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SUMMARY

Mammalian CpG islands are key epigenomic
elements that were first characterized experimentally
as genomic fractions with low levels of DNA methyl-
ation. Currently, CpG islands are defined based on
their genomic sequences alone. Here, we develop
evolutionary models to show that several distinct
evolutionary processes generate and maintain CpG
islands. One central evolutionary regime resulting in
enriched CpG content is driven by low levels of
DNA methylation and consequentially low rates of
CpG deamination. Another major force forming
CpG islands is biased gene conversion that stabilizes
constitutively methylated CpG islands by balancing
rapid deamination with CpG fixation. Importantly,
evolutionary analysis and population genetics data
suggest that selection for high CpG content is not a
significant factor contributing to conservation of
CpGs indifferentiallymethylated regions. Thehetero-
geneous, but not selective, origins of CpG islands
have direct implications for the understanding of
DNA methylation patterns in healthy and diseased
cells.

INTRODUCTION

Twenty-five years ago, a seminal paper by Bird and his

colleagues revealed that a significant fraction of the mouse

genome is rich in unmethylated CpG dinucleotides. This fraction

was estimated to form about 30,000 genomic CpG islands (Bird

et al., 1985). Later, the original experimental notion of CpG

islands was replaced with a criterion based on the CpG

content of the DNA sequence (Gardiner-Garden and Frommer,

1987; Takai and Jones, 2002). It was demonstrated that the

experimental and computational definitions largely overlap and

correlate with other important genomic elements, specifically

transcription start sites (TSS). CpG islands became key genomic

features in epigenetic research, and according to the prevailing

paradigm, the role of DNA methylation can be explored by char-

acterizing their methylation state. Recently, comprehensive
mapping of DNA methylation in various cell types has confirmed

the lack of methylation in the majority of CpG islands, but

also uncovered numerous cases of differentially methylated, or

even constitutively methylated regions that are defined as CpG

islands based on their sequence content (Dindot et al., 2009;

Doi et al., 2009; Lister et al., 2009). The interpretation of these

data, and of massive epigenetic profiles that are currently being

collected, necessitates re-evaluation of the question of CpG

island evolutionary origins. Are DNA methylation patterns and

CpG densities evolutionary conserved? If so, what evolutionary

forces conserve them? Are CpGs evolving under selective pres-

sure similar to that acting on protein-coding sequences or tran-

scription factor binding sites?

In their original study, Bird and his colleagues observed that

lack of methylation and high CpG content may be evolutionarily

coupled. The main mechanism proposed was the increased

mutability of 5-methyl-cytosines (5mC), possibly due to inaccu-

rate mismatch repair of deaminated 5mCs (i.e., Uracils) that

introduce Thymines upon replication (Bird, 1980). In vertebrates,

methylated cytosines are almost always found in the context of

CpG dinucleotides. The result is increased CpG mutability,

which causes methylated regions to lose CpGs rapidly. Since

the rate of CpG-gaining substitutions is not increased in these

regions, their sequences are converging to an evolutionary equi-

librium at lowCpG content (Figure 1A). In contrast, unmethylated

CpG islands can sustain higher CpG content since they are not

prone to hypermutability. This elegant evolutionary rationaliza-

tion for CpG islands is essentially neutral—it does not assume

any function for the CpGs in CpG islands, and proposes a mech-

anism that does not involve purifying selection against CpG loss

(we denote it here as Bird’s hypodeamination regime, Figure 1B).

In implicit contrast (but not necessarily in contradiction) with this

idea, CpG islands are often assumed to function as develop-

mental switches, which provide the cell with a form of epigenetic

memory by generating cell-type-specific hyper- and hypomethy-

lation patterns (Baylin and Herman, 2000; Doi et al., 2009; Gal-

Yam et al., 2008; Irizarry et al., 2009; Keshet et al., 2006; Reik,

2007; Straussman et al., 2009; Weber et al., 2005). Differentially

methylated regions are hypothesized to function by attracting or

preventing binding of specific factors in a methylation-depen-

dent fashion (Bartke et al., 2010; Illingworth et al., 2010; Jorgen-

sen and Bird, 2002; Kim et al., 2007). If the CpGs in CpG islands

encode epigenetic switches, onemay hypothesize that selection
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Figure 1. Models of Evolutionary Dynamics of CpG Islands

Schematic depictions of evolving CpGs (ovals) are shown, indicatingmethylated CpGs as filled ovals. (A) Genomic background. The genome’s CpGs are typically

methylated, and this is coupled with rapid deamination (CG-to-TG or CG-to-CA mutations) that leads to low stationary CpG content.

