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a b s t r a c t

A rotation-minimizing adapted frame on a space curve r(t) is an or-
thonormal basis (f1, f2, f3) forR3 such that f1 is coincidentwith the
curve tangent t = r′/|r′| at each point and the normal-plane vec-
tors f2, f3 exhibit no instantaneous rotation about f1. Such frames
are of interest in applications such as spatial path planning, com-
puter animation, robotics, and swept surface constructions. Poly-
nomial curves with rational rotation-minimizing frames (RRMF
curves) are necessarily Pythagorean-hodograph (PH) curves – since
only the PH curves possess rational unit tangents – and theymay be
characterized by the fact that a rational expression in the four poly-
nomials u(t), v(t), p(t), q(t) that define the quaternion orHopfmap
form of spatial PH curves can be written in terms of just two poly-
nomials a(t), b(t). As a generalization of prior characterizations for
RRMF cubics and quintics, a sufficient and necessary condition for a
spatial PH curve of arbitrary degree to be an RRMF curve is derived
herein for the generic case satisfying u2(t)+v2(t)+p2(t)+q2(t) =
a2(t) + b2(t). This RRMF condition amounts to a divisibility prop-
erty for certain polynomials defined in terms of u(t), v(t), p(t), q(t)
and their derivatives.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

An adapted frame on a regular space curve r(t) is an orthonormal basis (f1, f2, f3) for R3, such that
f1 coincides with the curve tangent t = r′/|r′| at each point. The Frenet frame (t,n, b) is perhaps the
most familiar adapted frame (Kreyszig, 1959), for which the principal normal n points toward the
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center of curvature, and the binormal b = t × n is orthogonal to the osculating plane. However, the
Frenet frame, defined in terms of the intrinsic geometry at each curve point, is often unsuitable for
specifying the orientation of a rigid body along a given curve in applications such as motion planning,
animation, geometric design, and robotics, since it incurs ‘‘unnecessary’’ rotation of the body.
As noted by Bishop (1975), there are infinitely many adapted frames on a given space curve, since

they possess a residual freedom, controlling the orientation of the frame vectors f2, f3 in the curve
normal plane. The variation of an adapted frame (f1, f2, f3) along a curve r(t) is determined by its
vector angular velocity ω(t) through the differential relations

df1
ds
= ω× f1 ,

df2
ds
= ω× f2 ,

df3
ds
= ω× f3 ,

where s is the arc length along the curve. The magnitude ω = |ω| and direction a = ω/|ω| of the
angular velocity specify the instantaneous angular speed and rotation axis of the frame (f1, f2, f3).
The characteristic property of a rotation-minimizing adapted frame is that its angular velocity has no
component along f1 = t — i.e., ω · t ≡ 0 (there is no instantaneous rotation of f2 and f3 about f1 = t).
The Frenet frame is not rotation-minimizing, since its angular velocity is given (Kreyszig, 1959) by the
Darboux vector ω = κ b+ τ t, where κ and τ are the curvature and torsion of r(t).
Klok (1986) studied rotation-minimizing frames (RMFs) in the construction of swept surfaces,

and characterized them as solutions of first-order differential equations. Guggenheimer (1989)
subsequently showed that the RMF normal-plane vectors have an orientation, relative to the Frenet
frame, defined (modulo a constant) by the integral of the torsionwith respect to arc length,whichmust
generally be computed bymeans of numerical quadrature. Further details on RMF approximations and
applications may be found in Farouki and Han (2003), Jüttler (1998), Jüttler and Mäurer (1999a,b), Sir
and Jüttler (2005), Wang and Joe (1997), Wang et al. (2008).
Pythagorean-hodograph (PH) curves (Farouki, 2008) permit exact RMF computation (Farouki, 2002)

by integrating a rational function, but this typically incurs transcendental terms. More recently, there
has been interest in constructing polynomial curves with rational rotation-minimizing frames (RRMF
curves). Such curves must be PH curves, since only the PH curves have rational unit tangents — the
RRMF curves should be identifiable via constraints on the coefficients of PH curves that are sufficient
and necessary for the RMF to be rational. Rational forms are always preferable, whenever possible,
since they admit exact and efficient computation.
As an alternative to invoking the Frenet frame as a reference, Choi and Han (2002) defined an

adapted frame on spatial PH curves called the Euler–Rodrigues frame (ERF). This is not a geometrically
intrinsic frame (it depends on the chosen coordinate system), but it offers two key advantages over
the Frenet frame for identifying rational RMFs — it is inherently rational, and always non-singular at
inflection points. The conditions under which ERFs can be RMFs were studied in Choi and Han (2002),
showing that: (a) for PH cubics, the ERF and the Frenet frame are equivalent; (b) for PH quintics, the
ERF is an RMF only for degenerate (planar) curves; and (c) PH curves for which the ERF is an RMF are
of degree 7 at least.
Subsequently, Han (2008) used the ERF to identify a criterion characterizing RRMF curves of any

(odd) degree, and showed that RRMF cubics are degenerate PH cubics, i.e., they are either planar, or
have non-primitive hodographs. The existence of non-degenerate RRMF quintics was first shown in
Farouki et al. (2009a), using the Hopf map representation of spatial PH curves rather than the more
familiar quaternion form. Much simpler characterizations of RRMF quintics were then derived in
Farouki (in press), in terms of both the quaternion and Hopf map forms, that are just quadratic in
the curve coefficients and incorporate expected symmetry properties.
The goal of the present paper is to determine general constraints on the four polynomials u(t), v(t),

p(t), q(t) specifying the quaternion and Hopf map forms of spatial PH curves, that are sufficient and
necessary for the existence of a rational RMF, and incorporate the known results concerning RRMF
cubics and quintics as special instances.
The paper is organized as follows. Section 2 reviews the quaternion and Hopf map forms of spatial

PH curves, and the general RRMF criterion expressed in terms of them. Conditions underwhich spatial
PH curves degenerate to straight lines or planar curves, which are trivial RRMF curves, are then
determined in Section 3. Themain results concerning derivation of sufficient and necessary conditions
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for non-degenerate RRMF curves, expressed in terms of the divisibility of certain polynomials, are then
presented in Section 4, and prior results concerning RRMF cubics and quintics are newly interpreted in
terms of this condition. Finally, Section 5 makes some preliminary remarks concerning higher-order
RRMF curves, while Section 6 summarizes the results of this paper and identifies topics for further
study.

