Generalized Bernstein polynomials with Pollaczek weight

B. Della Vecchiaa, G. Mastroiannib, J. Szabadosc,*

a Dipartimento di Matematica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 2, I-00185 Roma, Italy
b Dipartimento di Matematica, Università della Basilicata, 85100 Potenza, Italy
c Alfréd Rényi Institute of Mathematics, H-1364 Budapest, P.O. Box 127, Hungary

Received 2 April 2008; received in revised form 22 September 2008; accepted 15 February 2009
Available online 24 February 2009

Communicated by C.K. Chui and H.N. Mhaskar

Dedicated to the memory of G.G. Lorentz

Abstract

Bernstein polynomials are a useful tool for approximating functions. In this paper, we extend the applicability of this operator to a certain class of locally continuous functions. To do so, we consider the Pollaczek weight

$$w(x) := \exp\left(- \frac{1}{\sqrt{x(1-x)}} \right), \quad 0 < x < 1,$$

which is rapidly decaying at the endpoints of the interval considered. In order to establish convergence theorems and error estimates, we need to introduce corresponding moduli of smoothness and K-functionals. Because of the unusual nature of this weight, we have to overcome a number of technical difficulties, but the equivalence of the moduli and K-functionals is a benefit interesting in itself. Similar investigations have been made in [B. Della Vecchia, G. Mastroianni, J. Szabados, Weighted approximation of functions with endpoint or inner singularities by Bernstein operators, Acta Math. Hungar. 103 (2004) 19–41] in connection with Jacobi weights.

© 2009 Elsevier Inc. All rights reserved.

*Corresponding author. E-mail addresses: biancamaria.dellavecchia@uniroma1.it (B. Della Vecchia), mastroianni.csafta@unibas.it (G. Mastroianni), szabados@renyi.hu (J. Szabados).

0021-9045/S - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2009.02.008
1. Introduction

Investigations concerning Bernstein polynomials frequently quote the fundamental monograph [5] of G.G. Lorentz. In this paper we will also make occasional references to estimates, relations presented in this book. We will be concerned with the Pollaczek weight

\[w(x) := \exp(-1/\varphi(x)), \quad \varphi(x) = \sqrt{x(1-x)}, \quad 0 < x < 1. \]

Note that this weight does not satisfy the Szegő condition

\[\int_0^1 \log w(x) \frac{dx}{\sqrt{x(1-x)}} > -\infty \]

which makes its role in approximation theoretical problems even more interesting. We will be dealing with the class of functions

\[C_w = \{ f \in C^0(0,1) : \lim_{x(1-x) \to 0} (f w)(x) = 0 \} \]

equipped with the norm

\[\|f\|_{C_w} = \sup_{0 \leq x \leq 1} |(f w)(x)| = \|f w\|. \]

This means that we allow locally continuous functions in (0,1) which may go to infinity exponentially. Of course, ordinary Bernstein polynomials make no sense for these functions. Therefore we have to omit function values at the endpoints of the interval. Let

\[x_0 := \frac{3}{\sqrt{n}}, \quad x_1 := \frac{3}{\sqrt{n}} + \frac{1}{n^{3/4}}, \quad x_2 := 1 - \frac{3}{\sqrt{n}} - \frac{1}{n^{3/4}}, \quad x_3 := 1 - \frac{3}{\sqrt{n}}. \]

and consider the linear functions

\[P_1(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1), \]

\[P_2(x) = \frac{x - x_3}{x_2 - x_3} f(x_2) + \frac{x - x_2}{x_3 - x_2} f(x_3) \]

interpolating \(f \in C_w \) at \(x_0, x_1 \) and \(x_2, x_3 \), respectively. Further let \(\psi(x) \in C^2(\mathbb{R}) \) be such that \(\psi(x) \equiv 0 \) if \(-\infty < x \leq 0 \) and \(\psi(x) \equiv 1 \) if \(1 \leq x < \infty \). With the notation

\[\psi_i(x) = \psi\left(\frac{x - x_i}{x_{i+1} - x_i}\right), \quad i = 0, 2, \]

we introduce the function

\[F_n(x) = F_n(f, x) = (1 - \psi_1(x)) P_1(x) + \psi_0(x)(1 - \psi_2(x)) f(x) + \psi_2(x) P_2(x) \]

\[= \begin{cases}
P_1(x), & \text{if } 0 \leq x \leq x_0, \\
(1 - \psi_0(x)) P_1(x) + \psi_0(x) f(x), & \text{if } x_0 < x \leq x_1, \\
f(x), & \text{if } x_1 < x < x_2, \\
(1 - \psi_2(x)) f(x) + \psi_2(x) P_2(x), & \text{if } x_2 < x < x_3, \\
P_2(x), & \text{if } x_3 \leq x \leq 1.
\end{cases} \]

Evidently, \(F_n(f) \equiv f \) if \(f \) is a linear function. Finally, we put

\[B_n^*(f, x) = B_n(F_n(f), x) \]
where
\[
B_n(F_n, x) = \sum_{k=0}^{n} F_n \left(\frac{k}{n} \right) p_n,k(x), \quad p_n,k(x) = \binom{n}{k} x^k (1-x)^{n-k}
\]
is the ordinary Bernstein operator. We introduce the Sobolev type space (see \[2\], Section 2, for a similar definition)
\[
W^2 = \{ f \in C_w : f' \in AC(0, 1) \text{ and } \| f'' \varphi^2 w \| < \infty \},
\]
and, for “t small”, the \(K\)-functional is defined as follows:
\[
K(f, t^2)_w = \inf_{g \in W^2} \{ \| (f - g)w\| + t^2 \| g'' \varphi^2 w \| \}.
\]
Its main part is
\[
\tilde{K}(C, f, t^2)_w = \sup_{0 < h \leq t} \inf_{g \in W^2} \{ \| (f - g)w\| + h^2 \| g'' \varphi^2 w \| \}_{I(Ch)}
\]
where \(I(Ch) = [2Ch, 1 - 2Ch], C \geq 1\). By definition, \(\tilde{K}\) depends on the constant \(C\) and the following proposition holds:

Proposition 1. If \(C\) and \(B\) are two constants \(\geq 1\), then
\[
\tilde{K}(C, f, t^2)_w \sim \tilde{K}(B, f, t^2)_w
\]
where the constants in “\(\sim\)” are independent of \(f\) and \(t\).

Now denote the main part of the \(K\)-functional as
\[
\tilde{K}(f, t^2)_w := \tilde{K}(1, f, t^2)_w,
\]
and define the modulus of continuity
\[
\Omega^2_\varphi(C, f, t)_w = \sup_{0 < h \leq t} \| w \Delta^2_{h\varphi}f \|_{I(Ch)},
\]
where \(C \geq 1\), and
\[
\Delta^2_{h\varphi}f(x) = f(x + h\varphi(x)) - 2f(x) + f(x - h\varphi(x)).
\]
The following proposition holds true.