(B) Bird’s regime. Regions of the genome that are not methylated do not deaminate rapidly, and therefore maintain higher CpG content. Nondeamination

CpG-losing substitutions (e.g., CG to AG) in this regime are not selected against and occur at their normal rates.

(C) CpG selection. Regions in which CpGs are functional may evolve under a regime selecting against CpG loss. This would result in higher than average CpG

content. CpG loss rates should be low for both deaminations and nondeaminations. Such regions may be either methylated (as shown here) or unmethylated.

(D) Exon selection. In regions under a strong selective constraint, like exons, CpGs may accumulate as part of a general slowdown in evolutionary rates and

without indicating a special function for CpGs.

(E) CpG decay. Sequences evolving under regimes (B)–(D) may lose their CpG constraint (due to duplication and divergence, or by other means) and gradually

converge to regime A. Depending on how recently the constraint was lost, it may be difficult to discern such pseudo-CpG islands from active CpG islands using

the genomic sequence alone.

(F) UCSC CpG islands. In the current set of UCSC CpG islands, a large fraction of the elements represent exons. Many other CpG islands are heavily repetitive,

which complicate their evolutionary analysis considerably. See also Figure S1.
is working to slow down the loss of CpGs within them, giving rise

to a selective evolutionary process different from Bird’s original

regime. A selective regime can be distinguished from the hypo-

deamination neutral regime, since it would reduce rates of

nondeamination CpG-losing substitutions (e.g., CG / AG)

(compared to general substitutions, Figure 1C). Importantly,

selection may contribute to the emergence of CpG islands

even if it does not select for CpGs directly. Notable examples

are exons (Figure 1D), which conserve their G/C-rich protein-

coding sequences in general, and may therefore have higher

CpG content than most of the genome. The above evolutionary

processes (Bird’s hypodeamination regime, CpG selection and

general selection) are all expected to stabilize the CpG content

in affected regions, but the genome may also contain CpG-rich

sequences that are not stable and are losing their CpGs contin-

uously (Figure 1E). CpG-losing dynamics may be initiated

following loss of some constraint (lack of methylation, selection)

that originally stabilized the CpG island.

Despite the potential evolutionary heterogeneity of the

genomic CpG repertoire, many of the current attempts to under-

stand the role of DNA methylation in the regulation of develop-

ment and cancer are based on an approach that analyzes all

CpG-rich regions in the genome uniformly, or based on stratified
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CpG content (for example, regions with high, intermediate or low

CpG content [Meissner et al., 2008; Weber et al., 2007]). In this

work we introduce a comprehensive model for the study of the

evolution of primate CpGs and use it to characterize the origins

of CpG-rich sequences in the human genome. We reveal that

the current working set of CpG islands (Figure 1F) must be

expanded and reclassified to describe several radically different

evolutionary regimes. Our proposed classification includes the

classical unmethylated CpG islands, CpG islands in exons,

constitutively methylated CpG islands driven by increased G/C

content in biased gene conversion hotspots, and pseudo CpG

islands that deteriorate throughout the primates’ genome evolu-

tion. The detailed evolutionary model allows us to characterize

the forces that give rise to these classes of CpG islands and to

conclude that purifying selection on CpG content is unlikely to

be globally involved inmaintaining CpG rich regions in the human

genome. In particular we demonstrate that the evolutionary

dynamics in tissue-specific differentially methylated regions

(TDMRs) are not different from those observed in unmethylated

CpG islands globally. We propose a revised genomic framework

for the understanding of DNA methylation in primate genomes

(see http://compgenomics.weizmann.ac.il/tanay/?page_id=196

for a list of genomic intervals and their classification), which we

http://compgenomics.weizmann.ac.il/tanay/?page_id=196
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Figure 2. Modeling Methylation-Dependent CpG Evolution

(A) Bimodality of CpG deamination rates. Shown is the distribution of CpGdeamination rates in regions with CpG content exceeding 3%, using a sliding window of

2 kb and collecting information from all of the lineages in the primate phylogeny used in this study (Figure S1), except for the Marmoset outgroup lineage.

