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ABSTRACT 

One way to approach infinite-dimensional nonlinear programs is to append in- 
creasingly large cost or penalty terms to the objective function in such a way that the 
minima of the augmented but unconstrained functions converge to the constrained mi- 
nimum in the limit. In this paper we establish the convergence of the penalty argument 
on reflexive B-spaces, and then apply it to obtain the Kuhn-Tucker necessary con- 
ditions for convex programs in Hilbert space. The proof is constructive and suggests a 
computationally feasible algorithm for solving such programs. 

In this note we look at an iterative method for solving nonlinear programming 

problems based on the penalty function concept of Courant [1]. The  idea is to append 
increasingly large cost or penalty terms to the objective function in such a way that 
the resulting minima of the augmented, but  otherwise unconstrained, functions 
converge to the constrained solution in the limit. In this way a constrained minimiza- 
tion problem is reduced to solving a sequence of unconstrained ones. A similar 
technique was made the basis of a computational algorithm for convex programs on 

E" by Fiacco-McCormick but  under different hypothesis [2]. The  method has the 
virtue that necessary conditions in mathematical programming can be obtained in a 
constructive (i.e., computationally feasible) manner by passing to the limit with the 
necessary conditions for each unconstrained problem as the penalty term increases. 
Several specific examples on E" have been computed by this approach and the algo- 
r i thm appears to be quite effective [3]. 

In this first section we establish existence and necessary conditions for convex 
programs on a Hilbert  space by appealing to the behavior of convex functionals on 
closed convex sets in reflexive B-spaces. However, there is no pretense that our argu- 
ment leads to the best statement of the necessary conditions (the paper by t ta lkin-  

Neustadt  [4] gives a more general treatment,  for example). Instead we simply wish to 
indicate a concrete approach to the problem of necessaey conditions within the larger 

framework of actually constructing optimal programs. In the last section, in fact, we 

show how the penalty argument,  together with the classical Ritz method, allows us to 

reduce an infinite-dimensional program to one of solving a sequence of unconstrained 

finite-dimensional programs. Thus  the penalty idea is at once an iterative method for 
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proving existence, a constructuve device for establishing necessary conditions, and a 
specific technique for computing solutions. 

A MULTIPLIER RULE 

The  mathematical program to be discussed is that of minimizing a convex func- 
tional f subject to the m constraints gi ---- 0, j ~ r, and g~ ~< 0, r < j ~< m, where 
0 ~< r ~< m and f ,  gj are mappings of a Hilbert space 9((' to E t. 

As a matter  of convenience all constraints will be written as equality constraints. 
T o  do this in the case 0 ~ r < j ~< m we define H i ~ .W(o,'ff, E 1) by H i = 1 whenever 
&(x) > 0 and by Hj --  0 otherwise, and then note that Hjg i ~ 0 if and only ifg~ ~< 0; 
when j ~< r let Hj ~ 1. Thus  we have m constraints IIjg~ = 0 or, equivalently, 
(H~g~) 2 = 0. Now let K an m • m diagonal matrix with positive entries k s . Then  
K~--~ ~ means that all entries k,.j in the sequence K ,  increase without bound as 
n --* oo. The  quadratic form ~ - ~ , ,  k,.j(H~gs) 2 will be denoted by (Hg, KnHg) with 
Hg a mapping of ~ to E" .  In Theorem 1 below we assume that the gj~ are lower 
semicontinuous (1.s.c.) and convex. This  implies the 1.s.c. and convexity of  (H~g~) 2 
and hence of (Hg, K,,Hg) as well. 

We begin by quoting without proof two lemmas that will be needed in the sequel. 
For a proof  see, for example, [5], pp. 125-6. Then  two additional lemmas are proven 
by combining known results in functional analysis. They  are followed by the first 
theorem, strengthening a result of Butler-Martin [6] which, in turn, is based on the 
argument  given in the Courant notes [7]. This  theorem establishes the validity of the 
penalty argument. In  the proofs we deal with a reflexive Banach space B and by weak 
convengence to zero of {x~} in B is meant that f(x~) --~ 0 for all f in the dual B' .  

