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1. Let D; be the lattice of degrees of interpretability defined in [4] (cf. also [7]).
Let I be a set of sentences. A degree a € Dy is I' if there is a I' sentence @ such
that a = d(T + ¢). All degrees are IT, and X, (cf. [3], [4]). This was improved by
Franco Montagna (private communication) who observed that all degrees are A,
(Theorem 1). But then it is natural to ask if all degrees are B,, where B, is
the set of Boolean combinations of X, sentences. Not unexpectedly the answer is
negative (Theorem 2(i)); in fact, every nontrivial interval [a, b] (={c: a s<c < b},
where a <b) has a nontrivial subinterval containing no B, degree (Theorem
2(ii)). We also show that there are X, degrees a,, @, such that a,U q, is not B,
(Theorem 2(iii)). This would follow trivially from Theorem 2(i) if every degree is
the least upper bound (l.u.b) of two (finitely many) X, degrees. Thus it is relevant
to show that that is not true (Corollary 1); in fact, there is a IT, degree which
cannot be obtained from 0 by taking finite L.u.b.s and g.l.b.s (greatest lower
bounds) and X,-extensions (defined below) (Theorem 3). We then go on to prove
(a result implying) that there is a degree which is not the l.u.b. of a finite set of X,
and IT, degrees (Theorem 4). A degree a is said to cup to b if there is a ¢ < b such
that a U ¢ = b. One way to improve Corollary 1 would be to show that there is a
I1, degree a >0 such that no X, degree cups to a. We prove (a result implying)
that there is no such degree (Theorem 5). In [4] it is shown that there is a degree
a <1 which cups to every degree b such that a<<b <1. We improve this by
showing that a can be taken to be X, (Theorem 6). The above mentioned
consequence of Theorem 4 leads to the question if there is a degree a >0 such
that no IT, degree cups to a. We show that the answer is affirmative (Theorem 7;
this result was not obtained until after the PIA conference at Utrecht). Finally we
consider the existence of pseudocomplements. In [4] it is shown that there is a
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degree which has no pseudocomplement (p.c.). We now improve this by showing
that there is a 2| degree with no p.c. (Theorem 8). Trivially every Il, degree has
a p.c. This leads to the question if there is a &, and non-II, degree which has a
p-c. We show that the answer is affirmative (Theorem 9). We mention several
open problems. * (See Note added in proof.)

2. Asin [4] T is a consistent primitive recursive essentially reflexive extension of
Peano arithmetic PA. (A theory is identified with the set of its axioms.) Let 7(x)
be a PR binumeration of 7. A, B, etc. are primitive recursive extensions of T in
the language of 7. Thus A, B, etc. are essentially reflexive. We write A+ X or
X 1A, where X is a set of sentences, to mean that all members of X are provable
in A. Thus A 1B means that A is a subtheory of B. We write A-4.B, A is a
I'-subtheory of B, to mean that every sentence in I provable in A is provable in
B. A sentence ¢ is I'-conservative over A if A+ @-4rA (cf. [2]). A is a
I'-conservative extension of B if B4 A 4 B. A< B means that A is interpretable in
B, A<B that AsB<$ A, and A=B that A<B <A. The basic lemma of the
subject is the result that A < B iff A 1p, B. This lemma will be used in what follows
without further comment. (If we drop the assumption that 7 is (essentially)
reflexive our results remain true provided =< is replaced by H;.)=is an
equivalence relation; its equivalence classes are called degrees (of interpretability)
and are written a, b, ¢, etc. a<b iff A< B where A €a and B €b. d(A) is the
degree of A. Dy is the partially ordered set of degrees thus defined. As is easily
verified Dy is a distributive lattice (cf. [4, Theorem 1]). aNb and a U b are the
g.L.b. and the L.u.b. of a and b, respectively. D; has a smallest element 0= d(T)
and a largest element 1, the common degree of all inconsistent theories.
SolSi={evy: ¢eS&ypeS} and so d(A| B)=d(A)Nd(B); A1B is a
theory such that d(A 1 B) =d(A) U d(B) (cf. [4, Lemma 8]). When there is no
risk of confusion we use ¢ and X in place of T+ @ and T + X. Thus d(¢) is
d(T+ @), X <@ means that T+ X <T + ¢, etc. We use a<<b to mean that
a < b and for every ¢, if b N ¢ = a, then ¢ =a. A << B means that d(A) << d(B). o,
gy, etc. denote X, sentences and 7, 7, etc. denote Il; sentences. Notation and
terminology not explained here are standard (cf. [1]).

In what follows I'is either IT, or Z,, n >0, and I'* is the dual of I'. I'-true(x) is
a I partial truth-definition for I" sentences. a(x) is a PR binumeration of A. Let
[[.(x, y) be the formula

Vuv<y (uis I APrf, ), .- (u, v)— I'-true(u)).
The following lemma is then easily verified (cf. [3, Lemma 1]).

Lemma 1. (I'].(x, y) is a I formula such that
(i) PAF[Ia(x, y) A zsy—[Ta(x, 2),
(i) A+ @F[IN(P, m) for all ¢ and m,
(iii) if wis FTand A + @+, then there is a q such that PA +[I',(®, §) b .
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If ' =11, let §(x) be such that

PAHE(R) <Yy ([S].(EK), )= x(k, y)).
If '=2%, let £(x) be such that

PAFE(R) < Ty ([ (E(R), y) AVz <y x(k, 2)).