(B) Phylogenetic universality of regional CpG deamination rates. Shown are inferred rates of CpGdeamination in the Rhesus lineage (x axis) compared to the rates

in three other lineages. Each point represents the behavior of a 20 kb region. The data suggest that CpG deamination is highly variable between genomic regions

(as shown by the range of deamination rates), but that it is conserved and scales uniformly between lineages (as shown by the correlation between lineage rates).

It is therefore possible to model the variation in CpG deamination intensity jointly across all lineages.

(C) Methylation and deamination are highly correlated. Shown are average deamination rates and their standard deviations collected from all lineages (y axis),

calculated in regions with different levels of average embryonic stem cell DNA methylation (x axis, computed as the number of methylated CpGs divided by the

total number of CpGs for 2 kb windows).

(D) A parameter-rich evolutionary model for CpGs. We modeled the evolutionary dynamics throughout the genome using lineage-specific substitution matrices

that depend on several factors. The 30 and 50 nucleotides determine the flanking context, which in particular defines the CpG context given a 50 Cytosine or 30

Guanine. The regional G/C content is defined using bins of 400 bp.We discretize the G/C content to 9 levels and allow different substitutionmatrices to be learned

for eachG/C content level. The regional CpG deamination intensity is inferred for each region directly from the data and ensures the substitutionmatrices take into

account the variability in CpG deamination rate. This variability is correlated with, but cannot be predicted from, the regional G/C content. Finally, the regional G/C

substitution asymmetry parameter is also inferred directly from the data and prevents systematic biases in regions that are subject to biased gene conversion

([Dreszer et al., 2007], see text). Loci that are evolving under the influence of biased gene conversion are modeled using specific substitution parameters to

correct for potential under-estimation of their ancestral G/C content. See also Figure S2.
believe will eliminate much of the confusion that currently con-

founds the interpretation of emerging genome-wide epigenomic

profiles.

RESULTS

Distinct Regimes of CpG Evolution
Using a new parameter-rich evolutionary model (Figure S1A

available online, Experimental Procedures), we inferred ances-

tral sequences and regional evolutionary substitution rates

from alignments of five primate genomes (Figure S1B). The

model was designed to carefully control for context-dependent

variations in substitution rates, in particular variation in CpG
deamination rates (Figure 2A, Figure S2A), without which evolu-

tionary inference on CpG dinucleotides is highly biased. The

model successfully inferred regional deamination rates and indi-

cated that these are quantitatively conserved across the different

primate lineages (Figure 2B, Figure S2B) and remarkably well

correlated with DNA methylation levels in human embryonic

stem cells (hESCs) (Figure 2C). Analysis of artificial alignments

simulated from our evolutionary model confirmed that our

learning and inference algorithms are robust (Figure S2C) and

demonstrated a good fit of inferred and simulated evolutionary

statistics even for counts of infrequent events (e.g., substitutions

on the overall rare CpGs). To comprehensively study the evolu-

tionary dynamics of CpG-rich regions in the human genome,
Cell 145, 773–786, May 27, 2011 ª2011 Elsevier Inc. 775



we focused on all genomic, nonexonic, nonrepetitive DNAwith at

least 3% CpG content. We excluded repetitive regions, since

evolutionary analysis of these regions is not reliable, and

modeled exonic regions separately from intergenic regions. For

each CpG-rich region, we estimated the overall CpG and G/C

content, inferred rates of CpG gain and deamination, and in-

ferred rates of G/C gain and loss (Figure 2D, Figures 3A–3D).

