusion that 

T + X is inconsistent. q 

Lemma 13. Z, f DP 

To prove this we need the following lemma from [3] (Lemma 5). 

Lemma 14. Suppose X is r.e. Then there are a 2, formula l&(x) and a II, formula 
El(x) such that 

(i) if k E X, then PA t &(k), 

(ii) PA 1 Eo(@* E’4f), 
(iii) T + {15,(R): k $ X} is consistent. 
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Proof of Lemma 13. Our proof is an elaboration of the proof of Corollary 2 of 

[4]. We effectively construct sentences &, I#,, . . . such that if A,, = T + { vk: k < 
n} and A = T + (~9,: k E N} then 

(1) A, <<A,+,, 

(2) not T-=SKA. 

Let a = d(A). Then for all X, if d(n) G a, then there is an n such that 

d(n) 6 d(A,). Also d(A,) << d(A,+J c a and so d(n) <<a. It follows, by Lemma 

12, a $ I,. 
By Lemma 7, there is an r.e. relation s(n, k, p, q) such that (not T + w << 

T + IJJ + cp) iff 3p Vq S(I/J, cp, p, q). By (a straightforward extension of) Lemma 

14, there are a Z1 formula o&, y, z, U) and a 17, formula oi(x, y, z, U) such that 

(3) if s(n, k, p, q), then T t ao(fi, 16 p, q), 

(4) T t oo(fi, f, P, 9)+ o,(fi, E, P, 4), 

(5) T + Y is consistent where Y = {la,(ti, i, p, 4): not s(n, k, p, q)}. 

Set A, = T. Suppose A, has been defined and set 8, := /j{ vk: k < n}. Then 

(6) not A, <<A, + cp iff 3p Vq S(e,, 47, p, q). 

By (3) and Lemma 2, there is a Z, formula &(x, y) such that 

(8) if Vq S(e,, hi, p, q), then p,(@, p) is 117,-conservative over A,. 

Moreover, by Lemma 4(ii), there is a formula qn(x) such that 

(9) A, + vn(Q)) is a II,-conservative extension of A, + {l&(Q), p): p E N}. 

Finally let q,, be such that 

(IO) T k VII, t-, in. 

The formulas P~(x, y), m(x) and the sentences t/~~ can be found effectively in n. 

To prove (1) assume it is false. Then, by (6), there is a p such that 

VqS(O,, &, p, q). But then, by (8), p,(r&,, p) is K17,-conservative over A,. 
Moreover, by (9) and (lo), A, + I/J,, llpn(vln, p). But, by Lemma 7, this implies 

that A, <<A, + v,,, a contradiction. This proves (1). 

Next we prove (2). Let Y be as in (5). Then T + Y is consistent. To prove that 

A in, T + Y we first show that 

(II) &+I +Yin,A,+Y 

Indeed suppose A,+, + Y 1 JL Then there is a k such that 

(12) A,+, kl/jY rkvr. 
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By (1) and (6), to each p there is a qP such that 

(13) not S(%, V,,, P, qP). 

Moreover, by (12), (9), and (lo), 

A, + {xz(Vln, P): P E W tlAY I k ” J-C. 

But then, by (7), (4), (13), A,, + Y k it. This proves (11). 

From (11) it follows that A -In, T + Y. This proves (2) and so the proof of 

Lemma 13 is complete. q 

Let FT be the set of degrees obtained from E, together with the set of ZZ, 

degrees by closing under U and E,-extensions. By Theorem 3, FT $ ET. E, E IT 
(cf. the proof of Lemma 10) and trivially every ZZ1 degree is a member of I,. 

Moreover, as is easily verified, IT is closed under U and E,-extensions. Hence 

FT c IT and so, by Lemma 13, we get the following: 

Theorem 4. FT # DT. 

Corollary 2. There is a degree which is not the 1. u. b. of a finite set of degrees of the 
form d(.n A 0). 