Proposition 2. For all \(C \geq 1\) we have
\[
\tilde{K}(C, f, t)_w \sim \Omega^2_\varphi(C, f, t)_w
\]
as \(t \to 0\), and the constant in “\(\sim\)” is independent of \(f\) and \(t\).

From Propositions 1 and 2 we can also deduce
\[
\Omega^2_\varphi(B, f, t)_w \sim \Omega^2_\varphi(C, f, t)_w, \quad B, C \geq 1,
\]
and, for simplicity, in the sequel we will write \(\Omega^2_\varphi(f, t)_w\) for this modulus.

Then the complete modulus of smoothness of order 2 is defined as
\[
\omega^2_\varphi(f, t)_w = \Omega^2_\varphi(f, t)_w + \inf_{q \in P_1} \| (f - q)w \|_{C[0, 2t]} + \inf_{q \in P_1} \| (f - q)w \|_{C[1 - 2t, 1]} \quad (1.6)
\]
where, in general, \mathcal{P}_n is the set of polynomials of degree at most n. The behavior of $\omega_\varphi^2(f, t)_w$ is independent of the possible constants in Ω_φ^2.

Propositions 1 and 2 will be proved in Section 5.

2. Results

In what follows $c > 0$ will always denote absolute constants, not necessarily the same at each occurrence.

Theorem 1. We have
\[
\|(B_n^*(f))w\| \leq c\|f\|_w, \quad f \in C_w, \tag{2.1}
\]
\[
\|(f - B_n^*(f))w\| \leq \frac{c}{n}\|f''\varphi^2 w\|, \quad f \in W_2, \tag{2.2}
\]
\[
\|(f - B_n^*(f))w\| \leq \omega_\varphi^2 \left(f, \frac{1}{\sqrt{n}}\right)_w, \quad f \in C_w. \tag{2.3}
\]

The next result shows the sharpness of (2.3) for Lipschitz classes.

Theorem 2. We have
\[
\|(f - B_n^*(f))w\| = O(n^{-\alpha/2}) \iff \omega_\varphi^2 (f, h)_w = O(h^\alpha), \quad 0 < \alpha < 2.
\]

Remark. We could have generalized the above results for the “nonsymmetric Pollaczek weights”
\[
w(x) = \exp \left(-\frac{1}{x^a(1-x)^b}\right), \quad 0 < a, b < 1,
\]
by proper modification of the parameters figuring in the proofs. However, this would have resulted in extremely complicated formulas while not giving any theoretical novelties. To illustrate the difficulties in this more general case, we mention that (1.1) should be replaced by
\[
x_0 := \frac{3}{n^{1+2a}}, \quad x_1 := \frac{3}{n^{1+2a}} + \frac{c_1}{n^{1+b}}, \quad x_2 := 1 - \frac{3}{n^{1+2b}} - \frac{c_2}{n^{1+b}},
\]
\[
x_3 := 1 - \frac{3}{n^{1+2b}},
\]
where $c_1, c_2 > 0$ are some constants.

3. Proof of Theorem 1, Part (2.1)

Lemma 1. We have
\[
\frac{w(x)}{w(y)} \leq \begin{cases}
 c \exp \left(-\frac{y-x}{4y\sqrt{x}}\right), & \text{if } 0 < x < y \leq \frac{3}{4}, \\
 \exp \left(\frac{2x-y}{x\sqrt{y}}\right), & \text{if } 0 < y < x \leq \frac{3}{4}.
\end{cases} \tag{3.1}
\]

Of course, similar inequalities hold for the cases $\frac{1}{4} \leq y, x < 1$.

Proof. For \(0 < x < y \leq 3/4\) we have
\[
\frac{1}{\varphi(y)} - \frac{1}{\varphi(x)} = \frac{\sqrt{x} - \sqrt{y}}{\sqrt{xy(1-y)}} + \frac{\sqrt{1-x} - \sqrt{1-y}}{\sqrt{x(1-x)(1-y)}}
\]
\[
\leq -\frac{y-x}{2y\sqrt{x(1-y)}} + \frac{y-x}{(1-x)\sqrt{x(1-y)}} = -\frac{(y-x)(1-x-2y)}{2y(1-x)\sqrt{x(1-y)}}
\]
provided that \(x + 2y \leq \frac{1}{2}\). Now if \(x + 2y > \frac{1}{2}\) then we may assume that \(0 < x \leq \frac{1}{3}\) since otherwise the first statement in (3.1) holds trivially. Hence \(\frac{1}{12} \leq y \leq \frac{3}{4}\) which implies \(w(y) \geq c\), and thus
\[
\frac{w(x)}{w(y)} \leq c \exp\left(-\frac{1}{\sqrt{x(1-x)}}\right) \leq ce^{-1/\sqrt{x}} \leq c \exp\left(-\frac{y-x}{4y\sqrt{x}}\right).
\]
This proves the first inequality in (3.1). The second can be proved similarly; we omit the details.
\[\square\]

We now turn to the proof of (2.1). By symmetry, we may assume that \(0 \leq x \leq 1/2\). We have by (1.1)–(1.3),
\[
P_1(x) = f(x_0)(3n^{1/4} + 1 - n^{3/4}x) + f(x_1)(n^{3/4}x - 3n^{1/4})
\] (3.2)
and
\[
P_2(x) = f(x_3)(n^{3/4}x + 3n^{1/4} + 1 - n^{3/4}) + f(x_2)(n^{3/4} - 3n^{1/4} - n^{3/4}x).
\] (3.3)

Hence
\[
B_n^*(f, x) = B_n(F_n, x) = \sum_{0 \leq k \leq 3\sqrt{n}} P_1\left(\frac{k}{n}\right) p_{n,k}(x)
\]
\[
+ \sum_{3\sqrt{n} < k \leq 3\sqrt{n} + n^{1/4}} \left[(1 - \psi_0\left(\frac{k}{n}\right)) P_1\left(\frac{k}{n}\right) + \psi_0\left(\frac{k}{n}\right) f\left(\frac{k}{n}\right)\right] p_{n,k}(x)
\]
\[
+ \sum_{3\sqrt{n} + n^{1/4} < k \leq 3\sqrt{n} - n^{1/4}} f\left(\frac{k}{n}\right) p_{n,k}(x)
\]
\[
+ \sum_{n-3\sqrt{n} - n^{1/4} < k \leq n-3\sqrt{n}} \left[(1 - \psi_3\left(\frac{k}{n}\right)) f\left(\frac{k}{n}\right) + \psi_3\left(\frac{k}{n}\right) P_2\left(\frac{k}{n}\right)\right] p_{n,k}(x)
\]
\[
+ \sum_{n-3\sqrt{n} < k \leq n} P_2\left(\frac{k}{n}\right) p_{n,k}(x).
\]