We supplemented these evolutionary parameters with high

resolution data on DNA methylation levels in hESCs and fibro-

blasts (Lister et al., 2009). As shown in Figure 3E (see also

Figures S3A and S3B), clustering analysis based on these

parameters reveals several distinct evolutionary regimes that

contribute to the formation of high CpG content regions in the

genome. One large cluster (denoted hypodeaminated islands

and encompassing 8.43Mbp in total) represents classical unme-

thylated CpG islands that exhibit low deamination rates, with

variable CpG and G/C content, and generally slower than

average non-CpG nucleotide divergence. Another class of high

CpG content regions (BGC [biased gene-conversion] islands,

4.37 Mbp in total) is evolving under a different regime, exhibiting

more rapid deamination and higher methylation levels (an addi-

tional 4.54 Mbp cluster includes regions with ambiguous

classification mostly due to insufficient evolutionary data). For

reference, exonic CpG islands (which we modeled and analyzed

separately) are subject to another distinct regime, showing vari-

able methylation levels and overall low divergence rates (for both

CpGs and non-CpGs), as expected from the general functional

constraint preserving their sequences. Taken together, the

data characterize the well supported class of unmethylated

and hypodeaminated CpG islands, which is compatible with

the scheme of Figure 1B and may or may not be affected by

CpG selection as in Figure 1C (see below). Notwithstanding

this class, a surprisingly substantial fraction of the genome’s

CpG content is methylated and evolving dynamically, showing

distinct sequence content (Figure S3C) and genomic properties

(Figure S3D). Interestingly, the evolutionary dynamics in methyl-

ated CpG islands are continuously challenging their CpG content

through rapid deamination – it was therefore unclear if the CpG

content of these elements is evolutionarily stable, and if so,

what mechanisms compensate for the observed rapid CpG loss.

Hypodeaminated CpG Islands
The largest class of CpG-rich regions is characterized by slow

CpG deamination rates and represents genomic regions with

low levels of methylation. This set (Table S1) is the most natural

genomic analog to the original (experimental) notion of CpG

islands (Bird et al., 1985). As shown in Figure 4A, the chromo-

somal distribution of these elements is generally uniform. More-

over, analysis of the location of these islands reveals that 78.2%

of them are present within 10 kb of an annotated transcription

start site (TSS) (Figure 4B). Furthermore, comparison of the hy-

podeaminated islands to available data on chromatin structure

in hESCs (data from GSM466734 and GSM469971), highlights

the correspondence between these islands and the chromatin

marks H3K4me3 and H3K27me3 (Figure 4C). A remarkably

high 80% of the hypodeaminated islands in the 1 kb around

a known TSS overlap with H3K4me3 marked domains. On the

other hand, 76% of the islands that are over 1.5 kb from a TSS
776 Cell 145, 773–786, May 27, 2011 ª2011 Elsevier Inc.
overlap with H3K27me3 marked domains. The correlation with

histone methylation patterns (Edwards et al., 2010; Tanay

et al., 2007) is distinctive for hypodeaminated CpG islands, as

it is not observed for other CpG-rich regions, suggesting CpG

richness is not sufficient for creating H3K27me3 or H3K4me3

domains.

Methylated Biased Gene Conversion CpG Islands
In marked contrast to the class of hypodeaminated CpG islands,

a different class of CpG-rich regions exhibits rapid deamination

rates and high methylation levels (Table S1). The chromosomal

distribution of these elements (Figure 5A, Figure S4) reveals a

nonuniform behavior, with clusters at sub-telomeric regions

(and a few other hotspots, e.g., within chromosomes 2, 9, and

11). These elements are mostly located far away from known

TSSs (Figure 5B). Detailed analysis of the evolutionary dynamics

in this class reveals high rates of CpG deamination that are

balanced by high rates of CpG-gaining substitutions. More

generally, rapid gain of G/C nucleotides is observed in these

regions, in contexts other than CpG dinucleotides (Figure S2A).

This G/C substitution asymmetry, which is commonly attributed

to biased gene conversion (Brown and Jiricny, 1987; Duret and

Galtier, 2009; Eyre-Walker, 1993; Galtier et al., 2001), is driving

increased G/C content (Dreszer et al., 2007) and thereby (indi-

rectly) increased CpG content. The CpG-islands thus generated

are evolutionarily distinct from the classical hypodeaminated

CpG islands. Hence, the BGC dynamic leads to evolutionarily

stable constitutively methylated CpG-dense regions. This is

further supported by meta-analysis of multiple DNA methylation

profiles in human and rhesus (Figure 5C). Importantly,

1,723 UCSC CpG islands (12% of the UCSC CpG islands that

are not repetitive or exonic) are evolving solely due to BGC

and not the classical hypodeamination dynamic. An additional

734 UCSC CpG islands (5%) are shown to combine the BGC

and hypodeamination regimes. This heterogeneity in the current

definition of CpG islands shows that their classification based

solely on G/C content and CpG ratio may be misleading. A large

number of CpG islands that are constitutively methylated and

uncoupled to transcription start sites should therefore be

evaluated as a specific class that lacks the distinctive epigenetic

properties typically associated with CpG islands. The evolu-

tionary justification for the CpG content and high levels of

methylation in this class is readily found in the underlying substi-

tution process.

