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a  b  s  t  r  a  c  t

Rapid  proliferation  of  the  distributed  energy  resources  (DERs)  poses  operational  challenges  for the  low-
voltage  (LV)  distribution  networks  in terms  of  thermal  overloading  of the network  assets  along  with
voltage  limit  violations  at the connection  points.  A number  of market-based  and  direct control  approaches
have  been  widely  developed  to tackle  these  challenges  with  different  objectives.  While  most  of  the  tech-
niques  aim  to  solve  the  problems  separately,  an  integrated  and  efficient  method  is  missing  to  handle
such  correlated  issues  simultaneously.  In this  study,  a unified  approach  combining  local  voltage  control
mechanism  with  a centralized  congestion  management  scheme  is  proposed  by utilizing an  agent-based
hierarchical  architecture.  The  feasibility  of  the  proposed  approach  is  validated  with  a  simulation  anal-
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ocal voltage control
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ysis for  a representative  Dutch  urban  LV network  considering  up to  100%  penetration  of solar  PV  and
electric  heat  pumps  (HPs).  The  quantitative  analysis  reveals  that, local  voltage  control  strategies  can
essentially  aid  mitigating  thermal  overloading  of  the  network  assets.  Thus,  integrating  a local voltage  con-
trol  method  with  a coordinated  congestion  management  mechanism  can  enhance  the  system  flexibility
while  maintaining  the  network  constraints  and  the comfort  levels  of  the  consumers  simultaneously.

© 2016  The  Author(s).  Published  by Elsevier  B.V.  This  is an  open  access  article under  the  CC  BY license
. Introduction

The electrical power distribution network has been conven-
ionally developed in a ‘fit-and-forget’ approach due to the
elatively longer life time of the network assets enabling a much
onger planning horizon for the network operators [1]. With the

idespread integration of distributed energy resources (DERs)
ncluding renewable energy sources (RES) and electrification of
ransport and heating sectors, the distribution network has been
ecently moving towards a more actively controlled system, so-
alled active distribution network (ADN) [2]. The intermittent and
npredictable nature of DERs pose various operational challenges

ike network congestions and voltage limit violations for the dis-
ribution network operators [2–4]. As reported in Ref. [5], network
perators in Italy, Spain, Ireland and Germany having long feeder
engths and high RES penetration are facing frequent local voltage

imit violations. On the other hand, densely clustered urban distri-
ution networks are becoming more prone to network congestions

n the upcoming years. In the Netherlands, a scenario-based anal-
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ysis presented in Ref. [6] shows that, with future load growth and
new generation technologies, 87% of the MV/LV transformers will
be overloaded in 2040.

Network reinforcement has been considered as the conven-
tional approach to tackle such network operational challenges.
However, reinforcing the network components necessitates a huge
investment although the peak loads will generally occur only for
a few hours in a year [7–9]. An alternative approach is to utilize
the existing infrastructure more efficiently by either a central-
ized or a decentralized control system. In Ref. [10], a centralized
system using remotely controlled switches is investigated to mini-
mize the amount of curtailed distributed generation (DG) to resolve
overloads in a distribution network. A decentralized approach for
real-time management of local voltage and thermal constraints
is presented in Ref. [11] that avoids the need of extensive sens-
ing and communication procedures. A robust solution of the load
curtailment problem is presented in Ref. [12] that proposes a
rolling horizon formulation of the optimization problem based on
approximate dynamic programming (ADP) techniques. Advanced
curtailment mechanisms based on ‘hosting capacity’ is presented

in Ref. [13] to relieve congestions resulting from the RES-based
generation technologies. A study performed in a typical Danish
LV network is presented in Ref. [14] considering 100% penetration
of HPs and EVs, which concludes that a simple merit-order based
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Table 1
R/X values for typical LV distribution cables.

Cable type R (�/km) X (�/km) R/X

150 mm2 Al 0.206 0.079 2.61
95  mm2 Al 0.320 0.082 3.90
50 mm2 Al 0.641 0.085 7.54
16  mm2 Al 1.910 0.096 19.90
35  mm2 Cu 0.532 0.074 7.19
50  mm2 Cu 0.387 0.072 5.38
A.N.M.M. Haque et al. / Electric Pow

irect control mechanism can efficiently tackle local congestions in
he residential LV network. A mixed-integer programming based
election mechanism is presented in Ref. [15] for curtailment of
ctive power consumption in radial LV network considering flexible
apacity contracts.