Let a be the degree constructed in the proof of Lemma 13. Then 0 << a. We can 

obtain a degree b 4 I,, and so b $ F,, such that not b >> 0 as follows. By Theorem 

3 of [4], there are bo, b,<a such that bonb,=O and b,,Ub,=a. Since Z, is 

closed under U, it follows that b,, $ Z, or 6, $ I,; in fact, one of the intervals 

[b,, a] is disjoint from I,. 

Let CT be the set of degrees obtained from the set of II, and 2, degrees by 

closing under U and n. The above results do not seem to imply that CT # DT and 

the problem if this is true remains open. All degrees in CT can be written in the 

form d(q, v q,) U . . . U d(xH v a,). So if all degrees of the form d(n v a) are in 

Zr, then G, cZT and so G,# D,. If, on the other hand, d(x v a) $Z,, then 

d(n v a) $ FT, a much better result than Theorem 4: by Lemma 8, the degree a in 

the proof of Lemma 13 is not even B,. 

5. Let us say that a cups to b if there is a c <b such that a U c = b. (Thus no 

degree cups to 0 and every degree a > 0 cups to itself.) One way to strengthen 

Corollary 1 would be to show that there is a ZZ, degree a > 0 such that no .X, 

degree cups to a. We now prove a result which implies that this is false. (On the 

other hand, to every degree a > 0, there is a degree b such that 0 < b < a and b 
does not cup to a (cf. [4, Theorem 4(i)]).) 

Theorem 5. For every a, if there is a degree in G, which cups to a, then there is a 
2, degree which cups to a. 
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Proof. If d(n,, v qJ U . . . U d(n, v oE) cups to a, then there is a k c n such that 

d(n, v ok) cups to a. Thus we may assume that there is a degree ~(JL v a) which 

cups to a. Let b <a be such that d(~t v a) U b = a and let B E b. Let x := 

Vu 6(u), where 6(u) is PR. We may assume that 

(1) Tk16(u)/\16(tJ)+u=v; 

if necessary replace 6(u) by 6(u) v 3~ < u 16(v). Let Ed* be such that T + J-C v 

u F n* and B t+n*. By Lemma 6, there is a PR formula q(x, y, z) such that for all 

p?, 8, 

(2) if(T+q)fBtn*, then T + 8 ~Ylz ~(6, Q?, z), 

(3) if (T + cp) t B t+ n*, then 3z q( 6, Cp, z) is n,-conservative over T + 8. 

Next let $J and 8 be such that 

(4) Tt-q-Vu (3(u) -132 c u q(i9, lj, z)), 

(5) T F f3 -Vu (16(u)+= 3z s u ~(6, $, z)). 

Then 

and, by (1) 

(7) Ttqv8. 

We now show that 

(8) (T+tj~)tBFx*. 

Supoose not. Then, by (2) and (5), T + 8 tn. But then T + 0 t-n*. Also, by 

assumption, (T + ql~) t B 1 x* and so, by (7), B t J-C*, contrary to assumption. 

This proves (8). 

Now let 

x := 32 (?I(& ?j, z) A Vu <z 6(u)). 

Then x is ,Y, and 

Ttp-+3zq@,&z)~f?. 

But then, by (3), and (8), d(x) = d(0) and so, by (6), d(x) Ud(?p) = d(n). It 
follows that d(x v a) U d(q v a) U b = d(n v a) U b. Finally d(x v a) is 2, and, 

by (S), d(q v a) U b < ~(JL v cr) U b and so d(x v a) cups to a. 0 

It is an open problem if to every a > 0, there is a 2, degree which cups to a. (If 

not, then, by Theorem 5, G, # DT.) However, our next result implies that this is 

true of all sufficiently large degrees. 
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Theorem 6. There is a 2, degree a < 1 which cups to every b for which a s b < 1; 
in fact, there are two such degrees a,, and a, such that a,, n a, = 0. 

