On Σ_1 and Π_1 sentences and degrees of interpretability

Per Lindström

Department of Philosophy, University of Göteborg, Sweden

Communicated by D. van Dalen Received 30 September 1991 Revised 10 March 1992

1. Let D_T be the lattice of degrees of interpretability defined in [4] (cf. also [7]). Let Γ be a set of sentences. A degree $a \in D_T$ is Γ if there is a Γ sentence φ such that $a = d(T + \varphi)$. All degrees are Π_2 and Σ_2 (cf. [3], [4]). This was improved by Franco Montagna (private communication) who observed that all degrees are Δ_2 (Theorem 1). But then it is natural to ask if all degrees are B_1 , where B_1 is the set of Boolean combinations of Σ_1 sentences. Not unexpectedly the answer is negative (Theorem 2(i)); in fact, every nontrivial interval [a, b] (= { $c: a \le c \le b$ }, where a < b) has a nontrivial subinterval containing no B_1 degree (Theorem 2(ii)). We also show that there are Σ_1 degrees a_0 , a_1 such that $a_0 \cup a_1$ is not B_1 (Theorem 2(iii)). This would follow trivially from Theorem 2(i) if every degree is the least upper bound (l.u.b) of two (finitely many) Σ_1 degrees. Thus it is relevant to show that that is not true (Corollary 1); in fact, there is a Π_1 degree which cannot be obtained from 0 by taking finite l.u.b.s and g.l.b.s (greatest lower bounds) and Σ_1 -extensions (defined below) (Theorem 3). We then go on to prove (a result implying) that there is a degree which is not the l.u.b. of a finite set of Σ_1 and Π_1 degrees (Theorem 4). A degree *a* is said to cup to *b* if there is a c < b such that $a \cup c = b$. One way to improve Corollary 1 would be to show that there is a Π_1 degree a > 0 such that no Σ_1 degree cups to a. We prove (a result implying) that there is no such degree (Theorem 5). In [4] it is shown that there is a degree a < 1 which cups to every degree b such that $a \le b < 1$. We improve this by showing that a can be taken to be Σ_1 (Theorem 6). The above mentioned consequence of Theorem 4 leads to the question if there is a degree a > 0 such that no Π_1 degree cups to a. We show that the answer is affirmative (Theorem 7; this result was not obtained until after the PIA conference at Utrecht). Finally we consider the existence of pseudocomplements. In [4] it is shown that there is a

Correspondence to: Prof. P. Lindström, Institutionen för Filosofi, Göteborgs Universitet, S-412 98 Göteborg, Sweden.

0168-0072/93/\$06.00 (C) 1993 - Elsevier Science Publishers B.V. All rights reserved

degree which has no pseudocomplement (p.c.). We now improve this by showing that there is a Σ_1 degree with no p.c. (Theorem 8). Trivially every Π_1 degree has a p.c. This leads to the question if there is a Σ_1 and non- Π_1 degree which has a p.c. We show that the answer is affirmative (Theorem 9). We mention several open problems. * (See Note added in proof.)

2. As in [4] T is a consistent primitive recursive essentially reflexive extension of Peano arithmetic PA. (A theory is identified with the set of its axioms.) Let $\tau(x)$ be a PR binumeration of T. A, B, etc. are primitive recursive extensions of T in the language of T. Thus A, B, etc. are essentially reflexive. We write $A \vdash X$ or $X \dashv A$, where X is a set of sentences, to mean that all members of X are provable in A. Thus $A \dashv B$ means that A is a subtheory of B. We write $A \dashv_{\Gamma} B$, A is a Γ -subtheory of B, to mean that every sentence in Γ provable in A is provable in B. A sentence φ is Γ -conservative over A if $A + \varphi \dashv_{\Gamma} A$ (cf. [2]). A is a Γ -conservative extension of B if $B \dashv A \dashv_{\Gamma} B$. $A \leq B$ means that A is interpretable in B, A < B that $A \le B \le A$, and $A \equiv B$ that $A \le B \le A$. The basic lemma of the subject is the result that $A \leq B$ iff $A \dashv_{\Pi_1} B$. This lemma will be used in what follows without further comment. (If we drop the assumption that T is (essentially) reflexive our results remain true provided \leq is replaced by \exists_{Π_1}) = is an equivalence relation; its equivalence classes are called *degrees* (of interpretability) and are written a, b, c, etc. $a \le b$ iff $A \le B$ where $A \in a$ and $B \in b$. d(A) is the degree of A. D_T is the partially ordered set of degrees thus defined. As is easily verified D_T is a distributive lattice (cf. [4, Theorem 1]). $a \cap b$ and $a \cup b$ are the g.l.b. and the l.u.b. of a and b, respectively. D_T has a smallest element 0 = d(T)and a largest element 1, the common degree of all inconsistent theories. $S_0 \downarrow S_1 = \{ \varphi \lor \psi : \varphi \in S_0 \& \psi \in S_1 \}$ and so $d(A \downarrow B) = d(A) \cap d(B); A \uparrow B$ is a theory such that $d(A \uparrow B) = d(A) \cup d(B)$ (cf. [4, Lemma 8]). When there is no risk of confusion we use φ and X in place of $T + \varphi$ and T + X. Thus $d(\varphi)$ is $d(T+\varphi), X \leq \varphi$ means that $T+X \leq T+\varphi$, etc. We use $a \ll b$ to mean that a < b and for every c, if $b \cap c = a$, then c = a. $A \ll B$ means that $d(A) \ll d(B)$. σ , σ_0 , etc. denote Σ_1 sentences and π , π_0 , etc. denote Π_1 sentences. Notation and terminology not explained here are standard (cf. [1]).

In what follows Γ is either Π_n or Σ_n , n > 0, and Γ^d is the dual of Γ . Γ -true(x) is a Γ partial truth-definition for Γ sentences. $\alpha(x)$ is a PR binumeration of A. Let $[\Gamma]_{\alpha}(x, y)$ be the formula

 $\forall uv \leq y \ (u \text{ is } \Gamma \land \Prf_{\alpha(z) \lor z = x}(u, v) \to \Gamma \text{-true}(u)).$

The following lemma is then easily verified (cf. [3, Lemma 1]).

Lemma 1. $[\Gamma]_{\alpha}(x, y)$ is a Γ formula such that

- (i) $PA \vdash [\Gamma]_{\alpha}(x, y) \land z \leq y \rightarrow [\Gamma]_{\alpha}(x, z),$
- (ii) $A + \varphi \vdash [\Gamma]_{\alpha}(\bar{\varphi}, \bar{m})$ for all φ and m,
- (iii) if ψ is Γ and $A + \varphi \vdash \psi$, then there is a q such that $PA + [\Gamma]_{\alpha}(\bar{\varphi}, \bar{q}) \vdash \psi$.

If $\Gamma = \Pi_n$ let $\xi(x)$ be such that

 $\mathbf{PA} \vdash \xi(\bar{k}) \leftrightarrow \forall y \ ([\Sigma_n]_{\alpha}(\overline{\xi(\bar{k})}, y) \to \chi(\bar{k}, y)).$

If $\Gamma = \Sigma_n$ let $\xi(x)$ be such that

$$\mathbf{PA} \vdash \xi(\bar{k}) \leftrightarrow \exists y \ (\neg [\Pi_n]_{\alpha}(\overline{\xi(\bar{k})}, y) \land \forall z \leq y \ \chi(\bar{k}, z)).$$

From Lemma 1 we get (cf. [3], Lemma 2):

Lemma 2. If $\chi(x, y)$ is Γ , then $\xi(x)$ is Γ and (i) $A + \xi(\bar{k}) \vdash \chi(\bar{k}, \bar{m})$, (ii) $A + \xi(\bar{k}) \dashv_{\Gamma^d} A + \{\chi(\bar{k}, \bar{q}) : q \in \mathbb{N}\}$.

Clearly, if for some m, $A \vdash \neg \chi(\bar{k}, \bar{m})$, then $A \vdash \neg \xi(\bar{k})$. Also note that if $A \vdash \chi(\bar{k}, \bar{m})$, for all m, then (ii) implies that $\xi(\bar{k})$ is Γ^{d} -conservative over A.