Thus, using the boundedness of the psi-functions (1.4),
\[
|B_n^*(f, x)| \leq c \sum_{0 \leq k \leq 3\sqrt{n} + n^{1/4}} \left|P_1\left(\frac{k}{n}\right)\right| p_{n,k}(x) + c \sum_{3\sqrt{n} < k \leq n-3\sqrt{n}} \left|f\left(\frac{k}{n}\right)\right| p_{n,k}(x)
\]
\[
+ c \sum_{n-3\sqrt{n} - n^{1/4} < k \leq n} \left|P_2\left(\frac{k}{n}\right)\right| p_{n,k}(x),
\]
whence by
\[w(x_1) \sim w(x_0), \quad w(x_2) \sim w(x_3) \]
(see Lemma 1) we obtain
\[
\left| P_1 \left(\frac{k}{n} \right) \right| \leq \frac{c\|fw\|}{w(x_0)} \left(3n^{1/4} + 1 - \frac{k}{n^{1/4}} \right), \quad \left| P_2 \left(\frac{k}{n} \right) \right| \leq \frac{c\|fw\|n^{3/4}}{w(x_3)}.
\]
Thus
\[
w(x)|B_n^*(f, x)| \leq c\|wf\| \left[\frac{w(x)}{n^{1/4}w(x_0)} \sum_{0 \leq k \leq 3\sqrt{n}+n^{1/4}} (3\sqrt{n} + n^{1/4} - k) p_{n,k}(x) \\
+ \left(\sum_{3\sqrt{n} < k \leq nx(1-\sqrt{x})} + \sum_{nx(1-\sqrt{x}) < k \leq 3n/4} \right) \frac{w(x)}{w(k/n)} p_{n,k}(x) \\
+ \frac{n^{3/4}}{w(x_3)} \sum_{3n/4 < k \leq n} p_{n,k}(x) \right] := c\|wf\| \sum_{i=1}^{4} A_i(x).
\]

Estimate of $A_1(x)$. **Case 1:** $0 \leq x \leq x_0 + \frac{10}{n^{3/4}}$. Using the inequalities in Lemma 1 and
\[
p_{n,k}(x) \leq \frac{c}{\sqrt{n^x}} \exp \left[-\frac{(nx-k)^2}{2nx} \right], \quad 0 \leq x \leq 1/2, |k-nx| \leq n^{2/3} \tag{3.4}
\]
(cf. Lorentz [5], Theorem 1.5.2), we obtain\(^1\)
\[
A_1(x) \leq \frac{1}{n^{3/4} x} \exp \left(c \frac{\sqrt{n} - 3}{\sqrt{x}} \right) \sum_{0 \leq k \leq 3\sqrt{n}+n^{1/4}} [\sqrt{n}(3 - \sqrt{n}x) + n^{1/4} + (nx - k)] \\
\times \exp \left[-\frac{(k-nx)^2}{2nx} \right] := \sum_{i=1}^{3} B_i(x).
\]
Now
\[
B_1(x) \leq \frac{c}{n^{1/4}} \left\{ \frac{|x\sqrt{n} - 3|}{\sqrt{x}} \exp \left(c \frac{x\sqrt{n} - 3}{\sqrt{x}} \right) \right\} \sum_{k=0}^{\infty} \exp \left[-\frac{(k-nx)^2}{2nx} \right] \\
\leq \frac{c}{n^{1/4}} \sum_{j=0}^{\infty} \exp \left(-\frac{j^2}{2nx} \right) \leq c \sqrt{x} n^{1/4} \int_{0}^{\infty} \exp(-y^2)dy \leq c,
\]
since the expression in the curly brackets is bounded. Next,
\[
B_2(x) \leq \frac{c}{\sqrt{n^x}} \sum_{k=0}^{\infty} \exp \left[-\frac{(k-nx)^2}{2nx} \right] \leq c \int_{0}^{\infty} \exp(-y^2)dy \leq c,
\]
\(^1\) In fact, the quoted theorem holds only for $|k-nx| \leq n^\alpha$, $\alpha < 2/3$. However, it is easy to see from the proof of that theorem that (3.4) still remains true (only the asymptotic equivalence fails to hold).
and
\[B_3(x) \leq \frac{c}{\sqrt{3n^{3/4}}} \sum_{k=0}^{\infty} |nx - k| \exp \left[-\frac{(k - nx)^2}{2nx} \right] \leq \frac{c\sqrt{x}}{n^{1/4}} \int_0^\infty y \exp(-y^2) dy \leq c. \]

Case 2: \(x_0 + \frac{10}{n^{3/4}} < x \leq \frac{4}{\sqrt{n}} \). Then using
\[
(nx - k)^2 \geq \frac{1}{2} (nx - 3\sqrt{n} - n^{1/4})^2 + \frac{1}{2} (3\sqrt{n} + n^{1/4} - k)^2
\]
\[
\geq \frac{1}{2} n(x\sqrt{n} - 3)^2 - n^{3/4} (x\sqrt{n} - 3) + \frac{1}{2} (3\sqrt{n} + n^{1/4} - k)^2
\]
\[
\geq 4n^{3/4}(x\sqrt{n} - 3) + \frac{1}{2} (3\sqrt{n} + n^{1/4} - k)^2
\]
as well as (3.1) and (3.4) we obtain
\[
A_1(x) \leq \frac{c}{n^{3/4}\sqrt{x}} \exp \left[-\frac{2}{\sqrt{3nx^{1/4}}} (x\sqrt{n} - 3) - \frac{2}{xn^{1/4}} (x\sqrt{n} - 3) \right]
\]
\[
\times \sum_{0 \leq k \leq 3\sqrt{n} + n^{1/4}} (3\sqrt{n} + n^{1/4} - k) \exp \left[-\frac{(3\sqrt{n} + n^{1/4} - k)^2}{4nx} \right]
\]
\[
\leq \frac{c}{n^{3/4}\sqrt{x}} \sum_{j=1}^{\infty} j \exp \left(-\frac{j^2}{4nx} \right) \leq cn^{1/4}\sqrt{x} \int_0^\infty ye^{-y^2} dy \leq c.
\]

Case 3: \(\frac{4}{\sqrt{n}} < x \leq \frac{1}{2} \). Then by the well-known estimate in connection with Bernstein polynomials
\[
p_{n,k}(x) \leq 2 \exp \left[-\frac{n}{4x} \left(x - \frac{k}{n} \right)^2 \right], \quad 0 \leq x \leq 1, \quad 0 \leq k \leq 4nx
\] (3.5)

(which is obtained from formula (22) of Lorentz [5], p. 19, by choosing \(u = \frac{1}{2x} |x - \frac{k}{n}| \)), we have \(p_{n,k}(x) \leq 2e^{-c\sqrt{n}} \) while \(w(x_0) \leq e^{-n^{1/4}} \); thus \(A_1(x) \leq e^{-c\sqrt{n}} \).