From Lemma 1 we get (cf. [3], Lemma 2):

Lemma 2. If x(x,y) is I, then §(x) is I" and
(i) A+Ek)Fx(k, m),
(it) A+ E(k) e A+ {x(k, §): g eN}.

Clearly, if for some m, Ar—y(k, m), then AF-E(k). Also note that if
At x(k, m), for all m, then (ii) implies that £(k) is I'-conservative over A.

A set y of sentences is monoconsistent with A if A + @ is consistent for every
@ € X. Suppose X is recursively enumerable (r.e.) and let R(k, m) be a primitive
recursive relation such that X ={k:3ImR(k, m)}. Let p(x,y) be a PR
binumeration of R(k, m). Let §(x) be as in Lemma 2 with x(x, y):=—p(x, y) and
let @ be such that PAF ¢ < §(@). Then (cf. [3, Corollary 1]):

Lemma 3. If X is r.e. and monoconsistent with A, then there is, and we can
effectively find, a I sentence @ such that @ ¢ X and @ is [-conservative over A.

Let Y be any primitive recursive set and let n(x) be a PR binumeration of Y.
Then, by Lemma 2 with y(x, y) := n(y)— I'-true(y) we get (i) of our next lemma
(cf. [3, Theorem 4]); (ii) and (iii) are obtained by a straightforward extension of
this construction.

Lemma 4. (i) To any r.e. set Y of I sentences, there is a I’ sentence @ such that
T + @ is a I''-conservative extension of T + Y.

Let R(k, m) be an r.e. relation such that X, = {m: R(k, m)} is a set of T
sentences.

(ii) There is a I formula y(x) such that for every k, A+ y(k) is a
IM-conservative extension of A + X,.

(iii) There is a I formula y(x, y) such that for every k and every sentence @,
A+ @+ (@, k) is a I-conservative extension of A+ X, + .

The following lemma is an immediate consequence of Lemma 4(i) (cf. [3,
Theorem 11]).

Lemma 5. To every r.e. set X of 2, sentences, there is a X, sentence o such that
A + o is a Il -conseruvative extension of A + X and consequently A+ o=A + X.
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From a slight generalization of Lemma 2 for I' = | we also get the following
(cf. [4, Lemma 6]):

Lemma 6. Let X be an r.e. set. There is then a PR formula n(y, x, z) such that for
all k and 6,

() ifkeX, then T + 6+—3z n(6, k, z2),

(i) if k ¢ X, then Az (B, k, z) is I1,-conservative over T + 6.

3. Let us begin with Montagna’s observation.
Theorem 1. Every degree is A,.

Proof. Let a be any degree. Using Craig’s trick, there is a primitive recursive set
X of IT, sentences such that a = d(X). Let §(x) be a PR binumeration of X and
let @ be such that

PAtL@ o Vz (IL](@, 2)— (§(2)— M-true(2))).

Then ¢ is I, and T + @ is a Il -conservative extension of T + X (cf. the above
proof of Lemma 4(i)). It follows that a = d(¢). By Lemma 1(i),

[IT].(x, 2) A u<z— [IT].(x, u).
Using this it is easily verified that ¢ is also X:
PA} @ & Vz (E(z)— I -true(z)) v Az ([I1].(@, 2)
A Vu <z (5(u)— II,-true(n))).
Thus ¢ is A,. O

In much the same way and using Corollary 3 of [5] it can be shown that for
every A, there is a A, sentence ¢ such that A and T + ¢ are mutually faithfully
interpretable (defined in [5]) thus somewhat improving Corollary 4 of [5].

We now show that Theorem 1 is optimal in the sense that A, cannot be
replaced by B;.

Theorem 2. (i) Not all degrees are B,.

(i) Every nontrivial interval [a, b] has a nontrivial subinterval containing no
B, degree.

(iii) If T is X -sound, then there are X degrees a,, a, such that a,U a, is not
B, *

To prove Theorem 2 we need Lemmas 8 and 9 below. The following easy
lemma will be used repeatedly (cf. [4, Lemma 14]).
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Lemma 7. A< B iff A<B and for every o, if B<A + 0, then A+—0. Thus, in
particular, if A is consistent and st is I1,-conservative over A, then A << A + m.

Lemma 8. Suppose @ is B, and X is r.e. and for every k, X | k < X.
() If X < ¢, then X < @.
(i) If o< X, then p LK X.

Proof. (i) @ can be written in the form (wy A 0y) v - - - v (7, A 0,). Now for any
degrees a, b, ¢, if a < b and a K¢, then a << b Nc. Thus it suffices to show that if
X<mao, then X<<Km Ao Let y be a 2 sentence such that T A o0<X + .
Then, by Lemma 7, it suffices to show that 7+ X }-—1x. Now, by assumption,
there is a k such that T+ X [k + ytx. Hence T+mxAcAT+X [ k+(x A 0)
and so X< X [ k+(x ~ 0). But then since X | k<< X, by Lemma 7, T+ X
(x A o). But X <z A o. It follows that T+ A o+7y, whence T+ X F—y, as
was to be shown.

(i) Let o be such that X < @ A o. It suffices to show that 7 + ¢ 0. Now
@ A0 is B;. Hence, by (i), X < @ A o. It follows that ¢ << @ A 0. But this is
possible only tf 7 + ¢ -0, O

To prove part (iii) of Theorem 2 we need the following lemma from [4]
(Lemma 11).