Conservation and Decay of Regional CpG Content
The variable rates of CpG deamination and CpG gaining substi-

tutions across the genome suggest that the overall CpG content

of particular regions may have changed since the divergence of

the human and rhesus lineages. The model we used to infer CpG

substitution rates (Table S2) was specifically designed to ensure

that the analysis would be robust for nonstationary regimes in

which the net regional CpG content increases or decreases

along the lineages. For example, we calculated substitution rates

that were specific for each phylogenetic lineage, and considered

the variability in deamination rates so that the ancestral state of

diverged CpGs could be accurately estimated (Experimental

Procedures). Comparison of the inferred change in CpG content
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Figure 3. Evolutionary Classification of CpG Islands

(A–D) Statistics on ancestral sequences and substitution rates throughout the human genome were inferred based on the model outlined in Figure 2. The overall

G/C and CpG content, rates of CpG deamination and CpG-gaining substitutions, as well as rates of G/C nucleotide gain and loss were smoothed using windows

of 2 kb. All regions with CpG content exceeding 3%were clustered given evolutionary statistics and the average DNA methylation levels in ESCs and fibroblasts

(Lister et al., 2009). (Similar results are obtained when omitting DNAmethylation data, Figure S3B.) Shown is a color-coded clustergram (blue = low, yellow = high)

in which rows represent genomic windows and columns depict the evolutionary dynamics and methylation patterns within them. Global distributions of the

evolutionary parameters are shown above, depicting the behavior for regions included in the cluster analysis (high CpG content - gray) and the rest of the

nonexonic, nonrepetitive genome (Genomic background - black). The resulting clusters reveal two broad classes. The first class (upper) includes regions with low

levels of DNA methylation and low rates of CpG deamination and corresponds to Bird’s original notion of CpG islands. The second class (denoted biased gene

conversion (BGC) islands) includes regions with high levels of DNA methylation and high rates of CpG deamination. For reference we also depict exon CpG

islands, which showmedium to high levels of methylation, but also low rates of background G/C gain or loss substitutions. The evolution of these islands reflects

a generic (non CpG-specific) selective constraint. See Figure S3A for quantitative parameter distributions in each cluster. See also Figure S3.
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Figure 4. Hypodeaminated CpG Islands

(A) Chromosomal distribution. Shown is the chromosomal layout of CpG-rich loci that were classified as hypodeaminated islands, having low levels of DNA

methylation and low deamination rates.

(B) TSS distribution. The distribution of distance from the nearest annotated TSS was computed for the set of hypodeaminated islands (green) and the remaining

CpG-rich loci (gray). Over 78% of the hypodeaminated islands are associated with an annotated TSS.

(C) Histone methylation overlap with hypodeaminated CpG islands. Shown are cumulative distributions of histone 3 lysine 27 trimethylation (H3K27me3, upper)

and histone 3 lysine 4 trimethylation (H3K4me3, lower) ChIP-seq coverage in human embryonic stem cells, for loci classified as hypomethylated CpG islands

(green) and the remaining CpG-rich loci (gray). The analysis was done separately for loci upstream and downstream of annotated TSSs, revealing remarkable

correlation between hypodeaminated islands and H3K4me3 at TSSs and H3K27me3 further away from TSSs.
in the independent lineages leading to the human and rhesus

genomes reveals that the overall CpG content in hypodeamina-

tion CpG islands slightly decreased on average, and that biased-
778 Cell 145, 773–786, May 27, 2011 ª2011 Elsevier Inc.
gene-conversion CpG islands frequently lost CpG content (Fig-

ure 5D). In particular, 15% of the biased gene conversion CpG

islands (but only 0.28% of the hypodeaminated islands) show



significant CpG loss (over 15% decrease in their CpG content in

both human and rhesus lineages; Experimental Procedures). A

detailed screen for genomic regions with a significant indication

of CpG loss in the human genome revealed a total of 1.73Mb,

overlapping 619 of the UCSC CpG islands. The detailed list of

these elements (which we denote pseudo-CpG islands) is avail-

able in Table S3.

