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Abstract 

The multigrid performance of pointwise, linewise and blockwise Gauss-Seidel relaxations for compressible laminar 
and turbulent Navier-Stokes equations is illustrated on two low-speed test problems: a flat plate and a backward facing 
step. The line method is an Alternating Symmetric Line Gauss-Seidel relaxation. In the block methods, the grid is 
subdivided into geometric blocks of n x n points with one point overlap. With in the blocks, the solution is obtained by 
a direct method or with an alternating modified incomplete lower-upper decomposition. The analysis is focused on flows 
typical for boundary layers, stagnation and recirculation regions. These are characterized by very small Mach numbers, 
high Reynolds numbers and high mesh aspect ratios. 
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I. Introduction 

In recent times, conjugate gradient (CG) and GMRES-methods have gained much popularity as 
fast solvers for Euler and Navier-Stokes equations [5]. These techniques have become serious 
competitors to the more classic multigrid methods. Viewed as linear system solvers, the three 
techniques can be seen as different ways to accelerate convergence of basic iterative solvers. For 
medium-sized linear problems, all three techniques are about equally effective. For sufficiently 
large problems, multigrid methods, in principle, are faster since the convergence rate is, ideally, 
independent of the problem size [9]. This last statement is valid for optimal preconditioners (or 
smoothers) for the three methods. This has been proved numerically by several researchers [-1, 2]. 
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Furthermore, GMRES and CG are linear techniques while MG can be applied to nonlinear 
problems. These linear methods have further the disadvantage of requiring a large amount of 
memory. 

Most multigrid methods for compressible Navier-Stokes equations in the past have been 
formulated on the basis of simple smoothers, like pointwise Gauss-Seidel methods. Especially for 
turbulent applications more complex smoothers have not attracted wide attention up to now. This 
includes our own work [3, 6]. It is clear that for optimal performance much more powerful 
smoothers are necessary. Especially for low Mach number and high Reynolds number flows, 
pointwise methods degrade in performance. The degradation due to high Reynolds number was 
already examined by Kettler [4] and Wesseling [8] based on their study on scalar convec- 
tion-diffusion equations for high Reynolds number. 

From their smoothing analysis it follows that alternating symmetric line Gauss-Seidel (ASLGS) 
relaxation and incomplete lower-upper (ILU) decomposition methods are the most robust and 
efficient smoothers. Degradation due to low Mach number cannot be studied by means of scalar 
model equations as they neglect the presence of different velocity scales, typical for Navier-Stokes 
equations. Especially, for low-speed flows, there is a large discrepancy between the convective and 
acoustic velocities. As a consequence the stiffness of the system increases, resulting in a supple- 
mentary convergence deceleration. 

2. Smoothing characteristics 

In order to study the Mach effect, the smoothing analysis of Kettler and Wesseling for scalar 
model equations was extended by the authors to collective variants of relaxation methods applied 
to linearized systems of Navier-Stokes equations I-7]. By a collective variant is meant that the 
Navier-Stokes equations are treated as a coupled 4 x 4 (laminar) or 6 x 6 (turbulent with k-e 
model) system in each node. The results for the scalar equations were confirmed. For low Mach 
number (M = 10-3), high Reynolds number in flow direction (10 6 o n  cell basis), grid aspect ratios 
varying from 1 to 1000, the smoothing properties of the ASLGS and AMILU (1) were found to be 
excellent and by far superior to the smoothing properties of pointwise Gauss-Seidel relaxation 
(PGS). 

A single PGS has very poor smoothing properties. Combinations of PGS-relaxations can lead to 
better smoothing. A symmetric PGS (PGS2) is a combination of two single PGS each started in an 
opposite corner of the grid. The combination of four sequential PGS-steps each started from 
a different corner (PGS4) was found to be necessary to improve smoothing and robustness. The 
following ordering of the relaxations was chosen: (1) starting from the left lower corner marching 
along vertical lines upwards, line after line in forward order; (2) starting from the right upper corner 
marching along vertical lines downwards, line after line in backward order; (3) starting from the left 
upper corner marching along horizontal lines forwards, line after line in downward order; 
(4) starting from the right lower corner marching along horizontal lines backwards, line after line in 
upward order. 