Lemma 9. Given a true II, sentence 6 and an r.e. set X monoconsistent with PA
we can effectively find I, sentences 0; such that
(i) PAF6,v 0,
(ii) PAF6, A 6,— 86,
(iii) 6,¢ X, i=0, 1.

Proof. The following proof is a bit more elegant than the one given in [4]. Let
6:=Vyy(y) where y(y) is PR. Let p(x,y) be a PR formula such that
X = {k:3n PAV} p(k, Ai)}. Finally let 6, and 8, be such that

PAF 8y Vy ((p(80, y) v y(y)— Iz <y p(8, 2)),
PAF 6, < Vz (p(6,, 2)— Iy <z (p(6, y) v 7(y)))-
Then 6, and 8, are as desired. [

Proof of Theorem 2. (i) By Lemma 3 with X =Th(T + {m,: k <n}), we can
effectively construct sentences 7, such that =, is Il,-conservative over but not
provablein 7 + {m;: k <n}. Let X = {m,: k e N}. Then, by Lemma 7, X [ k<X
for all k, so, by Lemma 8(i), d(X) is not B,.

(ii) Let e be such that a <<e <b. Let A€a, Beb, E ce. Let Y be the set of I,
sentences provable in A. Set A"=T+Y. (A7 is the deductively weakest
extension of 7 of degree a (cf. [4]).) By Orey’s compactness theorem [4, Lemma
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4], there is an m such that B | m £ E and E | m £ A. We now effectively define
IT, sentences ¥, such that

(1) BIml(Q+yo)¥E,

and for every X,

2 EtmEAT +yon--- Ay,

3) —1141 18 IT; conservative over A7 + Yo A~ - A Y.

The set {@: B ! m | (Q+9)<E}U{g:E ! m=<A” +-gp} is r.e. and monocon-
sistent with . Hence, by Lemma 10 of [4], there is a II, sentence y, such that
(1) holds and (2) holds for k = 0. Now, suppose (2) holds for k = n and (3) holds
fork=n—-1,ifn>0 Let A,=A" +yYon-- Ay, Theset Z={@p:E Im=
A, + @} is then r.e. and monoconsistent with A,. Hence, by Lemma 3, we can
effectively find a X, sentence ¢ ¢ Z which is IT;-conservative over A,. Let
Ynay =10. Then (2) holds for k =n +1 and (3) holds for k =n.

Now let X = YU {y: k e N}. Then a<d(X). Also, by (2), e£d(X), by (1),
dX)nb>d(X)Ne, and, by (3) and Lemma 7, X 1 k<X for every k. Let
c=d(X)Ne and d=d(X)Nb. Then asc<d<b. Also if c<f=d, then
f=<d(X) and not f < d(X), since d(X)Ne=<fande+f Hence, by Lemma 8(ii),
fis not B,.

(iii) We effectively construct sentences my, 0;, such that for all &,

(1) TtO k1= 0ix, i=0,1,

2) T + 0, is consistent, i=0, 1,

3 T + m, is consistent,

) Th = 7y,

5) 7, 41 18 ITj-conservative over T + my,

(6) T+ m < (T + 00) 1 (T + 014),
9 (TH oo )T (TH 0o )<sST+ Rpyy.

Let 0y g:= 0y,9:= y:=0=0. Then (2), (3), and (6) hold for k = 0. Suppose o, ,
and o, , have been defined and that (2), (3), and (6) hold for k =n. Since T is
X,-sound, (2) implies that (T + 0,,,) 1 (T + 0,,,,) is consistent. But then we can
find a IT, sentence 6 such that

8 T + 8 is consistent,
%) (T+00 )1 (TH+o,,)<T+8.

(For instance let 6 := Con,, where y(x) is a PR binumeration of (T + 0o,,) 1 (T +
01.,)-) From (9) and (6) for k = n it follows that

(10) T+6Fm,



X, (I1,) sentences and degrees of interpretability 181

Hence, by (8) and Lemma 3, we can find a IT, sentence y such that
(11) T+ 6y
(12) 1y is IT;-conservative over T + 7,,.

Let 7,1 =6 A y. Then, by (10), (4) holds for k =rn and, by (9), (7) holds for
k =n. Also, by (11), (3) holds for k =n+1 and, by (12), (5) holds for k =n.
7,4, is true, since otherwise (3) would not hold for n = k + 1. Hence, by (2) for
k =n and Lemma 9, we can find II, sentences 6, such that

(13)  PAF6O,v 6,
(14) PAF B, A B,—> 1, ,
(15) 8,¢ Th(T + o;,), i=0, 1

Let 0;,+,:=716; A 0;,,. Then (1) holds for £k =n and, by (15), (2) holds for
k=n+1. Finally, by (13), PA+ o, ,,,+6,_;, i =0, 1. Hence, by (14), (6) holds
fork=n+1.

Now let ¢, =d({0,,,: n e N}) and b = d({x,: n e N}). Then, by (1) and Lemma
5, a; is ;. By (3), (4). (5), and Lemmas 7 and 8(i), & is not B,. Finally, by
(1), (6), and (7), ayUa,=b. O

I don’t know if Theorem 2(iii) holds without the assumption that T is X;-sound.
A more interesting question is if (assuming that T is X ,-sound) there are degrees
aand bsuch thatais 2, bis II;,, andaUb is not B;. *

4. Part (iii) of Theorem 2 would follow trivially from part (i) if we could show
that every degree is the L.u.b. of two (finitely many) 2, degrees. (In the proof of
Theorem 6 below we define X, degrees a, and a; such that a,Ua, =d(Con,).)
We now prove that this is not the case (and more). (Note that, by Theorem 8 of
[4], for every degree a >0, there is a 3| degree b such that 0 <b =<a.) If A<B,
then for any g, A + o< B + 0. Thus d(A4 + 0) is uniquely determined by d(A); it
will be said to be a X-extension of d(A). Let E be the least set of degrees
containing 0 and closed under U, N, and 2'-extensions.