2. Quaternion and Hopf map forms

A polynomial Pythagorean-hodograph curve r(t) = (x(t), y(t), z(t)) in R3 is characterized by the
property that its derivative components satisfy the Pythagorean condition

x′2(t)+ y′2(t)+ z ′2(t) = σ 2(t) (1)

for some polynomial σ(t). Hence, the parametric speed |r′(t)|, which defines the rate of change ds/dt
of arc length s with respect to the parameter t , is defined by the polynomial σ(t) — rather than the
square root of a polynomial. A sufficient and necessary condition for the satisfaction of (1) is that x′(t),
y′(t), z ′(t) should be expressible (Choi et al., 2002; Dietz et al., 1993) in terms of four polynomials2
u(t), v(t), p(t), q(t) in the form

x′(t)=u2(t)+ v2(t)− p2(t)− q2(t) ,
y′(t)=2 [ u(t)q(t)+ v(t)p(t) ] ,
z ′(t)=2 [ v(t)q(t)− u(t)p(t) ] , (2)

and the parametric speed is then given by

σ(t) = u2(t)+ v2(t)+ p2(t)+ q2(t) . (3)

The Pythagorean-hodograph structure (2) inR3 is conveniently captured by two algebraic models,
introduced by Choi et al. (2002). A Pythagorean hodograph may be generated from a quaternion3
polynomial

A(t) = u(t)+ v(t) i+ p(t) j+ q(t) k (4)

by the product

r′(t) = A(t) iA∗(t) , (5)

whereA∗(t) = u(t)−v(t) i−p(t) j−q(t) k is the quaternion conjugate ofA(t). Thismay be regarded
as generating r′(t), for each t , bymeans of a scaling/rotation operation applied to the unit vector i. Note
that the expression on the right in (5) is a quaternion with zero real (scalar) part, regarded as a vector
in R3.
Alternatively, Pythagorean hodographs may be generated from complex polynomial pairs

α(t) = u(t)+ i v(t) , β(t) = q(t)+ i p(t) (6)

by using the expression

r′(t) = (|α(t)|2 − |β(t)|2, 2 Re(α(t)β(t)), 2 Im(α(t)β(t))) . (7)

This corresponds to the Hopf map from C2 (or R4) to R3. The equivalence of (5) and (7) is established
by takingA(t) = α(t)+k β(t), where the imaginary unit i is identified with the quaternion element i.
The forms (5) and (7) are both invariant with respect to arbitrary spatial rotations — i.e., a given
Pythagorean hodograph can always be expressed in both these forms, regardless of the orientation
of the adopted coordinates in R3.

2 We assume, throughout the paper, that these polynomials satisfy gcd(u(t), v(t), p(t), q(t)) = 1.
3 We use calligraphic characters for quaternions, and bold font for vectors in R3 and occasionally also for complex numbers
— the meaning should be clear from the context. The scalar and vector parts (Roe, 1993) of a quaternion A are denoted by
scal(A) and vect(A).
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As previously noted, curves with rational rotation-minimizing frames (RRMF curves) are
necessarily PH curves. Han (2008) derived a sufficient and necessary condition for a PH curve to
possess a rational RMF in terms of the quaternion form — the hodograph (5) defines an RRMF curve
if and only if two relatively prime polynomials a(t), b(t) exist, such that the components u(t), v(t),
p(t), q(t) ofA(t) satisfy

uv′ − u′v − pq′ + p′q
u2 + v2 + p2 + q2

=
ab′ − a′b
a2 + b2

. (8)

Note that the numerator and denominator of the expression on the left can bewritten in terms ofA(t)
as scal(A(t) iA′∗(t)) and |A(t)|2.
For the Hopf map form, the condition (8) can be regarded (Farouki et al., 2009a) as requiring the

existence of a complex polynomialw(t) = a(t)+ i b(t)with gcd(a(t), b(t)) = 1, such that

αα′ − α′α+ ββ′ − β
′
β

|α|2 + |β|2
=

ww′ −w′w
|w|2

. (9)

In this paper, we shall consider satisfaction of (8) in the case where u2 + v2 + p2 + q2 = a2 + b2.

3. Degenerate RRMF curves

Straight lines are trivially RRMF curves, since we need only choose a unit vector f1 along the line,
and two unit vectors f2, f3 orthogonal to it and each other, such that f1 = f2 × f3, to define an RMF.
Planar curves are also trivially RRMF curves, since the Darboux vector (Kreyszig, 1959) for a plane
curve (whose torsion satisfies τ ≡ 0) reduces to ω = κ b — because this has no component in the
direction of t, the Frenet frame (t,n, b) is evidently rotation-minimizing.
Since we are primarily interested in RRMF curves that are proper space curves, we need a means

to discount the degenerate cases of linear and planar curves. Consider first the case of degeneration
to a straight line, characterized by zero curvature.

Lemma 3.1. The curvature κ(t) of the PH curve specified by (4) and (5) is identically zero if and only if
α, β ∈ R exist such that

p(t) = α u(t)+ β v(t) and q(t) = β u(t)− α v(t) . (10)

Proof: (H⇒) The curvature of r(t) can be expressed (Farouki, 2008) as

κ(t) = 2
√
ρ(t)
σ 2(t)

,

where ρ = (u′p− up′ + v′q− vq′)2 + (u′q− uq′ − v′p+ vp′)2. A straightforward calculation shows
that, when (10) holds, we have u′p− up′ + v′q− vq′ = u′q− uq′ − v′p+ vp′ = 0.
(⇐H) Suppose that κ(t) ≡ 0. Since κ(t) = |r′(t) × r′′(t)|/|r′(t)|3, vanishing of the curvature

implies that

x′′(t)
x′(t)

=
y′′(t)
y′(t)

=
z ′′(t)
z ′(t)

.