A set χ of sentences is *monoconsistent with* A if $A + \varphi$ is consistent for every $\varphi \in X$. Suppose X is recursively enumerable (r.e.) and let R(k, m) be a primitive recursive relation such that $X = \{k: \exists m R(k, m)\}$. Let $\rho(x, y)$ be a PR binumeration of R(k, m). Let $\xi(x)$ be as in Lemma 2 with $\chi(x, y) := \neg \rho(x, y)$ and let φ be such that $PA \vdash \varphi \leftrightarrow \xi(\overline{\varphi})$. Then (cf. [3, Corollary 1]):

Lemma 3. If X is r.e. and monoconsistent with A, then there is, and we can effectively find, a Γ sentence φ such that $\varphi \notin X$ and φ is Γ^{d} -conservative over A.

Let Y be any primitive recursive set and let $\eta(x)$ be a PR binumeration of Y. Then, by Lemma 2 with $\chi(x, y) := \eta(y) \rightarrow \Gamma$ -true(y) we get (i) of our next lemma (cf. [3, Theorem 4]); (ii) and (iii) are obtained by a straightforward extension of this construction.

Lemma 4. (i) To any r.e. set Y of Γ sentences, there is a Γ sentence φ such that $T + \varphi$ is a Γ^{d} -conservative extension of T + Y.

Let R(k, m) be an r.e. relation such that $X_k = \{m: R(k, m)\}$ is a set of Γ sentences.

(ii) There is a Γ formula $\gamma(x)$ such that for every k, $A + \gamma(\bar{k})$ is a Γ^{d} -conservative extension of $A + X_{k}$.

(iii) There is a Γ formula $\gamma(x, y)$ such that for every k and every sentence φ , $A + \varphi + \gamma(\bar{\varphi}, \bar{k})$ is a Γ^{d} -conservative extension of $A + X_{k} + \varphi$.

The following lemma is an immediate consequence of Lemma 4(i) (cf. [3, Theorem 11]).

Lemma 5. To every r.e. set X of Σ_1 sentences, there is a Σ_1 sentence σ such that $A + \sigma$ is a Π_1 -conservative extension of A + X and consequently $A + \sigma \equiv A + X$.

From a slight generalization of Lemma 2 for $\Gamma = \Sigma_1$ we also get the following (cf. [4, Lemma 6]):

Lemma 6. Let X be an r.e. set. There is then a PR formula $\eta(y, x, z)$ such that for all k and θ ,

- (i) if $k \in X$, then $T + \theta \vdash \neg \exists z \eta(\bar{\theta}, \bar{k}, z)$,
- (ii) if $k \notin X$, then $\exists z \eta(\bar{\theta}, \bar{k}, z)$ is Π_1 -conservative over $T + \theta$.

3. Let us begin with Montagna's observation.

Theorem 1. Every degree is Δ_2 .

Proof. Let a be any degree. Using Craig's trick, there is a primitive recursive set X of Π_1 sentences such that a = d(X). Let $\xi(x)$ be a PR binumeration of X and let φ be such that

$$\mathsf{PA} \vdash \varphi \leftrightarrow \forall z \; ([\Pi_1]_{\mathfrak{r}}(\bar{\varphi}, z) \rightarrow (\xi(z) \rightarrow \Pi_1 \text{-true}(z))).$$

Then φ is Π_2 and $T + \varphi$ is a Π_1 -conservative extension of T + X (cf. the above proof of Lemma 4(i)). It follows that $a = d(\varphi)$. By Lemma 1(i),

 $[\Pi_1]_{\tau}(x, z) \wedge u \leq z \rightarrow [\Pi_1]_{\tau}(x, u).$

Using this it is easily verified that φ is also Σ_2 :

$$\mathsf{PA} \vdash \varphi \leftrightarrow \forall z \; (\xi(z) \rightarrow \Pi_1 \text{-true}(z)) \lor \exists z \; (\neg [\Pi_1]_\tau(\tilde{\varphi}, z))$$

 $\wedge \forall u < z \ (\xi(u) \rightarrow \Pi_1 \text{-true}(u))).$

Thus φ is Δ_2 . \Box

In much the same way and using Corollary 3 of [5] it can be shown that for every A, there is a Δ_2 sentence φ such that A and $T + \varphi$ are mutually faithfully interpretable (defined in [5]) thus somewhat improving Corollary 4 of [5].

We now show that Theorem 1 is optimal in the sense that Δ_2 cannot be replaced by B_1 .

Theorem 2. (i) Not all degrees are B_1 .

(ii) Every nontrivial interval [a, b] has a nontrivial subinterval containing no B_1 degree.

(iii) If T is Σ_1 -sound, then there are Σ_1 degrees a_0 , a_1 such that $a_0 \cup a_1$ is not B_1 .

To prove Theorem 2 we need Lemmas 8 and 9 below. The following easy lemma will be used repeatedly (cf. [4, Lemma 14]).

Lemma 7. $A \ll B$ iff A < B and for every σ , if $B \leq A + \sigma$, then $A \vdash \neg \sigma$. Thus, in particular, if A is consistent and $\neg \pi$ is Π_1 -conservative over A, then $A \ll A + \pi$.

Lemma 8. Suppose φ is B_1 and X is r.e. and for every k, $X \upharpoonright k \ll X$.

- (i) If $X \leq \varphi$, then $X \ll \varphi$.
- (ii) If $\varphi \leq X$, then $\varphi \ll X$.

Proof. (i) φ can be written in the form $(\pi_0 \wedge \sigma_0) \vee \cdots \vee (\pi_n \wedge \sigma_n)$. Now for any degrees a, b, c, if $a \ll b$ and $a \ll c$, then $a \ll b \cap c$. Thus it suffices to show that if $X \leq \pi \wedge \sigma$, then $X \ll \pi \wedge \sigma$. Let χ be a Σ_1 sentence such that $\pi \wedge \sigma \leq X + \chi$. Then, by Lemma 7, it suffices to show that $T + X \vdash \neg \chi$. Now, by assumption, there is a k such that $T + X \upharpoonright k + \chi \vdash \pi$. Hence $T + \pi \wedge \sigma \dashv T + X \upharpoonright k + (\chi \wedge \sigma)$ and so $X \leq X \upharpoonright k + (\chi \wedge \sigma)$. But then since $X \upharpoonright k \ll X$, by Lemma 7, $T + X \vdash \neg \chi$, as was to be shown.

(ii) Let σ be such that $X \leq \varphi \wedge \sigma$. It suffices to show that $T + \varphi \vdash \neg \sigma$. Now $\varphi \wedge \sigma$ is B_1 . Hence, by (i), $X \ll \varphi \wedge \sigma$. It follows that $\varphi \ll \varphi \wedge \sigma$. But this is possible only if $T + \varphi \vdash \neg \sigma$. \Box

To prove part (iii) of Theorem 2 we need the following lemma from [4] (Lemma 11).

Lemma 9. Given a true Π_1 sentence θ and an r.e. set X monoconsistent with PA we can effectively find Π_1 sentences θ_i such that

- (i) $\mathbf{PA} \vdash \theta_0 \lor \theta_1$,
- (ii) $\mathsf{PA} \vdash \theta_0 \land \theta_1 \rightarrow \theta$,
- (iii) $\theta_i \notin X, \ i = 0, 1.$

Proof. The following proof is a bit more elegant than the one given in [4]. Let $\theta := \forall y \gamma(y)$ where $\gamma(y)$ is PR. Let $\rho(x, y)$ be a PR formula such that $X = \{k : \exists n \text{ PA} \vdash \rho(\bar{k}, \bar{n})\}$. Finally let θ_0 and θ_1 be such that

$$PA \vdash \theta_0 \leftrightarrow \forall y \ ((\rho(\bar{\theta}_0, y) \lor \neg \gamma(y)) \to \exists z < y \ \rho(\bar{\theta}_1, z)),$$
$$PA \vdash \theta_1 \leftrightarrow \forall z \ (\rho(\bar{\theta}_1, z) \to \exists y \le z \ (\rho(\bar{\theta}_0, y) \lor \neg \gamma(y))).$$

Then θ_0 and θ_1 are as desired. \Box

Proof of Theorem 2. (i) By Lemma 3 with $X = \text{Th}(T + \{\pi_k : k \le n\})$, we can effectively construct sentences π_k such that $\neg \pi_k$ is Π_1 -conservative over but not provable in $T + \{\pi_k : k \le n\}$. Let $X = \{\pi_k : k \in \mathbb{N}\}$. Then, by Lemma 7, $X \upharpoonright k \ll X$ for all k, so, by Lemma 8(i), d(X) is not B_1 .