Theorem 3. There is a I1, degree not in Er.
This is an immediate consequence of the following two lemmas.
Lemma 10. To every a € E there is a smallest 3| degree = a.

Proof. It is easily shown by induction that if a € E, then there are oy, ..., 0,
such that

§))] d(og)U---Ud(o,)<sasd(ogA: - Aay,).
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Now
(2) d(gg A -+ - A 0,) is the smallest 2| degree =d(gy) U - - -Ud(a,).

This can be seen as follows. Suppose d(ag,) U - - Ud(0,)<d(0). Let & be such
that T4+ ogA---A0o, k. Then THoytoA---Ao,—~>7m Now o A --A
o,— m is a II; sentence. It follows that T+ ot o, A--- A 0,— . But then
T+okonoyn---Ao,—m and so T+ot0,A- -+ A 0,— m Continuing in
this way we eventually get T + o+, as desired.

Finally, by (1) and (2), d(0y A - - - A 0,,) is the smallest ¥, degree =a. O

Lemma 11. There is a I1, degree a for which there is no smallest X, degree = a.

Proof. We can effectively construct sentences ¢, such that for every k,

(1) T+ o4 b oy,

(2) Oy < Ogy1-

Let 0,:=0=0. Given o, such that T + o, is consistent let X = Th(T + o,). By
Lemma 9, we can find IT, sentences 6; such that P-6,v 6, and 6,¢ X, i =0, 1.
(Let 6 be any true II, sentence.) Let o,,,:= 0, A76,. Then T + 0., is
consistent and (1) holds trivially. Finally T + o, 8, and T + g, i+ 8, and so (2)

is true.
By Lemma 5, there is a sentence o such that

3) T + o is a IT,-conservative extension of T + {o,: k e N}.

Let a = d(70). Then a is IT,. Now let y be any X, sentence such that a <d(yx).
Then T + x+—o and so T + oty But then, by (1) and (3), there is a k such
that T + o, +—x and so

4) T+ x+Foy.

Also, by (2) and (3), there is a sentence & such that T+ otmxand T + o, 7. It
follows that

(5) T+7tko,
(6) T + o
But then, by (5), a <d(—x) and, by (4) and (6), d(x) $ d(—x). Thus d(yx) is not

the smallest 2| degree =a. 0O

Corollary 1. There is a II, degree which is not the l.u.b. of finitely many X,
degrees.

Suppose a ¢ E;. Then 0<a <1. But then, by Theorem 3 of [4], there are b,
b, < a such that b,U b, =a and ¢, ¢, > a such that ¢,N ¢, =a. Now E is closed
under N and U. It follows that either (b, a] or [b,, a] is disjoint from E. Let b
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be the b; for which this holds. Then either [b, ¢y] or [b, ¢,] is disjoint from E;.
Let ¢ be the ¢; for which this holds. Then [b, c] is disjoint from Ej;. Thus
to every a ¢ E, there are b, ¢ such that b <a <c and [b, c]N E; =§.

The degree a defined in the proof of Lemma 11 can be made arbitrarily smali:
let 7 be such that Tt & and let g,:= . Then a <d(x). However a cannot be
made arbitrarily large since to every degree b >>0, there is, by Lemma 7, a
smallest 2, degree = b, namely 1. It is an open problem if there are arbitrarily
large (I1,) degrees notin E,. *

At this point it is natural to ask if there are degrees which cannot be written as
the L.u.b. of a finite set of 2| and I, degrees. We now prove that the answer is
affirmative (and more?). Let I, be the set of degrees a for which there are
T, Oy, ..., 0, such that d(m)Ud(oy)U---Ud(o,)<asd(m+o,A" A 0C,).
We shall also need the following definition: A <& B iff A < B and for every set X
of 3, sentences, if B4, A + X, then A + X is inconsistent. (Here X need not be
r.e.) We write a €< b to mean that A <& B where A €ea and B e b. By Lemma 7,
A <& B implies A << B. As will become clear, the converse of this is not true.

Lemma 12. Suppose a € Iy and for all m, if d(x) < a, then d(;t) << a. Then 0 < a.

Proof. By assumption there are =, 0y, ..., 0, such that d(m)Ud(o))U-- U
do,)<asd(m+0oyA--A0,). Also d(x)<<a. Let A €a. Then

(1) T+o,<A fori=sn.

Moreover, d(m)<<d(wr+oyAr---A0,) and so, by Lemma 7, T+ xtgyv
-++vTg,. But AF s and so

2) AFToyv - v g,

Let X be any set of X, sentences such that
3) Adr, T+ X.

Then, by (2), T+ Xtoyv---v o, whence there is a k, such that T
+0yF " AX tkyvTo,v--:vTo,, andso, by (1)and 3), T+ XF-o, v -V
—10,,. Continuing in this way we eventually obtain the desired conclusion that
T + X is inconsistent. ]

Lemma 13. /- # D,.
To prove this we need the following lemma from [3] (Lemma 5).

