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Abstract

In this article, we establish the stability of the orthogonally cubic type functional equation (1.2) for all
x1, x2, x3 with xi⊥xj (i, j = 1,2,3), where ⊥ is the orthogonality in the sense of Rätz, and investigate the
stability of the n-dimensional cubic type functional equation (1.3), where n � 3 is an integer.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In 1940, S.M. Ulam [32] proposed the following question concerning the stability of group
homomorphisms:

Let G1 be a group and let G2 be a metric group with the metric d(·,·). Given ε > 0, does
there exist a δ > 0 such that if a function h :G1 → G2 satisfies the inequality d(h(xy),

h(x)h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism H :G1 → G2 with
d(h(x),H(x)) < ε for all x ∈ G1?

In next year, D.H. Hyers [12] answers the problem of Ulam under the assumption that the
groups are Banach spaces. A generalized version of the theorem of Hyers for approximately
linear mappings was given by Th.M. Rassias [24]. Since then, the stability problems of several
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functional equation have been extensively investigated by a number of authors (for instance,
[1–6,9–11,13,15,17–19,22,23,25–28,30,31]).

In particular, one of the important functional equations studied is the following functional
equation:

f (x + y) + f (x − y) = 2f (x) + 2f (y).

The quadratic function f (x) = ax2 is a solution of this functional equation, and so one usually
is said the above functional equation to be quadratic [1,8,16,20].

The Hyers–Ulam stability problem of the quadratic functional equation was first proved by
F. Skof [30] for functions between a normed space and a Banach space. Afterwards, her result
was extended by P.W. Cholewa [6] and S. Czerwik [8].

The cubic function f (x) = ax3 satisfies the functional equation

f (2x + y) + f (2x − y) = 2f (x + y) + 2f (x − y) + 12f (x). (1.1)

Hence, throughout this paper, we promise that Eq. (1.1) is called a cubic functional equation and
every solution of Eq. (1.1) is said to be a cubic function.

The functional equation (1.1) was solved by K.-W. Jun and H.-M. Kim [14]. In fact, they
proved that a function f :X → Y between real vector spaces is a solution of the functional equa-
tion (1.1) if and only if there exists a function G :X × X × X → Y such that f (x) = G(x,x, x)

for all x ∈ X, and G is symmetric for each fixed one variable and additive for fixed two variables.
The function G is given by

G(x,y, z) = 1

24

[
f (x + y + z) + f (x − y − z) − f (x + y − z) − f (x − y + z)

]
for all x, y, z ∈ X. Moreover, they investigated the Hyers–Ulam–Rassias stability for the func-
tional equation (1.1).

Recently, Chang, Jun and Jung [4] introduced the cubic type functional equation as follows:

f (x1 + x2 + 2x3) + f (x1 + x2 − 2x3) + f (2x1) + f (2x2) + 7
[
f (x1) + f (−x1)

]
= 2f (x1 + x2) + 4

[
f (x1 + x3) + f (x1 − x3) + f (x2 + x3) + f (x2 − x3)

]
. (1.2)

It is easy to see that the function f (x) = ax3 + b is a solution of the functional equation (1.2).
In this paper, we establish the stability of the orthogonally cubic type functional equation (1.2)

for all x1, x2, x3 with xi⊥xj (i, j = 1,2,3), where ⊥ is the orthogonality in the sense of Rätz.
Furthermore, we will extend Eq. (1.2) to the n-dimensional cubic type functional equation

2f

(
n−1∑
j=1

xj + 2xn

)
+ 2f

(
n−1∑
j=1

xj − 2xn

)
+ 2

n−1∑
j=1

f (2xj ) + 7(n − 1)
[
f (x1) + f (−x1)

]

= 4f

(
n−1∑
j=1

xj

)
+ 8

n−1∑
j=1

[
f (xj + xn) + f (xj − xn)

]
, (1.3)

where n � 3 is an integer, and offer the stability results for this equation.

