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ABSTRACT 

To solve the linear system Ax = b, this paper presents a generalized extrapolated 
method by replacing the extrapolation parameter w with the diagonal matrix R, and 

systematically gives the basic results for its convergence. Based upon these results, the 
paper considers the convergence of the GJ and GAOR iterative methods and, using 
the set of the equimodularized diagonally similar matrices defined here, gives some 
new further convergence results for H-matrices and their subclasses, strictly or 

irreducibly diagonally dominant matrices, which unify, improve, and extend previously 
given various results. Finally, conditions equivalent to the statement that A is a 
nonsingular H-matrix or a strictly (or an irreducibly) diagonally dominant matrix are 
given in connection with the GJ and GAOR methods. 

1. INTRODUCTION 

In [l] and [2] A. Hadjidimos presented successively the accelerated 

overrelaxation (AOR) method and the generalized accelerated overrelaxation 

(GAOR) method to solve the linear system AX = b. The extrapolation 
theorem and some further results for the AOR method were given in [3]. 

Let the coefficient matrix A = D - E - F = DA - E, - FA, where D 

is a diagonal matrix and DA = diag A. In th’ 1s paper the iteration matrices of 

the GAOR and AOR methods are uniformly expressed as 

L y. = L,,(D, E) = (D - yE)-‘[(1 - w)D + (w - y)E + wF], 
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where y and w are real numbers. In fact, when D = DA and when E and F 
are, respectively, the strictly lower and upper triangular parts, denoted by E, 
and FA respectively, of the matrix -A, it turns out that L,, is the iteration 
matrix of the AOR method for A; when D # DA and the off-diagonal 
elements of E and F are, respectively, those of E, and FA, L,,,, is the 
iteration matrix of the GAOR method for A. In our theoretical analysis, one 
only needs to assume that 

IE + Fl = IEl + IF], 

without the assumption that E and F are associated with E, and FA. 

In Section 2 a generalized extrapolated method is presented by replacing 
the extrapolation parameter w of the extrapolated method given in [3] with a 
diagonal matrix Q, and the basic results for its convergence are given 
systematically. By applying the generalized extrapolation principle to the 
generalized Jacobi (GJ) iterative methods in Section 3, we give some new and 
important results on the convergence of the GJ method with H-matrices. 
Using the set of the equimodularized diagonally similar matrices defined 
here, we give new convergence results which extend and unify the previously 
given various results [2-5, 11, 12, 151 for H-matrices and their subclasses, 
strictly or irreducibly diagonally dominant matrices. Combining the results 
with the convergence theorem for regular splittings, we obtain the conver- 
gence domains of the GAOR iterative method, which greatly extend the 
previous results [l, B-10, 13, 141. Finally we give some conditions equivalent 
to the statement that A is a nonsingular H-matrix or a strictly (or an 
irreducibly) diagonally dominant matrix in connection with the GJ and GAOR 
methods. 

NOTATION. For the matrices A = (ajj) and B = (bij) we write A z B 
if aij > bij Vi,j, and write D = DA for the diagonal matrix D = 

cQ$a,,, az2,. , unn). In general, we write D = diag D if the matrix D is a 
diagonal matrix D = diag(d,, d,, . . , d,). For D = diag D and R = diag R, 
we write fi > D > 0 if oi > di > 0 Vi. Let A and B be two complex 
matrices. B is called a diagonally similar matrix to A, denoted by B L A, if 
there exists some nonsingular diagonal matrix Q > 0 such that B = Q-lAQ. 
In addition, let IA] = (la,]), IJAIl = maxi C. jaijl, I be the identity matrix, 
AT be the transpose of the matrix A, and p i A) be the spectral radius of the 
matrix A. 

BASIC LEMMA [6, Theorem 21. Let A = (a,) be an p X n complex 
matrix. Then for any given number F > 0 there exists some A L A such that 

11~11 < p(IAl) + E. 
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2. GENERALIZED EXTRAPOLATION 

For the linear system (I - T)x = C define two iterative schemes 

,(m+i) = TX’“’ + C, m = 0,1,2 ,..., 

and 

x(“+l) = (Z - n + RT)x’“’ + nc, m = 0, 1,2,. . . 

The latter is called a generalized extrapolation of the former. Here R = 
diag fl is called an extrapolation-parameter diagonal matrix. When fl = 01, 
where w is a real number, the latter becomes an ordinary extrapolation [3] of 
the former. 

Throughout this section we assume that T is an n X n complex matrix, 0 
is a real diagonal matrix fl = diag(w,, oa, . . . , wn) > 0, and Tfl = I - Sz + 

CIT. 

THEOREM 2.1. Suppose that the complex matrix T satisfies p(lT 1) < 1 

and R = diag(o,, 02,. . . , OJ,,) satisfies 

2 
o<n< 

1 + p(lTl) ” 
(2.1) 

Then it follows that 

p(T,) < p(lT,l) =G ~(11 - aR( + flITI) < 1. (2.2) 

Proof. Notice that for given R 

2 
___ - I - p(lTI) > 0, 
max 6.+ 

t 

since maxi wi < 2/[1 + p((T I>]. If E satisfies 0 < E < 2/max, wi - I - 

AT I>, then 

2 
maxq < (2.3) 

1 1 + p(lTI) + E 
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Now take E satisfying 

i 

2 
O<~<min l-P(ITI),------ 

max wi 
(2.3’) 

1 

From the Basic Lemma, for T there exists some f = QP ‘TQ where Q = 
diag Q > 0 such that lITI < p(lTI) + E. It is easy to show that all row sums 
of the matrix ]I - LR] + flQp’ITIQ are less than one, since for wi < 1 each 
one is less than 

(1 - 0~1 + ~i[ p(lTI) + 81 = 1 - wi[l - P(ITI) - '1 < 1’ 

and for wi > 1 that is less than 

(wi - 1) + wi[ p(lTl) + .Y] = a+[1 + p(lTl) + ~1 - 1 < 1 by (2.3) 1 

Hence (I(Z - 01 + flQp’ITIQII < 1. Then 

@‘I&IQ) G ~(11 - RI + fiQ-‘ITIQ) 

Thus (2.2) holds and the proof is complete. 

<IIlZ - 01 + fiQ-'IZ'IQII < 1. 

COROLLARY 2.1.1. Suppose that T sntisfies p(lT 1) < 1 and T, = (1 - 
w)Z + wT, where 0 < o < 2/[1 + p(lTl)]. Then it follows that p(T,) < 
p(lT,I) < 11 - 01 + wp(lTI) < 1. 

REMARK. The result of Corollary 2.1.1 can be applied to extrapolation, 
but is weaker than the extrapolation theorem [3]. It has other simple proofs, 
but it is mentioned her as a corollary in order to emphasize that Theorem 2.1 
is a generalization of it. However, as the following example shows, the 
condition p(lTI) < 1 given in Theorem 2.1 cannot be replaced by p(T) < 1, 
and so the extrapolation theorem [3] cannot have such a generalization. 

EXAMPLE 2.1. Consider the matrix 
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It is easy to verify that p(T) = J&E% < I. Let the diagonal matrix fi = 
diag(O.3,0.5). Clearly fl satisfies (2.1) with &T]) replaced by p(T). Then 

and p(T,) = 9.4 + j%%@%%> 19. This illustrates that 
even though p(T) < 1 and 0 < fi < I. 

T, is divergent 

DEFINITION 2.1. Let T be a complex matrix. We define the matrix set 
for T as follows: 

an(~) = {A:~A/ = ITI}, 

A(T) = {A: A L T}, 

I+(T)) = {A: A E A(B), B E R(T)}, 

fl(R(T)) = {A: A E .n(B), B E A(T)}. 