Lemma 14. Suppose X is r.e. Then there are a 3, formula Ey(x) and a I, formula
Ei(x) such that
(i) if k € X, then PAF Ey(k),
(i) PAF E(R)— E:(R),
(iti) T+ {7&(k): k ¢ X} is consistent.
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Proof of Lemma 13. Our proof is an elaboration of the proof of Corollary 2 of
[4]. We effectively construct sentences ¥, Y, . . . such thatif A, =T + {y,: k <
n}and A=T+ {y,: k e N} then

(1) An <<An+l)
(2) not T < A.

Let a=d(A). Then for all z, if d(x)=<a, then there is an n such that
d(r)<d(A,). Also d(A,) <d(A,+)<a and so d() < a. It follows, by Lemma
12, a ¢ Ir.

By Lemma 7, there is an r.e. relation S(n, k, p, g) such that (not T + ¢ <
T + vy + @) iff Ip Vg S(y, @, p, q). By (a straightforward extension of) Lemma
14, there are a X, formula oy(x, y, z, u) and a II; formula o,(x, y, z, u) such that

(3) if S(n, k, p, q), then T+ oo(A, &k, p, q),

(4) T+ oo(ii, k, p, §)— 01(7, k, p, §),

%) T +Y is consistent where Y = {70,(#, k, p, G): not S(n, k, p, q)}.
Set A,= T. Suppose A, has been defined and set 6, := /\{v,: k <n}. Then

6) not A, <A,+ ¢ iff IpVqS(6,, @, p, q9).

By (3) and Lemma 2, there is a X, formula p,(x, y) such that

(M At pu(@ D)= 00, @ 5, D),

8) if Vg $S(0,,, @, p, q), then p, (@, p)is I1;-conservative over A,,.

Moreover, by Lemma 4(ii), there is a formula 7,(x) such that

) A, + n,(®) is a IT;-conservative extension of A, + {7p,.(®, p): p e N}.

Finally let 1, be such that

(10) Ty, na(w).

The formulas p,(x, ¥), 1,(x) and the sentences ¥, can be found effectively in n.
To prove (1) assume it is false. Then, by (6), there is a p such that
Yq S(6,, Y., p, q)- But then, by (8), p,(y., p) is IT;-conservative over A,.
Moreover, by (9) and (10), A, + vy, F=p,(., p). But, by Lemma 7, this implies
that A, << A, + v,,, a contradiction. This proves (1).
Next we prove (2). Let Y be as in (5). Then T + Y is consistent. To prove that
Adp, T +Y we first show that

an Api1+ YA A, +Y
Indeed suppose A, + Y+ x. Then there is a k such that
(12) A, FONY kv
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By (1) and (6), to each p there is a g, such that

(13)  not S(6,, ¥, P 4p)-
Moreover, by (12), (9), and (10),
A+ {00u(Wn, ):p eNFFOAY Tk v
But then, by (7), (4), (13), A, + Y+ &. This proves (11).

From (11) it follows that A 4y T + Y. This proves (2) and so the proof of
Lemma 13 is complete. [

Let Fr be the set of degrees obtained from E; together with the set of IT,
degrees by closing under U and X-extensions. By Theorem 3, F;r & E4. Ey c Iy
(cf. the proof of Lemma 10) and trivially every II, degree is a member of I;.
Moreover, as is easily verified, I is closed under U and X;-extensions. Hence
Fr c I and so, by Lemma 13, we get the following:

Theorem 4. F; +# D

Corollary 2. There is a degree which is not the l.u.b. of a finite set of degrees of the
form d(z A o).

Let a be the degree constructed in the proof of Lemma 13. Then 0 << a. We can
obtain a degree b ¢ I, and so b ¢ Fy, such that not b >> 0 as follows. By Theorem
3 of [4], there are by, b, <a such that b,N b, =0 and b,U b, =a. Since I, is
closed under U, it follows that b,¢ I, or b, ¢ I;; in fact, one of the intervals
[b;, a] is disjoint from 1.

Let G; be the set of degrees obtained from the set of II, and X, degrees by
closing under U and N. The above results do not seem to imply that G, # Dy and
the problem if this is true remains open. All degrees in G can be written in the
form d(zy v 0y) U - - -Ud(x, v g,). So if all degrees of the form d(z v o) are in
Iy, then G;cI; and so Gy # D;. If, on the other hand, d(x v 0) ¢ I, then
d(z v 0) ¢ Fr, a much better result than Theorem 4: by Lemma §, the degree a in
the proof of Lemma 13 is not even B;.

5. Let us say that a cups to b if there i1s a ¢ <b such that a Uc =b. (Thus no
degree cups to 0 and every degree a >0 cups to itself.) One way to strengthen
Corollary 1 would be to show that there is a IT, degree a >0 such that no X,
degree cups to a. We now prove a result which implies that this is false. (On the
other hand, to every degree a >0, there is a degree b such that 0<b <a and b
does not cup to a (cf. [4, Theorem 4(i)]).)