(ii) Let *e* be such that a < e < b. Let $A \in a$, $B \in b$, $E \in e$. Let *Y* be the set of Π_1 sentences provable in *A*. Set $A^T = T + Y$. (A^T is the deductively weakest extension of *T* of degree *a* (cf. [4]).) By Orey's compactness theorem [4, Lemma

P. Lindström

4], there is an *m* such that $B \upharpoonright m \notin E$ and $E \upharpoonright m \notin A$. We now effectively define Π_1 sentences ψ_n such that

(1)
$$B \upharpoonright m \downarrow (Q + \psi_0) \notin E$$
,

and for every k,

(2) $E \upharpoonright m \notin A^T + \psi_0 \land \cdots \land \psi_k$,

(3)
$$\neg \psi_{k+1}$$
 is Π_1 conservative over $A^T + \psi_0 \wedge \cdots \wedge \psi_k$.

The set $\{\varphi: B \mid m \downarrow (Q + \varphi) \leq E\} \cup \{\varphi: E \mid m \leq A^T + \neg \varphi\}$ is r.e. and monoconsistent with Q. Hence, by Lemma 10 of [4], there is a Π_1 sentence ψ_0 such that (1) holds and (2) holds for k = 0. Now, suppose (2) holds for k = n and (3) holds for k = n - 1, if n > 0. Let $A_n = A^T + \psi_0 \wedge \cdots \wedge \psi_n$. The set $Z = \{\varphi: E \mid m \leq A_n + \neg \varphi\}$ is then r.e. and monoconsistent with A_n . Hence, by Lemma 3, we can effectively find a Σ_1 sentence $\sigma \notin Z$ which is Π_1 -conservative over A_n . Let $\psi_{n+1} = \neg \sigma$. Then (2) holds for k = n + 1 and (3) holds for k = n.

Now let $X = Y \cup \{\psi_k : k \in \mathbb{N}\}$. Then $a \leq d(X)$. Also, by (2), $e \notin d(X)$, by (1), $d(X) \cap b > d(X) \cap e$, and, by (3) and Lemma 7, $X \upharpoonright k \ll X$ for every k. Let $c = d(X) \cap e$ and $d = d(X) \cap b$. Then $a \leq c < d \leq b$. Also if $c \leq f \leq d$, then $f \leq d(X)$ and not $f \ll d(X)$, since $d(X) \cap e \leq f$ and $e \notin f$. Hence, by Lemma 8(ii), f is not B_1 .

(iii) We effectively construct sentences π_k , $\sigma_{i,k}$ such that for all k,

- (1) $T \vdash \sigma_{i,k+1} \rightarrow \sigma_{i,k}, \quad i = 0, 1,$
- (2) $T + \sigma_{i,k}$ is consistent, i = 0, 1,
- (3) $T + \pi_k$ is consistent,

$$(4) T \vdash \pi_{k+1} \to \pi_k,$$

(5)
$$\neg \pi_{k+1}$$
 is Π_1 -conservative over $T + \pi_k$,

(6)
$$T + \pi_k \leq (T + \sigma_{0,k}) \uparrow (T + \sigma_{1,k}),$$

(7)
$$(T + \sigma_{0,k}) \uparrow (T + \sigma_{1,k}) \leq T + \pi_{k+1}.$$

Let $\sigma_{0,0} := \sigma_{1,0} := \pi_0 := 0 = 0$. Then (2), (3), and (6) hold for k = 0. Suppose $\sigma_{0,n}$ and $\sigma_{1,n}$ have been defined and that (2), (3), and (6) hold for k = n. Since T is Σ_1 -sound, (2) implies that $(T + \sigma_{0,n}) \uparrow (T + \sigma_{1,n})$ is consistent. But then we can find a Π_1 sentence θ such that

- (8) $T + \theta$ is consistent,
- (9) $(T + \sigma_{0,n}) \uparrow (T + \sigma_{1,n}) \leq T + \theta.$

(For instance let $\theta := \operatorname{Con}_{\gamma}$ where $\gamma(x)$ is a PR binumeration of $(T + \sigma_{0,n}) \uparrow (T + \sigma_{1,n})$.) From (9) and (6) for k = n it follows that

(10)
$$T + \theta \vdash \pi_n$$
.

Hence, by (8) and Lemma 3, we can find a Π_1 sentence ψ such that

- (11) $T + \theta \nvDash \neg \psi$
- (12) $\neg \psi$ is Π_1 -conservative over $T + \pi_n$.

Let $\pi_{n+1} = \theta \land \psi$. Then, by (10), (4) holds for k = n and, by (9), (7) holds for k = n. Also, by (11), (3) holds for k = n + 1 and, by (12), (5) holds for k = n. π_{n+1} is true, since otherwise (3) would not hold for n = k + 1. Hence, by (2) for k = n and Lemma 9, we can find Π_1 sentences θ_i such that

- (13) $\mathbf{PA} \vdash \theta_0 \lor \theta_1$,
- (14) $PA \vdash \theta_0 \land \theta_1 \rightarrow \pi_{n+1},$
- (15) $\theta_i \notin \operatorname{Th}(T + \sigma_{i,n}), \quad i = 0, 1.$

Let $\sigma_{i,n+1} := \neg \theta_i \wedge \sigma_{i,n}$. Then (1) holds for k = n and, by (15), (2) holds for k = n + 1. Finally, by (13), PA + $\sigma_{i,n+1} \vdash \theta_{1-i}$, i = 0, 1. Hence, by (14), (6) holds for k = n + 1.

Now let $a_i = d(\{\sigma_{i,n} : n \in \mathbb{N}\})$ and $b = d(\{\pi_n : n \in \mathbb{N}\})$. Then, by (1) and Lemma 5, a_i is Σ_1 . By (3), (4), (5), and Lemmas 7 and 8(i), b is not B_1 . Finally, by (1), (6), and (7), $a_0 \cup a_1 = b$. \Box

I don't know if Theorem 2(iii) holds without the assumption that T is Σ_1 -sound. A more interesting question is if (assuming that T is Σ_1 -sound) there are degrees a and b such that a is Σ_1 , b is Π_1 , and $a \cup b$ is not B_1 .

4. Part (iii) of Theorem 2 would follow trivially from part (i) if we could show that every degree is the l.u.b. of two (finitely many) Σ_1 degrees. (In the proof of Theorem 6 below we define Σ_1 degrees a_0 and a_1 such that $a_0 \cup a_1 = d(\operatorname{Con}_r)$.) We now prove that this is not the case (and more). (Note that, by Theorem 8 of [4], for every degree a > 0, there is a Σ_1 degree b such that $0 < b \le a$.) If $A \le B$, then for any σ , $A + \sigma \le B + \sigma$. Thus $d(A + \sigma)$ is uniquely determined by d(A); it will be said to be a Σ_1 -extension of d(A). Let E_T be the least set of degrees containing 0 and closed under \cup , \cap , and Σ_1 -extensions.

Theorem 3. There is a Π_1 degree not in E_T .

This is an immediate consequence of the following two lemmas.

Lemma 10. To every $a \in E_T$ there is a smallest Σ_1 degree $\geq a$.

Proof. It is easily shown by induction that if $a \in E_T$, then there are $\sigma_0, \ldots, \sigma_n$ such that

(1) $d(\sigma_0) \cup \cdots \cup d(\sigma_n) \leq a \leq d(\sigma_0 \wedge \cdots \wedge \sigma_n).$

Now

(2) $d(\sigma_0 \wedge \cdots \wedge \sigma_n)$ is the smallest Σ_1 degree $\geq d(\sigma_0) \cup \cdots \cup d(\sigma_n)$.

This can be seen as follows. Suppose $d(\sigma_0) \cup \cdots \cup d(\sigma_n) \leq d(\sigma)$. Let π be such that $T + \sigma_0 \wedge \cdots \wedge \sigma_n \vdash \pi$. Then $T + \sigma_0 \vdash \sigma_1 \wedge \cdots \wedge \sigma_n \rightarrow \pi$. Now $\sigma_1 \wedge \cdots \wedge \sigma_n \rightarrow \pi$ is a Π_1 sentence. It follows that $T + \sigma \vdash \sigma_1 \wedge \cdots \wedge \sigma_n \rightarrow \pi$. But then $T + \sigma_1 \vdash \sigma \wedge \sigma_2 \wedge \cdots \wedge \sigma_n \rightarrow \pi$ and so $T + \sigma \vdash \sigma_2 \wedge \cdots \wedge \sigma_n \rightarrow \pi$. Continuing in this way we eventually get $T + \sigma \vdash \pi$, as desired.