Apart from congestion, voltage level violations have been a more
requent issue in the distribution networks with long feeder lengths
nd high penetration of DERs [16]. Due to the resistive feature of
V networks, active power curtailment becomes an effective solu-
ion to cope with voltage variations. Different approaches of active
ower curtailment have been widely studied to mitigate overvolt-
ge in the LV networks [11,16–18]. A power factor management
cheme is proposed in Ref. [16] to locally mitigate voltage rise to
aximize the connected DG capacity. The method is extended to a

wo-stage mechanism prioritizing reactive power control at lower
pportunity cost while using generation curtailment as the last
lternative [11]. A droop-based active power curtailment method-
logy is proposed in Ref. [18] for overvoltage prevention in the
esidential LV networks. A sensitivity-based droop characteristic
s devised to allow a uniform curtailment for connected inverters
n a radial distribution feeder. A multi-agent systems (MAS) based
ierarchical approach of active power curtailment is presented in
ef. [17] that combines a droop-based local control with a central-

zed overlaying control in order to curtail the PV injection fairly
mong the consumers.

While most of the techniques aim to solve the network prob-
ems separately, these issues are subject to change along with the
ifferent time horizons, i.e. peak and off-peak times, weekdays
nd weekends, or with seasonal variations. Furthermore, they are
orrelated and might occur in different network levels, i.e. volt-
ge violations at the local level of the point of common coupling
hile network congestions are likely at the area level of the dis-

ribution transformer or main outgoing feeders. The aim of this
aper is to solve these correlated issues with the following main
ontributions:

A unified approach to deal with both network congestions and
voltage limit violations in various time horizons, and
An agent-based hierarchical architecture to exploit flexibility
resources from different DERs in the LV network considering up
to 100% penetration of solar PV and HPs.

The remainder of the paper is organized as follows. First, the
roblems of congestions and voltage limit violations in a radial LV
etwork are analyzed. Next, the proposed unified approach is dis-
ussed along with the decentralized system architecture followed
y the description of the related case study. Finally, simulation
esults are presented and conclusions are drawn with recommen-
ations for possible future works.

. Problem analysis

.1. Voltage variations

Owing to the very high number of connected end-users and
iversity of loads, voltage variations in the LV networks are higher
han the same in the MV and HV networks. In a radial LV network,
oltage variation depends not only on the local power consump-
ion but also on locally injected power and the impedance of the

etwork [17]. Voltage at the receiving end of a cable section, VR can
e expressed as,

R = VS − IR(R + jX)  (1)
10  mm2 Cu 1.837 0.088 20.88
6  mm2 Cu 3.061 0.100 30.61

where R + jX is the impedance of the distribution cable, VS is the
voltage at the sending end, and IR denotes the current through the
cable section.

If the connection point at the receiving end constitutes local
active and reactive power generation PG and QG , with local active
and reactive power consumptions PL and QL respectively, Eq. (1)
can be rewritten as,

VR = VS −
{

(RPR + XQR) − j (RQR − XPR)
VR

}
(2)

where PR = |PL| − |PG| and QR = |QL| − |QG|.
As shown in Table 1, typical LV underground power cables are

predominantly resistive in nature due to a high R/X ratio. Con-
sequently, the active power has a bigger impact on the voltage
variations along the feeder [19–22]. Thus Eq. (2) can be simplified
as:

VR ≈ VS −
{

(RPR)
VR

}
(3)

As a result, the relation between the sending and receiving end
voltages can be represented as shown in Eq. (4).

VR > VS when, PG > PL

VR < VS when, PG < PL

(4)

In order to compensate for the voltage drop and to avoid subsequent
undervoltage at the end of the feeder, the secondary side voltage of
a MV/LV transformer is usually set at 1.01–1.05 p.u. [23]. However,
when the local generation at the connection points exceed local
loads, voltage level along the feeder rises and the connection point
at the end of the feeder experiences overvoltage. On  the other hand,
another feeder with a higher amount of loads than local generation
experiences voltage drop along the feeder.

2.2. Network congestions

Congestions or thermal overloading are likely to occur for cables
as well as the transformers in the network. However, for the sake
of simplicity, the focus of this work is limited to addressing the
congestions in the MV/LV transformer only. Loading of a MV/LV
transformer can be calculated from the current flowing in the out-
going feeders. Vs and Is being the voltage at the LV bus and total
current respectively, instantaneous load of the transformer at time
t, St

ins
is given by:

St
ins = VsIs (5)

Congestions occur in a MV/LV transformer when the loading of
the transformer, St

ins
exceeds the thermal rating, Smax caused either

by increased residential loads or reverse power flows from the
domestic DG units. Consequently, congestions can occur simulta-

neously along with the local voltage limit violations in the network.
A coordinated mechanism is therefore necessary in order to limit
residential consumptions or curtail active power production at the
connection points for resolving the congestion. For the sake of
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implicity, both of the cases will be termed as active power cur-
ailment in the remainder of the paper. To relieve the congestion,
otal required curtailment, Pcurtail can thus be calculated as:

curtail ≥ |St
ins| − |Smax| (6)

curtail =
N∑

i=1

Pcurtail,i (7)

here Pcurtail ,i denotes the amount of curtailed active power at each
f the N connection points downstream of the transformer.