LEMMA 1. Every bounded sequence in B has a weakly convengent subsequence. 

LEMMA 2. A closed convex set in B is weakly closed. 

LEMMA 3. I f  f is a convex and Ls.c. functional on B then f is weakly Ls.c. 

Proof. Let S(~) =- {x I f (x)  ~ ~}. I t  is not hard to see that f is 1.s.c. if and only 
if S is closed for all ~ (see, for example, [15], p. 40). Since f is convex, I.s.c. then S 
is convex, closed for all o~ and so, by Lemma 2, weakly closed. H e n c e f i s  weakly l.s.e. 

LEMMA 4. Let f be convex and Ls.c. on a closed convex subset g2 of B. I f  f--* + oo 
as [] x I[--+ o% then it attains a minimum on Q. 

Proof. Let d = i n f ~ u f a n d  let {xn} be a minimizing sequence in Q. Since f - +  + oo 
as II x [i ~ oo the set {xn} is bounded. Hence, by Lemma l, there exists a subsequence 
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{x,,} which tends  weakly to some x o ~ B. By L e m m a  2, x o 6 G and finally, by L e m m a  3, 

f is weakly l.s.c., so that  d : ~- l imf(xn~)  ~ f ( x o )  ~ d, which shows that f ( x o )  = d. 

THEOREM 1. Let  f ,  gfl,  j : 1 .... , m, be convex and l.s.c, on a closed convex set G o 

in B and suppose f - -+ - -  ~ as li x [i -~  oo. Also let us suppose that G 1 =- {x I H~g i - 0} 

has a nonempty intersection with G o . 

Then for  every sequence o f  matrices Ix~ --+ ov as n --~ ~ there exists a corresponding 

sequence x,~ ~ G o with the property that 

min  I f  t- �89 (Itg, K,~Hg)] 
Xs 0 

is attained ~ x~ and such that, for  some subsequence xnk , x% tends weakly to 

x o ~ G o n G1 ,  where f ( xo )  =-inf~r (i.e., x o is a minimum for  f subject to the con- 
s traints) .  

Proof.  First  note that  fn -+  + oo as ,I x II, -- .  oo so that from L e m m a  4 we have 

that  f .  takes on a m i n i m u m  d .  at some x.  ~ G 0 . S i n c e f . - +  + oo it also follows that  
{x.} is a bounded  set in G 0 and so for some subsequence,  also denoted by x . ,  we have 

that  x .  --~ x 0 E g2 0 weakly as n --~ oo ( L e m m a  I). I t  remains  to show that  f(x0)  = d. 

N o w f  = f .  ~ d .  for all xG o n G 1 and so d.  ~ d. T h u s  d ~ l i m f ( x . )  >~f(xo) and, 
in fact, f ( x . )  ~ f ( X o )  - I for all n greater than some N since, by Lem m a  3, f is 
weakly 1.s.c. Hence  

f ( x o )  - -  1 ! ~ (llg(x,,),  K, ,Hg(x . ) )  <~ d or �89 (Hg(x,~), K . H g ( x . ) )  ~ constant  

for all n >~ N.  Since K~ ~ ov as n --+ ov it follows that  (Hjg j (x , ) )  2 ~ 0 for each j .  
But  then 

0 = l im (Higj(.vn)) 2 ~ (Higj(Xo)) 2 ~ 0 

and so x 0 ~ G 0 n G x C G o . Toge the r  with the fact t ha t f (x0 )  ~< d it now follows that  
f(xo) =: d, which proves the theorem. 