2. Stability of Eq. (1.2)

Let us recall the orthogonality in the sense of J. Rätz [29].
Suppose that X is a real vector space with dim X � 2 and ⊥ is a binary relation on X with the

following properties:
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(1) totality of ⊥ for zero: x⊥0, 0⊥x for all x ∈ X;
(2) independence: if x ∈ X − {0}, x⊥y, then x, y are linearly independent;
(3) homogeneity: if x ∈ X, x⊥y, then αx⊥βy for all α,β ∈ R;
(4) the Thalesian property: if P is a 2-dimensional subspace of X,x ∈ P and λ ∈ R+, then there

exists y0 ∈ P such that x⊥y0 and x + y0⊥λx − y0.

The pair (X,⊥) is called an orthogonality space. By an orthogonality normed space we mean
an orthogonality space having a normed structure.

Definition 2.1. Let X and Y be an orthogonality space and a real vector space. A mapping
f :X → Y is said to orthogonally cubic if it satisfies the so-called orthogonally cubic functional
equation (1.1) for all x, y ∈ X with x⊥y.

Lemma 2.2. Let X and Y be an orthogonality space and a real vector space, respectively. If
a function f :X → Y satisfies the functional equation (1.2) for all x1, x2, x3 ∈ X with xi⊥xj

(i, j = 1,2,3), then C is orthogonally cubic, where C :X → Y is a function defined by C(x) =
f (x) − f (0) for all x ∈ X.

Proof. From the assumption, it follows that

C(x1 + x2 + 2x3) + C(x1 + x2 − 2x3) + C(2x1) + C(2x2) + 7
[
C(x1) + C(−x1)

]
= 2C(x1 + x2) + 4

[
C(x1 + x3) + C(x1 − x3) + C(x2 + x3) + C(x2 − x3)

]
(2.1)

for all x1, x2, x3 ∈ X with xi⊥xj (i, j = 1,2,3). Particularly, it is obvious that C(0) = 0. Ob-
serve that x⊥0 for all x ∈ X. Putting x1 = x2 = 0 in (2.1), we arrive at

C(2x3) + C(−2x3) = 8
[
C(x3) + C(−x3)

]
. (2.2)

Letting x3 = 0 in (2.1) gives the equation

C(2x1) + C(2x2) + 7
[
C(x1) + C(−x1)

] = 8
[
C(x1) + C(x2)

]
. (2.3)

If we put x2 = 0 in (2.3), then we conclude that

C(2x1) = C(x1) − 7C(−x1). (2.4)

Let us replace x1 by −x1 in (2.4), then we get

C(−2x1) = C(−x1) − 7C(x1). (2.5)

By adding (2.4) and (2.5), we find that

C(2x1) + C(−2x1) = −6
[
C(x1) + C(−x1)

]
and by comparing with (2.2), it follows that

C(x1) + C(−x1) = 0. (2.6)

Therefore (2.1) now becomes

C(x1 + x2 + 2x3) + C(x1 + x2 − 2x3) + C(2x1) + C(2x2)

= 2C(x1 + x2) + 4
[
C(x1 + x3) + C(x1 − x3) + C(x2 + x3) + C(x2 − x3)

]
(2.7)
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for all x1, x2, x3 ∈ X with xi⊥xj (i, j = 1,2,3).

We take x1 = 0 in (2.7) and then use (2.6) to obtain

C(x2 + 2x3) + C(x2 − 2x3) + C(2x2) = 2C(x2) + 4
[
C(x2 + x3) + C(x2 − x3)

]
. (2.8)

Setting x3 = 0 in (2.8) leads to the identity C(2x2) = 8C(x2). If x3⊥x2, then x3⊥2x2, 2x3⊥x2
and 2x3⊥2x2. By replacing x2 by 2x2 in (2.8), we see that

8C(x2 + x3) + 8C(x2 − x3) + 64C(x2) = 16C(x2) + 4
[
C(2x2 + x3) + C(2x2 − x3)

]
for all x2, x3 ∈ X with x2⊥x3, which means that C is orthogonally cubic. The proof of lemma is
complete. �

From now forward, let X be an orthogonality normed space and Y be a Banach space. Given
a mapping f :X → Y , we set

D1f (x1, x2, x3) := f (x1 + x2 + 2x3) + f (x1 + x2 − 2x3) + f (2x1) + f (2x2)

+ 7
[
f (x1) + f (−x1)

] − 2f (x1 + x2)

− 4
[
f (x1 + x3) + f (x1 − x3) + f (x2 + x3) + f (x2 − x3)

]
for all x1, x2, x3 ∈ X with xi⊥xj (i, j = 1,2,3).