.3. Correlation of network issues

As shown in Eq. (5), congestion in the transformer necessi-
ates a higher flow of current in the network which causes an
ncreased voltage drop along the cables. Consequently, voltage lev-
ls at the end of the feeder gets lower and undervoltage problems
ecome prominent. HV/MV transformers are usually equipped with
n Load Tap Changers (OLTC) to keep the voltage levels within

 desired range of values. This enables to keep the voltage levels
n the MV  feeders uncorrelated and regulate downstream MV  and
V networks. Unlike their HV/MV counterparts, MV/LV transform-
rs normally have a fixed tap setting which can only be altered
hrough an off-line maintenance. Hence, voltage levels in the LV
etworks are subject to frequent fluctuations following the change

n the upstream MV  networks [23].
With the increasing share of the RES-based local generation,

ncreasing the voltage set point at the secondary side of the MV/LV
ransformer does not represent an optimal solution to tackle these
oltage problems in the LV network. Different types of mechanisms
re being used to tackle such problems for example-by reinforc-
ng the network assets, shifting loads or by curtailing active power
njection [7,24–26]. However, the operational challenges of such
oltage variations and congestions are subject to large variation,
epending on the daily and seasonal differences in load and gener-
tion patterns. Finding a suitable solution is therefore difficult due
o the inherent unpredictability of the network operations. A uni-
ed approach is therefore significant to address the needs in the
ame network in different times of the year.

. Proposed unified approach

The proposed unified approach aims to manage thermal over-
oading of the MV/LV transformer along with the voltage limit
iolations at the connection points. A decentralized local control
ethod is adopted to continuously monitor and mitigate voltage

evel violations at the connection points.
LV distribution networks are typically allowed to operate within

 certain range of nominal voltage, Vmin and Vmax. Therefore, the
oltage level at connection point, i is bound by the following con-
traint [27],

Vmin ≤ Vi ≤ Vmax ∀i ∈ N (8)

here N denotes the set of connection points in the network. In
his work, the upper and lower limits are considered to be 1.1 p.u.
nd 0.9 p.u. respectively. The local control mechanism optimizes
omestic appliances and local generation units in order to maintain
he voltage levels within the acceptable margin.

The unified approach is formulated by complementing the local
ontrol with a centralized congestion management mechanism

CM) as shown in Fig. 1. Unlike the local control, the centralized
ontrol is executed in discrete time steps. The process is coordi-
ated by the distribution system operator (DSO) as the conditions at
ime t = t0 dictates the actions to be implemented at time t = t0 + �t,
Fig. 1. Formulation of the unified approach by local voltage control and congestion
management.

where �t  represents the time interval between two consecutive
steps.

Upon violation of the thermal constraints of the transformer, a
curtailment plan is prepared to identify the locations and amount
of active power curtailment. Preferences of the individual connec-
tion points are considered in terms of comfort levels and fairness of
generation curtailment. Thus, the overall objective of the approach
can be formulated as minimization of the interruption while main-
taining the consumers’ preferences and comfort.

min  Pcurtail (9)

subject to,

Pcurtail ≥ |St
ins| − |Smax| (10)

3.1. Local voltage control

In this research, we  aim to cope with both under- and overvolt-
age problems by introducing the following mechanisms:

3.1.1. Overvoltage mitigation
Two distinct control schemes are discussed that aim to curtail

active power injection from the PV inverters when voltage levels
exceed certain threshold values. The mechanisms are as follows:

a. P-V droop control
Different types of droop control methods namely P-V,  Q-V, P-f

have been discussed and implemented as effective tools to maintain
the security constraints of the network [16,17,28–31]. The well-
established P-V droop control mechanism has been integrated in
this work, where output active power of the PV inverter, Pnet is
set at the maximum power point, PMPP during normal operations
and is reduced following a linear function if the voltage levels at
the connection point, Vm exceeds the threshold level of Vuth. As
shown in Eq. (11), the inverter is switched off when the voltage
levels exceed the upper limit of the acceptable range, Vub.

Pnet =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

PMPP ∀Vnom < Vm ≤ Vuth

PMPP − PMPP
(Vm − Vuth)
(Vub − Vuth)

∀Vuth < Vm < Vub

0 ∀Vm ≥ Vub

(11)

where Vnom denotes the nominal voltage levels at the individual
connection points.

b. Sensitivity-based control
The sensitivity-based control aims to trim active power injec-

tion from the PV inverters based on a voltage/active power (ıV/ıP)
sensitivity calculation [16,32]. The method takes in account the
instantaneous voltage levels at the connection point, Vm and in case
of the violation of threshold (Vuth), calculates the required amount
of curtailment, �P  as expressed by Eq. (12). The resulting power

output, Pnet can thus be calculated as shown in Eq. (13).