Estimate of \(A_2(x) \). Again, this sum is non-empty only if \(x > 3/\sqrt{n} \). Case 1: \(x_0 < x \leq 1/n^{1/3} \).

Since now \(0 < nx - k < n^{2/3} \), we can use (3.4), as well as \(x - \frac{k}{n} \geq x^{3/2} \) to obtain by the second inequality of Lemma 1
\[
A_2(x) \leq \frac{c}{\sqrt{nx}} \sum_{3\sqrt{n} < k \leq nx(1-\sqrt{x})} \exp \left[-\frac{n}{2x} \left(x - \frac{k}{n} \right)^2 + \frac{2\sqrt{n}}{x\sqrt{k}} \left(x - \frac{k}{n} \right) \right]
\]
\[
\leq \frac{c}{\sqrt{nx}} \sum_{3\sqrt{n} < k \leq nx(1-\sqrt{x})} \exp \left[-\left(x - \frac{k}{n} \right) \left(\frac{n\sqrt{x}}{2} - \frac{2}{x\sqrt{x_0}} \right) \right]
\]
\[
\leq \frac{c}{\sqrt{nx}} \sum_{3\sqrt{n} < k \leq nx(1-\sqrt{x})} \exp \left[-\left(\frac{1}{2} - \frac{2}{9} \right) \sqrt{x(nx - k)} \right]
\]
\[
\leq \frac{c}{\sqrt{nx}} \sum_{j=1}^{\infty} \exp(-c\sqrt{x}j) \leq \frac{c}{\sqrt{nx}} \int_0^\infty e^{-y} dy \leq c.
\] (3.6)
Case 2: \(1/n^{1/3} < x \leq 1/2\). Then again the same estimate but without the factor \(1/\sqrt{nx}\) leads to

\[
A_2(x) \leq \sum_{j \geq nx^{3/2}} e^{-cj\sqrt{x}} \leq \frac{c}{\sqrt{x}} \int_{nx^{3/2}}^\infty e^{-cy} \, dy \leq \frac{c}{\sqrt{x}} e^{-cnx^2} \leq n^{1/6} \exp(-cn^{1/3}) \leq c.
\]

Estimate of \(A_3(x)\). Here \(w(x)/w(k/n) \leq c\). This is trivial if \(k \geq nx\), and in the opposite case because \(k > (1 - \frac{1}{\sqrt{2}})nx\) and \(x - \frac{k}{n} \leq x^{3/2}\) the second inequality in Lemma 1 yields

\[
\frac{w(x)}{w(k/n)} \leq \exp\left(\frac{2x^{3/2}}{x\sqrt{k/n}}\right) \leq c,
\]

whence \(A_3(x) \leq c \sum_{k=0}^n p_{n,k}(x) = c\).

Estimate of \(A_4(x)\). Now

\[
\frac{n^{3/4}}{w(x)} \leq e^{cn^{1/4}},
\]

but since \(0 \leq x \leq 1/2\) and \(k \geq 3n/4\), we evidently have \(p_{n,k}(x) \leq e^{-cn}\) which leads to an exponentially small estimate for \(A_4(x)\). Collecting these estimates, we obtain (2.1).

4. Proof of Theorem 1, Part (2.2)

In order to prove the statement we need several lemmas.

Lemma 2. We have

\[
w(x) \int_x^{1/2} \frac{y - x}{w(y)} \, dy \leq cx^3, \quad 0 < x \leq \frac{1}{2}.
\]

Of course, an analogous inequality holds for \(\frac{1}{2} \leq x < 1\).

Proof. Using the first inequality in Lemma 1 we obtain

\[
w(x) \int_x^{1/2} \frac{y - x}{w(y)} \, dy \leq \sum_{0 \leq k \leq \frac{1}{\sqrt{x}} - 1} \int_{x+kx^{3/2}}^{x+(k+1)x^{3/2}} (k+1)x^{3/2} \exp\left(-\frac{kx^{3/2}}{8x^{3/2}}\right) \, dy
\]

\[
+ \int_{2x}^{1-x} \exp\left(-\frac{x}{8x\sqrt{x}}\right) \, dy \leq x^3 \sum_{k=0}^\infty ke^{-k/8} + e^{-1/(8\sqrt{x})} \leq cx^3
\]

(the second integral appears only if \(x < 1/3\)). \(\square\)

Lemma 3. If \(f \in W_2\) then with the notation (1.5) we have

\[
\|(f - F_n(f))w\| \leq c \frac{\|f'' \varphi^2 w\|}{n}.
\]

Proof. By the definition of \(F_n(f)\) it follows that

\[
\|(f - F_n(f))w\| \leq \|(f - P_1)w\|_{[0,x]} + \|(f - P_2)w\|_{[x,1]}.
\]
By symmetry, it is sufficient to estimate the first term. Since \(f'' w \in C_w \), we have
\[
f(x) = t_1(x) + \int_{x}^{x_1} (t - x) f''(t) dt, \quad t_1 \in \mathcal{P}_1
\]
and
\[
f(x) - P_1(x) = \int_{x}^{x_1} f''(t)(t - x) dt - \frac{x - x_1}{x_0 - x_1} \int_{x_0}^{x_1} f''(t)(t - x_0) dt,
\]
whence by Lemma 2
\[
|f(x) - P_1(x)| w(x)
\leq w(x) \int_{x}^{x_1} |f''(t)|(t - x) dt + n^{3/4}(x_1 - x) w(x) \int_{x_0}^{x_1} |f''(t)|(t - x_0) dt
\leq c\|f''\varphi^2 w\| w(x) \left[\frac{1}{x} \int_{x}^{1/2} \frac{t - x}{w(t)} dt + \frac{n^{3/4}(x_1 - x)}{x_0} \int_{x_0}^{1/2} \frac{t - x_0}{w(t)} dt \right]
\leq c\|f''\varphi^2 w\| \left[x^2 + \frac{n^{5/4}(x_1 - x) w(x)}{w(x_0)} \right] \leq c\|f''\varphi^2 w\| \left[\frac{1}{n} + \frac{(x_1 - x) w(x)}{n^{1/4} w(x_0)} \right]. \tag{4.1}
\]
Thus, it remains to estimate \(\frac{(x_1 - x) w(x)}{w(x_0)} \). By the second inequality of Lemma 1, \(w(x_1) \leq c w(x_0) \) and thus
\[
\frac{(x_1 - x) w(x)}{w(x_0)} \leq c \frac{(x_1 - x) w(x)}{w(x_1)} \leq c(x_1 - x) \exp \left(-\frac{x_1 - x}{4x_1^{3/2}} \right)
\leq c(x_1 - x) e^{-c n^{3/4}(x_1 - x)} \leq \frac{c}{n^{3/4}},
\]
which completely proves Lemma 3. \(\square \)