Finally, by (1) and (2), $d(\sigma_0 \wedge \cdots \wedge \sigma_n)$ is the smallest Σ_1 degree $\geq a$. \Box

Lemma 11. There is a Π_1 degree a for which there is no smallest Σ_1 degree $\geq a$.

Proof. We can effectively construct sentences σ_k such that for every k,

- (1) $T + \sigma_{k+1} \vdash \sigma_k$,
- (2) $\sigma_k < \sigma_{k+1}$.

Let $\sigma_0 := 0 = 0$. Given σ_k such that $T + \sigma_k$ is consistent let $X = \text{Th}(T + \sigma_k)$. By Lemma 9, we can find Π_1 sentences θ_i such that $P \vdash \theta_0 \lor \theta_1$ and $\theta_i \notin X$, i = 0, 1. (Let θ be any true Π_1 sentence.) Let $\sigma_{k+1} := \sigma_k \land \neg \theta_0$. Then $T + \sigma_{k+1}$ is consistent and (1) holds trivially. Finally $T + \sigma_{k+1} \vdash \theta_1$ and $T + \sigma_k \nvDash \theta_1$ and so (2) is true.

By Lemma 5, there is a sentence σ such that

(3) $T + \sigma$ is a Π_1 -conservative extension of $T + \{\sigma_k : k \in \mathbb{N}\}$.

Let $a = d(\neg \sigma)$. Then a is Π_1 . Now let χ be any Σ_1 sentence such that $a \leq d(\chi)$. Then $T + \chi \vdash \neg \sigma$ and so $T + \sigma \vdash \neg \chi$. But then, by (1) and (3), there is a k such that $T + \sigma_k \vdash \neg \chi$ and so

(4) $T + \chi \vdash \neg \sigma_k$.

Also, by (2) and (3), there is a sentence π such that $T + \sigma \vdash \pi$ and $T + \sigma_k \nvDash \pi$. It follows that

- (5) $T + \neg \pi \vdash \neg \sigma$,
- (6) $T + \neg \pi \nvDash \neg \sigma_k$.

But then, by (5), $a \leq d(\neg \pi)$ and, by (4) and (6), $d(\chi) \notin d(\neg \pi)$. Thus $d(\chi)$ is not the smallest Σ_1 degree $\geq a$. \Box

Corollary 1. There is a Π_1 degree which is not the l.u.b. of finitely many Σ_1 degrees.

Suppose $a \notin E_T$. Then 0 < a < 1. But then, by Theorem 3 of [4], there are b_0 , $b_1 < a$ such that $b_0 \cup b_1 = a$ and c_0 , $c_1 > a$ such that $c_0 \cap c_1 = a$. Now E_T is closed under \cap and \cup . It follows that either $[b_0, a]$ or $[b_1, a]$ is disjoint from E_T . Let b

be the b_i for which this holds. Then either $[b, c_0]$ or $[b, c_1]$ is disjoint from E_T . Let c be the c_i for which this holds. Then [b, c] is disjoint from E_T . Thus to every $a \notin E_T$, there are b, c such that b < a < c and $[b, c] \cap E_T = \emptyset$.

The degree *a* defined in the proof of Lemma 11 can be made arbitrarily small: let π be such that $T \nvDash \pi$ and let $\sigma_0 := \neg \pi$. Then $a \leq d(\pi)$. However *a* cannot be made arbitrarily large since to every degree $b \gg 0$, there is, by Lemma 7, a smallest Σ_1 degree $\geq b$, namely 1. It is an open problem if there are arbitrarily large (Π_1) degrees not in E_T .

At this point it is natural to ask if there are degrees which cannot be written as the l.u.b. of a finite set of Σ_1 and Π_1 degrees. We now prove that the answer is affirmative (and more?). Let I_T be the set of degrees *a* for which there are $\pi, \sigma_0, \ldots, \sigma_n$ such that $d(\pi) \cup d(\sigma_0) \cup \cdots \cup d(\sigma_n) \leq a \leq d(\pi + \sigma_0 \land \cdots \land \sigma_n)$. We shall also need the following definition: $A \ll B$ iff A < B and for every set *X* of Σ_1 sentences, if $B \dashv_{\Pi_1} A + X$, then A + X is inconsistent. (Here *X* need not be r.e.) We write $a \ll b$ to mean that $A \ll B$ where $A \in a$ and $B \in b$. By Lemma 7, $A \ll B$ implies $A \ll B$. As will become clear, the converse of this is not true.

Lemma 12. Suppose $a \in I_T$ and for all π , if $d(\pi) \leq a$, then $d(\pi) \ll a$. Then $0 \ll a$.

Proof. By assumption there are π , $\sigma_0, \ldots, \sigma_n$ such that $d(\pi) \cup d(\sigma_0) \cup \cdots \cup d(\sigma_n) \le a \le d(\pi + \sigma_0 \land \cdots \land \sigma_n)$. Also $d(\pi) \ll a$. Let $A \in a$. Then

(1) $T + \sigma_i \leq A \text{ for } i \leq n.$

Moreover, $d(\pi) \ll d(\pi + \sigma_0 \wedge \cdots \wedge \sigma_n)$ and so, by Lemma 7, $T + \pi \vdash \neg \sigma_0 \vee \cdots \vee \neg \sigma_n$. But $A \vdash \pi$ and so

(2)
$$A \vdash \neg \sigma_0 \lor \cdots \lor \neg \sigma_n$$
.

Let X be any set of Σ_1 sentences such that

$$(3) \qquad A \dashv_{\Pi_1} T + X.$$

Then, by (2), $T + X \vdash \neg \sigma_0 \lor \cdots \lor \neg \sigma_n$, whence there is a k_0 such that $T + \sigma_0 \vdash \neg \bigwedge X \upharpoonright k_0 \lor \neg \sigma_1 \lor \cdots \lor \neg \sigma_n$, and so, by (1) and (3), $T + X \vdash \neg \sigma_1 \lor \cdots \lor \neg \sigma_n$. Continuing in this way we eventually obtain the desired conclusion that T + X is inconsistent. \Box

Lemma 13. $I_T \neq D_T$.

To prove this we need the following lemma from [3] (Lemma 5).

Lemma 14. Suppose X is r.e. Then there are a Σ_1 formula $\xi_0(x)$ and a Π_1 formula $\xi_1(x)$ such that

- (i) if $k \in X$, then $PA \vdash \xi_0(\bar{k})$,
- (ii) $PA \vdash \xi_0(\bar{k}) \rightarrow \xi_1(\bar{k})$,
- (iii) $T + \{\neg \xi_1(\bar{k}): k \notin X\}$ is consistent.

Proof of Lemma 13. Our proof is an elaboration of the proof of Corollary 2 of [4]. We effectively construct sentences ψ_0, ψ_1, \ldots such that if $A_n = T + \{\psi_k : k < n\}$ and $A = T + \{\psi_k : k \in \mathbb{N}\}$ then

- $(1) \qquad A_n \ll A_{n+1},$
- (2) not $T \ll A$.

Let a = d(A). Then for all π , if $d(\pi) \le a$, then there is an n such that $d(\pi) \le d(A_n)$. Also $d(A_n) \ll d(A_{n+1}) \le a$ and so $d(\pi) \ll a$. It follows, by Lemma 12, $a \notin I_T$.

By Lemma 7, there is an r.e. relation S(n, k, p, q) such that (not $T + \psi \ll T + \psi + \varphi$) iff $\exists p \forall q S(\psi, \varphi, p, q)$. By (a straightforward extension of) Lemma 14, there are a Σ_1 formula $\sigma_0(x, y, z, u)$ and a Π_1 formula $\sigma_1(x, y, z, u)$ such that

(3) if S(n, k, p, q), then $T \vdash \sigma_0(\bar{n}, \bar{k}, \bar{p}, \bar{q})$,

(4)
$$T \vdash \sigma_0(\bar{n}, \bar{k}, \bar{p}, \bar{q}) \rightarrow \sigma_1(\bar{n}, \bar{k}, \bar{p}, \bar{q}),$$

(5)
$$T + Y$$
 is consistent where $Y = \{ \neg \sigma_1(\bar{n}, \bar{k}, \bar{p}, \bar{q}) : \text{not } S(n, k, p, q) \}.$

Set $A_0 = T$. Suppose A_n has been defined and set $\theta_n := \bigwedge \{ \psi_k : k < n \}$. Then

(6) not
$$A_n \ll A_n + \varphi$$
 iff $\exists p \,\forall q \, S(\theta_n, \varphi, p, q)$.