Theorem 5. For every a, if there is a degree in Gy which cups to a, then there is a
X, degree which cups to a.
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Proof. If d(zy,v 0y) U - --Ud(x, v g,) cups to a, then there is a kK < such that
d(m, v o;) cups to a. Thus we may assume that there is a degree d(ar v ¢) which

TELLY Wy ddHUl LI Is 4 QEglel G4/

cups to a. Let b<<a be such that d(wxvo)Ub=a and let Beb. Let x:=
Vu 8(u), where () is PR. We may assume that

1) T+6{u) Amd6(v)—u=v;

if necessary replace 6(u) by 8(u) v v <u6(v). Let x* be such that T+ 7w v
ot nx* and B+ x*. By Lemma 6, there is a PR formula n(x, y, z) such that for all
@, 0,

(2) if (T+ @)1 BFa*, then T+ 0+3zn(0, @, 2),
3) if (T + @)1 Bt+x*, then Az n(6, @, z) is I1,-conservative over T + 6.
Next let 1 and 0 be such that

(4) TryoVu(dw)—>3z<un(, y, 2)),

(5) T+OoVu(éu)—IAz=<un(8, ¢, z)).

Then

(6) THyAB)en

and, by (1)

@) Tryve.

We now show that

(8) (T +y)1 BHx*.

Supoose not. Then, by (2) and (5), T+ @+ m. But then T+ 6+x*. Also, by
assumption, (T + )1 Brx* and so, by (7), BFx*, contrary to assumption.
This proves (8).

Now let

x:=3z (B, ¥, z) A Vu <z 5(u)).
Then x is X, and
Try<3zn(, ¥, z) A 6.

But then, by (3), and (8), d(x) =d(8) and so, by (6), d(x) Ud(y)=d(x). It
follows that d(y v o) Ud(y v 6)Ub =d(x v o) Ub. Finally d(y v o) is 2, and,
by (8),d(y vo)Ub<d(mrvo)Ubandsod(yvo)cupstoa. O

It is an open problem if to every a >0, there is a ¥ degree which cups to a. (If
not, then, by Theorem 5, G; # D,.) However, our next result implies that this is
true of all sufficiently large degrees.
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Theorem 6. There is a 2, degree a <1 which cups to every b for which a <b <1,
th » £,

.
i foet ¢ h A
i jaci, inere are tw { aegre

=]
=
-
=
[¢]
@]

rem 5] we prove that d(Con,) cups to every b such that

In (4, e t
d(Con,) = b < 1; the following proof is an elaboration of that proof. Let 0; be
such that

PAF 0, < Vz (Prf (0, z)— Ju <z Prf,(8,, u)),
PAt 0, <> Vz (Prf(0,, z)— Ju <z Prf,(8,, u)).

Then, by standard arguments,

(1) TH6, i=01,

2) PAF G, v 6y,

3) PAL 6O, A 6,—Pr,(6), i=1,0.

Let a, = d(6;). Then a,Na, =0. Also clearly

(4 PA+0,<Pr(6)AB,_;, i=0,1.

By (2), PAFPr.(70,_)—Pr.(8). As is well known, Pr,(n6,_;) is II;-
conservative over T+ 6,_,. But then, so is Pr,(6;) and so, by (4),
d(—6;)=d(6,_;). Thus a, and a, are X,. (Formalizing the proof of (1)
we get PA}FCon,— 6, A 8, and so, by (3), ayU a,; =d(Con,).)

Suppose now a; <b < 1. Let S(x) be a PR binumeration of a theory of degree
b. Let ¢ be such that

PAt @ < Vz (Prf(p v 6, z)— Ju <z Prig(0 =1, u))
and let

¢:=Vu (Prfﬁ(0_=—1—, u)— Iz <uPrf (¢ v 6, 2)).
Then, by (1) and again using standard arguments,
)] THov O,
(5) PAtg v @,
(6) PAL ¢ A §— Cong.

Clearly PAF—¢— Pr.(@ v 6;). Since 7@ is 2|, we also have PA+—¢— Prr(-|_(p).
It follows that PA ¢ — Pr.(6;) and so, by (3),

@) PAF Gy A 6,— .

Now let d =d(6,_; A ¢). Then, by (6) and (7), T + 6, A 8, A ¢ - Cong. Hence
a;,Ud=d(Cong)=b. Suppose a;<d. Then T + 6,_; A @ 6;. But then, by (2)
and (5), T+ @ v 6;, contradicting (4). Thus a,% d. Now let c=b Nd. Then c <bh
and g; Uc = b as desired. 0O
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One way to improve Corollary 2 would be to show that there is a degree a >0

such that no degree of the form d(m A o) cups to a. It is an open question if this is

Bl Ular DO BOEITO VL A0 10 G LUPS U G 20 20 QI UPREL QUUSUUN AL S IS

true. (If it is then, of course, there is a degree a >0 such that no X, degree cups
to a, solving a problem already mentioned.) But we do have the following
weaker:

Theorem 7. There is a degree a >0 such that no Il, degree cups to a.

Proof. The idea is to construct IT; sentences v, such that for all %,

(1) T W IPk)

) THYe1—= Y,

3) Y, is E-conservative over T + 1.

Let a =d({y.: k e N}). By (1), a >0. By (3), d(y,) does not cup to d(,,,) (cf.
[4, Theorem 4(i)]). Suppose d(rx) <a. Then, by (2), d(x) <d(y,) for some k,
whence d(mr) does not cup to d(y,,,). It follows that d(;r) does not cup to a.
(Note that the theories T + y, are consistent: if T -7y, then, by (2), T F oy,
whence, by (3), T +—y,.) However, the sentences y, cannot be constructed by
first defining ,, then ,, then 1, etc.; at least this cannot be done in any
straightforward way. (First of all, there is no known way of constructing, given
Yy, @ Py satisfying (2) and (3). Secondly, d(y, ) must not cup to every degree
= d(y+1) and, by Theorem 6, that is a nontrivial condition.) Instead we shall use
a construction inspired by that used in the solution, due to H. Friedman, of a
problem of H. Gaifman (cf. [6, Exercise 4, p. 179]).