Lemma 4. If \(f \in W_2 \) then
\[
\|F_n - B_n(F_n)\| w(x) \leq \frac{c}{n} \|F_n''\varphi^2 w\|. \tag{4.2}
\]

Proof. Again, it is sufficient to estimate here for \(0 \leq x \leq 1/2 \). Using the fact that \(F_n'' \) vanishes on \([0, x_0]\), we obtain
\[
|F_n(x) - B_n(F_n, x)| w(x) = \left| \sum_{k=0}^{n} w(x) p_{n,k}(x) \int_{k/n}^{x} \left(t - \frac{k}{n} \right) F_n''(t) dt \right|
\leq c\|F_n''\varphi^2 w\| \left\{ \sum_{0 \leq k \leq 3/\sqrt{n}} + \sum_{3/\sqrt{n} < k \leq nx(1 - \sqrt{n})} + \sum_{nx(1 - \sqrt{n}) < k \leq 3n/4} + \sum_{3n/4 < k \leq n} \right\}
\left[\int_{\max(k/n, 3/\sqrt{n})}^{\max(x, 3/\sqrt{n})} \frac{w(x)}{\varphi^2(t) w(t)} \left| t - \frac{k}{n} \right| dt \right] p_{n,k}(x) =: \|F_n''\varphi^2 w\| \sum_{i=1}^{4} E_i(x). \tag{4.3}
\]

Estimate of \(E_1(x) \). We may assume that \(3/\sqrt{n} \leq x \leq 1/2 \), since otherwise the contribution of this sum is zero.
Case 1: $x_0 \leq x \leq x_0 + 16/(3n^{3/4})$. Then by the second inequality of Lemma 1 $w(x)/w(t) \leq c$, and we obtain by (3.4)

$$E_1(x) \leq c\sqrt{n} \sum_{0 \leq k \leq 3\sqrt{n}} \left(x - \frac{k}{n} \right)^2 p_{n,k}(x) \leq \frac{c}{n^2} x \sum_{k=0}^{n} (nx - k) \exp\left(-\frac{(nx - k)^2}{nx}\right)$$

$$\leq \frac{c}{n^2} \sum_{j=0}^{\infty} (j + 1)^2 \exp\left(-\frac{j^2}{nx}\right) \leq \frac{cx}{\sqrt{n}} \int_{0}^{\infty} y^2 e^{-\frac{y^2}{2}} dy \leq \frac{c}{n}. \quad (4.4)$$

Case 2: $x_0 + 16/(3n^{3/4}) < x \leq 4/\sqrt{n}$. Then using again (3.4) we get

$$E_1(x) \leq c\sqrt{n} \frac{w(x)}{w(x_0)} \sum_{0 \leq k \leq 3\sqrt{n}} \left(x - \frac{k}{n} \right)^2 p_{n,k}(x)$$

$$\leq \frac{c}{\sqrt{n}} \sum_{0 \leq k \leq 3\sqrt{n}} \left(x - \frac{k}{n} \right)^2 \exp\left\{-\frac{n}{4x} \left(x - \frac{k}{n} \right)^2\right\}$$

$$\times \exp\left\{-\frac{n}{4x} (x - \frac{k}{n})^2 + \frac{2}{x_0 \sqrt{x}} (x - x_0)\right\}$$

$$\leq cn^{1/4} \exp\left[-\frac{n}{4x} (x - x_0)^2 + \frac{2}{x_0 \sqrt{x}} (x - x_0)\right]$$

$$\times \sum_{0 \leq k \leq 3\sqrt{n}} \left(x - \frac{k}{n} \right)^2 \exp\left\{-\frac{n^{3/2}}{16} \left(x - \frac{k}{n} \right)^2\right\}. \quad (4.5)$$

Here on the right hand side the function in the square brackets is negative in the interval considered. Thus

$$E_1(x) \leq \frac{c}{n^{7/4}} \sum_{j=1}^{\infty} j^2 \exp\left(-\frac{c j^2}{\sqrt{n}}\right) \leq \frac{c}{n^{7/4}} \int_{1}^{\infty} u^2 \exp\left(-\frac{c u^2}{\sqrt{n}}\right) du$$

$$\leq \frac{c}{n} \int_{1}^{\infty} ve^{-v} dv \leq \frac{c}{n}. \quad (4.6)$$

Case 3: $4/\sqrt{n} < x \leq 1/2$. Then using the second inequality in Lemma 1 and (3.5) we obtain

$$\frac{w(x)}{\varphi^2(t)w(t)} p_{n,k}(x) \leq c\sqrt{n} \exp\left\{-(x - x_0) \left[-\frac{2}{x \sqrt{x_0}} + \frac{n}{4x} (x - x_0)\right]\right\}$$

$$\leq c\sqrt{n} \exp\left[-(x - x_0) \left(n + \frac{n^{3/4}}{2\sqrt{3}} - \frac{3\sqrt{n}}{4x}\right)\right]$$

$$\leq c\sqrt{n} \exp\left[-(x - x_0) \left(n + \frac{n^{3/4}}{2\sqrt{3}} - \frac{3n}{16}\right)\right] \leq e^{-c\sqrt{n}},$$

which ensures that $E_1(x)$ is exponentially small.

Estimate of $E_2(x)$: This sum is non-empty only if $x > x_0$. The estimate goes along the same lines as Cases 1 and 2 of estimating $A_2(x)$. In Case 1, in (3.4) we will have the extra factor
\[\sqrt{n} \left(x - \frac{k}{n} \right)^2 \] which leads to
\[E_2(x) \leq \frac{c}{n^2} \sum_{j=1}^{\infty} j^2 e^{-c/j} \leq \frac{c}{n^2} \int_{1}^{\infty} \leq \frac{c}{n}. \]

In Case 2, we have used (3.3) instead of (3.2) (i.e. with the factor \(1/\sqrt{n}x \) missing) to get
\[E_2(x) \leq \frac{c}{n^{3/2}} \sum_{j=0}^{\infty} j^2 e^{-c/j} \leq \frac{c}{(nx)^{3/2}} \int_{0}^{\infty} y^2 e^{-y} dy \leq \frac{c}{n}. \]

Estimate of \(E_3(x) \): Here by the second inequality in Lemma 1
\[\frac{w(x)}{w(t)} \leq \frac{w(x)}{w(x(1-\sqrt{x}))} \leq \exp \frac{2x^{3/2}}{3\sqrt{x}} \leq c, \]
and thus
\[E_3(x) \leq \frac{c}{n} \sum_{k=0}^{n} \left(x - \frac{k}{n} \right)^2 p_{n,k}(x) \leq \frac{c}{n}. \]

(cf. Lorentz [5], pp. 5–6).