Cl(T) is called the set of the equimodular matrices associated with T 112, 
151, A(T) is called the set of the diagonally similar matrices associated with 
T, and A(R(T)) and CI(A(T)) are called the set of the equimodularized 

diagonally similar matrices associated with T, since A(in(T)) = R(A(T)) 

from the following lemma. 

LEMMA 2.1. Let T be a complex matrix. Then: 

(i> T E A(T) c On(A(T)), T E fin(T) c A(R(T)). 
(ii) RCA(T)) = A(fI(T)). 

(iii) For T* E LR(A(T)), IT*/ L ITI and p(JT*l) = p(lTI). 
(iv> For T* E R(A(T)), (I - CR/ + O/T*1 2 II - Cl/ + CllTI and 

PC/Z - LRI + fllT*l> = p(lZ - RI + flITI>, where 0 = diag R > 0. 

Proof. (i> follows directly from Definition 2.1. To prove (ii), observe that 
To E R(A(T)) iff there exists some Q = diag Q > 0 satisfying 

ITOI = IQ-1~~1 (2.4 
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and that T* E h(LR(T)) iff there exists some Q = diag Q > 0 satisfying 

IQT*Q-11 = ITI; equivalently, IT*1 = Q-‘ITIQ. (2.5) 

CIearly lQP’TQl = Q-‘ITIQ when Q = diag Q > 0. From (2.4) and (2.5) it 
is easy to prove that (ii) follows. 

Next, for any T* E fi(h(T)), f rom (2.5), IT*l L ITI and p(lT*l) = p(lTI), 
proving (iii). Let IT*1 = Q-‘ITIQ if T* E R(h(T)), where Q = diag Q > 
0. Then Q-‘(II - RJ + 0jZ’I)Q = )I - RI + S1]T*I, and (iv> follows 

immediately. n 

LEMMA 2.2 [5]. Supp ose that the complex matrix T = (tij) satisfies 

IlTll < 1 [IIT’ll < l] and 1R = diag(w,, w2,. , 0,) satisfies 

2 
O<Wi< 

1 + Cltijl 
Vi 

i 

I 2 
O<Wj< 

l + Cltijl 
Vj 

2 1 
Then it follows that (2.2) holds and, moreover, we have 

p(T,) =G p(lT,I) < p(lZ - QI + fWI) GiilZ - al + Wlii < 1 (2.6) 

[ p(T,) < p(lT,I) < p(lZ - RI + M’l) <h - fil + W”TIII < 11. 

(2.6’) 

Proof. Refer to the proof of the necessity of Theorem 2.8 below. Also 
see the proof of Theorem 1 in [5]. n 

DEFINITION 2.2. Suppose that the complex matrix T satisfies p(lT 1) < 1. 
Define matrix sets as follows: 

W,(T) = {A: A A T with II All < I}, 

W,(T) = {A: A 2 T with IlAl’ll < I}. 
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Clearly, W,(T) c WI(T)) and W,(T) C SZ(h(T)). 

From the Basic Lemma, for any complex matrix T with p(lT/) < 1, we 
have W,(T) z 0 and W,(T) # 0. 

DEFINITION 2.3. For the complex matrix T = (tij) satisfying I(TlI < 1 
[llTTIl < 11, define the point set 

THEOREM 2.2. Suppose that the complex matrix T satisfies p(lT 1) < 1, 
and fl = diag( ol, w2, . . , w,J satisfies 

(q,q,...,qJ E u S(f) =: s,. 
‘?E W,(T)U W,(T) 

Then it follows that (2.2) holds. 

Proof. For (q, w2, . . . , OJ,) E S, there exists some ? E W,(T) U 
W,(T) such that (ol, o,, . . . , 0,) E S(F). Then from Lemma 2.2 

P(Q Q P(lfJ) Q p(lZ - nl + nli’l) < 1, (2.7) 

where TO = I - n + RF and s1 = diag(w,, w2, . , . , co,). Since f E 

W,.(T) U W,(T) and W,(T) U W,(T) C C&l(T)), we have T’ E R(A(T)). 

From Lemma 2.1 and (2.7) 

p(T,) G @',I) < p(lZ - RI + WI) = ~(11 - fh + fil?I) < 1, 

that is, (2.2) holds. n 
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REMARK. Theorem 2.2 includes the results of Theorem 2.1 and Lemma 
2.2, and theoretically unifies them. For Lemma 2.2 this is clear, and for 
Theorem 2.1 it is true from the following lemma. 

LEMMA 2.3. Suppose that the hypotheses of Theorem 2.1 hold. Then 
there exists some T * E W,(T) such that 

and consequently 

2 
(Wl>W2>.‘.’ WJ :o < oi < 

1 + p((TI) vi = ST. I 

Proof. Following the proof of Theorem 2.1, take E satisfying (2.3’). 
Then, from the Basic Lemma, there exists some T* 2 T such that IIT* < 

p([T() + E < 1 and then T* E W,(T), and from (2.3) we have 

2 2 2 
oi < max wi < 

1 + p(lTI) + E < 1 + (IT*11 ’ 1 + xlt,*jl 
vi, 

t 

where T* = ($1, that is, (or, we,. . , co,) E S(T*) proving the lemma. n 

For the irreducible case we have some better results. 

LEMMA 2.4 [S]. Supp ose that the complex matrix T = (tij> is irreducible 

with IITII < 1 [IITTIl < 11 and &TO < 1, and that 0 = diag(w,, w2,. . , w,,) 
satisfies 

2 
0 < Cl+ < 

1 + Cltijl vi 

[ 

2 
O<Wj9 

l + Cltijl Y 

t 
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while there exists at least one i [j] such that 

Cltijl < l and wi < 

Cltijl < l and wj < 
i 

243 

2 

l + Cltjjl 
j 

2 

l + Cltijl 
i I 

hold simultaneously. Then it follows tha’ (2.2) holds, and moreover we have 

(2.6) [(2.6’)] or the following: 

p(T,) < p(lT,,I) =s ~(11 - al + WI) <iilZ - fh + WlIi G 1 (2.8) 

[ ~(2’~) Q p(lT,l) 6 p(tZ - fit + fNTt) <h - al + fllTTlll G 11. 

(2.8’) 

Proof. Refer to the proof of the necessity of Theorem 2.9 below or see 
the proof of Theorem 2 in [5]. n 

DEFINITION 2.4. Suppose that the complex matrix T is irreducible with 
p(lTI) < 1. Define the matrix sets as follows: 

~;(T)=(A:A 2 T with II All < I}, 

W,*(T) = {A: A L T with ((AT11 Q I}. 

Clearly, W,(T) c W:(T) C R(R(T)) and W,(T) C W,*(T) C RCA(T)) 

if T is irreducible with p(lTI) < 1. 

DEFINITION 2.5. Let the complex matrix T = (tij> be irreducible with 
lITI G 1 [IITTII Q 11 and p(ITI) < 1, and define the point set 

S*(T) = (q, w2,. ., wn) E R” :0<q<2/(1+ Fltijj) Vi 

with strict inequality for at least one i for which 

the row sum of IT ( is less than one simultaneously 
I 
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I i S*(T) = (w1,w2,...,w,) ER” :o<tij<2/(1+ ~IIijl) vj 

with strict inequality for at least one j for which 

the column sum of IT] is less than one simultaneously 

ii 
. 

Clearly S(T) C S*(T) if T is irreducible with ]]T]] < 1 []]Tr]] < l] and 
p(lTl) < 1. 

THEOREM 2.3. Suppose that the complex matrix T is irreducible with 
p(lT\) < 1, and R = diag(w,, w2, . . , co,> satisfies 

(q,w2,...,qJ E u s*(f) =: SC. 
FE w,*(T)u W,*(T) 

Then it follows that (2.2) holds. 