In the line Gauss-Seidel method, a full geometric line is placed on the new iteration level. For 
instance, we can choose vertical lines and forward marching direction. A LGS is called symmetric 
when a forward sweep is followed by a backward sweep (SLGS). An alternating line relaxation 
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(ALGS) consists of a (forward) vertical line relaxation (VLGS) followed by a (forward) horizontal 
line relaxation (HLGS). The best smoothing properties were obtained by an alternating symmetric 
LGS (ASLGS) with the following sequence: (1) HLGS with an upward sweep; (2) VLGS with 
a backward sweep; (3) HLGS with a downward sweep; (4) VLGS with a forward sweep. 

The linearized system of equations obtained from the discretization of the Navier-Stokes 
equations can be written as A x  = b, where A is a sparse matrix with five co-diagonals each having 
elements of 4 x 4 (laminar) or 6 x 6 (turbulent with k-e model) submatrices. With incomplete 
factorization a splitting A = M - N is generated where M is a sparse matrix easy to factorize in 
a lower matrix with unit diagonal L and an upper matrix U: A = M - N = L U  - N .  The elements 
of the matrices L and U are 4 x 4 or 6 x 6 submatrices. 

During the factorization either no fill-in is allowed in L and U (ILU(0)) leading to a product L U  

with 5 co-diagonals or one position of fill-in is allowed in L and U (ILU(1)) leading to a product 
L U  with 7 co-diagonals. By a modified ILU (MILU) is understood that terms generated during the 
factorization that fall outside allowed positions are not simply thrown away but are partially 
absorbed in the diagonal of U. The procedure used here is that the absolute values of the terms in 
a row are added to the diagonal element of that row after multiplication with a factor a. In order to 
obtain good smoothing, alternating the visiting order of the nodes has been used (A(M)ILU): 
(1) starting from the left lower corner marching along vertical line upwards, line after line in 
forward order; (2) starting from the left upper corner marching along horizontal lines forwards, line 
after line in downward order. Steps 1 and 2 are applied twice. The choice of the steps is based on the 
4 steps in the PGS4 method. We remark however that a step symmetric to step 1, i.e., marching 
along vertical lines downwards, line after line in backward order, results in the same fill-in positions 
as step 1 itself. In the same way, a step symmetric to step 2 gives the same fill-in positions as step 
2 itself. Therefore, it does not make much sense to symmetrize the steps. The two steps are repeated 
to have the same number of steps as in the PGS4 method. 

The optimal o--factor depends on the grid size and the direction of the flow with respect to the 
grid lines. For extreme fine grids and flow aligned with the grid, the a-factor can be as low as 
o- = 10 -4. In practice, larger factors are to be used. 

A specific drawback of the ILU-method is that the L- and U-matrices have to be stored in 
memory. For larger problems this is prohibitive. The method adopted in this work consists in 
subdividing the global grid into blocks with one line overlap. The blocks are visited sequentially 
like in the point Gauss-Seidel method (block Gauss-Seidel: BGS) using the four steps. Within the 
blocks the approximate solution of the system is obtained by the AMILU-method. In the blocks 
themselves nodes are visited in the order that accords with the marching direction between the 
blocks (pattern 1 or 2). In this way, the blockwise relaxation method has the properties of the 
AMILU(1) for large block size and the properties of the PGS4 for small block size. 

3. Muitigrid results 

The discretization of the laminar and turbulent flow equations is based on [-3, 6-1. The multigrid 
uses four grids in a W-cycle with four iterations on each grid level (pointwise, linewise or 
blockwise). Full weighting is used for the restriction of the defects, injection for the restriction of the 
variables and bilinear interpolation as prolongation of the correction. A second-order correction 
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for the convective terms based on a minmod-limiter is put on the right-hand side for all cases. Two 
versions of the second-order implementation into the multigrid have been considered. In the 
defect-correction formulation (DC), the second-order correction is updated once on the finest grid 
after each cycle. In the mixed discretization formulation (MD), the second-order correction is 
updated at each iteration on the finest grid. Both in the ASLGS and the AMILU(1)  methods an 
underrelaxation factor m = 0.8 is used for the defect correction cycle whereas m = 0.5 is used for the 
mixed discretization. 