�P  = Vm − Vuth

ıV/ıP
(12)
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net =

⎧⎪⎨
⎪⎩

PMPP ∀Vnom < Vm ≤ Vuth

PMPP − �P  ∀Vuth < Vm < Vub

0 ∀Vm ≥ Vub

(13)

The voltage/active power sensitivity depends on the network
opology. In a radial LV distribution network, the sensitivity
emains mostly of the same order and can be obtained from the
acobian matrix through an off-line power flow calculation [17,18].
he value of the sensitivity can be set by the DSO at the local volt-
ge control mechanism of the inverter and may  be revised in case

 modification in network topology is expected.

.1.2. Undervoltage mitigation
Contrary to the overvoltage problem, undervoltage instants

ccur when the connection points in the network represent higher
oad consumptions as with the case of large-scale penetration of
Ps for meeting the heating demand during the winter. The heat
umps are comprised of a pump that performs external work to
ransfer heat from a cold reservoir (air, water, ground etc.) to a
armer reservoir (house, buildings) and a resistive heating ele-
ent. To prevent the undervoltage problems in the network, the

ower consumption of the heat pumps are controlled maintain-
ng the thermal comfort of the inhabitants. Two  different types of
ndervoltage control schemes are explained as follows:

a. Linear droop control
Linear droop control aims to curtail the active power consump-

ion of the resistive heating element of the heat pump following
 linear slope as illustrated in Fig. 2(a). P′

HP being the demanded
ower by the heat pump controller, upon violation of the lower
hreshold of the voltage limit, Vlth the active power consumption of
he heating element, Pbooster is reduced following a linear function
s shown in Eq. (14). The device is switched off in case only the
ump is active in a particular time instant and voltage threshold is
iolated.

HP =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P ′
HP ∀Vnom > Vm ≥ Vlth

Pbooster − Pbooster
(Vm − Vlth)
(Vlb − Vlth)

0

0

∀Vlth > Vm > Vlb and P ′
HP =

∀Vlth > Vm > Vlb and P ′
HP

∀Vm ≤ Vlb

here Vlb denotes the lower margin of the acceptable range of the
oltage at the connection points.

b. Step control
As shown in Fig. 2(b), the step control switches off the resistive

eating part when the measured voltage Vm drops below the lower
hreshold value of Vlth. Similar to linear droop case, as expressed in
q. (15) the device is switched off in case only the pump is active
hen the threshold is crossed.

HP =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P ′
HP ∀Vnom > Vm ≥ Vlth

Ppump

0

0

∀Vlth > Vm > Vlb and P ′
HP = Ppump + Pbooster

∀Vlth > Vm > Vlb and P ′
HP = Ppump

∀Vm ≤ Vlb

(15

.2. Unified approach—complementing local voltage control with
ongestion management

The proposed unified approach complements the local voltage

ontrol with a centralized direct control based congestion manage-
ent mechanism. Congestions caused by the increased load are
anaged by controlling the heat pump loads of the households. On

he other hand, active power injection of the PV inverters is cur-
ems Research 143 (2017) 462–473 465

mp + Pbooster

mp

(14)

tailed in case the reverse power flow exceeds the thermal rating of
the transformer.

3.2.1. Direct control of the heat pumps
A number of mechanisms are reported in the literature to deter-

mine the switching actions of the directly controlled thermal loads
[14,33,34]. A similar direct control method as discussed in Ref. [14],
is applied in this work to reduce heat pump loads when a conges-
tion in the transformer is detected. This is done by a merit-order
based decision making scheme according to the inside temperature
of the households and curtailment requests can be sent directly to
the households with appropriate flexibility offers.

a. Flexibility offers
Different market-based mechanisms usually utilize additional

market entities like aggregators, retailers and/or energy service
companies (ESCos) to procure flexibility from residential end-users
through local flexibility markets [35–38]. For instance, flexibility is
often offered in terms of bids representing priorities and volumes
of flexible power for certain monetary amounts. However, more
direct approaches of curtailment are required if congestions occur
when flexibility can no longer be procured by the market-based
control.