Let 6(u) be an arbitrary PR formula. Let x(z, 4, x, y) be a I, formula such
that

4 PA}F-k(z, u, x, 0),
6)  PAFK(S,u ky+1) o k(8 u k+1,y) v Vv (2]1:k) A &), v)
—Prf, (5, (K), v),
where
Es(x):=Vu (8(u)— (5, u, x, (u=x) + 1)),
75 (x) 1= Vu (8(u)— k(5, u, x + 1, u = x)).

(= is the function such that k —=m =k —m if k = m and = 0 otherwise.) In (5) set
y =u k. Then, since u is not free in the second disjunct (to the right of <) of
(5), we get

(6) PAFEs(k) o ns(k) v Vv ([Z1].(ms (k) A Es(k), v)— —Prf(Es(K), v)).
It follows that
@) if T+E&s(k), then TFns(k).
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For let p be a proof of E,(k) in T. Then, by Lemma 1(ii), T +-ns(k) A
Es(k)+Prf,(Es(k), p), whence T + Es(k) F ns(k) and so T+ ns(k). Clearly

(8) if TH8(u)—u>k, then Ttn,(k)e Es(k+1).
Next we show that
9) if Qu 8(u) is true, then T i+ &5(0).

Let m be the least number such that () is true. Then, by (7) and (8), if k <m
and T+ E5(k), then T+ &, (m). Thus it suffices to show that T i &5(r1). But, by
(4), T +ns(m) and so, by (7), TI+ Es(rn). This proves (9).

The set of PR formulas (u«) such that Ju d(u) is true is an r.e. nonrecursive
set. Hence, by (9), there is a PR formula 6*(u) such that 3u 6*(u) is false and
T Es+(0). Let @y :=ns-(k) and vy, := E;«(k). Then T+ 1p,. Hence, by (6) and
(8), we get (1) and (2).

(3) can be verified as follows. Suppose

(10) T+ + Y bo.

Then T+ @, + y,+o. Hence, by Lemma 1(iii), there is a g such that
T +[2].(0@w A Yi, ) F o. But then, by Lemma 1(i), (1), and (6), T + "o+ vy,
whence T + 7y, F 0. But then, by (10), T + -y, + o, proving (3).

Finally, as we have already observed, it follows from (1), (2), (3) that @ >0 and
that no I1, degree cups toa. [

It would be interesting to know if there is a 2| degree a >0 such that no IT,,
degree cups toa. *

The dual of the notion of cupping is that of capping: a caps to b if there is a
¢>b such that anc=5. Thus if b <a, then a caps to b iff not b <<a. From
Lemma 8 and the proof of Theorem 2 we get the following:

Corollary 3. (i) There is a degree a <1 such that no By degree caps to a and a
caps to no B, degree.

(ii) If T is X\-sound, then there are X, degrees a, and a; such that a =ayUa, is
as in (i).

The most interesting open problem about capping seems to be if there is a X,
degree a <1 such that no IT; degree caps to a. *

6. As is easily verified for every &, d(—w) is the pseudocomplement (p.c.) of
d(m), ie., d(mw)=max{b: bNd(x)=0}. (Clearly d(x)Nd(-x)=0. Suppose
d(xr)Na=0. Let a=d(A). Then (T +n)| A<T. But then for every o, if
Atr-g, then T+a<T+ o, whence T+ otx, whence T +—wh—o (cf. [4,
Lemma 12]). It follows that a < d(—r).) Thus every IT, degree has a p.c. In [4] it
is shown that there is a degree with no p.c. This can be improved as follows.
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Theorem 8. There is a 2| degree which has no p.c.

This is an almost immediate consequence of the following lemma which
improves Theorem 10(ii) of [4] and Lemma 11 above.

Lemma 15. There is a sentence o such that {b = d(—0): b is 2} has no g.Lb.

Proof. The following proof is the same as the proof of Theorem 10(ii) of [4]
except for the introduction of the sentence . Let & :=Vu 6(u), where 6(u) is
PR, be any [T, sentence not provable in 7. In the proof of Theorem 8 of [4] we
construct a Il; sentence 6 and a X, sentence y such that 0<d(0) =d(x) =d(x)
in the following way. By Lemma 6, there is a PR formula n,(x, z) such that

if T+q, then T+73z (@, 2),

if Tt @, then 3z (@, z) is II;-conservative over T + .
Now let 8 be such that

T+O<Vu(d(u)—Az<un(6, 2)).
Finally, set

x:=3z (n(6, z) AVu <z 8())
(compare the proof of Theorem 5). We have T 6 and Tty <3z 1,(6, z) A 6.
Thus there are (primitive) recursive functions f(n) and g(n) such that if 7 is any
II, sentence, then f() is a I, sentence, g(s) is a 2| sentence, and if T I+, then
T<THf(m)=T+gn)=T+rm

We now define 7, and o, as follows. Let m, be any I1, sentence not provable in

T. Next suppose 7z, has been defined and T m,. Let y be a II, sentence
undecidable in T +-ut,. Then T<T+m, vy <T+um. Let op:=g(x, v y)
and 7, :=f (7, v ¥). Then for every k,
€)) Ty < O < ITy.
By Lemma 5, there is a sentence o such that
(2) T+ ois a II;-conservative extension of T + {7m,: k e N}.
Then
3) d(no)<sd(oy).
Moreover

4) if b is X, and b = d(—0), then there is a k such that b = d(m).