Theorem 2.3. Suppose that f :X → Y is a mapping for which there exists a function φ :X3 →
[0,∞) such that

∞∑
i=0

1

23i
φ
(
0,2ix2,0

)
< ∞, (2.9)

lim
n→∞

1

23i
φ
(
2ix1,2ix2,2ix3

) = 0 (2.10)

and ∥∥D1f (x1, x2, x3)
∥∥ � δ + φ(x1, x2, x3) (2.11)

for all x1, x2, x3 ∈ X with xi⊥xj (i, j = 1,2,3), where δ � 0. Then there exists a unique orthog-
onally cubic function C :X → Y satisfying the inequality

∥∥f (x) − C(x)
∥∥ � 1

8

[ ∞∑
i=0

1

23i

(
δ + φ

(
0,2ix,0

))] + ∥∥f (0)
∥∥ (2.12)

for all x ∈ X.

Proof. Let F be a function on X defined by

F(x) = f (x) − f (0)

for all x ∈ X. Then we have F(0) = 0. Note that x⊥0 for all x ∈ X. Putting x1 = x3 = 0, x2 = x

in (2.11) and dividing by 8, we have

∥∥F(x) − 1
F(2x)

∥∥ � 1 [
δ + φ(0, x,0)

]
. (2.13)
8 8
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By replacing x by 2x in (2.13) and dividing by 8 and summing the resulting inequality with
(2.13), we get∥∥∥∥F(x) −

(
1

8

)2

F
(
22x

)∥∥∥∥ � 1

8

[
δ + φ(0, x,0)

] +
(

1

8

)2[
δ + φ(0,2x,0)

]
. (2.14)

An induction implies that∥∥∥∥F(x) −
(

1

8

)n

F
(
2nx

)∥∥∥∥ � 1

8

n−1∑
i=0

(
1

8

)i[
δ + φ

(
0,2ix,0

)]
. (2.15)

In order to prove convergence of the sequence {F(2nx)

23n }, we divide inequality (2.15) by 8m and
also replace x by 2mx to find that for n > m > 0,∥∥∥∥

(
1

8

)m

F
(
2mx

) −
(

1

8

)n+m

F
(
2n2mx

)∥∥∥∥
=

(
1

8

)m∥∥∥∥F
(
2mx

) −
(

1

8

)n

F
(
2n2mx

)∥∥∥∥
�

(
1

8

)m+1 n−1∑
i=0

(
1

8

)i[
δ + φ

(
0,2m+ix,0

)]
. (2.16)

Sine the right-hand side of the inequality tends to 0 as m → ∞, {F(2nx)

23n } is Cauchy sequence.
Therefore, we may define a function C :X → Y by

C(x) := lim
n→∞

F(2nx)

23n

for all x ∈ X. By letting n → ∞ in (2.15), we arrive at the formula (2.12).
Now we show that C satisfies the functional equation (1.2) for all x1, x2, x3 ∈ X with xi⊥xj

(i, j = 1,2,3): If xi⊥xj , then 2nxi⊥2nxj for i, j = 1,2,3. Let us replace x1, x2 and x3 by
2nx1,2nx2 and 2nx3 in (2.11) and divide by 8n. Then it follows that

D1C(x1, x2, x3) = lim
n→∞

1

23n

∥∥D1F
(
2nx1,2nx2,2nx3

)∥∥
� lim

n→∞
1

23n

[
δ + φ

(
2nx1,2nx2,2nx3

)] = 0.

Hence we obtain the desired result. Since C(0) = 0, Lemma 2.2 implies that C is an orthogonally
cubic.