No Global Signatures of CpG Selection on DMRs
A functional group of clustered CpGs is expected to create

a specific evolutionary signature of selection. For example, the

evolutionary dynamics at the H19 and GTL2/DLK1 imprinting

control regions (ICRs) indicate that thesewell characterized func-

tional epigenetic elements are evolving under remarkable muta-

tional pressure caused by high absolute methylation-coupled

rapid deamination (Figures 6A and 6B). In contrast to this pres-

sure, the rate of CpG loss through nondeamination substitutions

in these regions is lower thanexpected, suggesting thatCpG-loss

events are selected against. Purifying selection (in addition to

potential compensatory gain of CpGs [Schulz et al., 2010]) may

therefore help stabilize the CpG content in ICRs. Unlike the H19

and GTL2/DLK1 ICRs, which are methylated in the male germ

line, ICRs that are methylated in the female germ line show lower

deamination rates. Nevertheless, the rate of CpG loss through

nondeamination substitutions is lower than expected in the

maternal ICRs as well, suggesting that purifying selection is

working to conserve CpGs in both paternal and maternal ICRs

(Figure S4, Figure 6C). In summary, ICRs are shown to couple

a known functional role for DNAmethylationwith a specific evolu-

tionary signature of selection, providingworking examples to test

similar behaviors in other epigenetic hotspots.

A large number of tissue-specific differentially methylated

regions (TDMRs) were recently characterized by comparing

DNA methylation profiles among different tissues and cell lines

(Cohen et al., 2009; Doi et al., 2009; Irizarry et al., 2009; Ji

et al., 2010; Kim et al., 2010; Rakyan et al., 2008). TDMRs are

defined based on the collective behavior (hypo- or hypermethy-

lation) of a group of spatially clustered CpGs. The correlations of

their methylation level with the regional transcriptional state and

histone methylation patterns are well documented. Neverthe-

less, the active regulatory role of methylation in TDMRs is

unclear. It can be assumed that if TDMRs (or a substantial frac-

tion of them) are actively functional, the evolutionary dynamics of

their CpGs should provide indications for a selective signature.

Examples of the evolutionary dynamics at two characterized

DMRs are shown in Figures 6D and 6E. Analysis of a group of

16,379 previously characterized TDMRs (Doi et al., 2009) en-

compassing 1.16 Mb of nonrepetitive, nonexonic high-CpG

content DNA, reveals that TDMRs are mostly observed in hypo-

deaminated islands (82.1% versus 5.6% in BGC islands). As

shown before (Doi et al., 2009), TDMRs are enriched at the

margins of CpG islands and both their G/C and CpG content

are lower than that of the immediately surrounding regions (Fig-

ure S5). Consistent with this, the rate of CpG deamination in

TDMRs is higher than that of the bulk islands. Interestingly, non-

deamination CpG-losing substitution rates are indistinguishable

in TDMRs and adjacent CpG islands (Figure 6F), and are consis-

tent with the substitution rates in non-CpG contexts. Similar
dynamics are observed for additional TDMR sets, generated

by diverse experimental techniques and species (Figure 6F).

These data support the hypothesis that a nonselective regime

maintains CpG content at hypodeaminated islands in general

and in TDMRs specifically.

DMR Polymorphisms Show No Evidence
of CpG-Specific Selection
As we know from population genetics theory, allele frequencies