By (3) and Lemma 2, there is a Σ_1 formula $\rho_n(x, y)$ such that

(7)
$$A_n \vdash \rho_n(\bar{\varphi}, \bar{p}) \rightarrow \sigma_0(\theta_n, \bar{\varphi}, \bar{p}, \bar{q}),$$

(8) if $\forall q \ S(\theta_n, \varphi, p, q)$, then $\rho_n(\bar{\varphi}, \bar{p})$ is Π_1 -conservative over A_n .

Moreover, by Lemma 4(ii), there is a formula $\eta_n(x)$ such that

(9) $A_n + \eta_n(\bar{\varphi})$ is a Π_1 -conservative extension of $A_n + \{\neg \rho_n(\bar{\varphi}, \bar{p}) : p \in \mathbb{N}\}.$

Finally let ψ_n be such that

(10)
$$T \vdash \psi_n \leftrightarrow \eta_n(\psi_n).$$

The formulas $\rho_n(x, y)$, $\eta_n(x)$ and the sentences ψ_n can be found effectively in *n*.

To prove (1) assume it is false. Then, by (6), there is a p such that $\forall q \, S(\theta_n, \psi_n, p, q)$. But then, by (8), $\rho_n(\overline{\psi_n}, \overline{p})$ is Π_1 -conservative over A_n . Moreover, by (9) and (10), $A_n + \psi_n \vdash \neg \rho_n(\overline{\psi_n}, \overline{p})$. But, by Lemma 7, this implies that $A_n \ll A_n + \psi_n$, a contradiction. This proves (1).

Next we prove (2). Let Y be as in (5). Then T + Y is consistent. To prove that $A \dashv_{T_1} T + Y$ we first show that

$$(11) \qquad A_{n+1} + Y \dashv_{\Pi_1} A_n + Y$$

Indeed suppose $A_{n+1} + Y \vdash \pi$. Then there is a k such that

(12)
$$A_{n+1} \vdash \neg \land Y \upharpoonright k \lor \pi.$$

By (1) and (6), to each p there is a q_p such that

(13) not
$$S(\theta_n, \psi_n, p, q_p)$$
.

Moreover, by (12), (9), and (10),

$$A_n + \{ \neg \rho_n(\psi_n, \bar{p}) \colon p \in \mathbb{N} \} \vdash \neg \bigwedge Y \upharpoonright k \lor \pi.$$

But then, by (7), (4), (13), $A_n + Y \vdash \pi$. This proves (11).

From (11) it follows that $A \dashv_{\Pi_1} T + Y$. This proves (2) and so the proof of Lemma 13 is complete. \Box

Let F_T be the set of degrees obtained from E_T together with the set of Π_1 degrees by closing under \cup and Σ_1 -extensions. By Theorem 3, $F_T \notin E_T$. $E_T \subseteq I_T$ (cf. the proof of Lemma 10) and trivially every Π_1 degree is a member of I_T . Moreover, as is easily verified, I_T is closed under \cup and Σ_1 -extensions. Hence $F_T \subseteq I_T$ and so, by Lemma 13, we get the following:

Theorem 4. $F_T \neq D_T$.

Corollary 2. There is a degree which is not the l.u.b. of a finite set of degrees of the form $d(\pi \wedge \sigma)$.

Let *a* be the degree constructed in the proof of Lemma 13. Then $0 \ll a$. We can obtain a degree $b \notin I_T$, and so $b \notin F_T$, such that not $b \gg 0$ as follows. By Theorem 3 of [4], there are b_0 , $b_1 < a$ such that $b_0 \cap b_1 = 0$ and $b_0 \cup b_1 = a$. Since I_T is closed under \cup , it follows that $b_0 \notin I_T$ or $b_1 \notin I_T$; in fact, one of the intervals $[b_i, a]$ is disjoint from I_T .

Let G_T be the set of degrees obtained from the set of Π_1 and Σ_1 degrees by closing under \cup and \cap . The above results do not seem to imply that $G_T \neq D_T$ and the problem if this is true remains open. All degrees in G_T can be written in the form $d(\pi_0 \vee \sigma_0) \cup \cdots \cup d(\pi_n \vee \sigma_n)$. So if all degrees of the form $d(\pi \vee \sigma)$ are in I_T , then $G_T \subseteq I_T$ and so $G_T \neq D_T$. If, on the other hand, $d(\pi \vee \sigma) \notin I_T$, then $d(\pi \vee \sigma) \notin F_T$, a much better result than Theorem 4: by Lemma 8, the degree *a* in the proof of Lemma 13 is not even B_1 .

5. Let us say that a *cups to b* if there is a c < b such that $a \cup c = b$. (Thus no degree cups to 0 and every degree a > 0 cups to itself.) One way to strengthen Corollary 1 would be to show that there is a Π_1 degree a > 0 such that no Σ_1 degree cups to a. We now prove a result which implies that this is false. (On the other hand, to every degree a > 0, there is a degree b such that 0 < b < a and b does not cup to a (cf. [4, Theorem 4(i)]).)

Theorem 5. For every *a*, if there is a degree in G_T which cups to *a*, then there is a Σ_1 degree which cups to *a*.

Proof. If $d(\pi_0 \vee \sigma_0) \cup \cdots \cup d(\pi_n \vee \sigma_n)$ cups to *a*, then there is a $k \leq n$ such that $d(\pi_k \vee \sigma_k)$ cups to *a*. Thus we may assume that there is a degree $d(\pi \vee \sigma)$ which cups to *a*. Let b < a be such that $d(\pi \vee \sigma) \cup b = a$ and let $B \in b$. Let $\pi := \forall u \, \delta(u)$, where $\delta(u)$ is PR. We may assume that

(1)
$$T \vdash \neg \delta(u) \land \neg \delta(v) \rightarrow u = v;$$

if necessary replace $\delta(u)$ by $\delta(u) \lor \exists v < u \neg \delta(v)$. Let π^* be such that $T + \pi \lor \sigma \vdash \pi^*$ and $B \nvDash \pi^*$. By Lemma 6, there is a PR formula $\eta(x, y, z)$ such that for all φ, θ ,

(2) if
$$(T + \varphi) \uparrow B \vdash \pi^*$$
, then $T + \theta \vdash \neg \exists z \eta(\bar{\theta}, \bar{\varphi}, z)$,

(3) if
$$(T + \varphi) \uparrow B \not\vdash \pi^*$$
, then $\exists z \ \eta(\bar{\theta}, \bar{\varphi}, z)$ is Π_1 -conservative over $T + \theta$.

Next let ψ and θ be such that

(4)
$$T \vdash \psi \leftrightarrow \forall u \ (\neg \delta(u) \rightarrow \neg \exists z \leq u \ \eta(\bar{\theta}, \bar{\psi}, z)),$$

(5)
$$T \vdash \theta \leftrightarrow \forall u \ (\neg \delta(u) \rightarrow \exists z \leq u \ \eta(\bar{\theta}, \bar{\psi}, z)).$$

Then

(6)
$$T \vdash (\psi \land \theta) \leftrightarrow \pi$$

and, by (1)

(7)
$$T \vdash \psi \lor \theta$$
.

We now show that

(8)
$$(T + \psi) \uparrow B \not\vdash \pi^*.$$

Suppose not. Then, by (2) and (5), $T + \theta \vdash \pi$. But then $T + \theta \vdash \pi^*$. Also, by assumption, $(T + \psi) \uparrow B \vdash \pi^*$ and so, by (7), $B \vdash \pi^*$, contrary to assumption. This proves (8).

Now let

$$\chi := \exists z \; (\eta(\bar{\theta}, \bar{\psi}, z) \land \forall u < z \; \delta(u)).$$

Then χ is Σ_1 and

 $T \vdash \chi \leftrightarrow \exists z \ \eta(\bar{\theta}, \bar{\psi}, z) \land \theta.$

But then, by (3), and (8), $d(\chi) = d(\theta)$ and so, by (6), $d(\chi) \cup d(\psi) = d(\pi)$. It follows that $d(\chi \lor \sigma) \cup d(\psi \lor \sigma) \cup b = d(\pi \lor \sigma) \cup b$. Finally $d(\chi \lor \sigma)$ is Σ_1 and, by (8), $d(\psi \lor \sigma) \cup b < d(\pi \lor \sigma) \cup b$ and so $d(\chi \lor \sigma)$ cups to a. \Box

It is an open problem if to every a > 0, there is a Σ_1 degree which cups to a. (If not, then, by Theorem 5, $G_T \neq D_T$.) However, our next result implies that this is true of all sufficiently large degrees.