Since these ratios are the derivatives of ln x′(t), ln y′(t), ln z ′(t) we have ln x′(t) = ln y′(t) − ln a =
ln z ′(t)− ln b and hence y′(t) = ax′(t), z ′(t) = bx′(t) for real values a, b.
Now since x′ = u2 + v2 − p2 − q2, y′ = 2(uq + vp), z ′ = 2(vq − up), we have x′2 + y′2 +

z ′2 = (u2 + v2 + p2 + q2)2 = x′2(1 + a2 + b2). Without loss of generality, we may assume that
x′ = c(u2 + v2 + p2 + q2)where c−1 =

√
1+ a2 + b2, 0 < c < 1. Combining x′ = u2 + v2 − p2 − q2

and x′ = c(u2 + v2 + p2 + q2) gives u2 + v2 = γ (p2 + q2) and x′ = (γ − 1)(p2 + q2), where
γ = (1+ c)/(1− c). We then have[

y′
z ′

]
=

[
u v
v −u

] [
2q
2p

]
=

[
a x′
b x′

]
,
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or [
u2 + v2 0
0 u2 + v2

] [
2q
2p

]
=

[
u v
v −u

] [
a (γ − 1)(p2 + q2)
b (γ − 1)(p2 + q2)

]
.

Since u2 + v2 = γ (p2 + q2), the preceding equation implies that (10) holds with

α = −
b(γ − 1)
2γ

and β =
a(γ − 1)
2γ

.

Note that γ = 1 (i.e., c = 0) corresponds to the trivial case α = β = 0. �
Lemma 3.1 generalizes results given in Farouki et al. (2009b) for the degeneration of spatial

PH cubics and quintics to straight lines, in terms of constraints on the quaternion coefficients, to
curves of arbitrary degree. The Lemma 3.1 conditions (10) are equivalent to requiring the quaternion
polynomialA(t) = u(t)+ v(t) i+ p(t) j+ q(t) k to admit a factorization of the form

A(t) = (1+ α j+ β k) [ u(t)+ v(t) i ] , α, β ∈ R .

Consider now the case of planar PH curves (other than straight lines) — such curves have non-
zero curvature, but zero torsion. However, the expression for the torsion of spatial PH curves is
cumbersome and difficult to analyze. A simpler characterization of planar curves is in terms of the
existence of a unit vector n = (λ, µ, ν) such that n · r′(t) ≡ 0, i.e.,

[ u2(t)+ v2(t)− p2(t)− q2(t) ] λ + 2 [ u(t)q(t)+ v(t)p(t) ]µ
+ 2 [ v(t)q(t)− u(t)p(t) ] ν ≡ 0 .

Satisfaction of this condition corresponds to one of the following three cases (for brevity, we omit a
complete analysis of their implications for u, v, p, q).

Case 1: If at least one of x′(t), y′(t), z ′(t) vanishes identically, the curve is trivially planar. Henceforth,
we assume that none of x′(t), y′(t), z ′(t) is identically zero.

Case 2: If one of x′(t), y′(t), z ′(t) is a (constant) multiple of another, we have x′y′′ − x′′y′ = 0, or
y′z ′′ − y′′z ′ = 0, or z ′x′′ − z ′′x′ = 0.

Case 3: In the generic case, with x′, y′, z ′ all non-vanishing and none a constant multiple of another,
we have x′ = k y′ + l z ′ for real non-zero values k, l. We then find that

(x′z ′′ − x′′z ′)(y′z ′′′ − y′′′z ′) = (x′z ′′′ − x′′′z ′)(y′z ′′ − y′′z ′) .

This is equivalent to (r′ × r′′) · r′′′ ≡ 0, i.e., the torsion vanishes identically, and hence the curve r(t)
is planar.

4. A general RRMF condition

Recall that the hodograph (5) defines an RRMF curve if and only if two relatively prime polynomials
a(t), b(t) exist such that the components u(t), v(t), p(t), q(t) of (4) satisfy the condition (8). Since
quotients of the forms on the left and right in (8) appear frequently henceforth, we denote them by

[ u, v, p, q ] =
uv′ − u′v − pq′ + p′q
u2 + v2 + p2 + q2

and [ a, b ] =
ab′ − a′b
a2 + b2

. (11)

Evidently, an analysis of the structure of [ u, v, p, q ] and [ a, b ] is important to the problem of
identifying RRMF curves. We begin by analyzing [ a, b ].

4.1. Structure of the ratio [ a, b ]

Unless otherwise stated a(t), b(t) are non-zero polynomials in R[t]with gcd(a(t), b(t)) = 1. Also,
let P(t) = a(t)b′(t) − a′(t)b(t), Q (t) = a2(t) + b2(t) and assume that deg(Q ) ≥ 2 and that Q (t) is
monic. The following remark is the basis for most of the results in this section.
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Remark 4.1. Let F(t),G(t) ∈ R[t] satisfy gcd(F ,G) = gcd(G,G′), and let r be a root of G(t) of multi-
plicity k. If G(t) = (t − r)kg(t) and

F(t)
G(t)

=
α

t − r
+
f (t)
g(t)

is the expansion of F(t)/G(t) at t = r , then k F (k−1)(r) = α G(k)(r).

Proof: We have F(t) = α (t − r)k−1g(t) + (t − r)kf (t). Since F (k−1)(r) = α (k − 1)! g(r) and
G(k)(r) = k! g(r), the result follows. �
Note that α is called the residue of F/G at t = r . Also, if r is non-real, the residue of F/G at r

(the complex conjugate of r) is simply α.