Estimate of \(E_4(x) \): Here the integral over \([x, k/n] \) can be estimated by the integral over the interval \([x, x_3] \), since \(F_n'' \) vanishes in \([x_3, 1] \). Then
\[\frac{w(x)}{\phi^2(t)w(t)} \leq \frac{c\sqrt{n}}{w(x_3)} \leq e^{cn^{1/4}}, \] (4.6)
but since \(0 \leq x \leq 1/2 \) and \(k \geq 3n/4 \), we evidently have \(p_{n,k}(x) \leq e^{-cn} \) which leads to an exponentially small estimate for \(E_4(x) \). \[\square \]

Lemma 5. If \(f \in W_2 \) then
\[\| F_n'' \phi^2 w \| \leq c \| f'' \phi^2 w \|. \]

Proof. By (1.5) it follows that
\[
F_n''(f, x) = \begin{cases}
0 & \text{if } 0 \leq x \leq x_0, \text{ or } x_3 \leq x \leq 1, \\
[1 - \psi_0(x)] P_1(x) + \psi_0(x) f(x)'' & \text{if } x_0 \leq x \leq x_1, \\
(f''(x)) & \text{if } x_1 \leq x \leq x_2, \\
[1 - \psi_2(x)] f(x) + \psi_2(x) P_2(x)'' & \text{if } x_2 \leq x \leq x_3,
\end{cases}
\]

Thus we may assume that \(x \in [x_0, x_1] \). We obtain
\[
F_n''(f, x) = \left[\psi_0(x)(f(x) - P_1(x))'' \right] = \frac{\psi'' \left(\frac{x-x_0}{x_1-x_0} \right)}{(x_1-x_0)^2} (f(x) - P_1(x)) + \frac{2\psi' \left(\frac{x-x_0}{x_1-x_0} \right) (f(x) - P_1(x))'}{x_1-x_0} f''(x).
\]

It follows from the proof of Lemma 3 that
\[
\| (f - P_1) \phi^2 w \|_{[x_0, x_1]} \leq c \frac{\| (f - P_1) w \|}{\sqrt{n}} \leq c \frac{\| f'' \phi^2 w \|}{n^{3/2}},
\]
whence we get
\[\| F_n'' \varphi^2 w \|_{[x_0,x_1]} \leq C \| f'' \varphi^2 w \| + c n^{3/4} \| (f - P_1)' \varphi^2 w \|_{[x_0,x_1]} . \]
For the second term we use the Ditzian inequality [2, p. 15] and \(w(x_1) \sim w(x_0) \) to have
\[\|(f - P_1)' \varphi^2 w \|_{[x_0,x_1]} \leq c \left\{ \frac{1}{x_1 - x_0} \|(f - P_1) \varphi^2 w \|_{[x_0,x_1]} + (x_1 - x_0) \| f'' \varphi^2 w \| \right\} \]
\[\leq \frac{c}{n^{3/4}} \| f'' \varphi^2 w \|_{[x_0,x_1]} \]
whence the lemma follows. Now (2.2) follows from the partition
\[f - B_n^*(f) = (f - F_n) + (F_n - B_n(F_n)) \]
and from Lemma 3 to 5. \(\square \)

5. Proof of Theorem 1, Part (2.3)

First we prove Propositions 1 and 2.

Proof of Proposition 1. Let, e.g., \(B < C \). Then \(\tilde{K}(C, f, t^2)_w \leq \tilde{K}(B, f, t^2)_w \). On the other hand, with \(Bh = C h_1 \left(h_1 = \frac{B}{C} h \right) \), we have
\[\tilde{K}(B, f, t^2)_w = \sup_{h \leq t} \inf \{ \|(f - g)w\|_{I(Bh)} + h^2 \| g'' \varphi w \|_{I(Bh)} ; g \in W^2 \} \]
\[= \sup_{h \leq t} \inf \{ \|(f - g)w\|_{I(C h_1)} + \left(\frac{C}{B} \right)^2 h_1^2 \| g'' \varphi w \|_{I(C h_1)} ; g \in W^2 \} \]
\[\leq \left(\frac{C}{B} \right)^2 \sup_{h \leq t} \inf \{ \|(f - g)w\|_{I(C h_1)} + h_1^2 \| g'' \varphi w \|_{I(C h_1)} ; g \in W^2 \} \]
\[\leq \left(\frac{C}{B} \right)^2 \tilde{K}(C, f, \left(\frac{B}{C} t \right)^2) \leq \left(\frac{C}{B} \right)^2 \tilde{K}(C, f, t^2)_w \quad (B/C < 1). \quad \square \]

Proof of Proposition 2. Observe that for \(x \in [2Ch, 1 - 2Ch] \) we have
\[\eta h \leq x - h \varphi(x) < x + h \varphi(x) \leq 1 - \eta h \]
with \(\eta = \left(2C - \frac{1}{4} \right) \). Then, since \(w(x) \sim w(y) \) for \(x, y \in I(Ch) \) and \(|x - y| \leq h \varphi(x) \), we have
\[\Omega_{\varphi}^2(C, f, t)_w = \sup_{h \leq t} \| w \Delta_{h \varphi}^2 f \|_{I(Ch)} \]
\[\leq c \sup_{h \leq t} \inf \{ \|(f - g)w\|_{I(\eta h)} + h^2 \| g'' \varphi w \|_{I(\eta h)} ; g \in W^2 \} \]
\[= c \tilde{K}(\eta, f, t^2)_w \sim \tilde{K}(C, f, t^2)_w \]
by Proposition 1.