In this work, a direct approach of load curtailment is investi-
gated considering the temperature of the households. Being a direct
approach, the process is coordinated by the DSO and tracking the
inside temperature of the houses is not possible due to privacy
concerns. The privacy bottleneck is circumvented using flexibility
offers from the residential end-users. The flexibility offers repre-
sent the preferences of the consumers in terms of curtailable load
and instantaneous thermal comfort [36,39] instead of the actual
temperature. The comfort coefficient of i-th house at time t, �i

t can
be defined as a function of actual and the maximum and minimum
desirable limits of inside temperature (Tmax and Tmin respectively)

of the house as,

�t
i

= T − Tmin

Tmax − Tmin
(16)

Based on the comfort coefficient, a flexibility offer is generated to
inform the DSO about the curtailable load in the next time step.
�min being the minimum required level of comfort for providing
network support, flexibility offer at time t, Ft

i is given by,

Fi
t =

⎧⎪⎪⎨
⎪⎪⎩

0 ∀�t
i

≤ �min

Pt
HP − Ppump

Ppump

∀�t
i

> �min&Pt
HP > Ppump

∀�t
i

> �min&Pt
HP = Ppump

(17)

It is important to note that the households can utilize different
modes of heat pump operations and can therefore choose an alter-
native approach of providing the flexibility offers.

b. Determining curtailment locations
The comfort coefficients and flexibility offers are collected by the
DSO in each time step. A target loading level, Starget is considered
in order to select suitable flexibility offers. Based on the available
information, the DSO sends curtailment requests to appropriate
connection points. In order to do so, the DSO aims to maximize the
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Fig. 2. Local undervoltage control with the he

omfort levels of the prosumers while maintaining the thermal con-
traints of the network. This can be expressed as an optimization
roblem as follows:

in
N∑

i ∈ N,i=1

ui.(1 − �t
i ) (18)

ubject to,

i =
{

1 if selected

0  if not selected
(19)

N∑
 ∈ N,i=1

ui.F
t
i ≤ |St

ins| − |Starget | (20)

here St
ins

denotes the instantaneous transformer load at time, t.
Curtailment at each of the connection points is thus given by,

curtail,i = ui.F
t
i (21)

The decision variable, ui is binary in nature in order to select the
ouseholds for curtailing the heat pump loads. Thus, the optimiza-
ion problem expressed by Eq. (18) can be solved by Mixed-Integer
rogramming (MIP) technique. Based on the solution, the DSO
ends a curtailment request to the selected households. Upon
eceiving the request from the DSO, the heat pump controller lim-
ts its power consumption and supports the DSO with congestion

anagement.
Apart from the outside temperature, the thermal mass of the

ousehold determines the change of temperature within the house.
hus, once a heat pump load is curtailed, the comfort coefficient
tarts decreasing gradually. At each discrete time step, transformer
oading is observed and the curtailment requests are updated con-
idering the new comfort levels of the households. It is important
o note that, the heat pumps operate within a user-defined range
f temperature and are switched on when the inside temperature
eaches the lowest acceptable value. This ensures that the procured
exibility does not violate the comfort levels of the households. The
rocess can be schematically presented as shown in Fig. 3.

.2.2. Curtailment of active power injection of PV inverters
Active power curtailment of PV inverters has been the focus of a

arge body of literature. In addition to a number of market-based DR
echanisms, curtailment of injected active power has been stud-

ed to manage overvoltage and congestion problems [13,17,32,40].
egulatory frameworks for curtailment and compensation of the
urtailed power differs widely from country to country [5]. How-

ver, market-based control and consequent financial compensation
re left out of the scope of this paper and residential consumers
re considered for curtailment based on predefined bilateral agree-
ents.
Fig. 3. Methodology of direct control of heat pumps for thermal constraint man-
agement.

A fair curtailment scheme is adopted to limit the amount of
injected power from the residential PV inverters to tackle the
congestions caused by the reverse power flows. Total amount of
required curtailment is calculated and distributed fairly among the
inverters in the network considering individual injected energy. A
curtailment coefficient, wcurtail ,i is used for the fair allocation of the
curtailment and defined as the fraction of injected energy during
each time step, �t  by the inverters to the total injected energy by
all the inverters in the feeder.

wcurtail,i = Einj,i∑N
i ∈ N,i=1Einj,i

(22)

where Einj ,i denotes the injected amount of energy in kWh  by
the i-th of N households in the network. When congestion is
detected, curtailment amount for each of the connection points is
calculated considering a target level of transformer loading, Starget .
Curtailment at each of the connection points, Pcurtail ,i can thus be
calculated by,

Pcurtail,i = wcurtail,i.
(
|St

ins| − |Starget |
)

(23)
The curtailment levels are reset to zero when the instantaneous
loading, St

ins
falls below Starget . The process can be schematically

presented as shown in Fig. 4.
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Fig. 4. Methodology of PV curtailment for thermal constraint management.
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Table 2
Parameters of the test network.