It only remains to claim that C is unique: Let us assume that there exists an orthogonally cubic
function C′ which satisfies (1.2) and the inequality (2.12). It is clear that C(2nx) = 8nC(x) and
C′(2nx) = 8nC′(x) for all x ∈ X and n ∈ N. Hence it follows from (2.12) that∥∥C(x) − C′(x)

∥∥ =
(

1

8

)n∥∥C
(
2nx

) − C′(2nx
)∥∥

�
(

1

8

)n[∥∥C
(
2nx

) − f
(
2nx

)∥∥ + ∥∥f
(
2nx

) − C′(2nx
)∥∥]

�
(

1

8

)n
{

1

4

[ ∞∑ 1

23i

(
δ + φ

(
0,2ix,0

))] + 2
∥∥f (0)

∥∥}
.

i=0
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By letting n → ∞, we have C(x) = C′(x) for all x ∈ X, which completes the proof of the
theorem. �
Corollary 2.4. Let p, q (< 3), r , δ, ε1, ε2 and ε3 be nonnegative real numbers. Suppose that
f :X → Y is a mapping such that∥∥D1f (x1, x2, x3)

∥∥ � δ + ε1‖x1‖p + ε2‖x2‖q + ε3‖x3‖r

for all x1, x2, x3 ∈ X with xi⊥xj (i, j = 1,2,3). Then there exists a unique orthogonally cubic
function C :X → Y satisfying the inequality∥∥f (x) − C(x)

∥∥ � 1

7
δ + 1

8 − 2q
ε2‖x‖q + ∥∥f (0)

∥∥
for all x ∈ X.

Proof. In Theorem 2.3, if we consider that

φ(x1, x2, x3) = ε1‖x1‖p + ε2‖x2‖q + ε3‖x3‖r ,

then we arrive at the conclusion of the corollary. �
3. Stability of Eq. (1.3)

For explicitly later use, we demonstrate the following theorem:

Theorem 3.1 (The alternative of fixed point). [21] Suppose that we are given a complete gen-
eralized metric space (Ω,d) and a strictly contractive mapping T :Ω → Ω with Lipschitz
constant L. Then, for each given x ∈ Ω , either

d
(
T nx,T n+1x

) = ∞ for all n � 0,

or

there exists a natural number n0 such that
• d(T nx,T n+1x) < ∞ for all n � n0;
• the sequence (T nx) is convergent to a fixed point y∗ of T ;
• y∗ is the unique fixed point of T in the set Δ = {y ∈ Ω: d(T n0x, y) < ∞};
• d(y, y∗) � 1

1−L
d(y,T y) for all y ∈ Δ.

For completeness, we will first present solution of the functional equation (1.3).

Lemma 3.2. Let X and Y be real vector spaces. A function f :X → Y satisfies the functional
equation (1.3) for all x1, x2, . . . , xn ∈ X if and only if C is cubic, where C :X → Y is a function
defined by C(x) = f (x) − f (0) for all x ∈ X.

Proof. (Necessity.) Note that, by the assumption, we arrive at

C

(
n−1∑

xj + 2xn

)
+ C

(
n−1∑

xj − 2xn

)
+

n−1∑
C(2xj ) + 7(n − 1)

2

[
C(x1) + C(−x1)

]

j=1 j=1 j=1
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= 2C

(
n−1∑
j=1

xj

)
+ 4

n−1∑
j=1

[
C(xj + xn) + C(xj − xn)

]
(3.1)

for all x1, x2, . . . , xn ∈ X. In particular, it is clear that C(0) = 0. Substituting xj = 0 (j =
1,2, . . . , n − 1) and xn = x in (3.1) yields

C(2x) + C(−2x) = 4(n − 1)
[
C(x) + C(−x)

]
. (3.2)

Letting x1 = x, x2 = −x, and xj = 0 (j = 3, . . . , n) in (3.1) gives the equation

C(2x) + C(−2x) = 23 − 7n

2

[
C(x) + C(−x)

]
. (3.3)

Now, by combining (3.2) and (3.3), we lead to

C(x) + C(−x) = 0

for all x ∈ X, i.e., C is an odd function.
Hence (3.1) now becomes

C

(
n−1∑
j=1

xj + 2xn

)
+ C

(
n−1∑
j=1

xj − 2xn

)
+

n−1∑
j=1

C(2xj )

= 2C

(
n−1∑
j=1

xj

)
+ 4

n−1∑
j=1

[
C(xj + xn) + C(xj − xn)

]
.

Thus [7, Lemma 2.2] implies that C is cubic.
(Sufficiency.) Suppose that C is cubic, i.e.,

C(2x + y) + C(2x − y) = 2C(x + y) + 2C(x − y) + 12C(x) (3.4)

for all x, y ∈ X. Then it is easy to check that

C(0) = 0, C(x) + C(−x) = 0 and C(2x) = 8C(x).