Lemma 4.1. If a, b, P,Q are as above, then gcd(P,Q ) = gcd(Q ,Q ′), and gcd(Q ,Q ′) divides
gcd(Q , a′2 + b′2).

Proof: Let r be a root of Q of multiplicity k. Then a2(r)+ b2(r) = 0, so that a(r) = ± i b(r). If k = 1,
we have P(r) = a(r)b′(r) − a′(r)b(r) = ± i [ a(r)a′(r) + b(r)b′(r) ] = ± 1

2 iQ
′(r) 6= 0. If k ≥ 2, we

have a2(t) + b2(t) = (t − r)kf (t) and a(t)a′(t) + b(t)b′(t) = (t − r)k−1h(t), where f (r) h(r) 6= 0.
Note that a(r) b(r) 6= 0, since gcd(a, b) = 1. Consider now the polynomial z(t) = a(t)b(t)P(t). In
view of the above, we obtain

z(t) = b(t)b′(t)(t − r)kf (t)− b2(t)(t − r)k−1h(t)
= (t − r)k−1[ b(t)b′(t)(t − r)f (t)− b2(t)h(t) ] .

Now b(t)b′(t)(t − r) f (t)− b2(t)h(t)
∣∣
t=r = − b

2(r) h(r) 6= 0, so r is a root of z(t) – and thus also of
P(t) – of multiplicity k− 1. If P(t) = (t − r)k−1g(t), then P (k−1)(r) = (k− 1)! g(r). Also, since r is a
root of a2 + b2 of multiplicity k and

a(ab′ − a′b)+ b(aa′ + bb′) = (a2 + b2)b′ = (t − r)k−1(ag + bh) ,

we have a(r)g(r) + b(r)h(r) = 0 and hence g(r) = −b(r)h(r)/a(r). Now using 12 Q
(k)(r) =

(aa′ + bb′)(k−1)(r) = (k− 1)! h(r) and a(r) = ± i b(r), we obtain

P (k−1)(r) = −(k− 1)!
b(r)h(r)
a(r)

= ∓
1
2 iQ

(k)(r)

and

g2(r)+ h2(r) =
h2(r)[ a2(r)+ b2(r) ]

a2(r)
= 0 .

Noting that

(ab′ − a′b)2 + (aa′ + bb′)2 = (a2 + b2) (a′2 + b′2) ,

the left-hand side is equal to (t − r)2k−2[ g2(t) + h2(t) ], which has r as a root of multiplicity 2k − 1
at least, since g2(r) + h2(r) = 0. Thus, since r is a root of a2 + b2 of multiplicity k, it must also be a
root of a′2 + b′2 of multiplicity k− 1 at least. �
Now let r1, r1, . . . , rm, rm be the distinct pairs of complex conjugate roots of Q = a2 + b2, and

k1, . . . , km be their multiplicities. From Remark 4.1 and the proof of Lemma 4.1, we see that the
residues of P/Q at rj, r j are ± 12 i kj, ∓

1
2 i kj respectively. Hence, the partial fraction decomposition

of [ a, b ] is given by

[ a, b ] =
P
Q
= ±

i
2

m∑
j=1

[
kj
t − rj

−
kj
t − r j

]
. (12)

The terms of the sum in (12) can be simplified by expressing the roots in terms of real and imaginary
parts as rj = αj + iβ j, giving

i
2

[
kj
t − rj

−
kj
t − r j

]
=

− kjβ j
(t − αj)2 + β2j

= kj [ t − αj, β j ] .
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Hence (12) can be written as

[ a, b ] = ±
m∑
j=1

kj [ t − αj, βj ] .

Now for k ≥ 1, let r1, r1, . . . , rk, rk be distinct complex conjugate pairs and n1, . . . , nk be positive
integers. Writing rj = αj + iβj and Aj = [ t − αj, βj ], let s be a map that associates signs s1, . . . , sk to
A1, . . . , Ak where sj = ±1 for all j. For each such s, we consider the sum

Bs =
k∑
j=1

sjnjAj . (13)

We then have:

Remark 4.2. There exist real, relatively prime polynomials ak(t), bk(t)with deg(a2k+b
2
k) = 2

∑k
i=1 ni

such that Bs = [ ak, bk ]. The roots of a2k + b
2
k are precisely r1, r1, . . . , rk, rk and their multiplicities are

n1, . . . , nk. In particular, a2k + b
2
k has distinct roots if nj = 1 for all j.

Proof: The proof is by induction on Nk =
∑k
i=1 ni. If Nk = 1 and r1 = α1 + iβ1, we have Bs =

± A1 = ±[ t − α1, β1 ]. The induction step follows from the relations

ab′ − a′b
a2 + b2

+
cd′ − c ′d
c2 + d2

=
ef ′ − e′f
e2 + f 2

,
ab′ − a′b
a2 + b2

−
cd′ − c ′d
c2 + d2

=
gh′ − g ′h
g2 + h2

, (14)

where we set e = ac − bd, f = ad + bc , and g = ac + bd, h = bc − ad, and the fact that
gcd(e, f ) = gcd(g, h) = 1 when gcd(a, b) = 1 and c = t − αj, d = β j. �
The above indicates that Bs1 6= Bs2 for s1 6= s2. Hence, for given distinct non-real numbers

r1, r1, . . . , rk, rk and positive integers n1, . . . , nk there are precisely 2k different sums Bs.
Using the above results, we can now state the following.

Proposition 4.1. Let a(t), b(t), Q (t) be as specified above. Then we have

[ a, b ] =
m∑
j=0

sjkjAj (15)

for distinct non-real complex numbers r1, r1, . . . , rm, rm, positive integers k1, . . . , km and an appropriate
sign map s. Moreover, the representation (15) of [ a, b ] is unique. Conversely, for any given sum of the
form S = s1k1A1 + · · · + smkmAm, there exist relatively prime polynomials a(t), b(t) ∈ R[t] such that
S = [ a, b ].