at polymorphic CpG sites can distinguish between maintenance

of CpG islands by selection and stabilization of CpG islands

through mere hypodeamination. As demonstrated by evolu-

tionary simulations (Figures 7A and 7B, Figure S6A and S6B),

both low level of deamination and selection for minimal CpG

content will result in high steady state CpG content. However,

in the selective regime, polymorphic CpGs are expected to

have significantly lower allele frequencies (average heterozy-

gosity), and thus a higher frequency of low heterozygosity alleles

than that observed in G/C dinucleotides. Analysis of the distribu-

tion of heterozygosities at human single nucleotide polymor-

phisms (SNPs) in hypodeaminated CpG islands (Figure 7C,

also compare to BGC islands in Figure S6C) reveals a slightly

higher frequency of rare alleles in G/C dinucleotides, an opposite

trend to that expected under a CpG selective regime. Moreover,

analysis of SNPs in TDMRs shows no evidence for a specific

selective constraint on CpG polymorphic sites compared to

general G/C SNPs (Figures 7D and 7E). These data suggest

that the selective pressure on CpGs in TDMRs is not stronger

on average than the selective pressure on any other G/C dinucle-

otide, nor is it stronger than the selective pressure on non-TDMR

CpGs. This observation holds even when studying mouse

TMDRs that are mapped onto conserved human genome CpG

islands (Figures S6D–S6F). Taken together, both substitution

dynamics and population genetics consistently suggest that

TDMRs may deaminate more rapidly, but are otherwise evolu-

tionary similar to the CpG islands that contain them. The evolu-

tionary conservation of TDMRs can be explained by the variation

in methylation-coupled deamination rate alone, without CpG-

specific selection. It remains to be seen if this lack of evidence

for selection indicates lack of function for TDMR methylation,

or if nonselective CpG island maintenance suffices to preserve

epigenetic function.

DISCUSSION

Classes of CpG-Rich Genomic Sequences
We used a new parameter-rich model of sequence evolution

combined with meta-analysis of DNA methylation data to study

the origin of the CpG repertoire in primate genomes. Our data

reveal at least three major evolutionary modes that govern the

emergence and maintenance of CpG-rich genomic regions.

Most CpG islands are constitutively unmethylated and undergo

slow C-to-T deamination. We have shown that the stability of

CpG content in these elements can be explained solely by the

neutral effect of slow deamination associated with lack of meth-

ylation, with no evidence for purifying selection on CpG densi-

ties. In contrast to the hypodeaminated CpG islands, biased

gene conversion CpG islands are constitutively methylated
Cell 145, 773–786, May 27, 2011 ª2011 Elsevier Inc. 779
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Figure 5. Constitutive Methylation at Biased Gene Conversion CpG Islands

(A) Chromosomal distribution. Shown is the chromosomal layout of CpG-rich loci that were classified as methylated and hyperdeaminated islands. The distri-

bution is shown to be highly nonuniform, with hotspots on most sub-telomeric regions. This set was denoted as biased gene conversion (BGC) islands since it

overlaps extensively with regions undergoing G/C substitution asymmetry (Dreszer et al., 2007).

(B) TSS distribution. The distribution of distances from the nearest annotated TSS was computed for the set of BGC islands (red) and the remaining CpG-rich loci

(gray). BGC islands are shown to lack proximity preferences to genes.
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elements that are clustered primarily in subtelomeric regions,

where G/C content was hypothesized to be high due to asym-

metric gene conversion (Duret and Galtier, 2009; Eyre-Walker,

1993; Galtier et al., 2001). These elements deaminate quickly,

but also gain CpGs rapidly leading to high stationary CpG

content. Therefore, the evolutionary origins of these CpG islands

can also be accounted for without invoking selection. BGC CpG

islands are not compatible with the original notion of CpG islands

(unmethylated regions that are typically observed near gene

promoters), and their current grouping with the classical

unmethylated islands (BGC islands overlap with a total of

2,457 UCSCCpG islands), is misleading. A third regime of evolu-

tionary dynamics in CpG islands involves elements where CpG

content is decaying. These elements are typically methylated

constitutively and may represent sequences that were previ-

ously protected from methylation or subject to biased gene

conversion, but subsequently (through duplication or changes

in cis) lost the mechanism(s) stabilizing CpG content. This type

of process is analogous to the formation of pseudo-genes

following loss of a selective constraint. These three evolutionary

regimes, combined with exonic CpG islands and repetitive

elements, provide a comprehensive and unbiased framework

for understanding patterns of DNA methylation in the human

genome.
Lack of CpG-Specific Selection in Differentially
Methylated Regions
Classical CpG islands are uniformly associated with conserva-

tion due to low deamination rates and low levels of methylation.