Property Values

Transformer rating 10 kV/0.4 kV, 100 kVA

ized profiles of 400 Dutch residential consumers [6,42]. The solar
Fig. 5. MAS  architecture of the unified approach.

. Decentralized implementation

As highlighted in Section 3, the proposed unified approach con-
titutes of inter-operating centralized and decentralized systems
ith complex tasks. Computational and distributed intelligence
as been discussed as a reliable, flexible and efficient tool to
onitor and control such inter-operating systems. As a popu-

ar decentralized control approach, agent-based control has been
xtensively applied in electrical power and energy systems appli-
ations [2,21,41].

A Multi-Agent System (MAS)-based control scheme as shown
n Fig. 5 has been developed to coordinate the process of the uni-
ed approach. Within each of the houses, the base load, PV inverter

nd heat pump are represented by individual device agents namely
ase load agent, PV agent and heat pump agent respectively. Each
f the households is represented by a house agent (HA) that coor-
Transformer R0, Z0 0.0072 �, 0.0246 �
Power factor 0.98

dinates the device agents and works as the interface between the
household and the external entities. The transformer agent (TA)
and feeder agents (FA) correspond to the network agents and are
responsible for monitoring the loading of the transformer and feed-
ers respectively. The agents perform synchronous communication
among them following the Agent Communication Language (ACL)
standards. This makes the architecture easily scalable and interop-
erable with other network segments and market entities.

The HAs coordinate the device agents, as the device agents send
relevant information such as consumed/generated power, voltage
levels and temperature to the HA. Once a violation of the voltage
levels is observed, the HA activates one of the local voltage control
mechanisms instantaneously and keeps the voltage levels within
acceptable margins. The HA calculates the comfort coefficients, cor-
responding flexibility offer and sends them along with the value of
injected energy to the FA after every 15 min.

Each FA measures the power flow in the feeder and communi-
cates with TA and the HAs. The TA checks the transformer loading
conditions and communicates with the FAs. Once a congestion is
detected, TA sends a curtailment request to the FAs. Next, the FA
prepares a curtailment plan based on the comfort coefficients sent
by the HAs and subsequently forward the request to the individual
HAs.

In case the HA receives a curtailment request from the FA and
also detects a voltage limit violations, it prioritizes the curtailment
request sent by the FA and overrules the local control temporarily.

Contrary to a centralized method, the agent-based approach
reduces the amount of information exchange and thereby lessens
the required communication and computational burden. The com-
putational intelligence integrated at the level of the FA and TA is
capable of solving the problems with the locally available infor-
mation. The approach is easily scalable and can be integrated
with advanced market-based mechanisms to implement different
demand response mechanisms. Moreover, flexibilities can also be
procured to solve congestions at the MV networks through a flex-
ibility request from the network agents located at the upper level,
for instance in the MV feeders to the TA in the LV network.

5. Modelling and simulation

5.1. Test network

A typical Dutch residential LV network as shown in Fig. 6 is
used as the test network for the simulation. The network com-
prises of 20 households and is fed from a 10/0.4 kV, 100 kVA MV/LV
transformer. The network consists of underground power cables
characterizing high R/X ratios compared to overhead lines. Proper-
ties of the test network are summarized in Table 2.

5.2. Simulation setup

Each of the households in the network is equipped with uncon-
trolled base loads, solar PV and domestic heat pumps. The base load
profiles are shown in Fig. 7 and are modelled using average normal-
irradiation and the outdoor temperature data are obtained from
the Royal Dutch Meteorological Institute (KNMI) [43]. The solar
PV and heat pumps are modelled according to the functionalities
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Fig. 6. Simulation t
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Fig. 7. Base load profiles used in the simulation.

Table 3
Properties of different heat pumps and thermal properties of the households.

Properties Type 1 Type 2 Type 3 Type 4

Temperature range (◦C) 19–21 19–22 18–21 18–22
Ppump (kW) 1.5 1.2 2 1.5
Pbooster (kW) 3 2.5 3 2.5
COP  of HP 3.5 4 3 3.5
Internal heat gain (J) 400 200 500 350
UA  (W/K) 270 300 400 150
Thermal capacity (MJ/K) 60.5 50.5 50.5 40.5

d
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generation, the congestion is not fully resolved.
�min 0.1 0.1 0.125 0.125
Installed PV capacity (kWp) 8.5 7.5 9.5 8

escribed in Refs. [3,44]. As shown in Table 3, four different types of
eat pumps, household characteristics and installed PV capacities
re considered and distributed among the 20 houses. A simplified
hermal dynamics for the households is adopted assuming constant
nternal heat gain and heat loss due to transmission and ventila-
ion only. COP and UA values denote the coefficient of performance
f the HP unit and the thermal conductance of the households
espectively. Assumed thermal capacities represent typical values
or semi-detached Dutch households [44].