Proof: The representation (15) of [ a, b ] is simply its partial fraction decomposition, and is thus
unique. Also, from Remark 4.2, there exist polynomials a(t), b(t) ∈ R[t] such that S = [ a, b ] and
deg(a2 + b2) = 2

∑m
i=1 ki. �

Now any (strictly) positive real polynomial f (t) can be expressed as a sum of the squares of two
real polynomials, f 2(t) = g2(t) + h2(t), in infinitely many ways. We are concerned here with the
number of different ways in which the quotient [ a, b ] = (ab′ − a′b)/(a2 + b2) can be expressed.
Setting Q (t) = a2(t) + b2(t) for given a(t), b(t) ∈ R[t] with gcd(a, b) = 1, suppose we also have
Q (t) = c2(t) + d2(t) for c(t), d(t) ∈ R[t] with gcd(c, d) = 1. We then say that (a, b) and (c, d) are
similar, and write (a, b) ∼ (c, d), if we have [ a, b ] = [ c, d ].
We now identify the conditions under which the equivalence relation (a, b) ∼ (c, d) holds.

Proposition 4.2. Let Q = a2 + b2 = c2 + d2. Then we have

1. (a, b) ∼ (c, d) if and only if c + i d = z (a+ i b) where z is a unit complex number.
2. The number of distinct polynomial pairs equivalent to (a, b) is 2m, where 2m is the number of distinct
roots of Q = a2 + b2.
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Proof: 1. Observing that

ab′ − a′b
a2 + b2

=
d
dt
tan−1(b/a) and

cd′ − c ′d
c2 + d2

=
d
dt
tan−1(d/c) ,

we have

tan−1(d/c) = tan−1(b/a) + φ ,

φ being an arbitrary integration constant. Taking the tangent of both sides and clearing denominators
then yields

d
c
=
b+ τ a
a− τ b

,

where τ = tanφ. Since d(a−τ b) = c(b+τ a) and gcd(c, d) = gcd(a−τ b, b+τ a) = 1, there exists
λ ∈ R so that c(t) = λ [ a(t)−τ b(t) ] and d(t) = λ [ τ a(t)+b(t) ]. Thus, c+ i d = λ(1+ i τ)(a+ i b).
Note that | λ(1+ i τ) | = 1, since a2 + b2 = c2 + d2. The converse is a straightforward calculation.
2. Proposition 4.1 shows that [ a, b ] is equal, for appropriate k1, . . . , km and s, to the sum

S =
m∑
j=1

sjkjAj ,

and according to Remark 4.2 there are precisely 2m such sums. �

4.2. RRMF conditions

The preceding section described the structure of [ a, b ] in great detail. A similar analysis of
[ u, v, p, q ] seems to be a much more difficult task. Nevertheless, the results of the previous section
can be used to identify useful constraints ensuring that PH curves have rational RMFs.
Now for u, v, p, q ∈ R[t]with gcd(u, v, p, q) = 1 let

w = uv′ − u′v − pq′ + p′q (16)

be the numerator on the left in (8), and σ = u2 + v2 + p2 + q2 be its denominator as in (3). Also, let
η = 1

4 σ
′2
+ w2 be defined in terms of them by

η = (uu′ + vv′ + pp′ + qq′)2 + (uv′ − u′v − pq′ + p′q)2 . (17)

We may assume, without loss of generality, that σ is monic, and deg(σ ) ≥ 2.

Question 1. For u, v, p, q, w, σ as above, under what conditions is (8) satisfied for a, b ∈ R[t] with
gcd(a, b) = 1?

The following provides an answer to this question under the assumption that the quotientw/σ is
proper — i.e., that gcd(σ ,w) = 1.

Proposition 4.3. Let the polynomials u(t), v(t), p(t), q(t) ∈ R[t] satisfy gcd(u, v, p, q) = 1, and let
σ(t) and w(t) defined by (3) and (16) satisfy gcd(σ ,w) = 1. Then (8) is satisfied by a(t), b(t) ∈ R[t]
with gcd(a, b) = 1 if and only if the polynomial η(t) defined by (17) is divisible by σ(t), i.e., a polynomial
h(t) ∈ R[t] exists such that

η(t) = σ(t) h(t) . (18)

Proof: Suppose (18) is satisfied, and let r be a root of σ of multiplicity k. Then since η = 1
4 σ
′2
+ w2,

we must have w(r) = 0 if k ≥ 2, contradicting the fact that gcd(σ ,w) = 1. Thus, σ has only simple
roots. Now from Remark 4.1, the residue α ofw/σ at r satisfiesw(r) = α σ ′(r). Also, since (18) must
vanish at each root of σ , we have η(r) = 1

4 σ
′2(r)+w2(r) = 0, or 2w(r) = ± i σ ′(r). Hence,α = ± 1

2 i
andw/σ is of the form (13). Therefore, from Remark 4.2, relatively prime polynomials a, b exist such
thatw/σ = [ a, b ].
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Conversely, suppose (8) is satisfied, and let r be a root of σ of multiplicity m. Since w(r) 6= 0 and
w/σ is equal to [ a, b ]we must havem = 1 from (12). Hence, gcd(σ , σ ′) = 1. In that case, it follows
from (15) that [ u, v, p, q ] = s1A1 + s2A2 + · · · + skAk where Aj = [ t − αj, βj ] and Ai 6= Aj. From
Remark 4.2, polynomials f , g ∈ R[t] exist such that σ = f 2 + g2. Thus, w = fg ′ − f ′g and we then
have

η = 1
4 σ
′2
+ w2 = (ff ′ + gg ′)2 + (fg ′ − f ′g)2 = (f 2 + g2)(f ′2 + g ′2) = σ h ,

where h = f ′2 + g ′2. Hence (18) is also a necessary condition for satisfaction of (8). �
Note that, in terms of the quaternion representation of spatial PH curves defined by (4)–(5), the

terms appearing in (17) can be expressed as

uu′ + vv′ + pp′ + qq′ = scal(A A′∗) , uv′ − u′v − pq′ + p′q = scal(A iA′∗) ,

and since σ = |A|2, the RRMF condition (18) can be written as

[ scal(A(t)A′∗(t)) ]2 + [ scal(A(t) iA′∗(t)) ]2 = |A(t)|2 h(t) . (19)

We now relax the requirement gcd(σ ,w) = 1, but slightly modify Question 1 to avoid some very
pathological cases.