On the other hand, by [7, Lemma 2.2], we obtain

C

(
n−1∑
j=1

xj + 2xn

)
+ C

(
n−1∑
j=1

xj − 2xn

)
+

n−1∑
j=1

C(2xj )

= 2C

(
n−1∑
j=1

xj

)
+ 4

n−1∑
j=1

[
C(xj + xn) + C(xj − xn)

]
.

Since C is an odd function, we note that

C

(
n−1∑
j=1

xj + 2xn

)
+ C

(
n−1∑
j=1

xj − 2xn

)
+

n−1∑
j=1

C(2xj ) + 7(n − 1)

2

[
C(x1) + C(−x1)

]

= 2C

(
n−1∑
j=1

xj

)
+ 4

n−1∑
j=1

[
C(xj + xn) + C(xj − xn)

]
,

which gives the functional equation (1.3) for all x1, x2, . . . , xn ∈ X. This completes the proof of
the lemma. �
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Remark 3.3. Lemma 3.2 states that the functional equation (1.3) has a solution of the form
C(x) + B , where C is cubic and B is a constant.

From now on, let X be a real vector space and Y be a real Banach space. As a matter of
convenience, for a given mapping f :X → Y , we use the following abbreviation:

D2f (x1, x2, . . . , xn) := 2f

(
n−1∑
j=1

xj + 2xn

)
+ 2f

(
n−1∑
j=1

xj − 2xn

)
+ 2

n−1∑
j=1

f (2xj )

+ 7(n − 1)
[
f (x1) + f (−x1)

] − 4f

(
n−1∑
j=1

xj

)

− 8
n−1∑
j=1

[
f (xj + xn) + f (xj − xn)

]
for all x1, x2, . . . , xn ∈ X.

Let ϕ :Xn → [0,∞) be a function satisfying

lim
k→∞

ϕ(λk
i x1, λ

k
i x2, . . . , λ

k
i xn)

λ3k
i

= 0 (3.5)

for all x1, x2, . . . , xn ∈ X, where⎧⎨
⎩

λi = 2, if i = 0,

λi = 1

2
, if i = 1.

Now, by the use of fixed point alternative, we obtain the main result as follow.

Theorem 3.4. Let n � 3 be an integer. Suppose that a function f :X → Y satisfies the inequality∥∥D2f (x1, x2, . . . , xn)
∥∥ � ϕ(x1, x2, . . . , xn) (3.6)

for all x1, x2, . . . , xn ∈ X. If there exists L < 1 such that the function

x 	→ ψ(x) = ϕ

(
0,

x

2
,
x

2
, . . . ,

x

2︸ ︷︷ ︸
n−2

,0

)

has the property

ψ(x) � L · λ3
i · ψ

(
x

λi

)
(3.7)

for all x ∈ X, then there exists a unique cubic function C :X → Y satisfying the inequality

∥∥f (x) − C(x)
∥∥ � 1

2(n − 2)

L1−i

1 − L
ψ(x) + ∥∥f (0)

∥∥ (3.8)

for all x ∈ X.
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Proof. Consider the set

Ω := {
g: g :X → Y, g(0) = 0

}
and introduce the generalized metric on Ω :

d(g,h) = dψ(g,h) = inf
{
K ∈ (0,∞):

∥∥g(x) − h(x)
∥∥ � Kψ(x), x ∈ X

}
.

It is easy to see that (Ω,d) is complete.
Now we define a function T :Ω → Ω by

T g(x) = 1

λ3
i

g(λix)

for all x ∈ X. Note that for all g,h ∈ Ω ,

d(g,h) < K 
⇒ ∥∥g(x) − h(x)
∥∥ � Kψ(x), x ∈ X


⇒
∥∥∥∥ 1

λ3
i

g(λix) − 1

λ3
i

h(λix)

∥∥∥∥ � 1

λ3
i

Kψ(λix), x ∈ X


⇒
∥∥∥∥ 1

λ3
i

g(λix) − 1

λ3
i

h(λix)

∥∥∥∥ � LKψ(x), x ∈ X


⇒ d(T g,T h) � LK.