ProoJ Similarly to the proof of Theorem 2.2, from Lemmas 2.1 and 2.3 
the result follows. n 

REMARK. For the irreducible case with p(lTI) < 1. Theorem 2.3 
includes the results of Lemma 2.3 and Theorem 2.2, and so those of 
Lemma 2.2 and Theorem 2.1, since in that case S(T) c S*(T) and then 
s, c s;. 

LEMMA 2.5. Suppose that the complex matrix T satisfies p(lT() < 1. 
Then 

Sf = s, for T’ E LR(h(T)), 

and $, moreover, T is irreducible, then 

s; = s,* for f E O@(T)). 
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Proof. Let f E fi(R(T)). Then we have 

Ii’1 = Q-'D-IQ, (2.9) 

where Q = diag Q > 0. Thus if A E W,(T) then IIAJI < 1 and A = 

Q;‘TQ,, where Qr = diag Q, > 0. Let A = (QIQ-‘>-‘?(QIQ-‘). Then 
from (2.9), 

IAl = (Q,Q-‘)-~I~I(Q~Q-‘) = Q;WIQI = I-4, 

and hence A E W,.(f) and S( A> = S(A). Conversely, for B’ E W,(f) there 
exists necessarily B E W,(T) such that IBJ = 11?1 and then S(B) = S(6). 
Clearly there exists also a one-to-one correspondence between W,(f) and 
W,(T), and consequently the result is proved. Similarly we can prove Sz = S,* . 

REMARK. From Lemma 2.5 we see that applying Theorems 2.2 and 2.3 
to the matrix f E In(A(T)), we get necessarily the same result as applying 
them to T. 

THEOREM 2.4. Suppose that the hypotheses of any one of Theorems 
2.1-2.3 hold, and let Ti = I - R + CIT”, where T* E 0(14(T)). Then it 
follows that 

p(lz - CRI + NT*/) = p(lZ - fll + flITI) 

and 

p(T,) < p(IT,*I) < p(lZ - fil + flITI) < 1. (2.10) 

In particular, ifthe hypotheses of Lemma 2.2 hold and T* E R(A(T)), then 
we have 

p(T,) < p(jT,/) < p(IZ - RI + fWl> G/i/Z - al + WIII < 1 (2.11) 

[ p(T,) < ,o(lT,l) =G ,o(lZ - RI + SZITI) G/I/Z - fll + flITTIll < 11, 

(2.11’) 
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and if the hypotheses of Lemma 2.4 hold and T* E WA(T)), then we have 

(2.11) [(2.11’)] or the following: 

p(T,) < p(lT,I) f p(lZ - CII + iWI) <iliZ - fli + fllTlii G 1 (2.12) 

[ ~(7’:) f p(lT,l) f p(lZ - Lnl + fWl> <IhI - RI + filTTIIi d I]. 

(2.12’) 

Proof. From Lemma 2.1 and Theorems 2.1-2.3 we have (2.10) immedi- 
ately. Moreover, from (2.10), (2.6), and (2.8) [(2.6’), and (2.8’11, we have 
(2.11) and (2.12) [(2.11’) and (2.12’11. n 

REMARK. Theorems 2.1-2.3 and Lemmas 2.2 and 2.4 are special cases 
of Theorem 2.4. 

To illustrate we give the following example. 

EXAMPLE 2.2. Consider the nonnegative matrix 

with 

P(T) < 1; equivalently, bc < 1. 

Consider the diagonal matrix Q = d.iag(k, l), where k > 0, and the similar 
matrix 

i;= 9-1~~ = (ci “<“) 

with 

llfll < 1; equivalently, b < k < l/c. 



GENERALIZED ITERATIVE METHODS 

Then, from Theorem 2.2, for R = diadw,, w,> satisfying 

247 

2 2 
o<w,< 

1 + b/k ’ 
O<W,<- 

I+ ck ’ 

we have that (2.2) holds. With a small additional computational effort we 

have 

s, = U S(i’) = u S(f) 
re W,(T)U WC(T) rE W,(T) 

2(@1 - 2) 2 
= (WI’ Ci+) :o < o2 < 

(1 - bc) w1 - 2 ” < 01’ O2 < 1 + bc 

i 

2( 01 - 2) = (ml? 02) :O < m2 < [l _ p2(T)] w1 - 2’ 

2 
O<w,,w,< 

I 1 + p2(T) 

If b = 0.9 and c = 0.4, then p(T) = 0.6 and 

2 - WI 
s, = (WI’ 02) :0 < up < 1 _ o,32w > 0 < 6Jl>% -c 

1 

Then, from Theorems 2.2 and 2.4, for C.I = diag 0 satisfying (wl, w2) E S, 
we have that (2.2) and (2.10) hold. 

Also, noticing that T is irreducible when be # 0, we can determine 

s; = 
2(Wl - 2) 

4 :’ < w2 < [l _ $(T)] w1 - 2 ’ 

2 
0 < WI, w2 < 

1 1 + #02(T) 
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When b = 0.9 and c = 0.4, 

S,* = (WI> q):O < 02 < 
2 - WI 

1 - 0.32~~ 
, 0 < ml’ w2 =G - (2.14) 

Then, from Theorems 2.3 and 2.4, for fi = diag R satisfying (ol, w,> E SG 
we have that (2.2), (2.101, (2.111, (2.11’1, (2.12), and (2.12’) hold. 

Clearly, in general, Sg 2 ST with S,* # S,. 
To prove both the sufficient and the necessary conditions given in Section 

3, we give some results as follows. 

THEOREM 2.5. Suppose that the matrices T > 0, B > 0, and TB = Z - 
B + BT > 0. Then p(T) < 1 if p(T,) < 1. 

Proof. Since TB >, 0 and p(T,) < 1, from Theorem 3.8 in [ll], (I - 
TB)-’ exists and (I - TB)-l > 0. Since I - TB = B - BT = B(Z - T), we 
have (I - T,)-‘Z?(Z - T) = I, implying that (I - T)-’ exists and (I - 
T)-’ = (I - T,)-‘B > 0, since B > 0 and(Z - TB)-l > 0. Combiningwith 
Theorem 3.8 in [ll], we have p(T) < 1, since T > 0. n 

THEOREM 2.6. Suppose that the matrices T > 0, R = diagcR > 0, and 
Ta = I - fl + LRT > 0. Then p(T,) < 1 ifi p(T) < 1. 

Proof. From Theorem 2.5, p(T) < 1 if p(Tn) < 1. Conversely, if 
p(T) < 1 then (1 - T,)-’ = (0 - SZT)-’ = (I - T)-‘Cl-’ 2 0, since 
T > 0 and Q > 0 and thus W’ > 0. Combining with Tfl > 0, we have 

p(T,) < 1. w 

COROLLARY 2.6.1. Let the matrices T 2 0 and T, = (1 - o)Z + ml’ > 0 

with w > 0. Then p(T,) < 1 ifl p(T) < 1. 

THEOREM 2.7. Let T, = z - R + RT, where 1R = diag(w,, 
w2, . , w,,). Then 

p(T,) G p(lT,I) G p(lZ - CR1 + CUTI) < 1 and 0 > 0 
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p(lTI) <l and (W1,WZ>...>qJ EST. 

Proof. Suppose that ~(1 Z - CIJ + flITI) < 1 and 0 > 0. From the Basic 
Lemma, for the nonnegative matrix 1 Z - RI + lR/T I there exists some Q = 
diag Q > 0 such that all row sums of the matrix 

Q-‘(II - fll + fllTI)Q = II - fll + SZQ-'IT/Q = II - 01 + OfI, 

where ? = (fij) = Qp’TQ, are less than one. Then for wi < 1 we have 

I1 - WiJ + wicIt;jl = 1 - wi + qclq < 1, (2.15) 

j j 

implying 

Cliijl < l, (2.16) 

and for wi > 1 we have 

I1 - ql + WiCIfjjl = wi - 1 + CiJiclq < 1, (2.17) 

j .i 

implying 

2 
< 1 and wi < 

1 + CIq 
(2.18) 

.i 

Thus from (2.16) and (2.18) we have 

p(lfl) 6 ll?ll < 1 and (q, w2,.. ., 0”) E S(f): 

and then 

p(lTI) = p(QIfIQ-‘) = ,@I) < 1 
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+ E W,(T) and ( wl, w2,. . . , wn) E S, 

So the necessity is proved. From Theorem 2.2 the sufficiency is clear, and the 
theorem is proved. n 

COROLLARY 2.7.1. Let T, = (1 - w)Z + wT, where o is a real number. 