T h e  conten t  of the above T h e o rem is that the m i n i m a  of the uncons t ra ined  func-  
t i o n s f ,  t end  weakly to the m i n i m u m  of the c o n s t r a i n e d f  as n --~ oo since (Hg, K . H g )  

necessarily tends  to zero as the cost of violat ing the constraints  increases wi thout  

bound.  For  this reason K is called a matr ix  of penal ty  constants.  Note that  the theorem 

also establishes the existence of a m i n i m u m  for the constra ined func t ion  since, as we 

saw,f(xo)  = i n f f o n  G o c3 G 1 . In  the proof we assumed G o is closed, convex. Actually,  

~Qo (3 "Q1 is also closed, convex as we now show; this allows us to infer the existence of a 
m i n i m u m  o f f  on G o n G 1 directly from L e m m a  4. Let  

G~ = {x [ (H~gj) z = 0} = {x l (H~gj) 2 ~ 0}; 
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for r < j  ~< m g2j- = {x !gj. ~ 0}. Since (Hjgi) 2 is convex it follows that the sets 12j 
are also convex for a l l j  =- 1 ..... m. But then so is -Q1 = t~ s Also if zk EI2~. and if 
z k --~ z then 

0 = lim)nt It~gj2(zk) ~ Hj~gj2(z) ~ 0 

since (Itjgj) 2 is l.s.c, and so z ~ s Hence Q1 is closed which shows that 120 n s x is 
closed, convex. Finally, note that if g2 o is bounded one does not need the hypothesis 
that f---~ + oo as [I x ii-+ ~ .  

The next theorem establishes a necessary condition for optimality in terms of a 
multiplier rule. To simplify notation and reduce wordiness in the proof we restrict 
ourselves to inequality constraints below (i.e., with r - - 0), but essentially the same 
reasoning yields a theorem even when r > 0 except that the resulting multipliers 
will be unrestricted in sign fo r j  ~ r. Also B is now specialized to a Hilbert space ,,~ff. 

We recall that a continuous functional f is differentiable on an open set .(2' of 9ff 
if for every x e [2' there exists a continuous linear mapping f ' ( x )  ~ ,~r the conjugate 
space of a~, called the Frechet derivative o f f  such that 

! f (x  :- h) - - f ( x )  -- ( f ' (x) ,  h) _ +  0 as :] h :i-~ 0, h ~.,;f{' 
!~hli 

(see Dieudonne [8], p. 143). T h u s f ' ( x )  or s i m p l y f '  is a mapping of-Q' into ~, '~* and 
i f f '  is weakly continuous on g2' we say t ha t fhas  a weakly continuous derivative on g2'. 
I t  follows immediately that the existence of such a derivative for gi implies that 
g2  is 1.s.c. 

THEOREM 2. Let x o be given as a local minimum of f on s n g21 :f= 0 where Y2' 
is some open subset of .)r and suppose f ,  gj have weakly continuous derivatives on s 
Assume also that f is strictly convex and the gj2 convex on I2'. Moreover, suppose that 
(gj(xo), h) < 0 for some tt ~ ~ff, j ~ J - { j  I g~(Xo) -- 0}. Then there exists A t >~ 0 such 
that 

f '  = - -  ~ A~g~ (1) 
i - 1  

at x o and such that A t -= 0 whenever j r J. 

Proof. Let g2 o C f2' be a closed ball about x o . Then [2 ois closed, convex and bounded 
and we identify -Qo, f21 with the corresponding sets in Theorem 1. Moreover x o 
is a unique global minimum on "(2o ~ ~Q1 s incef  is strictly convex. 