Proof. In [4, Theorem 51 we prove that d(Con,) cups to every b such that 

d(Con,) c b < 1; the following proof is an elaboration of that proof. Let 13; be 

such that 

PAt &*Vz (Prf,(& z)-,3u Gz Prf,(g,, u)), 

PAt 8, -t/z (P&(6,, z)+3u <z Prf,(& u)). 

Then, by standard arguments, 

(I) Tt#tj, i=O, 1, 

(2) PAk& v f3,, 

(3) PAt 8,) A O,-+lPr,(~i), i = 1, 0. 

Let ai = d( ei). Then a,, n a, = 0. Also clearly 

(4) PAtiBjttPr,(l!?i) A 0,-;, i =O, 1. 

By (2), PAtPr,(18,_,)-+Pr,(B,). As is well known, Pr,(lB,_J is Hi- 

conservative over T + 6l_;. But then, so is PrZ(&) and so, by (4), 

d(lei) =d(6,_i). Thus a,, and a, are 2,. (Formalizing the proof of (1) 

we get PA 1 Con,+ 8,, A 8, and so, by (3), a,, U a, = d(Con,).) 

Suppose now ai d b < 1. Let P(x) be a PR binumeration of a theory of degree 

b. Let Q, be such that 

PA k Q, * Vz (Prf,(cp v 8;, z)+ 3u G z Prf,,(O = 1, u)) 

and let 

@ := Vu (Prfp(O = 1, u) -+ 3Z < U Prf,(q, V Bi, Z)). 

Then, by (1) and again using standard arguments, 

(4) Tlttg, V 8i, 

(5) PAtqv@, 

(6) PAt 47 A @*Con,,. 

Clearly PA tlq+ Pr,(q v 0;). Since 197 is E,, we also have PA I- lq+ Pr,(lq). 

It follows that PA tlq* Prr( ei) and SO, by (3), 

(7) PA~~,A 8,+cp. 

Now let d = d(8,_i A @). Then, by (6) and (7), T + & A 8, A I$ 1 Con,,. Hence 

ai U d 3 d(ConB) 2 b. Suppose aj 6 d. Then T + 01-j A @ 18,. But then, by (2) 

and (5), T t q v Bi, contradicting (4). Thus aj =# d. Now let c = b fl d. Then c < b 
and ai U c = b as desired. 0 
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One way to improve Corollary 2 would be to show that there is a degree a > 0 

such that no degree of the form d(~d A a) cups to a. It is an open question if this is 

true. (If it is then, of course, there is a degree a > 0 such that no E1 degree cups 

to a, solving a problem already mentioned.) But we do have the following 

weaker: 

Theorem 7. There is a degree a > 0 such that no II, degree cups to a. 

Proof. The idea is to construct z7, sentences $J~ such that for all k, 

(1) Ttf V/C, 

(2) TI- qk+,+ Qk, 

(3) qk is .X1-conservative over T + 11+9~+, . 

Let a = d({&: k E N}). By (l), u > 0. By (3), d(&) does not cup to d(&+,) (cf. 

[4, Theorem 4(i)]). Suppose d(a) CU. Then, by (2), d(Jt) s d(qllk) for some k, 
whence d(z) does not cup to d(Vfk+,). It follows that d(n) does not cup to a. 
(Note that the theories T + I@~ are consistent: if T ~~IJJ~, then, by (2), T I~I+!J~+,, 
whence, by (3), T hLl$~~.) However, the sentences $J~ cannot be constructed by 

first defining &, then vi, then & etc.; at least this cannot be done in any 

straightforward way. (First of all, there is no known way of constructing, given 

I/J,+, a I&+~ satisfying (2) and (3). Secondly, d(&+l) must not cup to every degree 

2 d(&+,) and, by Theorem 6, that is a nontrivial condition.) Instead we shall use 

a construction inspired by that used in the solution, due to H. Friedman, of a 

problem of H. Gaifman (cf. [6, Exercise 4, p. 1791). 