Hence we see that

d(T g,T h) � Ld(g,h)

for all g,h ∈ Ω , i.e., T is a strictly contractive mapping of Ω with the Lipschitz constant L.
Here we define a function F :X → Y by

F(x) = f (x) − f (0)

for all x ∈ X. Then we have F(0) = 0.

If we put x1 = 0, x2 = · · · = xn−1 = y, xn = 0 in (3.6) and use (3.7), then∥∥(n − 2)F (2y) − 8(n − 2)F (y)
∥∥

= ∥∥(n − 2)
[
f (2y) − f (0)

] − 8(n − 2)
[
f (y) − f (0)

]∥∥
� 1

2
ϕ(0, y, y, . . . , y︸ ︷︷ ︸

n−2

,0), (3.9)

which is reduced to∥∥∥∥F(y) − 1

23
F(2y)

∥∥∥∥ � 1

23

1

2(n − 2)
ψ(2y) � L

2(n − 2)
ψ(y)

for all y ∈ X, i.e., d(F,T F) � L
2(n−2)

� ∞.

If we substitute y := y
2 in (3.9) and use (3.7), then∥∥∥∥F(y) − 23F

(
y

2

)∥∥∥∥ � 1

2(n − 2)
ψ(y)

for all y ∈ X, i.e., d(F,T F) � 1 < ∞.
2(n−2)
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Now, from the fixed point alternative in both cases, it follows that there exists a fixed point C

of T in Ω such that

C(x) = lim
k→∞

F(λk
i x)

λ3k
i

(3.10)

for all x ∈ X, since limk→∞ d(T kF,C) = 0.
To show that the function C :X → Y is cubic, let xj := λk

i xj for j = 1,2, . . . , n in (3.6) and
divide by λ3k

i . Then it follows from (3.5) and (3.10) that

∥∥D2C(x1, x2, . . . , xn)
∥∥ = lim

k→∞
‖D2F(λk

i x1, λ
k
i x2, . . . , λ

k
i xn)‖

λ3k
i

� lim
k→∞

ϕ(λk
i x1, λ

k
i x2, . . . , λ

k
i xn)

λ3k
i

= 0

for all x1, x2, . . . , xn ∈ X, i.e., C satisfies the functional equation (1.3). Therefore Lemma 3.2
guarantees that C is cubic, since C(0) = 0.

According to the fixed point alternative, since C is the unique fixed point of T in the set
Δ = {g ∈ Ω: d(F,g) < ∞}, C is the unique function such that∥∥F(x) − C(x)

∥∥ � Kψ(x)

for all x ∈ X and some K > 0. Again, using the fixed point alternative, we have

d(F,C) � 1

1 − L
d(F,T F),

and so we obtain the inequality

d(F,C) � 1

2(n − 2)

L1−i

1 − L
,

which yields the inequality (3.8). This completes the proof of the theorem. �
From Theorem 3.4, we obtain the following corollary concerning the Hyers–Ulam–Rassias

stability [24] of the functional equation (1.3).

Corollary 3.5. Let X and Y be a normed space and a Banach space, respectively. Let p � 0 be
given with p �= 3 and n � 3 an integer. Assume that δ � 0 and ε � 0 are fixed. Suppose that a
function f :X → Y satisfies the inequality∥∥D2f (x1, x2, . . . , xn)

∥∥ � δ + ε
(‖x1‖p + ‖x2‖p + · · · + ‖xn‖p

)
(3.11)

for all x1, x2, . . . , xn ∈ X. Moreover, assume that δ = 0 in (3.11) for the case p > 3. Then there
exists a unique cubic function C :X → Y satisfying

the inequality

∥∥f (x) − C(x)
∥∥ � 1

2(n − 2)

δ

23−p − 1
+ 1

2

ε

8 − 2p
‖x‖p + ∥∥f (0)

∥∥ (3.12)

which holds for all x ∈ X, where p < 3,
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or

the inequality∥∥f (x) − C(x)
∥∥ � 1

2

ε

2p − 8
‖x‖p + ∥∥f (0)

∥∥ (3.13)

which holds for all x ∈ X, where p > 3.