Theorem 6. There is a Σ_1 degree a < 1 which cups to every b for which $a \le b < 1$; in fact, there are two such degrees a_0 and a_1 such that $a_0 \cap a_1 = 0$.

Proof. In [4, Theorem 5] we prove that $d(\operatorname{Con}_{\tau})$ cups to every b such that $d(\operatorname{Con}_{\tau}) \leq b < 1$; the following proof is an elaboration of that proof. Let θ_i be such that

$$\mathbf{PA}\vdash\theta_{0}\leftrightarrow\forall z\;(\mathbf{Prf}_{\tau}(\bar{\theta}_{0},\,z)\rightarrow\exists u\leq z\;\mathbf{Prf}_{\tau}(\bar{\theta}_{1},\,u)),$$

 $\mathbf{PA} \vdash \theta_1 \leftrightarrow \forall z \; (\mathbf{Prf}_{\tau}(\bar{\theta}_1, z) \rightarrow \exists u < z \; \mathbf{Prf}_{\tau}(\bar{\theta}_0, u)).$

Then, by standard arguments,

- (1) $T \nvDash \theta_i, \quad i = 0, 1,$
- (2) $\mathbf{PA} \vdash \theta_0 \lor \theta_1$,

(3)
$$\mathbf{PA} \vdash \theta_0 \land \theta_1 \rightarrow \neg \mathbf{Pr}_r(\bar{\theta}_i), \quad i = 1, 0.$$

Let $a_i = d(\theta_i)$. Then $a_0 \cap a_1 = 0$. Also clearly

(4)
$$\operatorname{PA} \vdash \neg \theta_i \leftrightarrow \operatorname{Pr}_{\tau}(\bar{\theta}_i) \land \theta_{1-i}, \quad i = 0, 1$$

By (2), $PA \vdash \Pr_{\tau}(\overline{\neg \theta_{1-i}}) \rightarrow \Pr_{\tau}(\overline{\theta}_i)$. As is well known, $\Pr_{\tau}(\overline{\neg \theta_{1-i}})$ is Π_1 conservative over $T + \theta_{1-i}$. But then, so is $\Pr_{\tau}(\overline{\theta}_i)$ and so, by (4), $d(\neg \theta_i) = d(\theta_{1-i})$. Thus a_0 and a_1 are Σ_1 . (Formalizing the proof of (1) we get $PA \vdash \operatorname{Con}_{\tau} \rightarrow \theta_0 \land \theta_1$ and so, by (3), $a_0 \cup a_1 = d(\operatorname{Con}_{\tau})$.)

Suppose now $a_i \le b \le 1$. Let $\beta(x)$ be a PR binumeration of a theory of degree b. Let φ be such that

$$\mathbf{PA} \vdash \varphi \leftrightarrow \forall z \; (\mathbf{Prf}_{\tau}(\overline{\varphi \lor \theta_i}, z) \rightarrow \exists u \leq z \; \mathbf{Prf}_{\beta}(\overline{0=1}, u))$$

and let

$$\hat{\varphi} := \forall u \; (\operatorname{Prf}_{\beta}(\overline{0=1}, u) \to \exists z < u \; \operatorname{Prf}_{\tau}(\overline{\varphi \lor \theta_i}, z)).$$

Then, by (1) and again using standard arguments,

(4)
$$T \nvDash \varphi \lor \theta_i$$
,

- (5) $PA \vdash \varphi \lor \hat{\varphi},$
- (6) $\operatorname{PA} \vdash \varphi \land \hat{\varphi} \to \operatorname{Con}_{\beta}.$

Clearly $PA \vdash \neg \varphi \rightarrow Pr_{\tau}(\overline{\varphi \lor \theta_i})$. Since $\neg \varphi$ is Σ_1 , we also have $PA \vdash \neg \varphi \rightarrow Pr_{\tau}(\overline{\neg \varphi})$. It follows that $PA \vdash \neg \varphi \rightarrow Pr_{\tau}(\overline{\theta_i})$ and so, by (3),

(7)
$$\mathbf{PA} \vdash \theta_0 \land \theta_1 \rightarrow \varphi.$$

Now let $d = d(\theta_{1-i} \land \hat{\varphi})$. Then, by (6) and (7), $T + \theta_0 \land \theta_1 \land \hat{\varphi} \vdash \operatorname{Con}_{\beta}$. Hence $a_i \cup d \ge d(\operatorname{Con}_{\beta}) \ge b$. Suppose $a_i \le d$. Then $T + \theta_{1-i} \land \hat{\varphi} \vdash \theta_i$. But then, by (2) and (5), $T \vdash \varphi \lor \theta_i$, contradicting (4). Thus $a_i \le d$. Now let $c = b \cap d$. Then c < b and $a_i \cup c = b$ as desired. \Box

P. Lindström

One way to improve Corollary 2 would be to show that there is a degree a > 0 such that no degree of the form $d(\pi \wedge \sigma)$ cups to a. It is an open question if this is true. (If it is then, of course, there is a degree a > 0 such that no Σ_1 degree cups to a, solving a problem already mentioned.) But we do have the following weaker:

Theorem 7. There is a degree a > 0 such that no Π_1 degree cups to a.

Proof. The idea is to construct Π_1 sentences ψ_k such that for all k,

- (1) $T \nvDash \psi_k$,
- (2) $T \vdash \psi_{k+1} \rightarrow \psi_k$,
- (3) ψ_k is Σ_1 -conservative over $T + \neg \psi_{k+1}$.

Let $a = d(\{\psi_k : k \in \mathbb{N}\})$. By (1), a > 0. By (3), $d(\psi_k)$ does not cup to $d(\psi_{k+1})$ (cf. [4, Theorem 4(i)]). Suppose $d(\pi) \leq a$. Then, by (2), $d(\pi) \leq d(\psi_k)$ for some k, whence $d(\pi)$ does not cup to $d(\psi_{k+1})$. It follows that $d(\pi)$ does not cup to a. (Note that the theories $T + \psi_k$ are consistent: if $T \vdash \neg \psi_k$, then, by (2), $T \vdash \neg \psi_{k+1}$, whence, by (3), $T \vdash \neg \psi_k$.) However, the sentences ψ_k cannot be constructed by first defining ψ_0 , then ψ_1 , then ψ_2 etc.; at least this cannot be done in any straightforward way. (First of all, there is no known way of constructing, given ψ_k , a ψ_{k+1} satisfying (2) and (3). Secondly, $d(\psi_{k+1})$ must not cup to every degree $\geq d(\psi_{k+1})$ and, by Theorem 6, that is a nontrivial condition.) Instead we shall use a construction inspired by that used in the solution, due to H. Friedman, of a problem of H. Gaifman (cf. [6, Exercise 4, p. 179]).

Let $\delta(u)$ be an arbitrary PR formula. Let $\kappa(z, u, x, y)$ be a Π_1 formula such that

(4) $\mathbf{PA} \vdash \neg \kappa(z, u, x, \bar{0}),$

(5)
$$PA \vdash \kappa(\bar{\delta}, u, \bar{k}, y+1) \leftrightarrow \kappa(\bar{\delta}, u, \overline{k+1}, y) \lor \forall v ([\Sigma_1]_{\tau}(\neg \eta_{\delta}(\bar{k}) \land \xi_{\delta}(\bar{k}), v) \rightarrow \neg Prf_{\tau}(\overline{\xi_{\delta}(\bar{k})}, v)),$$

where

$$\begin{split} \xi_{\delta}(x) &:= \forall u \; (\delta(u) \to \kappa(\bar{\delta}, \, u, \, x, \, (u \doteq x) + 1)), \\ \eta_{\delta}(x) &:= \forall u \; (\delta(u) \to \kappa(\bar{\delta}, \, u, \, x + 1, \, u \doteq x)). \end{split}$$

($\dot{-}$ is the function such that $k \dot{-} m = k - m$ if $k \ge m$ and = 0 otherwise.) In (5) set $y = u \dot{-} k$. Then, since u is not free in the second disjunct (to the right of \leftrightarrow) of (5), we get

(6)
$$\operatorname{PA} \vdash \xi_{\delta}(\bar{k}) \leftrightarrow \eta_{\delta}(\bar{k}) \lor \forall v ([\Sigma_{1}]_{\tau}(\neg \eta_{\delta}(\bar{k}) \land \xi_{\delta}(\bar{k}), v) \to \neg \operatorname{Prf}_{\tau}(\xi_{\delta}(\bar{k}), v)).$$

It follows that

(7) if
$$T \vdash \xi_{\delta}(\bar{k})$$
, then $T \vdash \eta_{\delta}(\bar{k})$.