.3. Simulation platform

The test network is modelled in Simulink/Matlab environ-
ent. The MAS  architecture is implemented in JADE (Java Agent
evelopment Framework) while the communication between two
latforms is performed through TCP/IP as client-server. As shown
n Fig. 8, based on the available information, each HA calculates and
ends the comfort coefficient, injected energy and flexibility offers
o the FA after every 15 min. In case of a voltage limit violation,
est network.

the HA calculates the required amount of curtailment and sends a
curtailment command back to the actuator modelled in Simulink.

After every 15 min, the TA checks the transformer loading and
requests the FA for curtailment if congestion is detected. The FA
coordinates the process of curtailment as discussed in Section 3.2
and sends resulting curtailment signals to the HAs. The curtailment
signal is subsequently sent back to Simulink by respective HA to be
implemented in the next time step.

6. Numerical results

Simulations are performed separately for two  consecutive sum-
mer  and a winter days in the Netherlands. The results of the case
study are thus divided in two scenarios according to the seasonal
variations as scenario A for summer and scenario B for winter.

6.1. Scenario A: summer

During summer, the solar PV generation in the households is
coupled with the relatively low load demand and results in a con-
siderable power injection from solar PV feeding into the network.
This results in reverse power flows and local voltage rise toward
the end of the radial LV feeder.

6.1.1. Local voltage control
Voltage levels at all the connection points in the network with-

out any control mechanism are illustrated in Fig. 9. It is observed
that the connection points located at the end of the feeders (e.g.
house no. 6 and 20) experience higher voltage than the ones located
closer to the transformer. The threshold of 1.06 p.u. is set for the
sake of comparisons between control algorithms while the allow-
able upper limit of the voltage level is 1.1 p.u.

Voltage profiles of house nos. 6 and 20 are shown in Fig. 10 for
both the local control mechanisms. The notable difference between
the two control mechanisms occurs when the voltage levels exceed
the threshold of 1.06 p.u. The droop control curtails the active
power following the linear droop function and results in a slower
voltage rise. On the other hand, the sensitivity-based control turns
out to be a more conservative approach as it maintains the voltage
levels closer to the threshold limit.

As can be seen from Fig. 11, injected active power from the
PV inverters causes congestions in the transformer. Although local
voltage control limits the power flow in the network during peak
Amount of curtailed energy per household is shown in Fig. 12
as the percentage of generated PV energy. Unlike droop control,
the sensitivity-based control curtails injected active power only
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Fig. 8. UML  sequence diagram of the simulation setup.

House no.
10 12 14 16 18 20

V
ol

ta
ge

(p
.u

.)

0.9

0.96

1

1.06

1.1

2 4 6 8

Fig. 9. Voltage levels at the connection points in summer.
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Fig. 11. Transformer loading with local control during summer.
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Fig. 12. Percentage of curtailed energy in summer.

at the houses located near the end of the feeder. The location

of these houses attribute to a higher line resistance and stronger
correlation between the voltage and active power. Consequently,
voltage level violations occur at the end of the feeder predomi-
nantly earlier than the other connection points. On the contrary,
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Fig. 14. Voltage profile with local control at house nos. 6 and 20 in winter.
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he droop-control results in a relatively higher voltage profile and
hus a lower amount of active power curtailment. Therefore, the
hreshold is not violated at the furthest connection points alone
nd PV generation is curtailed at other points as well. Both of the
ocal control mechanisms result in an unfair PV curtailment among
he connection points as the consumers located at the end of the
eeder curtail considerably more active power than the others. A

ore centralized and coordinated voltage control mechanism is
equired to develop a fair basis of curtailment.

.1.2. Unified approach
As depicted by the active power flow in the transformer in

ig. 13, the overloading of the transformer is largely mitigated with
he unified approach. Apart from house nos. 6, 19 and 20, the per-
entage of the curtailed energy in case of the unified approach
s mostly of the same order for all the connection points. This is
ue to the use of the curtailment coefficient that considers individ-
al injected energy and fairly allocates the curtailment among the
ouses. For house nos. 6, 19 and 20, local voltage control entails
ore curtailment and thus overrules the request from the feeder

gent.
Table 4 summarizes key results in terms of the maximum trans-

ormer load, duration of overloading and maximum voltage in
he network. It is observed that, the unified approach effectively
educes the duration of overloading in the network as well as lim-
ts the voltage rise at the connection points. Compared to the local
ontrol, it also results in a lower curtailment for the connection
oints located at the end of a feeder section.

.2. Scenario B: winter

Unlike the summer, the outside temperature in the winter is
ery low which introduces a high heating demand in the house-
olds. This, coupled with a low local PV generation leads to a higher

oading in the feeder. Operational challenges thus occur in terms
f local undervoltage problems along with the violation of thermal
imits.