Proof. Let

ϕ(x1, x2, . . . , xn) := δ + ε
(‖x1‖p + ‖x2‖p + · · · + ‖xn‖p

)
for all x1, x2, . . . , xn ∈ X. Then it follows that

ϕ(λk
i x1, λ

k
i x2, . . . , λ

k
i xn)

λ3k
i

= δ

λ3k
i

+ (
λk

i

)p−3
ε
(‖x1‖p + ‖x2‖p + · · · + ‖xn‖p

) → 0

as k → ∞, where{
p < 3, if i = 0,

p > 3, if i = 1,

i.e., (3.5) is true.
Since the inequality

1

λ3
i

ψ(λix) = δ

λ3
i

+ λ
p−3
i

2p
(n − 2)ε‖x‖p � λ

p−3
i ψ(x)

holds for all x ∈ X, where{
p < 3, if i = 0,

p > 3, if i = 1,

we see that the inequality (3.7) holds with either L = 2p−3 or L = 1
2p−3 . Now the inequality (3.8)

yields the inequalities (3.12) and (3.13), which complete the proof of the corollary. �
The following corollary is the Hyers–Ulam stability [12] of the functional equation (1.3).

Corollary 3.6. Let X and Y be a normed space and a Banach space, respectively. Assume that
θ � 0 is fixed and n � 3 an integer. Suppose that a function f :X → Y satisfies the inequality∥∥D2f (x1, x2, . . . , xn)

∥∥ � θ (3.14)

for all x1, x2, . . . , xn ∈ X. Then there exists a unique cubic function C :X → Y satisfying the
inequality∥∥f (x) − C(x)

∥∥ � 1

14n
θ + ∥∥f (0)

∥∥ (3.15)

for all x ∈ X.

Proof. Considering δ := 0, p := 0 and ε := θ
n

in Corollary 3.5, we arrive at the conclusion of
the corollary. �
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[10] P. Gǎvruta, On the Hyers–Ulam–Rassias stability of the quadratic mappings, Nonlinear Funct. Anal. Appl. 9 (3)

(2004) 415–428.
[11] R. Ger, Superstability is not natural, Rocznik Nauk.-Dydakt. Prace Mat. 159 (1993) 109–123.
[12] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941) 222–224.
[13] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[14] K.-W. Jun, H.-M. Kim, The generalized Hyers–Ulam–Rassias stability of a cubic functional equation, J. Math. Anal.

Appl. 274 (2) (2002) 867–878.
[15] K.-W. Jun, H.-M. Kim, I.-S. Chang, On the Hyers–Ulam stability of an Euler–Lagrange type functional equation,

J. Comput. Anal. Appl. 7 (1) (2005) 21–33.
[16] S.-M. Jung, On the Hyers–Ulam stability of the functional equations that have the quadratic property, J. Math. Anal.

Appl. 222 (1998) 126–137.
[17] S.-M. Jung, On the stability of gamma functional equation, Results Math. 33 (1998) 306–309.
[18] Y.-S. Jung, I.-S. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math.

Anal. Appl. 306 (2) (2005) 752–760.
[19] Y.-S. Jung, K.-H. Park, On the stability of the functional equation f (x + y + xy) = f (x) + f (y) + xf (y) + yf (x),

J. Math. Anal. Appl. 274 (2) (2002) 659–666.
[20] Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27 (1995) 368–372.
[21] B. Margolis, J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric

space, Bull. Amer. Math. Soc. 126 (74) (1968) 305–309.
[22] M.S. Moslehian, On stability of the orthogonal pexiderized Cauchy equation, J. Math. Anal. Appl. 318 (1) (2006)

211–223.
[23] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003) 91–96.
[24] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297–300.
[25] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000) 264–284.
[26] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Math. Appl. 62 (2000) 23–130.
[27] Th.M. Rassias (Ed.), Functional Equations and Inequalities, Kluwer Academic, Dordrecht, 2000.
[28] Th.M. Rassias, J. Tabor, What is left of Hyers–Ulam stability?, J. Nat. Geom. 1 (1992) 65–69.
[29] J. Rätz, On orthogonally additive mappings, Aequationes Math. 28 (1985) 35–49.
[30] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983) 113–129.
[31] T. Trif, On the stability of a general gamma-type functional equation, Pulb. Math. Debrecen 60 (1–2) (2002) 47–61.
[32] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, science ed., Wiley, New York, 1960.