For let p be a proof of $\xi_{\delta}(\bar{k})$ in T. Then, by Lemma 1(ii), $T + \neg \eta_{\delta}(\bar{k}) \land \xi_{\delta}(\bar{k}) \vdash \neg \Prf_{\tau}(\xi_{\delta}(\bar{k}), \bar{p})$, whence $T + \xi_{\delta}(\bar{k}) \vdash \eta_{\delta}(\bar{k})$ and so $T \vdash \eta_{\delta}(\bar{k})$. Clearly

(8) if
$$T \vdash \delta(u) \rightarrow u > \bar{k}$$
, then $T \vdash \eta_{\delta}(\bar{k}) \leftrightarrow \xi_{\delta}(\bar{k}+1)$.

Next we show that

(9) if
$$\exists u \, \delta(u)$$
 is true, then $T \not\vdash \xi_{\delta}(\bar{0})$.

Let *m* be the least number such that $\delta(\bar{m})$ is true. Then, by (7) and (8), if k < mand $T \vdash \xi_{\delta}(\bar{k})$, then $T \vdash \xi_{\delta}(\bar{k}+1)$. Thus it suffices to show that $T \vdash \xi_{\delta}(\bar{m})$. But, by (4), $T \vdash \neg \eta_{\delta}(\bar{m})$ and so, by (7), $T \vdash \xi_{\delta}(\bar{m})$. This proves (9).

The set of PR formulas $\delta(u)$ such that $\exists u \, \delta(u)$ is true is an r.e. nonrecursive set. Hence, by (9), there is a PR formula $\delta^*(u)$ such that $\exists u \, \delta^*(u)$ is false and $T \not\vdash \xi_{\delta^*}(\bar{0})$. Let $\varphi_k := \eta_{\delta^*}(\bar{k})$ and $\psi_k := \xi_{\delta^*}(\bar{k})$. Then $T \not\vdash \psi_0$. Hence, by (6) and (8), we get (1) and (2).

(3) can be verified as follows. Suppose

(10)
$$T + \neg \psi_{k+1} + \psi_k \vdash \sigma.$$

Then $T + \neg \varphi_k + \psi_k \vdash \sigma$. Hence, by Lemma 1(iii), there is a q such that $T + [\Sigma_1]_r (\neg \varphi_k \land \psi_k, \bar{q}) \vdash \sigma$. But then, by Lemma 1(i), (1), and (6), $T + \neg \sigma \vdash \psi_k$, whence $T + \neg \psi_k \vdash \sigma$. But then, by (10), $T + \neg \psi_{k+1} \vdash \sigma$, proving (3).

Finally, as we have already observed, it follows from (1), (2), (3) that a > 0 and that no Π_1 degree cups to a. \Box

It would be interesting to know if there is a Σ_1 degree a > 0 such that no Π_1 , degree cups to a.

The dual of the notion of cupping is that of capping: a caps to b if there is a c > b such that $a \cap c = b$. Thus if b < a, then a caps to b iff not $b \ll a$. From Lemma 8 and the proof of Theorem 2 we get the following:

Corollary 3. (i) There is a degree a < 1 such that no B_1 degree caps to a and a caps to no B_1 degree.

(ii) If T is Σ_1 -sound, then there are Σ_1 degrees a_0 and a_1 such that $a = a_0 \cup a_1$ is as in (i).

The most interesting open problem about capping seems to be if there is a Σ_1 degree a < 1 such that no Π_1 degree caps to a.

6. As is easily verified for every π , $d(\neg \pi)$ is the *pseudocomplement* (p.c.) of $d(\pi)$, i.e., $d(\neg \pi) = \max\{b: b \cap d(\pi) = 0\}$. (Clearly $d(\pi) \cap d(\neg \pi) = 0$. Suppose $d(\pi) \cap a = 0$. Let a = d(A). Then $(T + \pi) \downarrow A \leq T$. But then for every σ , if $A \vdash \neg \sigma$, then $T + \pi \leq T + \sigma$, whence $T + \sigma \vdash \pi$, whence $T + \neg \pi \vdash \neg \sigma$ (cf. [4, Lemma 12]). It follows that $a \leq d(\neg \pi)$.) Thus every Π_1 degree has a p.c. In [4] it is shown that there is a degree with no p.c. This can be improved as follows.

Theorem 8. There is a Σ_1 degree which has no p.c.

This is an almost immediate consequence of the following lemma which improves Theorem 10(ii) of [4] and Lemma 11 above.

Lemma 15. There is a sentence σ such that $\{b \ge d(\neg \sigma): b \text{ is } \Sigma_1\}$ has no g.l.b.

Proof. The following proof is the same as the proof of Theorem 10(ii) of [4] except for the introduction of the sentence σ . Let $\pi := \forall u \, \delta(u)$, where $\delta(u)$ is PR, be any Π_1 sentence not provable in T. In the proof of Theorem 8 of [4] we construct a Π_1 sentence θ and a Σ_1 sentence χ such that $0 < d(\theta) = d(\chi) \le d(\pi)$ in the following way. By Lemma 6, there is a PR formula $\eta_1(x, z)$ such that

if $T \vdash \varphi$, then $T \vdash \neg \exists z \eta_1(\bar{\varphi}, z)$,

if $T \nvDash \varphi$, then $\exists z \ \eta_1(\bar{\varphi}, z)$ is Π_1 -conservative over $T + \varphi$.

Now let θ be such that

$$T \vdash \theta \leftrightarrow \forall u \ (\neg \delta(u) \rightarrow \exists z \leq u \ \eta_1(\bar{\theta}, z)).$$

Finally, set

$$\chi := \exists z \; (\eta_1(\bar{\theta}, z) \land \forall u < z \; \delta(u))$$

(compare the proof of Theorem 5). We have $T \nvDash \theta$ and $T \nvDash \chi \Leftrightarrow \exists z \eta_1(\bar{\theta}, z) \land \theta$. Thus there are (primitive) recursive functions f(n) and g(n) such that if π is any Π_1 sentence, then $f(\pi)$ is a Π_1 sentence, $g(\pi)$ is a Σ_1 sentence, and if $T \nvDash \pi$, then $T < T + f(\pi) \equiv T + g(\pi) \leq T + \pi$.

We now define π_k and σ_k as follows. Let π_0 be any Π_1 sentence not provable in T. Next suppose π_k has been defined and $T \nvDash \pi_k$. Let ψ be a Π_1 sentence undecidable in $T + \neg \pi_k$. Then $T < T + \pi_k \lor \psi < T + \pi_k$. Let $\sigma_k := g(\pi_k \lor \psi)$ and $\pi_{k+1} := f(\pi_k \lor \psi)$. Then for every k,

(1) $\pi_{k+1} \leq \sigma_k < \pi_k.$

By Lemma 5, there is a sentence σ such that

(2) $T + \sigma$ is a Π_1 -conservative extension of $T + \{\neg \pi_k : k \in \mathbb{N}\}$.

Then

(3) $d(\neg \sigma) \leq d(\sigma_k).$

Moreover

(4) if b is Σ_1 and $b \ge d(\neg \sigma)$, then there is a k such that $b \ge d(\pi_k)$.

For suppose $b = d(\chi)$ where χ is Σ_1 . Then $T + \chi \vdash \neg \sigma$ whence $T + \sigma \vdash \neg \chi$. But then, by (2), there is a k such that $T + \neg \pi_k \vdash \neg \chi$ whence $T + \chi \vdash \pi_k$ and so $b \ge d(\pi_k)$.

Now if $\{b \ge d(\neg \sigma): b \text{ is } \Sigma_1\}$ has a g.l.b., then, by (1), (3), (4), so does $\{d(\pi_k): k \in \mathbb{N}\}$. But from (1) it follows that no $d(\pi_k)$ is g.l.b. of $\{\pi: T + \pi_k \vdash \pi$ for every $k\}$. Hence, by Lemma 17 of [4], $\{d(\pi_k): k \in \mathbb{N}\}$ has no g.l.b. Thus σ is as desired. \Box

Proof of Theorem 8. Let σ be as in Lemma 15. For all B,

 $(T + \sigma) \downarrow B \leq T$ iff $B \leq T + \chi$ for all Σ_1 sentences χ such that $T + \chi \vdash \neg \sigma$

(cf. [4, Lemma 12]). But then the p.c. of $d(\sigma)$, if it had one, would also be the g.l.b. of $\{b \ge d(\neg \sigma): b \text{ is } \Sigma_1\}$. Thus, by Lemma 15, $d(\sigma)$ is as desired. \Box

If $0 \ll a < 1$, then, trivially, *a* is not the p.c. of any degree. A nontrivial example of a degree which is not a p.c. is given in the following:

Corollary 4. There is a Π_1 degree a such that not $0 \ll a$ and a is not the p.c. of any degree.