Now let \(A > 1 \) be a large but fixed real number, \(M := \left[\frac{1}{9AK} \right] \), and
\[t_k := \sin^2 \frac{k + \sqrt{M} \pi}{M + 2 \sqrt{M}} \quad \left(h < \frac{1}{9A}, k = 0, \ldots, M \right). \]
Then it is easily seen that $t_{k+1} - t_k \sim h\varphi(t_k)$, and $w(x) \sim w(y)$, $x, y \in [t_k, t_{k+1}]$, $k = 0, \ldots, M - 1$. With $\Psi \in C^\infty$ a non-decreasing function such that

$$
\Psi(x) = \begin{cases} 1, & x \geq 1 \\ 0, & x \leq 0, \end{cases}
$$

let

$$
\Psi_k(x) = \Psi \left(\frac{x - y_k}{y_{k+1} - y_k} \right),
$$

where $y_k = \frac{t_k + t_{k+1}}{2}$. Moreover, let

$$
f_\tau(x) = 4 \int_0^\frac{1}{2} \int_0^\frac{1}{2} \sum_{l=1}^2 (-1)^{l+1} \binom{2}{l} f(x + l\tau(u_1 + u_2)) du_1 du_2
$$

be the second Steklov function and let us define the functions

$$
F_{hh}(x) = \frac{2}{h} \int_0^h f_\tau \varphi(t_k)(x) d\tau \quad (k = 0, \ldots, M),
$$

and

$$
G_h(x) = \sum_{k=0}^M F_{hh}(x) \Psi_{k-1}(x)(1 - \Psi_k(x)), \quad \Psi_{-1}(x) = \Psi_M(x) = 0.
$$

Then, by virtue of (5.1), for some $A > C$, following an argument analogous to that in [4] or [1], it is possible to prove the inequalities

$$
\sup_{0 < h \leq t} \| (G_h - f) w \|_{L(Ah)} \leq D \sup_{0 < h \leq t} \| w \Delta_{h\varphi}^2 f \|_{L(Ah)}
$$

and

$$
\sup_{0 < h \leq t} \| G_h'' \varphi^2 w \|_{L(Ah)} \leq D \sup_{0 < h \leq t} \| w \Delta_{h\varphi}^2 f \|_{L(Ah)},
$$

with D independent of f and t. Then, using Proposition 1, we deduce

$$
\tilde{K}(C, f, t^2) w \sim \tilde{K}(A, f, t^2) w \leq D\Omega_{\varphi}^2(C, f, t) w
$$

and the proof is complete. \qed

Now we prove

Lemma 6. For all $g \in W^2$ we have

$$
\inf_{q \in \mathcal{P}_1} \| (g - q) w \|_{[0, 2t]} + \inf_{q \in \mathcal{P}_1} \| (g - q) w \|_{[1 - 2r, 1]} \leq c t^2 \| g'' \varphi^2 w \|.
$$

Proof. It is sufficient to prove the inequality for the first term on the left hand side. Let $T \in \mathcal{P}_1$ be the linear Taylor polynomial of g at $2t$; then by Lemma 2

$$
\inf_{q \in \mathcal{P}_1} \| (g - q) w \|_{[0, t]} \leq \| (g - T) w \|_{[0, t]}
$$

$$
= \left\| w(x) \int_x^{At} (u - x) g''(u) du \right\|_{[0, 2t]} \leq \| g'' \varphi^2 w \| \left\| \frac{w(x)}{x} \int_x^t \frac{u - x}{w(u)} du \right\|_{[0, t]}
$$

$$
\leq c t^2 \| g'' \varphi^2 w \|. \quad \square
Lemma 7. For all \(f \in C_w \) we have
\[\omega^2 \phi(f, t)_w \sim K(f, t^2)_w, \]
where the constants involved in “\(\sim \)” are independent of \(t \) and \(f \).

Proof. In order to prove (5.2), we note that
\[\Omega^2 \phi(f, t)_w \leq c K(f, t^2)_w, \]
\[\inf_{q \in P_1} \| (f - q) w \|_{[0, 2r]} \leq \| (f - g) w \|_{[0, 2r]} + \inf_{q \in P_1} \| (g - q) w \|_{[0, 2r]} \]
and
\[\inf_{q \in P_1} \| (f - q) w \|_{[1-2r, 1]} \leq \| (f - g) w \|_{[1-2r, 1]} + \inf_{q \in P_1} \| (g - q) w \|_{[1-2r, 1]} \]

Then, using Lemma 6 and recalling the definition of \(\omega^2 \phi \), the upper estimate in (5.2) follows.

To prove the inverse inequality in (5.2), let \(p_{1,t}, p_{2,t} \in P_1 \) be the linear functions realizing the infimums in (1.6) for a given \(t \). Also, recall that the function \(G_h \) in the proof of Proposition 2 satisfies
\[\| (f - G_h)_w \|_{[2r, 1-2r]} + t^2 \| G_h'' \phi^2 w \|_{[2r, 1-2r]} \leq c \Omega^2 \phi(f, t)_w \leq c \omega^2 \phi(f, t)_w. \]

Now let
\[z_1 = \frac{t}{2}, \quad z_2 = t, \quad z_3 = 1 - t, \quad z_4 = 1 - \frac{t}{2} \]
and introduce the function
\[\Gamma_t(x) = \left[1 - \psi \left(\frac{x - z_1}{z_2 - z_1} \right) \right] p_{1,t}(x) + \psi \left(\frac{x - z_1}{z_2 - z_1} \right) \left[1 - \psi \left(\frac{x - z_2}{z_3 - z_2} \right) \right] G_h(x) + \psi \left(\frac{x - z_2}{z_3 - z_2} \right) p_{2,t}(x) \]
that “glues together” \(p_{1,t}, p_{2,t} \) and \(G_h \). Following a usual procedure (see for instance [4]), it is routine work to prove the estimates
\[K(f, t^2)_w \leq c \| (\Gamma_t - f) w \| + t^2 \| \Gamma_t'' \phi^2 w \| \leq c \omega^2 \phi(f, t)_w \]
which concludes the proof of (5.2). \(\square \)

Now we are ready to prove (2.3). By (2.1), (2.2) and (5.2), for any \(f \in C_w \) and \(g \in W^2 \) realizing the infimum in (5.1) with \(t = 1/\sqrt{n} \) we get
\[\| (f - B_n^*(f)) w \| \leq \| w(f - g) \| + \| B_n^*(f - g) w \| + \| (g - B_n^*(g)) w \| \leq c \left[\| (f - g) w \| + \frac{1}{n} \| g'' \phi^2 w \| \right] \leq c K \left(f, \frac{1}{\sqrt{n}} \right)_w \leq c \omega^2 \phi \left(f, \frac{1}{\sqrt{n}} \right)_w. \]

6. Proof of Theorem 2

By (2.3), it is sufficient to prove that
\[\| w(f - B_n^*(f)) \| = O(n^{-\alpha/2}) \Rightarrow \omega^2 \phi(f, h)_w = O(h^\alpha), \quad 0 < \alpha < 2. \]

(6.1)
Lemma 8. We have
\[\| F_n w \| \leq c \| f w \|. \]