Then 

p(T,) < p(lT,I) f 11 - 01 + ~(lT1) < 1 and o > o 

2 
p(lTI) < 1 and 0 < w < 

1 + ,o(lTI) 

THEOREM 2.8. Let T be a complex matrix and Tn = I - R + flT, 

where Q = diad wl, w2, . . . , co,,). Then it follows that 

p(T,) < p(lT,I) < p(lZ - fll + W”I) GiiiZ - al + WIi\ < 1 and 

LR>o 

2 
p(lTI) G IITII < 1 and 0 < q < 

1 + Cbijl vi 

and that 

p(T,) G p(lT,l) G p(lZ - LRI + LnlTI) G/IZ - RI + fWlII < 1 and 

n>o 

i@ 

2 
p(l~I) c llTTll < 1 and 0 < y < 

1 + Cbijl 
vj. 
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Proof. If II )I - RI + flITI II < 1, then every row sum of II - RI + 

RlTl is less than one; that is, for q Q 1, similar to (2.15) and (2.16), we 
have $ ltijl < 1, and for wi > 1, similar to (2.17) and (2.18), we have also 
Cj ltijl < 1. In short, (IT(I < 1, and the necessity is proved. From Lemma 2.2 
the sufficiency follows. Similarly we can prove the result for IITr II < 1. n 

THEOREM 2.9. Let T be an irreducible complex matrix and Ta = I - 
R + RT, where n = diag(w,, w2,. . . , co,,). Then it follows that 

p(Tn) < p([T,J) Q p(lZ - fil + flITI) 2 1111 - al + filTIII 2 1 and 

R>O 

2 
P( ITI) 4 lITI 2 1 and 0 -C CI.+ Q 

1 + Cltijl 
vi 

i 

[ P(T,) Q P(&I) < p(lZ - RI + CUTI) 2 IIlZ - RI + WTIIi; 1 

2 
p(lTI) ~IITTII~ 1 and 0 < *j Q 

1 + Cltijl 
Vj , 

i 1 
while there exists at least one i [j] such that 

Cltijl < l 
2 

and q < 

j 1 + Cltf_jl 
j 

ii 

Cltijl < l 
2 

and oj < 
1 + Cltijl 

2 

hold simultaneously. 
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Proof. If p(lZ - 01 + LnlTI) < 1 then, from Theorem 2.7, 

P(lTI) < 1. (2.19) 

There exist two cases: 

(i) If p(lZ - 1RI + nITI) < II 11 - fll + LRITI II < 1, then, from the 
inequalities similar to (2.15) to (2.181, we have 

2 
p(lTI) G IITII < 1 and 0 < oi < 

1 + Cltijl vi. 
(2.20) 

The necessity is proved. 
(ii) If p(lZ - 01 + fll~l) < II II - RI + LRlTl II < 1 then we have the 

results similar to (2.15) to (2.18): 

1 - wi + qCltijl < 1 and Cltijl G 1 
j .i 

for Wi G 1, 

(2.21) 

wi - 1 + tiiCltijl < 1 and Cltijl < 
2 - wi 
-----<l for wi > 1. 

.i .i wi 

(2.22) 

Thus we have 

2 
IlTll G 1 and 0 < wi < 

1 + Cltijl vi. 
(2.23) 

Observe that 

2 

wi = 1 + Cltijl 
implies wi > 1 

.i 
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(&en+& oi < 1 and Cj Itii) > 1, contradicting /Tll G l), and that 

2 

wi = 1 + Cltijl 
implies wi - 1 + Wi C Jtiil = I. (2.24) 

_i 

Thus if wi = 2/(I + Cj ]tij]) Vi, then all row sums of ]I - fi] + R]Tl are 
equal to one and we have p(] Z - -RI + LnlTl) = 1, contradicting the assump- 
tion of p((Z - fll + filth> < 1. So th e set J = {i : wi < 2/(1 + Ej ltijI>) is 
nonempty. 

There exist two subcases: (1) If there exists some wi > 1 with i E J, then, 
from (2.22), Xj Jtij] < 1. Combining (2.23) and the irreducibility of T, from 
Lemma 2.5 in [II] we have p(]T() < IIT]] < 1, and the necessity is proved 
immediately. (2) If wi < 1 Vi E J, then there necessarily exists some i E J 
such that Ci ]tij] < I. Otherwise 

1 - wi + WiCltijI = 1 Qi EJ, 

and then, combining with (2.241, we have that all row sums of ) Z - Cl/ -I- RIT I 
are equal to one, contradicting p(J Z - Q I + LRJT 1) < 1 again, which proves 
the necessity immediately. 

From Lemma 2.4 we have the sufficiency. Similarly we can prove the 
result for T ‘. n 

3. CONVERGENCE OF THE GJ AND GAOR METHODS 

Applying the results on the generalized extrapolation principle to the GJ 
and GAOR iterative methods, we have some further new results. 

Throughout this section we assume that A = D - B = DA - B,, where 
D = diag(d,, d,, . . , d,) and DA = diag A are nonsingular, is a complex 
coefficient matrix for the linear system AX = b. Then DilB, and D-‘B 
(D # DA) are respectively the iteration matrices of the Jacobi and GJ 
methods for A. 

First we discuss the convergence of the GJ method. 

BASIC THEOREM A. The GJ method for A is a generalized extrapolation 
of the Jacobi method for A with the extrapolation-parameter diagonal matrix 
D-ID,. 
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ProoJ: This follows from the equality 

D-‘B = D-‘( D -A) = D-‘(D - DA + B,)=l - D-‘0, 

+ (D-lD,)( D,-‘B,). n (3.1) 

REMARK. When D-‘DA = WI, where w is a real number, D-‘B is the 
iteration matrix of the JOR method. So the JOR method is a special case of 
the GJ method. 

Also, from (3.1) we have 

ID-~BI = II- D-‘D,I + ID-1~~1. (3.2) 

From Basic Theorem A and Theorems 2.1-2.4 we can obtain some 
important results for the convergence of the GJ method, of which most are 
new. 

THEOREM 3.1. Let A = D - B be a nonsingular complex H-matrix, and 

suppose that D satisfies 

2 
0 < D-‘0, < 

1 + P(ID,-‘B,I)~ 

Then it follows that 

p( D-‘B) < p(lD-‘Bj) = p(\Z - D-lD,l + ID-‘B,I) < 1, (3.3) 

and consequently the G] method for A converges. 

Proof. Letting 1R = DP1 DA and T = Di ‘B, and observing (3.1) and 
p(lT I) < 1, since A is a nonsingular H-matrix, the proof follows from Basic 
Theorem A, Theorem 2.1, and (3.2). 

THEOREM 3.2. Let A = D - B be a nonsingular complex H-matrix, and 

suppose that D = diag(d,, d,, . , d,) satisfies 

-- 
U 

ie W,(D,‘B,)U W,(D,‘B,) 
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Then (3.3) holds; consequently, the G] method for A converges. 