For suppose b =d(y) where x is 2. Then T + y+70 whence T + o+7y. But
then, by (2), there is a k such that T +m,+7y whence T + ytm, and so
b =d(m,).
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Now if {b=d(70):b is X} has a g.l.b., then, by (1), (3), (4), so does
{d(m,): k e N}. But from (1) it follows that no d(m;) is g.l.b. of {m: T+ m, + &
for every k}. Hence, by Lemma 17 of [4], {d(;): kK € N} has no g.1.b. Thus o is
as desired. [

Proof of Theorem 8. Let o be as in Lemma 15. For all B,
(T+0)|B<T iff B<T+y for all ¥, sentences y such that T + y -0

(cf. [4, Lemma 12]). But then the p.c. of d(o), if it had one, would also be the
g.L.b. of {b=d(m0): b is 2;}. Thus, by Lemma 15, d(0) is as desired. [

If 0«<a<1, then, trivially, a is not the p.c. of any degree. A nontrivial
example of a degree which is not a p.c. is given in the following;:

Corollary 4. There is a Il, degree a such that not 0 << a and a is not the p.c. of
any degree.

Proof. Let o be such that d(o) has no p.c. and let a = d(—0). Then not 0 << a.
Suppose a is the p.c. of some degree b. Then b < d(o), since d(0o) is the p.c. of a.
It follows that a is the p.c. of d(0), a contradiction. [

Theorem 8 suggests the problem if there is a 2, and non-IT; degree which has a
p.c. We show that the answer is affirmative. Note that there are lots of non-II,,
even non-B,, degrees, which do have a p.c. Indeed if @ >>0 and a # d(), then
d(—r) is the p.c. of every member of [a N d(x), d(xr)] and, by Theorem 2(ii), this
interval contains non-B, degrees. However, no member of [a Nd(x), d()] is X,
except possibly d(x) (cf. [4, Corollary 9]).

Theorem 9. There is a X, and non-II, degree which has a p.c.

Proof. Let Vu 6(u), where d(u) is PR, be a II, sentence not provable in 7. We
have seen in the proof of Lemma 15 how to construct a IT, sentence 8 and a X,
sentence x such that 0<d(y)=d(0)=<d(Vu d(u)). It follows that d(—y)=
d(m08). As we have already remarked, d()x) is the p.c. of d(-y). Also
d(=8)Nd(x)=0. It follows that d(y) is the p.c. of d(—8). Thus it suffices to
choose 6(u) in such a way that d(70) is not IT, (cf. the proof of Corollary 4 of
[3D-

By Lemma 6, there is a PR formula 7,(x, z) such that
(1) if Tte, then T+-3zn (@, 2),
2) if Tl @, then 3z n,(@, z) is II,-conservative over T + ¢.

For any formula y(x) let

1, () 2= Vz (1(x, 2)—> Ju <z y(w)).
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We can then effectively in k and y define X, formulas o, ,(x) such that
(3) Tk 0y,k+1(x)_) oy,k(x)’
4) if T+ p,(®) is consistent, then
T+ ”y(@) + oy,k((_p) <T+ ,u,.),((i)) + ay.k+l(¢)-
By Lemma 4(iii), there is a PR formula p(x, y, z) such that
(5) T+ u, (@) +3up(y, @, u)is a I1,-conservative extension of
T+ “y((_p) + {oy.k(dj): ke N}
Now let x(x) be such that
©) Trx(7) < Vu (p(¥, k(¥), u)— Iz <un(x(¥), 2)).
Then
) T i x(¥).
For suppose not. Then, by (1),
®) T +=3z ni(x(¥), 2)-

It follows that T+ u,(k(7)) and so, by (4) and (5), T+ 3up(y, k(¥), u) is
consistent. On the other hand, by (6) and (8), this theory is inconsistent, a
contradiction. This proves (7).

Now let

Xy := 3z (ni(x(¥), 2) AVu <z7p(¥, k(7), u)).
Then
Tt yy < 3z ni(k(¥), 2) A k(F).
But then, by (2) and (7), for all y,
©  d(x)=dx()).
Moreover
(10) T+x(7) o Ju p(, K(7), u) A Vz (n:(x(3), 2)—> Fu <z p(3, K(7), 1)).
Finally let v(u«) be such that
TFv(u) < p(v, k(¥), u)
and set 8 := k(¥). Then, by (10),
(11) T+0 < 3up(¥, 6, u) A u,(H).
Combining this with (7) we get
(12) T + u,(0) is consistent.

That d(—8) is not II; can now be shown in the following way. Let & be such that
T +-6+ . Then, by (11), (3), (5), there is a k such that T + u,(8) + 0,4(6) F 7.
But then, by (12), (4), (5), (11), d(78) > d(x).
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Finally, as we have already seen, by (9), d(0) is the p.c. of d(78) and so the
proof is complete.

*Note added in proof

I have now answered some of the questions left open in the paper by proving
the following results.

Theorem A. To every X, degree a <1, there is a I1, degree =a which caps to 0.

Theorem B. (i) Every sufficiently large degree is the Lu.b. of a 2, and a II,
degree.
(ii) Every sufficiently large degree is the l.u.b. of two X degrees.

Theorem B(ii), in combination with the proof of Theorem 2(i), implies
Theorem 2(iii).

Theorem C. There is a 5, degree a such that no II, degree cups to a and
(consequently) a cups to no I, degree.
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