Fig. 1 shows the convergence behaviour for a laminar flow over a flat plate of 1.34 m length with 
a sharp leading edge discretized on a 385 x 97 grid (test case 1). The inlet of the computational  
domain is 0.25 m upstream of the leading edge. The leading edge is at position (97, 1). This test case 
was also used in [3, 6]. The uncoming Mach number  is M = 0.015 and the Reynolds number  is 
3.3.105/m. The residue shown is the maximum over all equations and all grid points. The 
second-order accuracy is obtained by defect correction. Curve a represents a PGS4 while curves b, 
c and d are all BGS-methods with different block sizes: 3 x 3, 5 x 5, 13 x 13. Within the blocks, the 
solution is obtained here with a direct method. Increasing the size obviously enhances the 
convergence. This shows the principal strength of more complete solvers. The ASLGS method 
(curve e) results in almost the same convergence rate as the BGS 5 x 5. Better convergences rates 
are obtained for the same test case with mixed discretization (Fig. 2): curve b: BGS 13 x 13; curve c: 
ASLGS; curve d: AMILU(1)  on a maximum block size of 97 x 97 and a = 0.3. For  comparison, the 
ASLGS in defect correction formulation is given (curve a). The advantage of the mixed discretiz- 
ation is clear. The advantage of the blockwise solver is clear when the performance is evaluated in 
terms of cycles. The blockwise solver however, is, much more expensive than the linewise solver. 
The required CPU-t ime to reach full convergence (reaching of machine accuracy) is shown in 
Table 1 in a relative way where the PGS4 method in combination with a defect correction is taken 
as baseline. Convergence was reached in 154 h for the baseline on a HP730 with a 85 SpecMark89 
performance and with a memory  capacity of 32 MBytes. The AMILU(1)  needs more time for full 
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Fig. 1. Convergence histories for laminar flat plate flow (385 x 97) in defect correction: (a) PGS4, (b) BGS 3 x 3; (c) BGS 
5 x 5, (d) 13 x 13 and (e) ASLGS. 
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Fig. 2. Convergence histories for laminar flat plate flow (385 x 97) in mixed discretization (MD) and defect correction 
(DC). (a) ASLGS (DC), (b) BGS 13 x 13 (MD), (c) ASLGS (MD) and (d) AMILU(1) 97 x 97 (MD). 

Table 1 
Relative CPU cost needed to reach convergence; laminar test cases 

Case PGS4 (DC) ASLGS (DC) ASLGS (MD) AMILU(1) (MD) BGS (MD) 

1 1 0.751 0.448 0.533 9.050 
2 1 1.108 0.880 0.973 NA 

Fig. 3. Backward facing step with expansion ratio of 1 : 2. 

convergence than the ASLGS. This means that on the basis of CPU-time, the ASLGS is the most 
efficient solver. 

The second test case is backward facing step with an expansion ratio of 1:2 discretized on 
a 97 × 33 grid (Fig. 3). The inlet velocity profile is parabolic. For the maximum velocity the Mach 
number is 0.015 and the Reynolds number based on a channel height is 300. In Fig. 4, the influence 
of the grid size on the MG-performance is demonstrated. A four-level M G  on the base grid is 
compared with a five-level M G  on a 193 × 65 grid. Curves (a) and (b) show the same performance 
(~- 30 MG-cycles) for a first-order discretization solved by an ASLGS, as is expected from the 
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Fig. 4. Convergence histories for laminar backward facing step: (a) ASLGS (97 x 33), (b) ASLGS (193 x 65), (c) ASLGS 
(DC) (97 x 33) and (d) ASLGS (DC) (193 x 65). 
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Fig. 5. Convergence histories for laminar backward facing step (97 x 33; Reh = 300): (a) ASLGS (MD), (b) AMILU(1) 
97 x 97 (MD), (c) AMILU(1) 33 × 33 (MD) and (d) AMILU(1) 17 x 17 (MD). 