Proof. Let σ be such that $d(\sigma)$ has no p.c. and let $a = d(\neg \sigma)$. Then not $0 \ll a$. Suppose *a* is the p.c. of some degree *b*. Then $b \leq d(\sigma)$, since $d(\sigma)$ is the p.c. of *a*. It follows that *a* is the p.c. of $d(\sigma)$, a contradiction. \Box

Theorem 8 suggests the problem if there is a Σ_1 and non- Π_1 degree which has a p.c. We show that the answer is affirmative. Note that there are lots of non- Π_1 , even non- B_1 , degrees, which do have a p.c. Indeed if $a \gg 0$ and $a \neq d(\pi)$, then $d(\neg \pi)$ is the p.c. of every member of $[a \cap d(\pi), d(\pi)]$ and, by Theorem 2(ii), this interval contains non- B_1 degrees. However, no member of $[a \cap d(\pi), d(\pi)]$ is Σ_1 , except possibly $d(\pi)$ (cf. [4, Corollary 9]).

Theorem 9. There is a Σ_1 and non- Π_1 degree which has a p.c.

Proof. Let $\forall u \, \delta(u)$, where $\delta(u)$ is PR, be a Π_1 sentence not provable in T. We have seen in the proof of Lemma 15 how to construct a Π_1 sentence θ and a Σ_1 sentence χ such that $0 < d(\chi) = d(\theta) \le d(\forall u \, \delta(u))$. It follows that $d(\neg \chi) \le d(\neg \theta)$. As we have already remarked, $d(\chi)$ is the p.c. of $d(\neg \chi)$. Also $d(\neg \theta) \cap d(\chi) = 0$. It follows that $d(\gamma)$ is the p.c. of $d(\neg \theta)$. Thus it suffices to choose $\delta(u)$ in such a way that $d(\neg \theta)$ is not Π_1 (cf. the proof of Corollary 4 of [3]).

By Lemma 6, there is a PR formula $\eta_1(x, z)$ such that

- (1) if $T \vdash \varphi$, then $T \vdash \neg \exists z \eta_1(\bar{\varphi}, z)$,
- (2) if $T \nvDash \varphi$, then $\exists z \eta_1(\bar{\varphi}, z)$ is Π_1 -conservative over $T + \varphi$.

For any formula $\gamma(x)$ let

$$\mu_{\gamma}(x) := \forall z \ (\eta_1(x, z) \rightarrow \exists u < z \ \gamma(u)).$$

P. Lindström

We can then effectively in k and γ define Σ_1 formulas $\sigma_{\gamma,k}(x)$ such that

- (3) $T \vdash \sigma_{\gamma,k+1}(x) \rightarrow \sigma_{\gamma,k}(x),$
- (4) if $T + \mu_{\gamma}(\bar{\varphi})$ is consistent, then $T + \mu_{\gamma}(\bar{\varphi}) + \sigma_{\gamma,k}(\bar{\varphi}) < T + \mu_{\gamma}(\bar{\varphi}) + \sigma_{\gamma,k+1}(\bar{\varphi}).$

By Lemma 4(iii), there is a PR formula $\rho(x, y, z)$ such that

(5)
$$T + \mu_{\gamma}(\bar{\varphi}) + \exists u \rho(\bar{\gamma}, \bar{\varphi}, u)$$
 is a Π_1 -conservative extension of

$$T + \mu_{\gamma}(\bar{\varphi}) + \{\sigma_{\gamma,k}(\bar{\varphi}): k \in \mathbb{N}\}.$$

Now let $\kappa(x)$ be such that

(6)
$$T \vdash \kappa(\bar{\gamma}) \leftrightarrow \forall u \ (\rho(\bar{\gamma}, \overline{\kappa(\bar{\gamma})}, u) \rightarrow \exists z \leq u \ \eta_1(\overline{\kappa(\bar{\gamma})}, z))$$

Then

(7)
$$T \nvDash \kappa(\bar{\gamma}).$$

For suppose not. Then, by (1),

(8)
$$T \vdash \neg \exists z \eta_1(\overline{\kappa(\bar{\gamma})}, z).$$

It follows that $T \vdash \mu_{\gamma}(\overline{\kappa(\bar{\gamma})})$ and so, by (4) and (5), $T + \exists u \rho(\bar{\gamma}, \overline{\kappa(\bar{\gamma})}, u)$ is consistent. On the other hand, by (6) and (8), this theory is inconsistent, a contradiction. This proves (7).

Now let

$$\chi_{\gamma} := \exists z \; (\eta_1(\overline{\kappa(\bar{\gamma})}, z) \land \forall u < z \, \neg \rho(\bar{\gamma}, \overline{\kappa(\bar{\gamma})}, u)).$$

Then

$$T \vdash \chi_{\gamma} \leftrightarrow \exists z \ \eta_1(\overline{\kappa(\bar{\gamma})}, z) \land \kappa(\bar{\gamma}).$$

But then, by (2) and (7), for all γ ,

(9) $d(\chi_{\gamma}) = d(\kappa(\bar{\gamma})).$

Moreover

(10)
$$T \vdash \neg \kappa(\bar{\gamma}) \leftrightarrow \exists u \ \rho(\bar{\gamma}, \overline{\kappa(\bar{\gamma})}, u) \land \forall z \ (\eta_1(\overline{\kappa(\bar{\gamma})}, z) \rightarrow \exists u < z \ \rho(\bar{\gamma}, \overline{\kappa(\bar{\gamma})}, u)).$$

Finally let v(u) be such that

 $T \vdash v(u) \leftrightarrow \rho(\bar{v}, \overline{\kappa(\bar{v})}, u)$

and set $\theta := \kappa(\bar{\nu})$. Then, by (10),

(11)
$$T \vdash \neg \theta \leftrightarrow \exists u \ \rho(\bar{v}, \ \bar{\theta}, u) \land \mu_{v}(\bar{\theta}).$$

Combining this with (7) we get

(12) $T + \mu_{\nu}(\bar{\theta})$ is consistent.

That $d(\neg \theta)$ is not Π_1 can now be shown in the following way. Let π be such that $T + \neg \theta \vdash \pi$. Then, by (11), (3), (5), there is a k such that $T + \mu_v(\bar{\theta}) + \sigma_{v,k}(\bar{\theta}) \vdash \pi$. But then, by (12), (4), (5), (11), $d(\neg \theta) > d(\pi)$.

Finally, as we have already seen, by (9), $d(\theta)$ is the p.c. of $d(\neg \theta)$ and so the proof is complete.

*Note added in proof

I have now answered some of the questions left open in the paper by proving the following results.

Theorem A. To every Σ_1 degree a < 1, there is a Π_1 degree $\ge a$ which caps to 0.

Theorem B. (i) Every sufficiently large degree is the l.u.b. of a Σ_1 and a Π_1 degree.

(ii) Every sufficiently large degree is the l.u.b. of two Σ_1 degrees.

Theorem B(ii), in combination with the proof of Theorem 2(i), implies Theorem 2(iii).

Theorem C. There is a Σ_1 degree a such that no Π_1 degree cups to a and (consequently) a cups to no Π_1 degree.

References

- S. Feferman, Arithmetization of metamathematics in a general setting, Fund. Math. 49 (1960) 33-92.
- [2] D. Guaspari, Partially conservative extensions of arithmetic, Trans. Amer. Math. Soc. 254 (1979) 47-68.
- [3] P. Lindström, On partially conservative sentences and interpretability, Proc. Amer. Math. Soc. 91 (1984) 436-443.
- [4] P. Lindström, On certain lattices of degrees of interpretability, Notre Dame J. Formal Logic 25 (1984) 127-140.
- [5] P. Lindström, On faithful interpretability, in: Computation and Proof Theory, Lecture Notes in Math. 1104 (Springer, Berlin, 1984) 279–288.
- [6] C. Smoryński, Self-reference and Modal Logic (Springer, Berlin, 1985).
- [7] V. Švejdar, Degrees of interpretability, Comment. Math. Univ. Carolinae 19 (1978) 789-813.