Question 2. For u, v, p, q, w, σ as above, under what conditions is (8) satisfied for a, b ∈ R[t] with
gcd(a, b) = 1 and σ = a2 + b2?

The answer to this question is similar to the previous one, as follows.

Proposition 4.4. Let the polynomials u(t), v(t), p(t), q(t) ∈ R[t] satisfy gcd(u, v, p, q) = 1, and let
f (t) be defined by f = gcd(σ , σ ′). Then (8) is satisfied by polynomials a(t), b(t) ∈ R[t] with gcd(a, b)
= 1 and a2 + b2 = σ if and only if the polynomial η(t) defined by (17) is divisible by σ(t) f (t), i.e., a
polynomial g(t) ∈ R[t] exists such that

η(t) = σ(t) f (t) g(t) . (20)

Proof: Suppose (20) is satisfied, so we have

η = 1
4 σ
′2
+ w2 = σ fg . (21)

Now (21) implies that f divides w, since f 2 divides w2, and we can write w = f A, σ ′ = f B for
A, B ∈ R[t]. If r is a root of σ of multiplicity m, we have w(m−1)(r) = f (m−1)(r)A(r) and σ (m)(r) =
f (m−1)(r)B(r). Moreover, A2(r)+ 14 B

2(r) = 0 or A(r) = ± 1
2 i B(r), since σ fg/f

2 vanishes at t = r . Thus
w(m−1)(r) = ± 1

2 i σ
(m)(r) 6= 0, and this implies that gcd(w, σ ) = gcd(σ , σ ′). Now from Remark 4.1

we see that the residue of w/σ at r is ± 1
2 im, so w/σ is of the form (13) and is thus equal to [ a, b ]

for a, b ∈ R[t].

Conversely, suppose (8) is satisfied with σ = u2 + v2 + p2 + q2 = a2 + b2. We then have σ ′ =
2(uu′ + vv′ + pp′ + qq′) = 2(aa′ + bb′), and (8) implies thatw = uv′ − u′v − pq′ + p′q = ab′ − a′b.
Hence,

(uv′ − u′v − pq′ + p′q)2 + (uu′ + vv′ + pp′ + qq′)2 = (ab′ − a′b)2 + (aa′ + bb′)2

= (a2 + b2)(a′2 + b′2) .

Thus η = σ(a′2+ b′2). But according to Lemma 4.1, a′2+ b′2 is divisible by f so a′2+ b′2 = fg for some
g ∈ R[t]. Thus (20) is also necessary for satisfaction of (8) with σ = a2 + b2. �
Propositions 4.3 and 4.4 show that satisfaction of the RRMF condition (8) is expressible in terms

of divisibility of the polynomial η(t), defined by (17), by the parametric speed σ(t) of the PH curve,
specified by (3). These results can be alternatively expressed in terms of the polynomial

ρ = (up′ − u′p+ vq′ − v′q)2 + (uq′ − u′q− vp′ + v′p)2 . (22)

Remark 4.3. η(t) is divisible by σ(t) if and only if ρ(t) is divisible by σ(t).
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Proof: From the definitions (3), (17), and (22) of σ , η, and ρ, one can verify that

η + ρ = σ (u′2 + v′2 + p′2 + q′2) .

Since σ divides the sum of η and ρ, if it divides one of them, it must divide the other. �
The polynomial ρ(t) plays a more established role in the theory of spatial PH curves. For example,

the cross product r′(t) × r′′(t) of the first and second derivatives of such curves satisfies (Farouki,
2008) the condition4

| r′(t)× r′′(t) |2 = 4 σ 2(t) ρ(t) ,

and 4 ρ(t) can be identified with |r′′(t)|2 − σ ′2(t). The theory of double PH curves (Farouki et al.,
2009b,c; Monterde, 2009) is based on the requirement that |r′(t) × r′′(t)|, as well as |r′(t)|, must
be a polynomial in t — i.e., ρ(t) must be a perfect square. Such curves have rational Frenet frames
and curvatures. Note also that ρ(t) admits a very simple expression (Farouki, 2008) in terms of the
complex polynomials (6) that define the Hopf map form (7) of spatial PH curves, namely

ρ(t) = | α(t)β′(t)− α
′(t)β(t) |2 . (23)

Remark 4.4. If deg(u, v, p, q) = m, we have deg(σ ) = 2m and deg(ρ) = 4m−4 due to a cancellation
of highest-order terms in up′ − u′p and analogous expressions. Hence, deg(σ ) is greater than, equal
to, or less than deg(ρ) when m = 1, m = 2, and m ≥ 3, respectively. Since σ can divide ρ only
if deg(σ ) ≤ deg(ρ), this clarifies why no proper RRMF cubics (m = 1) exist (Han, 2008), and the
lowest-order proper RRMF curves are (Farouki, in press; Farouki et al., 2009a) quintics (m = 2).

Note that the preceding observation could not have beenmade on the basis of divisibility of η by σ ,
since in general deg(η) = 4m−2 (no cancellation of highest-order terms occurs inuu′+vv′+pp′+qq′).
Thus it seems preferable, on several accounts, to express the RRMF conditions of Propositions 4.3 and
4.4 in terms of the divisibility of ρ, rather than η, by σ .