Proof. By (1.5) and the boundedness of the \(\psi \) function, it suffices to prove
\[\| P_1 w \|_{[0,x_1]} + \| P_2 w \|_{[x_2,1]} \leq c \| f w \|. \]
(6.2)

Using the representation (1.2) we obtain
\[|P_1(x)w(x)| \leq \frac{cn^{3/4}}{\| f w \|} \left(\frac{(x_1 - x)w(x)}{w(x_1)} + \frac{|x - x_0|w(x)}{w(x_0)} \right), \quad 0 < x \leq x_1, \]
since by Lemma 1, \(w(x_0) \sim w(x_1) \). Now using Lemma 1 again,
\[\frac{(x_1 - x)w(x)}{w(x_1)} \leq (x_1 - x)e^{-cn^{3/4}(x_1 - x)} \leq \frac{c}{n^{3/4}} \]
and similarly
\[\frac{|x - x_0|w(x)}{w(x_0)} \leq \frac{c}{n^{3/4}}. \]
This settles the estimate of the first term in (6.2); the second term can be estimated analogously. □

Lemma 9. We have for \(\lambda = 1, 2 \),
\[w(x) \sum_{k=0}^{n} \left| F_n \left(\frac{k}{n} \right) \right| \left| x - \frac{k}{n} \right|^\lambda p_{n,k}(x) \]
\[\leq \begin{cases} c\sqrt{w(x)} \| f w \|, & \text{if } 0 < x \leq \frac{1}{n} \text{ or } 1 - \frac{1}{n} \leq x < 1, \\ c\frac{\varphi^\lambda(x)}{n^{\lambda/2}} \| f w \|, & \text{if } \frac{1}{n} < x < 1 - \frac{1}{n}. \end{cases} \]

Proof. Let first \(\frac{1}{n} \leq x \leq 1 - \frac{1}{n} \). By the Cauchy–Schwarz inequality we obtain
\[w(x) \sum_{k=0}^{n} \left| F_n \left(\frac{k}{n} \right) \right| \left| x - \frac{k}{n} \right|^\lambda p_{n,k}(x) \]
\[\leq \left[w^2(x) \sum_{k=0}^{n} F_n^2 \left(\frac{k}{n} \right) p_{n,k}(x) \cdot \sum_{k=0}^{n} \left(x - \frac{k}{n} \right)^{2\lambda} p_{n,k}(x) \right]^{1/2} := B_1 B_2. \]

Here, applying the proof of (2.1) for \(w^2 \) and \(f^2 \) instead of \(w \) and \(f \), respectively,
\[B_1 \leq \| f^2 w^2 \| = \| f w \|^2, \]
while
\[B_2 \leq c \left(\frac{\varphi^{2\lambda}(x)}{n^\lambda} + \frac{\varphi^{2(\lambda-1)}(x)}{n^{\lambda+1}} \right) \leq c \frac{\varphi^{2\lambda}(x)}{n^\lambda}, \quad \frac{1}{n} \leq x \leq 1 - \frac{1}{n}, \lambda = 1, 2 \]
is completely analogous to that used in the proof of (9) in \[5\] and this proves the statement in the interval specified. Now if e.g. \(0 < x \leq \frac{1}{n}\), then by (3.2)–(3.3)

\[
\begin{align*}
w(x) \sum_{k=0}^{n} F_n \left(\frac{k}{n} \right) \cdot \left| x - \frac{k}{n} \right| p_{n,k}(x) & \leq c \frac{n^{5/4} w(x)}{w(1/\sqrt{n})} \| f w \| \\
& \leq c \| f w \| n^{5/4} \exp \left(- \frac{1}{\sqrt{x}} + n^{1/4} \right) \leq e^{-1/(2\sqrt{n})} \| f w \|, \quad 0 < x \leq 1/n. \end{align*}
\]

Lemma 10. We have

\[
\| B_n^{\ast''}(f) \varphi^2 w \| \leq c n \| f w \|, \quad f \in C_w.
\]

Proof. We consider the following representation:

\[
B_n^{\ast''}(f, x)\varphi^2(x) = -n B_n(F_n, x) + \frac{n^2}{\varphi^2(x)} \sum_{k=0}^{n} F_n \left(\frac{k}{n} \right) \left(x - \frac{k}{n} \right)^2 p_{n,k}(x) \\
- \frac{n(1-2x)}{\varphi^2(x)} \sum_{k=0}^{n} F_n \left(\frac{k}{n} \right) \left(x - \frac{k}{n} \right) p_{n,k}(x),
\]

whence by Lemma 9,

\[
\begin{align*}
| B_n^{\ast''}(f, x)|\varphi^2(x)w(x) & \leq cn B_n^{\ast}(f, x) w(x) + \frac{n^2}{\varphi^2(x)} w(x) \sum_{k=0}^{n} F_n \left(\frac{k}{n} \right) \left(x - \frac{k}{n} \right)^2 p_{n,k}(x) \\
& + \frac{n}{\varphi^2(x)} w(x) \sum_{k=0}^{n} \left| F_n \left(\frac{k}{n} \right) \right| \left| x - \frac{k}{n} \right| p_{n,k}(x) \leq c \left(n + \sqrt{n} \varphi(x) \right) \| f w \| \leq c n \| f w \|. \end{align*}
\]

Lemma 11. We have

\[
\| B_n^{\ast''}(f) \varphi^2 w \| \leq c \| f'' \varphi^2 w \|, \quad f \in W_2.
\]

Proof. We consider the representation

\[
B_n^{\ast''}(f, x) = n(n-1) \sum_{k=0}^{n-2} 2_{1/n}^{2} f \left(\frac{k}{n} \right) p_{n-2,k}(x)
\]

(see e.g. [2], formula (34)), whence

\[
| B_n^{\ast''}(f, x)|\varphi^2(x)w(x) \leq c \| f'' \varphi^2 w \| \sum_{k=1}^{n-3} \frac{w(x)\varphi^2(x)}{w(k/n)\varphi^2(k/n)} p_{n-2,k}(x).
\]

Here the sum is of the same character as in the proof of (2.1), but with \(w\varphi^2\) instead of \(w\). It is easy to see that all the considerations performed in proving (2.1) remain in effect, and the sum proves to be bounded. \(\Box\)

After these preparations, the proof of (6.1) is completely analogous to that used in the proof of (9) in [2], applying Lemma 9.3.4 from [4,3]. We omit the details.
Acknowledgments

The second named author’s work was sponsored by the Ministero dell’Istruzione, dell’Università e della Ricerce, PRIN 2006 ”Numerical methods for structured linear algebra and applications”. The third named author’s work was supported by the Hungarian National Science Foundation (OTKA) No. T 049196. We sincerely thank the referees for the careful reading of the manuscript and pointing out many inaccuracies in the original version of the paper.

References