Let 6(u) be an arbitrary PR formula. Let K(Z, u, x, y) be a n, formula such 

that 

(4) PA t-~(z, u, X, o), 

(5) PA t ~(8, u, i, y + 1) +=(a, u, k + 1, Y) v vv ([&lt(~r/d~) * Ed@, v) 

where 

&(X) := vu (6(u)+ K(& u, X, (u AX) + 1)) 

?l&) := vu (6(u)+ K(& u, X + 1, u -x)). 

(- is the function such that k L m = k - m if k 2 m and = 0 otherwise.) In (5) set 

y = u AR. Then, since u is not free in the second disjunct (to the right of ++) of 

(5) we get 

(6) PAt &(i) f-, ~~(1;) v Vu ([21Jz(1r1&) A K&), v)+iPrf&@), u)). 

It follows that 

(7) if T 1 &(E), then T t Q,(E). 
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For let p be a proof of &(R) in T. Then, by Lemma l(ii), T +lq&((L) A 
&(I?) tlPrf,(&(@, p), whence T + &(I%) 1 qg(@ and so T t Q(R). Clearly 

(8) if Ttc?(u)+u>i, then T t q6(i) t, &(k + 1). 

Next we show that 

(9) if 3~ 6(u) is true, then T t+ l&(o). 

Let m be the least number such that 6(m) is true. Then, by (7) and (8), if k <m 
and T t &(I$), then T t &(k + 1). Thus it suffices to show that T t+ &(fi). But, by 

(4) Tklrls(-) d m an so, by (7), T H- &(Fz). This proves (9). 

The set of PR formulas 6(u) such that 3~ 6(u) is true is an r.e. nonrecursive 

set. Hence, by (9), there is a PR formula 6*(u) such that 3~ 6*(u) is false and 

T ti‘&&). Let qk := r/p(i) and I/J~ := &,*(E). Then T l+qO. Hence, by (6) and 

(8), we get (1) and (2). 

(3) can be verified as follows. Suppose 

(10) T+l&+,+&to. 

Then T +iqk + qk t 0. Hence, by Lemma l(iii), there is a q such that 

T + [&l&~k * qkr 4) t a But then, by Lemma l(i), (l), and (6), T +iaF vk, 
whence T + lq,k E o. But then, by (lo), T +i?j~k+~ 1 a, proving (3). 

Finally, as we have already observed, it follows from (l), (2), (3) that a > 0 and 

that no II1 degree cups to a. q 

It would be interesting to know if there is a Z, degree a > 0 such that no II,, 

degree cups to a. * 
The dual of the notion of cupping is that of capping: a caps to b if there is a 

c > b such that a fl c = b. Thus if b <a, then a caps to b iff not b <<a. From 

Lemma 8 and the proof of Theorem 2 we get the following: 

Corollary 3. (i) There is a degree a < 1 such that no B, degree caps to a and a 
caps to no B, degree. 

(ii) If T is .X1-sound, then there are 2, degrees a, and a, such that a = a,, U a, is 
as in (i). 

The most interesting open problem about capping seems to be if there is a 2, 

degree a < 1 such that no 17, degree caps to a. * 

6. As is easily verified for every n, d(ln) is the pseudocomplement (p.c.) of 

d(n), i.e., d(ln) = max{b: b rl d(n) = O}. (Clearly d(n) fl d(ln) = 0. Suppose 

d(Jt) f~ a = 0. Let a = d(A). Then (T + JC) i A s T. But then for every u, if 

Alla, then T+nsT+o, whence T+atn, whence T+i~~tla (cf. [4, 

Lemma 121). It follows that a s d(ln).) Thus every n, degree has a p.c. In [4] it 

is shown that there is a degree with no p.c. This can be improved as follows. 



190 P. Linabiim 

Theorem 8. There is a El degree which has no p.c. 