Example 1. In the Hopf map representation (7), a spatial PH quintic is specified by two quadratic
complex polynomials

α(t) = α0 b20(t)+ α1 b21(t)+ α2 b22(t), β(t) = β0 b
2
0(t)+ β1 b

2
1(t)+ β2 b

2
2(t),

where

bni (t) =
(
n
i

)
(1− t)n−it i , i = 0, . . . , n

is the Bernstein basis of degree n on t ∈ [ 0, 1 ]. In this case, ρ(t) = | α(t)β′(t) − α′(t)β(t) |2 and
σ(t) = |α(t)|2+|β(t)|2 are both quartic, and the requirement that the latter should divide the former
implies that they are proportional to each other. It was shown in Farouki (in press) that, for quintics,
satisfaction of the constraints

Re(α0α2 − β0β2) = |α1|
2
− |β1|

2 and α0β2 + α2β0 = 2 α1β1

is a sufficient and necessary condition for an RRMF curve. Thus, for example, the values

α0 = 1+ i, α1 =
√
5 i, α2 = 2− i,

β0 = − 1+ i, β1 =
1− 2 i
√
5
, β2 = 1− 2 i

satisfying these constraints define an RRMF quintic. For this curve, we obtain

α(t)β′(t)− α
′(t)β(t) =

8(2+ i)
√
5

b20(t) + 4(1− i) b
2
1(t) + 4

√
5 (1+ i) b22(t) ,

4 Note that, in Farouki (2008) and earlier papers, the factor 4 in this relation is absorbed into ρ(t).
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Fig. 1. Comparison of Frenet frame (left) and rational rotation-minimizing frame (right) on the quintic RRMF curve of Example 1.
For clarity, only the two normal-plane basis vectors are shown — the unit tangent vector (common to both frames) is omitted.

and

|α(t)|2 = 2 b40(t) +
√
5 b41(t) +

11
3
b42(t) −

√
5 b43(t) + 5 b

4
4(t) ,

|β(t)|2 = 2 b40(t) −
3
√
5
b41(t) −

1
3
b42(t) +

√
5 b43(t) + 5 b

4
4(t) ,

and hence we find that |α(t)β′(t)− α′(t)β(t)|2 = 16 (|α(t)|2 + |β(t)|2), where

|α(t)|2 + |β(t)|2 = 4 b40(t) +
2
√
5
b41(t) +

10
3
b22(t) + 0 b

4
3(t)+ 10 b

4
4(t) .

Fig. 1 compares the Frenet and rational rotation-minimizing frames on this curve.

5. RRMF curves of any degree

The preceding methods can be used to demonstrate the existence of RRMF curves of any (odd)
degree, n = 2m+1. The aim here is not to develop a complete characterization of higher-order RRMF
curves, but simply to show that representative examples can be easily constructed. The argument is
by induction on m — since the cases m = 1, 2 have already been well-studied (Farouki et al., 2009a;
Farouki, in press; Han, 2008) we focus onm ≥ 3.
Let r(t) = (x(t), y(t), z(t)) be an RRMF curve of degree 2m+ 1, specified by (4) and (5). Then we

have [ u, v, p, q ] = [ a, b ] for some relatively prime polynomials a, b. Let r = α + iβ with α, β ∈ R
and β 6= 0, and set A = t − α, B = β . The induction step follows from the following result, which
may be verified by straightforward calculation.

Proposition 5.1. Setting u1 = uA− vB, v1 = uB+ vA, p1 = pA+ qB, q1 = −pB+ qA, a1 = aA− bB,
b1 = aB+ bA for u, v, p, q, a, b, A, B as specified above, we have

[ u1, v1, p1, q1 ] = [ a1, b1 ] .

Since deg(u1, v1, p1, q1) = m+ 1 when deg(u, v, p, q) = m, this generates RRMF curves of degree
n+2 = 2(m+1)+1 from a given RRMF curve of degree n = 2m+1. However, although it provides a
theoretical and practical means for constructing RRMF curves of any degree, it is far from identifying
all such curves of a given degree.
Finally, note that when (8) is satisfied we must have deg(a2 + b2) ≤ deg(σ ), as follows.

Remark 5.1. Let u, v, p, q, σ be as before, and suppose that [ u, v, p, q ] = [ a, b ] for non-zero a, b
∈ R[t]with gcd(a, b) = 1. Then:
1. if we identify (a, b)with a+ i b, it is unique up to multiplication by a complex number;
2. deg(a2 + b2) ≤ deg(σ ) .

Proof: 1. Suppose (c, d) satisfy [ u, v, p, q ] = [ c, d ] with gcd(c, d) = 1. By Proposition 4.2, there
exist λ, τ ∈ R such that c(t) = λ [ a(t) − τ b(t) ], d(t) = λ [ τ a(t) + b(t) ]. Then we have c + i d
= λ(1+ i τ)(a+ i b), as required.
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2. Let r1, r1, . . . , rk, rk be the distinct (non-real) roots of σ and n1, . . . , nk be their respective
multiplicities. In view of (8) and (12) we see that r1, r1, . . . , rk, rk are the distinct (non-real) roots
of a2 + b2 with multiplicities n′1, . . . , n

′

k satisfying n
′

i ≤ ni. Thus,

deg(a2 + b2) = 2
k∑
i=1

n′i ≤ 2
k∑
i=1

ni = deg(σ ). �

The following example shows that there are cases where the strict inequality in Item 2 above is
satisfied.

Example 2. Let u = t , v = t2, p = t , q = 1, a = 1, b = t . Then deg(σ ) = 4, and since

uv′ − u′v − pq′ + p′q
u2 + v2 + p2 + q2

=
t2 + 1
(t2 + 1)2

=
1

t2 + 1
=
ab′ − a′b
a2 + b2

,

we see that deg(a2 + b2) = 2 < deg(σ ) = 4. Note, however, that this curve is planar since z ′ ≡ 0,
and has a non-primitive hodograph with gcd(x′, y′) = t2 + 1.