Proof. It is similar to the proof of Theorem 3.1 and follows from 
Theorem 2.2 and Basic Theorem A. H 

From Lemma 2.2 we have immediately 

COROLLARY 3.2.1. Let A = D - B be a strictly diagonally dominant 

complex matrix by 
d 2,“” d,) satisfies 

rows [by columns], and suppose &at D-= diag(d,, 

Vi 

&a<_ 21ajjl 

dj Claij( ‘j ’ i 1 
Then (3.3) holds, and moreover we have 

p( Dp’B) < p(lD-lB[) = p(lZ - D-‘DAl + ID-%I) 

<)/)I -D-ID,] + ID-‘B,])I < 1, 

p( D-lB) Q p( ID-‘B() = p(lZ - D-ID,] + ID-%I) 

g(/lz - D-~D,I + ID-~B;I)I < 1, (3.3’b) 

and consequently the GJ method for A converges. 

(3.3’a) 

REMARK. The result of Corollary 3.2.1 includes that of Theorem 4 in [2] 
for the strict diagonal dominance, and so the latter is a special case of 
Theorem 3.2. Also, since Theorem 2.1 is a special case of Theorem 2.2, 
Theorem 3.1 is also a special case of Theorem 3.2. 
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THEOREM 3.3. Let A = D - B be a nonsingular irreducible complex 

H-matrix, and suppose that D = &ag(d,, d,, . , d,) satisfies 

( all a22 a 
-- 
d, , d, >.‘.> $f E 

i U s*(f) =: S&lB, 
~EW~*(D~'B,)UW,*(DA'B,) 

Then (3.3) holds, and consequently the Gj method for A converges. 

Proof. Similarly, it follows from Theorem 2.3 and Basic Theorem A. n 

From Lemma 2.4 we have immediately 

COROLLARY 3.3.1. Let A = D - B be an irreducibly diagonally domi- 

nant complex matrix by rows [by columns], and SUQQose that D = diag(d,, 
d,, . , d,) satisfies 

while there exists at least one i [j] such that 

C lajil < lajjl and 
ai, 2laijl 

j#i 
;i;‘Cla,,l 

j 

Claijl < lajjl and 2 < 21a,( 
i#j dj Claijl 

i I 

hold simultaneously. Then (3.3) holds, and moreover we have (3.3’a) [(3.3’b)l 
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or the following: 

<IlIZ - D-lDAl + ID-lB,()) < 1 

[ ( -l > (I -I I = p D B <<p D B) p(lZ- D-lDAI+lD-‘B,)) 

<[(Ii - D-‘DA1 + ID-lB,TIII < 11, 

and consequently the GJ method for A converges. 

REMARK. The result of Corollary 3.3.1 includes that of Theorem 4 in [2] 
for the irreducible diagonal dominance, and the latter is a special case of 
Theorem 3.3. Thus the results of Theorem 4 in [2] are included in those 
of Theorems 3.2 and 3.3. For the case when A is both irreducibly and strictly 
diagonally dominant, the results of Theorem 3.3 include the ones given by 
Theorems 3.1 and 3.2, since in that case 

2 
(W1>WZ>...> wn) E R”:O < wi < 

1 + P(JD,-~B,I) vi 

LEMMA 3.1. Let A E RCA(A)). Then Di’Bi E Q(A(Di’B,)) and 
~(1 D/$(I) = p(I DilBAl). 

Proof. Since A E fi(R(A)), by Lemma 2.1 there exists some Q = 
diag Q > 0 such that ]A] = Q-‘1 A/Q, and then the result follows from the 
equality 

ID~~B~I = (Q~~ID,-~IQ)(Q-~IB,IQ) = Q-‘ID,-‘B,IQ. n (3.4) 

THEOREM 3.4. S_uppose that the_hypctheses of any one of Theorems 
3.1-3,3 hold. Let A E iR(R(A)), A = D - B = Di - BA;, where D = 
diag D is nonsingular and satisfies 

fi-‘Di = D-lD A' (3.5) 
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pp-%I) = p(JD-‘Bl) = p(lz - ZPD~I + Id-lR,I) 

= p(lZ - D_‘D,l + WB,l) (3.6) 

and 

p(Is-‘i) < p(Iti-‘61) = p(lZ - D_‘D,I + ID-9?,1) < 1, (3.7) 

and consequently the G] method for A co_nuerges. In addition, if the 
hypotheses of Corollary 3.2.1 hold and A = D - B E R(R(A)) with (3.51, 
then we have 

,@‘6) < p(16’tiI) = p(lZ - D-ID,\ + lDP’B,I) 

<IlIZ - DP’D,\ + ID-%,I)( < 1 (3.8) 

[ p(fi-‘z?) < p(lk’6l) = p(lZ - D-‘D.,J + ID-%,I) 

<(((Z - D-‘D,I + IDP’B,TII( < 11, (3.8’) 

and if the hypotheses of Corollary 3.3.1 hold and A = fi - 6 E WA(A)) 
with (3.51, then we have (3.8) [(3.8’)] or the following: 

,I@-‘@ Q p(Jti-‘61) = p(JZ - D-‘D/,l + lD-lB,l) 

<(Ill - D-ID,/ + (DPIB,(I( < 1 (3.9) 

[@-'Z+ p(lZ-'6I)= p(lZ - D-‘D,I + (D-%,1) 

<()(Z - D-‘D,I + ID-‘B;I(\ < 11. (3.9') 
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Proof. From (3.5) we have 

= I - &‘D;l + ( ti-‘Di )( DilBi ) 

= 1 - D-‘0, + (D-‘D,)( DilBi ). 

Since i E fl(A( A)), we have (3.41, and then, noticing that the diagonal 
elements of Bi and B, are all zero, 

(&%I = II- 6-91,( +I(&‘n,)(o,l~,)I 

= Iz - D-‘DAl +I(D-‘ui\)(Di’Bi)I 

= (I - D-ID,1 + ID-‘D,/Q-‘1D,;‘B,jQ 

= Q-l[IZ - D-‘DA I +I(D-lDJ(DilBn)l]Q 

= Q-‘/Z - D-‘0, + D-‘B,lQ = Q-‘ID-‘BIQ. (3.10) 

Hence 

= p(lZ - D-‘D,] + WB,I) = p(lD-‘B(). 

Combining with Theorem 2.4, the result follows. 

REMARK. As Theorems 2.1-2.3 are special cases of Theorem 2.4, 
Theorems 3.1-3.3 are likewise special cases of Theorem 3.4. 

Letting D- ‘DA = WI where w is a real number, we can obtain the 
following result, slightly different from the corresponding result in [12]. 

COROLLARY 3.4.1. Let A = DA - B, be a nonsingular complex H-matrix 
and B, = (1 - o)Z + wD~‘BA, where A’ E R(R(A)). Then for 0 < w < 

2/[1 + ,dlD,-‘B,l)l 
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The following example shows that our results are better than the similar 
previous results (see [2] and [8], for example). 

EXAMPLE 3.1. Suppose that_ the matrices A = D - B = DA - B,, x = 
5 - B = Dx - B,-, and A = D - I? = Di - Bi are defined, respectively, 

bY 

i E fi(A( A)). 

Then from Lemma 3.1 we have 

D,-‘B, = ( z4 :p) 2 DflBA = [,o, ‘t) L IDilB,I 

and 

p(Dt?B,) = P(D,=~B,-) = p(lDilB,I) = 0.6. 

Then A is both strictly and irreducibly diagonally dominant, and, from 
Theorem 3.1 (also Theorem 4 in [2]), for A the GJ method conv_erges, that is, 
p(D-‘B) < 1 for D > 0.8 DA. Also, from Theorem 3.1, if A and A are 
H-matrices, the GJ method converges respectively for D > 0.8 Dx and 0 < 
G-‘Di < (2/1.6)1. But from [8] the same results are obtained only for 
D > DA, E > Dx, and 161 >, 1021 (equivalently, 0 < c-‘D;\ < I), with A E 
a( A). Moreover, from Theorem 3.4 alone, we have that for any 
A E $A( A))_ the GJ method converges for 5 = diag(d;, &) satisfying 
(~?ri/di, k&,/d,) E Sn,~s,, where the point set So,ls,, has been determined 
in Example 2.2 and is given by (2.13). In other words, for any complex matrix 
A E IR(A( A)) the GJ method converges for D = diag($,/o,, Z,,/o,) 
where (or, wz> E S,, defined in (2.13) or indeed where (or, w2) E S,*, 
defined in (2.14), since A is irreducible. 