This is an almost immediate consequence of the following lemma which 

improves Theorem lO(ii) of [4] and Lemma 11 above. 

Lemma 15. There is a sentence o such that {b 2 d(la): b is Z,} has no g.1. b. 

Proof. The following proof is the same as the proof of Theorem lO(ii) of [4] 

except for the introduction of the sentence o. Let n := Vu 6(u), where 6(u) is 

PR, be any n, sentence not provable in T. In the proof of Theorem 8 of [4] we 

construct a fl, sentence 8 and a E:, sentence x such that 0 < d(8) = d(x) s d(n) 

in the following way. By Lemma 6, there is a PR formula r],(x, z) such that 

if T t q, then T t+z r],(Q, z), 

if T If q, then 3z ql(@,, z) is 17,-conservative over T + q. 

Now let 8 be such that 

T t 8 f, Vu (16(u) -+ 32 G u Q(& z)). 

Finally, set 

x := 32 (Vi@, z) A vu <z 6(u)) 

(compare the proof of Theorem 5). We have T hL 8 and T t x - 32 q,( a, z) A 8. 

Thus there are (primitive) recursive functions f(n) and g(n) such that if E is any 

n, sentence, then f(n) is a II, sentence, g(n) is a 2, sentence, and if T ~+Jc, then 

T<T+~(Jc)=T+~(J-c)ST+J~. 

We now define ;TC~ and ok as follows. Let JG() be any 17, sentence not provable in 

T. Next suppose rck has been defined and T ttt~d~. Let r/~ be a II1 sentence 

undecidable in T + 7nk. Then T < T + nk V v < T + .76k. Let 0, := g(.7Gk V ‘+) 

and nk+l :=f(nk v T/J). Then for every k, 

(1) nk+l s ok < .7dk. 

By Lemma 5, there is a sentence o such that 

(2) T + o is a II,-conservative extension of T i- (+nk: k E N}. 

Then 

(3) d(v) C d(CJ,). 

Moreover 

(4) if b is 2, and b 3 d(la), then there is a k such that b 3 d(Jdk). 

For suppose b = d(x) where x is 2,. Then T + x E lo whence T + u t 1~. But 

then, by (2), there is a k such that T + ~JC~ 11~ whence T + x I& and so 

b 3 d(JGk). 
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Now if {b >d(lo): b is Z,} has a g.l.b., then, by (l), (3), (4), so does 

{d(nk): k E N}. But from (1) it follows that no d(nk) is g.1.b. of {X T + n, t n 

for every k}. Hence, by Lemma 17 of [4], {d(nk): k E N} has no g.1.b. Thus o is 

as desired. 0 

Proof of Theorem 8. Let o be as in Lemma 15. For all B, 

(T+a)JB<T iff B<T+XforallZ,sentencesXsuchthat T+xFla 

(cf. [4, Lemma 121). But then the p.c. of d(a), if it had one, would also be the 

g.1.b. of {b >d(la): b is E,}. Thus, by Lemma 15, d(a) is as desired. 0 

If 0 <<a < 1, then, trivially, a is not the p.c. of any degree. A nontrivial 

example of a degree which is not a p.c. is given in the following: 

Corollary 4. There is a II, degree a such that not 0 << a and a is not the p,c. of 

any degree. 

Proof. Let c~ be such that d(a) has no p.c. and let a = d(la). Then not 0<< a. 

Suppose a is the p.c. of some degree b. Then b s d(o), since d(a) is the p.c. of u. 

It follows that a is the p.c_ of d(a), a contradiction. 0 

Theorem 8 suggests the problem if there is a Z’, and non-n, degree which has a 

p.c. We show that the answer is affirmative. Note that there are lots of non-n,, 

even non-B,, degrees, which do have a p.c. Indeed if a >> 0 and a 3 d(n), then 

d(ln) is the p.c. of every member of [a fl d(x), d(x)] and, by Theorem 2(ii), this 

interval contains non-B, degrees. However, no member of [a fl d(n), d(n)] is ,Yi, 

except possibly d(n) (cf. [4, Corollary 91). 