theory. However, as the second-order discretization cannot be taken into the MG-cycle, 
the performance decreases with increasing node numbers. Curves (c) and (d) correspond to the 
ASLGS-DC implementation for base grid and finer grid. Results for mixed discretization are 
shown for ASLGS (curve a) and AMILU(1) with a -- 0.1 in Fig. 5. The effect of block size for the 
AMILU method is illustrated. Curve b corresponds to an AMILU-method applied to the whole 
field (still within the memory capacity of the computer system) while curves c and d correspond to 
the maximum block size of 33 x 33 and 17 x 17. An important loss of performance by reduction of 
block size is observed. The relative CPU-time, given in Table 1, does not reveal spectacular gains 
among the different methods. The PGS4-method, chosen as baseline, reached full convergence in 
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53 min. Due to the low Reynolds numbers, the smoothing characteristics of the considered 
methods are comparable  resulting in similar CPU-costs .  Nevertheless, the ASLGS method in 
MD-vers ion is the most  efficient method. 

A similar comparison is made for turbulent flow on a flat plate (test case 1). The Yang-Shih low 
Reynolds number turbulence model is employed. The same mesh is used as in the laminar test case. 
The freestream turbulence level is set at Tu = 3%, the Mach number  at M - - 0 . 0 1 5  and the 
Reynolds number  at 3.3. 105/m. The inclusion of the turbulence equations into the multigrid cycle 
is not straightforward as corrections from the coarse grids can, especially in the beginning of the 
convergence, result in negative values for the turbulence quantities k and e [3]. Two versions are 
considered here. The first version performs a MG-cycle on the Navier-Stokes  equations but  not on 
the turbulence equations which are only solved on the finest grid. In the second version, the 
turbulence equations are put into a MG-cycle with a damping of the corrections from the coarse to 
fine grid according to [-3]: ~b,ew = (~bo~d + ~(/)+)/((/)eld- ~b-)l])old, where ~ = 0.3 (q5 represent 
either k or e). The values 6~b + and 6q5- are, respectively, the positive or negative corrections. By this 
formulation, any negative correction will never turn a turbulent quantity into a negative value. In 
Fig. 6, curves a l  to dl  represent the convergence histories for the Navier-Stokes  equations while 
curves a2 to d2 represent the convergence histories for the turbulence equations. Curves a and 
b correspond to ASLGS, curves c and d to AMILU(1)  with a maximum block size of 49 x 49 and 
a = 0.3. 

By bringing the turbulence equations into the multigrid, the convergence of the turbulence 
quantities is improved for the ASLGS method. However,  this only results in a small benefit for the 
Navier-Stokes  part. Further, the principal superiority of the AMILU(1)  method over the ASLGS 
method is clear. The PGS4 method with k and ~ in M G  (not shown) reached convergence in 4000 
MG-cycles or 154 h in CPU-time.  The same remarks hold as for the laminar test cases. The 
A M I L U -  and PGS4-method are more time consuming so that in CPU-t ime the ASLGS method is 
advantageous. This can be seen in Table 2 where the PGS4 with k and e in M G  is taken as baseline 
for the first turbulent test case. 

A symmetric turbulent backward facing step is taken as last case with a step height of 5.4 mm 
and the downstream channel height h -- 135.0 mm. The Mach number is M = 0.01, the Reynolds 
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Table 2 
Relative CPU cost needed to reach convergence; turbulent test cases 

Case PGS4 (MG) ASLGS (SG) ASLGS (MG) AMILU(1) (SG) AMILU(1) (MG) 

1 1 0.615 0.541 0.653 0.781 
2 N.A. 1 Not converged 1.127 Not converged 
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Fig. 7. Convergence histories for turbulent backward facing step (385 x 97) in mixed discretization: (a) ASLGS k and e in 
SG, (b) ASLGS k and e in MG, (c) AM1LU(1) 49 x 49 k and e in SG and (d) AMILU(1) 49 x 49 k and e in MG. 