Secondly, we discuss the problem for the convergence of the GAOR 
method. The iteration matrix 

L,,(D, E) = (D - yE)-‘[(l - w)D + (w - y)E + wF], 
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as has been pointed out in Section 1, uniformly expresses the AOR and 
GAOR iteration matrices for A = D - E - F. Also, in our argument it is 
only needed to assume that 

IE + FI = [El + IFI 

without the assumption that E and F are triangular matrices. 

DEFINITION 3.1. Let A = D - B with p((D-‘BJ) = p. For A define 
the point set S = S( A, 0) = S, U S, U S, U S, U S,, where 

1 l--P 1 + PY 
s, = (y, w) : - 2p < y < 0,o < w < 2p 

i 1+p ’ 

i 

2 
s,= (y,w):O<y,w<- 

1 +p’ 
w#O ) 

1 

S, = (y,w):l <w< y,o < 
i 

2y- w 
----P<l> 
2-w I 

s,= (y,o):O<w<y,w,<l, 
i 

2y- 6J 
------PC11 

0 i 

i 

l+P 
s,= (y,w):O< y<---- 

2P 
,O>O, 

2y- w 
----pal. 

w 1 

It is easy to show that if p < 1, then S is a hexagonal region which has 

vertices C-0 - p)/CZp), 01, (- (1 - p>/(2p), 0, C&2/(1 + p)>, (2/(1 + 

p>, 2/O + p>), ((1 + p)/(:!p), 11, and ((1 + p)/(2pL 0). Clearly, 

{(Y> 0) 10 G Y> OJ < 2/(1 + p), o Z O] C S( A, D). (3.11) 

We first give a basic result. 

BASIC THEOREM B. Let the compjex matrix A =_ D -_ B =-DA - B, 
with D = diag D nonsingular. And let A E 0(14(A)), A = D - B = 0~ - 
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Bi, with fi = diag fi nonsingular and B’ = E’ + F’ satisfying 

&‘D, = D-‘D A and ISI = lIZI + IFI. 

IIf p((D-‘B() = p < 1, then for any (y, w) E $A, D) 

P(ZJ,,(Zk -q G P((L,,(Zx ql) < 1. 

In particular, 

(3.12) 

(3.13) 

P(&,(D,E) G P(IZ&DJ)I) < 1: (3.14) 

consequently, the GAOR method for i E R(h( A)) (in particular, for A) 
converges 

Proof. Since i E R(A(A)) and Z?‘D~ = D-lDA, from (3.6) we have 

p(lfi-%I) = p(lD-‘BI) = p < 1. (3.15) 

Noticing 

l+P 
‘YM = SUP{Y:(Y> w> E S(A> 0)) = 2~ 

and observing that 0 < rlC-‘~Zl < ylfi)-‘gI with y > 0, we have 

and then, from Theorem 3.8 in [ll], 

(I - ylti-‘il)-l > 0. 

Hence 

IL,,I $ (z - Iyl 15-‘61)-1[ I1 - OIZ + lw - y( Ir5-%I + oi6-‘ill. 
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Let 

263 

1 M = 1 - II- WI 
(I - Iyl WEI), 

1 

N= l--II-WI 
(I1 - wlz + Iw - yl WEI + OIWFI) 

Then 

1 
M-N=Z- 

1 - I1 - 01 
[(lyl+ lw - yl)lPil + wlZ-l2l] 

For (y, w> E S,, we have that [(2-y - w>/w]p < 1, 0 < w < y, and 
w < 1, and then 

1 

O G 1 - I1 - WI 
[(lyl + lw - yl)ID-‘iI + Wil] 

2y-w _ 
= __lo-lt;l+ I&-‘$[ Q q-lgl 

and 

i 

2y-0 _ 
P -yTlEl + Ii,-lE;:I 

i 
< 2y- < 1. 

w 

Notice that I L,,I Q MelN and hence, from the convergence theorem for 
regular splittings [ll], we have 

p&J 6 ,+,,I) =G P(M-~N) < 1. 

For (y, w) E S, there exists (y, w*) E S,, with w* > w. Since (7, w*) 
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E S,, we have p(IL,,*I) < 1. Notice that 

0 

L L yw=w* yw* + 1-S 1, 
i 1 

I&I < ~lLyu*l + ( 1 - 3 1 1; 

it follows that p( Ly,> < p( I L,, I) < 1. 
Similarly for (y, w) E Si, i = 0, 1,2, we can prove that the last inequality 

holds, proving the theorem. W 

From Basic Theorem B and Theorems 3.1-3.4 we can obtain further 
results for the convergence of the GAOR method when A (or A) is a 
complex H-matrix. Here IDI 2 lD,l is not required, and the region of 
convergence of the GAOR method is improved. 

THEOREM 3.5. Suppose that the hypotheses of any one of Theorems 
3.1-3.3 hold. Then for any (y, o) E S( A, D) we have that (3.14) holds and 

consequently the GAOR iterative method for A converges, provided that 

B = E + F satisfies IB( = IEl + IFJ. 

REMARK. Theorem 3.5 implies Theorem 3 in [5]. 

THEOREM 3.6. Suppose that the hypotheses of Theorem 3.4 hold. Then 

for any (y, w> E S(A, D) we have that (3.13) holds and consequently the 

GAO6 iterative _mtho$ for & E cR(h( A)) converges, prmided that l? = 

E + F satisfies \BI = IEl + IFI. 

REMARK. Similarly to the remark after Theorem 3.4, Theorem 3.5 is a 
special case of Theorem 3.6. Also, Theorem 3.6 includes Theorem 5 in [5]. If 
D = DA, then Theorem 3.6 gives results for the convergence of the AOR 
method, extending similar previous results (see [l], [S], and [12-151, for 
example). For comparison we state the following result. 

COROLLARY 3.6.1. Suppose that A is a nonsingular H-matrix. Then for 

any (y, w) E $A, DA) the AOR iterative method converges for A E 

fi(A( A)). 

REMARK. From (3.11), Corollary 3.6.1 extends the previous results for 
the AOR method (see e.g. [l] and [lo]). 
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Finally we give a set of sufficient and necessary conditions for H-matrices 
and diagonally dominant matrices in connection with the GJ and GAOR 
methods. 