6. Closure

For a spatial PH curve defined through the quaternion form (5) or Hopf map form (7) by the
quaternion polynomial (4) or pair of complex polynomials (6), a sufficient and necessary condition
for the curve to admit a rational rotation-minimizing frame has been identified. Namely, either of
the polynomials η(t) or ρ(t) defined by (17) or (22) must be divisible by the parametric speed
σ(t) = |A(t)|2 = |α(t)|2 + |β(t)|2 defined by (3). This condition holds for the generic case, in which
(8) is satisfied with u2 + v2 + p2 + q2 = a2 + b2.
Since ρ(t) is of lower degree than η(t), andmore intimately connected to the established theory of

spatial PH curves, it is generally preferable to express the RRMF condition in terms of the divisibility
of ρ(t), rather than η(t), by σ(t). This yields a simple explanation for the non-existence (Han, 2008) of
(non-planar) RRMF cubics, and a novel interpretation of the known characterization (Farouki, in press)
for RRMF quintics: the quartic polynomials ρ(t) and σ(t)must be proportional. It is also noteworthy
that ρ(t) admits the exceedingly compact expression (23) in terms of the Hopf map representation
(6)–(7).
Unlike previous characterizations (Farouki et al., 2009a; Farouki, in press; Han, 2008) that focus

on cubics and quintics, the criterion identified herein applies to RRMF curves of arbitrary (odd)
degree. Although expressing the RRMF constraint as a divisibility requirement for certain polynomials
is perhaps more existential than constructive in nature, it offers the theoretical basis for more
constructive and algorithmic approaches, that we hope to explore in subsequent studies.

References

Bishop, R. L., 1975. There is more than one way to frame a curve. Amer. Math. Monthly 82, 246–251.
Choi, H.I., Han, C.Y., 2002. Euler–Rodrigues frames on spatial Pythagorean-hodograph curves. Comput. Aided Geom. Des. 19,
603–620.

Choi, H.I., Lee, D.S., Moon, H.P., 2002. Clifford algebra, spin representation, and rational parameterization of curves and surfaces.
Adv. Comput. Math. 17, 5–48.

Dietz, R., Hoschek, J., Jüttler, B., 1993. An algebraic approach to curves and surfaces on the sphere and on other quadrics. Comput.
Aided Geom. Des. 10, 211–229.

Farouki, R.T., 2002. Exact rotation-minimizing frames for spatial Pythagorean-hodograph curves. Graph. Models 64, 382–395.
Farouki, R.T., 2008. Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Springer, Berlin.
Farouki, R.T., 2009. Quaternion and Hopf map characterizations for the existence of rational rotation-minimizing frames on
quintic space curves, Adv. Comput. Math. (in press).

Farouki, R.T., Giannelli, C., Manni, C., Sestini, A., 2009a. Quintic space curves with rational rotation-minimizing frames. Comput.
Aided Geom. Des. 26, 580–592.

Farouki, R. T., Giannelli, C., Sestini, A., 2009b. Helical polynomial curves and double Pythagorean hodographs I. Quaternion and
Hopf map representations. J. Symbolic. Comput. 44, 161–179.

Farouki, R.T., Giannelli, C., Sestini, A., 2009c. Helical polynomial curves and double Pythagorean hodographs II. Enumeration of
low-degree curves. J. Symbolic. Comput. 44, 307–332.



856 R.T. Farouki, T. Sakkalis / Journal of Symbolic Computation 45 (2010) 844–856

Farouki, R.T., Han, C.Y., 2003. Rational approximation schemes for rotation-minimizing frames on Pythagorean-hodograph
curves. Comput. Aided Geom. Des. 20, 435–454.

Guggenheimer, H., 1989. Computing frames along a trajectory. Comput. Aided Geom. Des. 6, 77–78.
Han, C.Y., 2008. Nonexistence of rational rotation-minimizing frames on cubic curves. Comput. Aided Geom. Des. 25, 298–304.
Jüttler, B., 1998. Generating rational frames of space curves via Hermite interpolation with Pythagorean hodograph cubic
splines. In: Geometric Modelling and Processing ’98. Bookplus Press, pp. 83–106.

Jüttler, B., Mäurer, C., 1999a. Cubic Pythagorean hodograph spline curves and applications to sweep surfacemodelling. Comput.
Aided Des. 31, 73–83.

Jüttler, B., Mäurer, C., 1999b. Rational approximation of rotation minimizing frames using Pythagorean-hodograph cubics.
J. Geom. Graphics 3, 141–159.

Klok, F., 1986. Two moving coordinate frames for sweeping along a 3D trajectory. Comput. Aided Geom. Des. 3, 217–229.
Kreyszig, E., 1959. Differential Geometry. University of Toronto Press.
Monterde, J., 2009. A characterization of helical polynomial curves of any degree. Adv. Comput. Math. 30, 61–78.
Roe, J., 1993. Elementary Geometry. Oxford University Press.
Sir, Z., Jüttler, B., 2005. Spatial Pythagorean hodograph quintics and the approximation of pipe surfaces. In: Martin, R., Bez, H.,
Sabin, M. (Eds.), Mathematics of Surfaces XI. Springer, Berlin, pp. 364–380.

Wang,W., Joe, B., 1997. Robust computation of the rotationminimizing frame for sweep surfacemodelling. Comput. Aided Des.
29, 379–391.

Wang, W., Jüttler, B., Zheng, D., Liu, Y., 2008. Computation of rotation minimizing frames. ACM Trans. Graphics 27 (1), 1–18.
Article 2.


	Rational rotation-minimizing frames on polynomial space curves of arbitrary degree
	Introduction
	Quaternion and Hopf map forms
	Degenerate RRMF curves
	A general RRMF condition
	Structure of the ratio [a,b]
	RRMF conditions

	RRMF curves of any degree
	Closure
	References