number Reh = 2957 and the grid size 385 × 97. The grid is similar to the one shown in Fig. 3 but 
with a large stretching rate in order to obtain grid points suffÉciently close to the walls. The upper 
boundary is a symmetry line. Fig. 7 shows the convergence for the ASLGS-method (curve a and 
b for the first and second MG-version) and the AMILU(1)-method (curve c and d) with o- = 0.1 on 
a maximum block size of 49 x 49. The damping of the coarse grid corrections for k and e (second 
MG-version) is apparently not sufficient to guarantee convergence (curves b2 and d2). k and ~ have 
limit cycle behaviour (explained below) preventing the convergence of the Navier-Stokes quantities 
(curves bl and dl ) .  Also in the first MG-version, the residues for k and ~ do not decrease as deeply 
as for the turbulent flat plate. In the recirculation region, the values of k and e tend toward very 
small values, often leading to negative values. These are replaced explicitly by small positive values. 
By this limiting procedure, the residuals of the equations cannot converge to machine zero. The 
observation is that by refining the grid, the occurrence of negative turbulence quantities is 
diminished. The Navier-Stokes quantities (curves al and cl) finally converge to the level of the 
turbulence quantities (curves a 2 and c2). The obtained convergence level is sufficient (seven orders 
of magnitude). Also for this test case the ASLGS method is cheaper than the AMILU(1) method as 
can be seen in Table 2 where ASLGS (SG) is taken as baseline. The behaviour is the same as for the 
laminar case (Table 1). 

The observation that bringing the turbulence equations into the multigrid formulation does not 
enhance the convergence, or even obstructs it, is in contrast to the results of earlier work [3, 6]. The 
difference is that now the more powerful linewise and blockwise methods are used, while in the 
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earlier work it was the pointwise method. For the pointwise method it was found that bringing 
the turbulence equations into the multigrid formulation was beneficial. An explanation for this 
different behaviour can be found in the character of the equations for the turbulence quantities 
which are largely driven by the source terms. As these terms depend on derivatives of flow 
quantities, their smoothness depends on the smoothness of the flow quantities. For the linewise and 
blockwise methods the smoothing is strong. So smoothness of the source terms in the turbulence 
equations is guaranteed. As a consequence, bringing the turbulence equations into the multigrid 
cannot result in much effect. These turbulence equations have convective and diffusive parts that 
are less significant then the source part. As the smoothing of a relaxation method has to come from 
the convective and diffusive parts in the equations, not much supplementary smoothing can be 
obtained for the turbulence equations. The situation is different if the relaxation method is weak 
like the pointwise method. In that case, smooth source terms cannot be guaranteed by the 
relaxation of the Navier-Stokes equations. The only smoothing for the turbulence equations has to 
come from the treatment of the convective and diffusive terms. 

4. Conclusions 

For low Mach number flow, an important  convergence improvement has been obtained over the 
PGS4 method by the ASLGS and AMILU(1) methods. Due to the memory requirements, the size 
of the blocks within the BGS-method is automatically smaller than for the AMILU(1) method 
resulting in lower smoothing characteristics. This lower performance in combination with the 
higher CPU-cost makes the BGS-method unattractive. In most test cases, the AMILU(1) method 
performs better than the ASLGS method in terms of MG-cycles but not in terms of CPU-cost. 
Furthermore, the AMILU(1) has a higher memory requirement. Both AMILU(1) and ASLGS 
allow a mixed discretization which nearly doubles convergence speed with respect to the defect 
correction implementation. The general conclusion is that the ASLGS method is to be preferred. 

A multigrid formulation of the k-e equations requires damping of the coarse grid corrections. 
The convergence plots indicate that no acceleration for the flow quantities is obtained by bringing 
the turbulence equations into the multigrid formulation in the cases where good smoothers are 
applied, i.e., ASLGS and AMILU(1). 
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