THEOREM 3.7. Let A be a complex matrix, then the following conditions 
are equivalent: 

(i) A is a nonsingzdar H-matrix; 

(ij) p(D-‘B) < p(lZ - D’,‘Dil + 16-‘B,j) < 1_ for any A = (aij> ,= 
D - B E fl(h(A)! with any D = diag(d,, d,, . , d,) satisfying (G,,/d,, 

a’zJdz> . . , a’,,,/dJ E %,QQ 
(iii> P(D,~B,) < p(lZ - D,‘D,Ol + lDO’B,,I) < 1 for some A, = 

(ayj) = D,) - B, E R(h( A)) with some D, = diag(dp, d,O, . , dz) satisfying 
aFi/dp > 0 Vi, in which case (ap,/dp, ai,/di, , a~,/d~> E ~o,l~, neces- 
.sarily holds; _ _ 

(iv) p(D-lB) < 1 f 
Z5 = diag(c&, d;, . . 

or any A = (aij) = D - B E fi(A( A)) with any 

(VI 
. ,a,,> satisfying (a’,, /d;, a,,/&, . . , a’,,/d,) E S,, 1 B,; 

p(D,%,) < 1 f or some L-matrix A,, = D, - B, E Q(A( A)) with 
some D, = diag D, satisfying 0 < Dc’DbO =G I; 

_ (vi) p(lZ-‘El) < 1 and p(L,,(D,_E)) < 1, for any A = (aij)_= D - 

B E Q(A( A)) with any D = diag(d,, d,, . . , d,) satisfying (a’,,/d,, a,,/ 

d;,..., a,,/d,,) E S,,I B, and with any B’ = E’ + G satisfying I B’I = 

IIf + IFI, andf or any (7, w) E S( A, D) with D satisfying D-‘0, = Zk’Di; 
(vii) p(D,‘E,) < 1 and p(L,,( D,,, E,)) < 1 for some L-matrix A,, = 

D, - B, E LR(A( A)) with some D, = diag D, satisfying 0 < D,T’D,,, < Z 
and with B, = E, + F, satisfying E, 2 0 and F, > 0, and for some (7, w) 
with 0 < y < 1 and 0 < w < 1. 

Proof. Suppose that (i) holds. From Theorem 3.4 it follows that (i) 
implies (ii) and (iv). Clearly, (“> n and (iv) imply, respectively, (iii) and (v). 

Assume that (iii) holds. Then aFi/dp > 0 Vi and DA, is nonsingular. 
Notice that 

D,‘B, = Z - D;‘D,, + ( 0;’ DA”)( D;“‘B&). (3.16) 

Let R = DO’D,, = diag(aFl/dp, a!j',/dl, . . . , aE,/d,“), T = DiOIB,O, and 
Ta = Di’B,. Then from Theorem 2.7 we have that (iii) implies 

p(JTI) =p(lDiOIB,Ol) < 1 and g,$,...,s E SD&+ . 
1 2 

A0 
n 
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Since A, E R(h( A)), from Lemma 3.1 we have 
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(3.17) 

and 

Then A is a nonsingular H-matrix and, from Lemma 2.5, (uy,/d:, 

ai,/dl,. , &,/di) E SllhlgA, proving that (iii) implies (i). Thus (i), (ii), and 
(iii) are equivalent. 

Suppose that condition (v) holds. Then we have DA, > 0 nonsingular and 
Din1 B,(, > 0, since A, is an L-matrix. Let fl = D,‘D,, and T = Die’ BAo. 

Then, from (3.16) and 0 < DOIDA, < I, we have R > 0, T 2 0, and 
D,lB, 2 0. Then since p( Dt’B,) < 1, from Theorem 2.6 it follows that 
p(D&‘BA,) < 1. Also, since A, E fl(h( A)), from Lemma 3.1 we have (3.17) 
and p(I DilBAI) = p(l DiolBAr,j> = p( DiolBA,) < 1, since A, is an L-matrix. 
So A is a nonsingular H-matrix, proving that (v) implies (i). Thus (i), (iv), and 
(v) are equivalent. 

Suppose that (i> holds. Let A, 0, _J?, and D be given as in (vi). Since 
D-‘0, = Z?‘Di and (a,,/&, cizz/d2,. . , ti,,/J,,) E SD,lB , we have 
(a,,/d,, a,,/d,, . , a,,,,/d,) E Su,;lB,. Combining with Theo:em_3.2, we 
have p(l D-‘BI) < 1. Then from Basic Theorem B, p(L,,(D, E)) < 
p(lL,,( 6, i)J) < 1, since A = 5 - B’ E fi(h(A)) satisfies (3.12) and 
(7, ,o) E, S(A, D). In particular-,-when (y, w)_= (3 1) we have p<a-‘gj f 
p(lD-‘BJ) < 1, and then p(lD-lEl) f p(l D-‘BI) < 1, since ID-‘El f 
(DmlEl + lkl@l = (F’G(, proving that (i) implies (vi). Clearly (vi) implies 
(vii). 

Suppose that (vii) holds. Then D, = diag D, > 0 and 00’ exists, since 
D, ‘D,,,, > 0 and A, is an L-matrix. Notice that for 0 < y < 1 and 0 < w < 1 

I,,,( D,, E,) = (1 - w)Z + w(Z - yD,‘E,)-’ 

x [(l - y) D,lE, + D,‘F,,] 20 

and 

(I - yD,‘E,)pl[(l - y)D,lE, + D,‘F,,] > 0, 
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since p( D,lE,> < 1 and D,lE, > 0 with D, IF, > 0. From Corollary 
2.6.1, 

&z - yD,lE,)-l[(l - Y)D,‘E, + D;‘F,]) < 1. 

From the Stein-Rosenberg theorem [7], yD,‘E,, + (1 - y)D,‘E, + 
D;‘F, = D;‘B, > 0 is convergent, i.e., p(D,lB,) < 1. Letting fl = 
Di’D,(, and T = DilB,“, from Theorem 2.6 and (3.16) it follows that 
p( DiolBA,> < 1, sinceoR > 0, T > 0, and D,‘B, > 0. From Lemma 3.1 we 
have p(j DilBAl) = p(l DA, B,J = p(D,” BA,> < 1, since A, is an L-matrix, 
proving that (i) follows. Thus the theorem is proved. n 

For comparison we give the following results in connection with the 
Jacobi, JOR, Gauss-Seidel, SOR, and AOR methods. For short, define 
I1 := D,-lB,, J,[A] := (1 - w)Z + CUD,-‘B,, Pl[A] = (DA - EA)-lFA, 
ZW]Al = (DA - oE,)~~[(~ - w)DA + wF,]. 

COROLLARY 3.7.1. Let A = DA - B, = DA - E, - FA be a complex 
matrix where E, and FA are respectively the strictly lower and upper 
triangular parts of -A. Then the following conditions are equivalent: 

(i) A is a nonsingular H-matrix; 
(ii) p(J,[ A]> < (1 - 01 + wp(IJlj> < 1 for any A E C&I(A)) and 

any 6~ E (0,2/D + p(IJll>l); 
(iii> p(J,[A,I) Q I1 - WI + wp(lJII> < 1 for som A, E fl(A( A)) and 

some w > 0, in zq‘hich case o E (O,2/[1 + p(]Jlj>]> necessarily holds; 
(iv) p(J,[ A] < 1 fir any A E R(R( A)) and any w E (0,2/[1 + 

P(lJ, l>l); 
(v) ,dJ,[ A,$ < 1 f or some L-matrix A,, E fl(R( A)) and some o E 

(0,ll; 
(vi) p(L,,(Di, EL)) < 1 for any A E fi(A(A)) and any (y, o) E 

%A, 0,); 
(via> p(PW[ A]> < 1 for any A E a(A(A)) and any w E (0,2/[1 + 

P(l Jl l>l); 
(vii> p(L,,,,(D,“, E,,,)) < 1 f or some L-matrix A,, E fi(A( A)) and some 

(y, w> with 0 Q y =G 1 and 0 < w Q 1; 
(viia> p(Pl[ A,]) < 1 for some L-matrix A, E fi(h(A)). 

Proof. Clearly, when D, = (1/0jD,~, conditions (iii), (v), and (vii) of 
Theorem 3.7 become those of Corollary 3.7.1, and when D, = DA, and 
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y = w = 1, condition (vii) of Theorem 3.7 becomes condition (viia) of 
Corollary 3.7.1. Then from Theorem 3.7, conditions (i), (iii), (v), (vii), and 
(viia) of Corollary 3.7.1 are equivalent. Notice that, in Corollary 3.7.1, 
condition (vi) implies condition (via), which implies condition (viia), while 
conditions (ii), (iv), and (vi) of Theorem 3.7 imply respectively those of 
Corollary 3.7.1, which imply respectively (iii), (v), and (vii) of Corollary 3.7.1. 
From these results with Theorem 3.7 the corollary follows immediately. n 

REMARK. Theorem 3.7 and its corollary greatly extend the previous 
results for the GAOR and AOR methods [8, 9, 12, 151. 