.2.1. Local voltage control
As shown in Fig. 14, voltage levels during the winter day rep-

esent considerably lower magnitudes of voltages as compared to
he summer case as several connection points experience violation
f the threshold limit of 0.96 p.u.

Resulting voltage levels with the two undervoltage control

ethods for house nos. 6 and 20 are shown in Fig. 15. Although

oth of the methods can effectively mitigate the threshold viola-
ion, as illustrated in Fig. 16, the transformer congestion is not fully
esolved. The notable difference between the two methods is that,
Time (h)

Fig. 16. Transformer load in winter with local control.

the step control involves a more conservative approach and results
in a more improved voltage profile than linear droop control.

6.2.2. Unified approach
Transformer loading for the unified approach with both step and

droop controls are illustrated in Fig. 17. Unlike the local control, in
this case transformer load is reduced once it exceeds the nominal
rating. However, the curtailed load necessitates to be supplied again
to maintain the thermal comfort of the consumers. The increased
feeder load exceeds the threshold and heat pump loads are once
again curtailed.
A number of performance metrics for the proposed approaches
along with the case of no control are summarized in Table 5. It is
evident that even though the proposed mechanisms work on the
basis of curtailing loads, loads are merely shifted from one time
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Table  4
Summarized results for scenario A.

Properties No control Local control Unified approach

PV droop Sensitivity-based PV droop Sensitivity-based

Maximum voltage (p.u.) 1.082 1.070 1.062 1.070 1.061
Maximum load (p.u.) 1.23 1.11 1.00 1.09 1.00
Overload duration (h) 4.98 4.26 1.48 0.61 0.00

Table 5
Summarized results for scenario B.

Properties No control Local control Unified approach

Step control HP droop Step control HP droop

Energy supplied (MWh) 4.80 4.70 4.78 4.68 4.72
Curtailed energy (%) – 2.08 0.35 2.51 1.72
Minimum voltage (p.u.) 0.941 0.956 0.948 0.947 0.942
Maximum load (p.u.) 1.19 1.
Duration of overloading (min) 305.75 50.
Average consumption per household (kWh) 167.56 164.
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Fig. 17. Transformer load in the winter with unified approach.

nstant to another in order to maintain the voltage levels and tackle
ongestion. Compared to the linear droop control, step control cur-

ails more energy but results in a much improved performances as
he total duration of overloading is largely mitigated. As expected,
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the unified approach curtails more load and the total duration of
overloading is mostly negligible.

Fig. 18 depicts the consumption profile of the heat pump at
house no. 20 along with the inside temperature of the house for
local control and unified approach. As can be seen from Fig. 18(a),
the droop control limits the consumption of the resistive heat-
ing element, (Pbooster) while the step control switches it off. This
is reflected in the temperature as droop control results in a slightly
flatter slope compared to the case with no control. Due to the heat
loss from the building, step control results in a reduction of the
inside temperature and the heat pump is switched back again after
a few hours when the temperature reaches the lower threshold of
18 ◦C. On the contrary, the unified approach curtails the heat pump
load when congestion is detected even after local control starts reg-
ulating the voltage levels. The profile for the step control remains
same for both of the cases as the local control can already lower the
transformer loading by a considerable margin.
control and unified approach from the mean temperature with
no control. As illustrated in Fig. 19, mean temperature inside the
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ouseholds becomes lower due to the curtailment of the heat pump
oads. In case of the local voltage control, step control results in
eviations in more households, as the droop control curtails only
art of the resistive heater power. In contrast, the unified approach
urtails the loads when congestion is detected in the MV/LV trans-
ormer. Consequently, more households experience curtailment
eading to lower average temperature. It needs to be noted that, the
eat pumps continue maintaining the inside temperature within
he predefined set points even though the mean temperature is
educed due to curtailment.

. Conclusions

In this study, we propose a unified control approach to manage
imultaneously network congestions and local voltage limit viola-
ions in LV radial distribution networks. The proposed approach
tilizes advanced active power curtailment mechanisms with a
AS-based system architecture. This scalable and distributed plat-

orm allows to integrate both centralized congestion management
nd decentralized voltage control mechanisms. Simulation results
or a Dutch LV network with full penetration of solar PV and heat
umps indicate that the proposed approach can effectively tackle
oth overvoltage and undervoltage problems along with the con-
estions of the MV/LV transformer.

Utilizing the MAS-based system architecture in this proposed
pproach opens also a possibility to integrate different market-
ased control mechanisms. This can help to identify the probable
hallenges that come with the integration of other DERs along with
ifferent market entities.
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