Theorem 9. There is a 2, and non-II, degree which has a p.c. 

Proof. Let VU 6(u), where 6(u) is PR, be a fl, sentence not provable in T. We 

have seen in the proof of Lemma 15 how to construct a nr sentence 8 and a 2, 

sentence x such that O<d(x) = d(0) G d(Vu 6(u)). It follows that d(lX) =z 

d(l8). As we have already remarked, d(X) is the p.c. of d(lX). Also 

d(l8) fld(X) = 0. It follows that d(X) is the p.c. of d(l8). Thus it suffices to 

choose 6(u) in such a way that d(l8) is not n, (cf. the proof of Corollary 4 of 

]31). 
By Lemma 6, there is a PR formula q,(x, z) such that 

(I) if T t q, then T t+z q,(@, z), 

(2) if T t+ q~, then 3z r],(@, z) is n,-conservative over T + cp. 

For any formula y(x) let 

&q,(X) := Vz (q,(x, z)+ 3u (2 y(u)). 
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We can then effectively in k and y 

(3) T I- oy,k+l(~)+ oy,&), 

define Z1 formulas ~J~,~(x) such that 

(4) if T + p,,(q) is consistent, then 

T + CLAP)) + q+(Q)) < T + p,(Q) + oy.k+,((P). 

By Lemma 4(iii), there is a PR formula p(x, y, z) such that 

(5) T + p,,(G) + 3u ~(7, @, u) is a f17,-conservative extension of 

T + p,(Q) + {o,./G): k E N>. 

Now let K(X) be such that 

(6) T 1 K(Y) -vu (P(y, K(Y), u)* 32 =S u %(K(Y), 2)). 

Then 

(7) T t+ K(v). 

For suppose not. Then, by (l), 

(8) T tl3.z Q(K(Y), 2). 

It follows that T ~,u,,(K(~)) and so, by (4) and (5), T + 3up(y, K(Y), u) is 

consistent. On the other hand, by (6) and (8), this theory is inconsistent, a 

contradiction. This proves (7). 

Now let 

Xu := 32 (rjr(K(y), Z) A VU <ZIP(y, K(Y), u)). 

Then 

T k Xv * 3.z %(K(?), Z) A K(Y). 

But then, by (2) and (7), for all y, 

(9) d(X,) = d(K(?)). 

Moreover 

(10) T F~K(?) -3~ P(y, K(Y), U) A VZ (Vl(K(jj), Z)+ 3U <Z P(v) K(Y), U)). 

Finally let Y(U) be such that 

T t Y(U) * p(f’, K(c), u) 

and set 8 := K(V). Then, by (lo), 

(11) Tt~f?++!lup(V, 6, u) A p,,(6). 

Combining this with (7) we get 

(12) T + CL@) is consistent. 

That d(l8) is not II, can now be shown in the following way. Let JC be such that 

T +16J I- JC. Then, by (ll), (3), (5), there is a k such that T + p,,(e) + a,,,(6) En. 

But then, by (12), (4), (5), (ll), d(l8) > d(n). 
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Finally, as we have already seen, by (9), d(8) is the p.c. of d(lO) and so the 

proof is complete. 

*Note added in proof 

I have now answered some of the questions left open in the paper by proving 

the following results. 

Theorem A. To every 2, degree a < 1, there is a II, degree >a which caps to 0. 

Theorem B. (i) Every suficiently large degree is the 1.u.b. of a Z1 and a II, 
degree. 

(ii) Every sufJiciently large degree is the 1. u. b. of two Z, degrees. 

Theorem B(ii), in combination with the proof of Theorem 2(i), implies 

Theorem 2( iii). 

Theorem C. There is a 2, degree a such that no II, degree cups to a and 
(consequently) a cups to no III degree. 
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