THEOREM 3.8. Let A be a complex matrix. Then the following conditions 
are equivalent: 

(i> A is a strictly diagonally dominant matrix by rows; 
(ii> p(ZYlZ?) < p(]&‘B]) < 1) ]I - fi-‘Di] + j6-‘B~j I] < 1 for any 

i = <Zij>_= c - B’ E a(A) with any 6 = diadd;, &, . , zn) satisfying 

0 < Gii/di < 2l~z~~l/C, \aijI V-i; 

(iia) p(J,[Al) < p(IJ,,,[All) < II - WI + wll],ll < 1 for any A’ E R(A) 
with any w E (0, min, 2jaii]/Cj laijl); 

(iii> p(D,‘B,) < p(lD~lB,I) =G II II - D~‘DAoI + ID,‘BAol II < 1 for 
some A, = <a!,> = D, - B, E o(A) with some D, = diag(dF, d,O, . , d,O) 

satisfying ap,/dp > 0 Vi, in which case 0 < a:‘JdF < 2\aii(/Cj laijl Vi 
necessarily holds; 

(iiia) p(J,[ A, 1) G P(IJ,[A,,II) < I1 - WI + wll~,II < 1 for some 
A,, E (R(A) and some w > 0, in which case 0 < w < min, 21aji(/Cj laij\ 
necessarily holds. 

Proof. From Theorem 3.4, condition (i> implies condition (ii). Clearly 
condition (ii) implies conditions (iia) and (iii), while condition (iia) implies 
condition (iiia). 

From Theorem 2.8 conditions (iii) and (iiia) respectively imply 0 < u:~/ 
dP < 21aiil/Cj la,jl Vi or 0 < w < min, 21aiil/Cj Jaijl, while IIDiOIB,Oll < 

1 if R = D,‘D,” or WI, and T = DiU’B,O. From A,, E fin(A) we have 

I DilB,I = 1 DiOIB,Ol and then ]I Di’B,II < 1, that is, A is a strictly diago- 
nally dominant matrix by rows, proving that conditions (iii) and (iiia) respec- 
tively imply condition (i). Then the theorem is proved. n 

Similarly, from Theorems 3.4 and 2.9 we have the following results with 
the irreducible diagonal dominance. For short we define the condition (C) for 
i with bi: 
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(C) there exists at least one i such that both 

21a,il 
bi < ~ 

Claijl 

and c laijl < lajil 
j+i 

j 

hold simultaneously. 

THEOREM 3.9. Let A be an irreducible complex matrix. Then the 
following conditions are equivalent: 

(i) A is an irreducibly diagonally dominant matrix by rows; 

(ii) p(ti’-lBc) < p<li,-‘Z?I):J( II - ti’-‘D~l + ID-lB~lll~ 1 for any 

A = (Gij) = 6 - B’ E fl( A) with any 6 = diag(d;, &, . . . , dn) satisfying 

0 < Zii/di < 21ai,I/Cj laij( Vi ifth e condition (C) for i with bi = 5Jdi is 
satisfied; 

(iia> p(],[ Al) < p(IJo[ ill): I1 - WI + wllJ,II 2 1 for any A E fi( A) 

with any w E (0, mini 2/a,, I/CjIaijI) if the condition (C) for i with bi = w is 
satisfied; 

(iii) p(D,‘BJ < p(lD~‘B,I)~II II - DilDAol + ID,lB,oI 1121 for 

some A,, E R(A) with some D, = diag(dF, di, . . . , d,O) satisfying ay/dp > 0 
Vi, in which case 0 < a~,/d~ < 21aiiI/Cj Iu,~~ Vi necessarily holds if the 
condition (C) f or i with bi = aFi/dp is satisfied; 

(iiia) p(J,[ A, I> G P(IJJA~N > I1 - 4 + 4J,Il~ 1 for some A, E 

0(A) with some w > 0, in which case 0 < o < mini 2jaiiI/Cj laij( necessar- 
ily holds af the condition (C) for i with bi = w is satisfied. 

APPENDIX 

THEOREM [6, Theorem 11. Let A = (aij) be un n X n irreducible com- 
plex matrix. Then there exists some A 
where A = (a’ij>. 

- L A such that Cj lGijl = p(lAl) Vi, 

Proof. Since A is irreducible, from the Perron-Frobenius theorem it 
follows that for the nonnegative matrix 1 Al there exists a real positive 
eigenvector qT = (ql, q2,. . . , qn) such that I Alq = p(I Al)q. Without loss of 
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generality, assume 9’9 = 1. Let Q = diadq,, 92,. . . , 4”). Then 

IA~Q(LL...J) = l4q = &AI)9 = P(IAI)Q(LL...,~)~, 

where (1,1, . , 1)’ is an n-dimensional vector whose components are all 
one. Hence 

Q-'IAIQ(U... ,l)'= ~(]A\)(l,l,..., 1)r. 

Let A = (Gij> = QP’AQ. Th 
proved. 

en we have Cj laij] = p(I Al) and the theorem is 
n 

THEOREM [6, Theorem 21. Let A = (aij> be an n X n complex 

matrix. Then for any given E > 0 there exists some A L A such that 11 AlI < 

p(]Al) + F. 

Proof. When A is irreducible the result trivially holds from Theorem 1 
in [6]. Now suppose that 4 is reducible. First assume that E > 0 is arbitrarily 
given. For any matrix A = 1 Al + 61 where 6 > 0 and I is the identity 
matrix, there exists a permutation matrix P such that the matrix PAPT is 
partitioned as follows: _ 

0 

where the diagonal submatrix A,, is an n, X n, irreducible square matrix, 
1 -G t < p, C, n, = n. From Theorem 1 in [6], it follows that there exist p 

nonsingular diagonal matrices Q,, t = 1,2, . . , e, with positive diagznal 
elements such that all row sums of the matrix Q; ‘A,,Q, are equal to p( b,,), 
t =_1,2,. .) p. Since P is a permutation matrix, we have P?’ = P-‘, PA PT 
- A, PA PT > 0, and p(PAP’) = p(i) = max, p( A,,). Letting the diago- 
nal matrix 

Q= 

‘k-Q, 

k”-“Q, 

\ QP 
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where k > 0 is an undetermined coefficient, we have 

Q-lpi pTQ = Q;‘ii,,Qz “. it- 
kp-” Qi%,Q,~ 

Let Mij be the sum of the values of all the elements of the matrix Qi-‘Aji(?j, 
1 < i < j < p, and M = ma.xi,j M, -t E, where E is arbitrarily given m 

advance. Take k > PM/s, implying k > 1. If U = (uij> = @-‘Pi P’Q, 

then U 2 0 and*for any i there exists some t such that uii is a diagonal 
element of QT]A,,Q, and 

PM culj < p(Q;'i,,Q,) + k < P( Pii I”‘) + E 

i 

=p(i)+~=p(lAl)+S+~ Vi. 

Then letting V = (vij) = PTUP, we have V 2 0 and 

Cv,i<~(A^)+~=p(lAl)+fi+~ Vi. 

Observing that _V = PTUP = (pT@-lff(PTQP) and letting the diagonal 
matrix Q = PTQP and the similar matrix A = (~2~~) = Q-‘AQ, we have 

Ii1 = (zij) = Q-'/A/Q = Q-'( /i - sI)Q = V - 61 

and hence Cj lGijl = Cj ujj - 6 < p(l Al) + 6 + E - 6 = p(IAl) + E Vi. The 
theorem is proved. n 

I am grateful to the referee and the editor for their constmcctive comments 
on an earlier version of the paper. 
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