Let fn = f  + �89 (Itg, KnlIg) and note that if fn attains its minimum at xn ~-(2o 
then, by Theorem l, there exists a subsequence, also denoted by {x,}, such that x,  
tends weakly to some x in -(2 o c3 s x for which f (x)  = d. Since the minimum o f f  is 
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unique, x = x o . For  n large enough, x,, is in the interior of 320 and since f .  is uncon- 
strained we have 

f ~  - f '  , _  ~- ~ k.,jH~g~& 0 (2) 

at x,, (see [8], p. 145). Also, x,, does not belong to the interior of.Qj ---- {x gj ~ 0 , j  c-- J} 
for all sufficiently large n. To see this, note that x 0 is on the boundary of g2j and since 

f,~ = f o n  I2s this implies x,, ~ x 0 whenever x,  E/2s .  By the same reasoning, x,  belongs 
to the interior of / 2 1 -  / 2 s - - { x l g ~  ~ O, j 6  J}. Tiros, for some N, we have 
0 ~ k,..~g:f(x.~) for all n ~ N and j e J and k,~.jHjgj(x,,) - 0 for n ) N anti j ~ J. 
Since (g'j(Xo) , h) < 0 for j �9 J and h some fixed element of .r then (g'~(x,), h) :~ -- ~5 
when n is sufficiently large and 8 is sufficiently small since g} is weakly continuous and 

x,~ --+ x 0 weakly. Moreover,  using Lemma 1 one can show that ( f ' ( x ) ,  h) is bounded 

on/20 for each h since f '  is also weakly continuous. Hence from Eq. (2) we obtain 

t , s M >~ ( f  (x, O, h) :-= -- ~" k,,.,g~(x,) (g,(x,), h) -<. 8 ~ k,,.jg,(x,,) > 8kn.jg,(x,,) 
jed 

for all sufficiently large n. But then k,,.jgj(x~)<~ constant, n ) N .  Thus  one can 

choose a suitable subsequence {x . )  so that k,~.jgj(xn) .... Aj ) 0 as v- ~ Go. Since f ' ,  
t 

g~ are weakly continuous we obtain 

f '  --= - Z a e, . . . .  Y. a e; 
j :~: m j e J  

at x 0 by passing to the limit in (2) as xnv. ~ s o . This  establishes (1). 

Theorem 2 establishes the validity of a mult ipl ier  rule for convex programs on a 
Hilbert  space. The  conditions can and have been weakened by others. However,  as 

was already stated, our purpose here is not generality but simply to indicate how an 
algorithm for computing opt imum programs can also be used in a constructive way 
to obtain necessary conditions for a minimum. Such an approach has an obvious 
conceptual advantage. The  essential point of the proof is in showing that at least one 
representation of the form (1) holds with multipliers A~ >~ 0. 

In the case where the Hilbert  space is E" the theorem specializes to the usual 

Kuhn-Tucker  necessary conditions [9] except t h a t f ' ,  g~ become the gradients Vf, Vg~. 

Remark. Suppose that l, the number  of elements in J, satisfies l ~< n for ,;r ~ = E" 

and that rank VG = l at x 0 . Here VG is the l • n Jacobian matrix with columns 

Vgj,  j ~ J; v G  I will denote the (l-+- 1) • n matrix with l + 1 columns Vf, Vg s . 
Under  these conditions and if r = l -- m (the classical constrained Lagrange problem) 

then Vf = - - Z  k,,j&(xn) Vg~ implies rank 7 G  s <~ m at x , .  Thus  det G s := 0 and it 
remains zero as n -+  oo since f ,  gi �9 CL But then rank G I = rank G -= m at x 0 and 
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so there exists a unique set of multipliers A s so that Vf --  --  Y~s~<,, AsVgj �9 Our proof 
of Theorem 2 follows a similar argument given in the notes [7] for the case n = 2 
and r = m = 1, in which case the existence of a multiplier is equivalent to asserting 
that the 2 x 2 Jacobian G I has rank < 2. 

Note that for ~ = E" the closed ball I2 o used in the proof of Theorem 2 is compact 
and so it is not necessary to require that f ,  gj be convex in this case, only that they be 
1.s.c. But then even if .(2 o is chosen so that x 0 is a global minimum on Y2 o c3 ~21 it need 
not be unique. To overcome this difficulty we replace f by the objective function 
u = f  q- [] x - -  x o !i s which does have a unique minimum at x o . The  multiplier rule 
holds for u but since Vu = Vfa t  x o it holds f o r f  also. 

Finally one observes from Theorem 2 that the multipliers Ar are obtained as the 
limits of k,,.jgj as the x,  tend weakly to x 0 . This is actually seen in specific examples, 
as indicated un [3]. Indeed, that the theoretical arguments are vindicated in practice 
has already been established by computing on a number of examples on E". 

A FEASIBLE ALGORITHM 

We now indicate on how to proceed to compute an optimal conver program on L 2 . 
Actually the same procedure will be applicable to programs on other spaces in a formal 
way. First one replaces the constrained minimization problem by an unconstrained 
one determined by f ,  =f -~-~ .  (Hg, K,~Hg) as prescribed by Theorem 1. Then  
f ,  ~ . ~  -~ E 1 is replaced by a problem in the setting fn : En ~ El- This is done as 
follows, using an idea of 14/. Ritz [I0]. Let W denote the collection of finite linear 
combinations of constant functions with compact support (step functions). Then  W 
is dense in L 2 and so for every E > 0 there exists w E W such that f,,(w) --  f,~(x) <~ E 
for any x ~L~ (f,~ is assumed continuous). Thus, if {xi} is a minimizing sequence fo r f ,  
(recall that f~ is bounded below) then f,~(xi) -- d,, ~ ,  for i is large enough. Now let 
d,,k = minf , (w)  = f,(wk) over all w E W consisting of exactly k steps (the minimum 
clearly exists sincef~ is now restricted to E ~) and note that dn. k is monotone-decreasing 
to some d,  as k ~ ~ .  Thus  for some k there exists a w in E k for which 

d,.~ =f , (w~)  ~<f,(w) <~ L(x,)  + ,  <~ d, + 2, 

and so {w~} is a minimizing sequence. At this point all that is needed is a procedure 
for finding m i n f ,  : E x" --~ E 1 for such k. What follows is a brief outline of one such 
procedure. Let  H be any positive definite k by k matrix; then H defines a metric on 
E ~ via the norm [I x I[h~- For any starting vector x ~ E k we move down the negative 
gradient o f fn  in this metric, i.e., in the direction --  o~HVf, (if Vf, is not explicitly 
known then a suitable procedure approximation to it will do). We stop when the one- 
dimensional minimum of fn  versus ~ is attained. At the new x we evaluate Vfn and 
then update H according to the formula given by Fletcher-Powell in [11], which 
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modifies an algorithm of Davidon [12]. It  is proven in [11] that the updated 1I remains 
positive-definite and therefore the procedure is stable (i.e., strictly downhill). 

In summary, then, the method is this. Replace the problem of minimizing f on 
S2 o ~ (21 by the unconstrained problem of minimizing f~ on -(20 . Then  parametrize 
12 o C L 2 by some approximating set 12~. C E k and minimize fn on -Qk �9 Repeat the last 
step by updating k until no further improvement is obtained for that n. Now update 
n itself and repeat until the desired accuracy is achieved. A stopping rule in each case 
is, for example, to terminate when successive iterates agree by a prescribed amount. 
Further details on the method for nonlinear programs on E ~ is given in [3]. Initial 
computer trials in this setting indicate that the proposed technique is quite effective 
and a program for computing on problems in infinite dimensional space is now in 
preparation. 

We note here that the penalty idea has already been used successfully in conjunction 
with the maximum principle of Pontriagin in several nonlinear control problems with 
inequality constraints by McGill [13] and Beltrami-McGill [14]. Such control prob- 
lems can, of course, be considered as infinite dimensional programs. The method 
used in [13] and [14] was indirect, however, in contrast to the one proposed above, and 
did not utilize a parametrization procedure. 

It  is worth mentioning, finally, that the essential ingredients for the computational 
approach outlined above were already available in a classic paper of Courant in 1943 [1], 
in which he discussed the combined use of the Ritz method, the penalty argument, 
as well as gradient techniques in function space to solvc variational problems. 
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