The evolutionary dynamics in these islands are typically not

neutral, since these sequences are likely to encode regulatory

information including transcription factor binding sites and short

and long noncoding RNAs near TSSs. We have shown, using

observations on both substitution rates and SNP heterozygosity,

that there is no particular selective constraint on CpGs

(compared to other dinucleotides) in these islands. Moreover,

we could not identify such constraints in regions identified as

tissue-specific DMRs, which were a-priori more likely to repre-

sent functionally important clusters of CpGs that are under

selection. The evolutionary perspective on the long standing

debate (Baylin and Bestor, 2002) on the functionality of DNA

methylation in CpG islands may therefore have two interpreta-

tions. The simplest explanation is that DNA methylation is not

functional outside aberrant (e.g., carcinogenic) contexts, and

therefore selection on its genomic encoding (CpGs) is not

observed. Alternatively, functional CpG islands do exist, but

retain discriminatively high CpG content without the need

for classical natural selection, through epigenetic control of

low germ-line methylation resulting in slow mutability. In this
(C) Methylation meta-analysis. The distributions of methylation levels for hypodea

data from three studies on human cells (Doi et al., 2009; Lister et al., 2009; Rakya

data include different tissues and cell lines, in various developmental stages, yet

suggest that methylation of BGC islands is evolutionarily conserved despite the

(D) Conservation and decay of CpG content. CpG content in the inferred human-m

regions classified as hypodeaminated CpG islands (green) and BGC CpG islands

human lineage (x axis) versus the rhesus lineages (y axis), reflecting more cases o

Figure S4.
scenario epigenetic mechanisms can fundamentally affect the

evolutionary process by instructing (indirectly, but consistently)

the otherwise blind mutational process to slow down at key

genomic sites.
Searching for Selection on DNA Methylation Switches
One should note that selection on CpG density is still a probable

driving force in a small fraction of the genome, as demonstrated

for the H19 and GTL2/DLK1 ICRs. Dozens or hundreds of

elements, each of several hundred base pairs, may conserve

dense CpG clusters by selection, but the resolution of the current

evolutionary data is not sufficient to identify these with high

specificity. Moreover, selection on individual CpG sites, or very

small groups of CpGs, is still undetectable using the current

evolutionary analysis and may be prevalent if it affects only

a small fraction of the CpGs in each CpG island. Single base-

pair resolution data on DNA methylation profiles (Lister et al.,

2009) and refined evolutionary analysis using additional primate

genomes may provide more definitive answers on the selection

for functional DNA methylation in specific regulatory contexts.
EXPERIMENTAL PROCEDURES

Overview of the Evolutionary Model

We wished to infer the evolutionary histories of CpG-rich regions in the human

genome by comparative analysis of genomic sequences of Human, Chimp,

Orangutan, and Rhesus (using Marmoset as an outgroup). This challenging

task required accurate modeling of the remarkable heterogeneity in the rates

of C-to-T deamination at CpG loci. CpG deaminations occur up to 20 times

faster than other single nucleotide point mutations and depend strongly on

the genomic and sequence context (Arndt, 2007; Baele et al., 2010). This

can lead to highly biased estimations of the substitution rates and ancestral

CpG content when using standard context independent models of molecular

evolution. For example, if deamination rate is assumed too slow, the inferred

CpG content of ancestral sequences will be too low, and the rate of CpG gain-

ing substitutions may be overestimated. Assuming deamination rates too high

would result in the opposite bias. As described below, we developed a new

computational model for inference of ancestral sequences and estimation of

substitution parameters while taking into account context-dependent substi-

tution rates in general, and rapid CpG deamination in particular. Our model

and inference algorithms were designed and implemented to allow genome-

wide analysis (a total of 1.74 gbp genomic loci on five species), and the

genome-wide approach guaranteed sufficient statistics for the robust estima-

tion of a parameter rich model (Figure S1).

Basic Substitution Model

The evolutionary model relies on a factor graph (Kschischang et al., 2001)

defining a joint distribution of three types of variables:

d Sequence variables - for each loci j and for each species i, denoted by Sj
i

d Context variables - for each loci j and for each lineage i, represents the

distribution of nucleotides over the lineage between each species and its

ancestor and is denoted by C j
i

minated islands (green) and BGC islands (red) are depicted as boxplots using

n et al., 2008) and one study on rhesus macaque cells(Cohen et al., 2009). The

in all cases the BGC islands are methylated. Interestingly, the macaque data

rapid CpG deamination in these regions.

acauqe ancestral genome and the extant species genomes’ was compared for

(red). Shown are the ratios between extant and ancestral CpG content for the

f CpG content decay in BGC islands than in hypodeaminated islands. See also
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Figure 6. Substitution Dynamics at ICRs and DMRs

(A) The H19 imprinting control region. Shown are the spatial distributions of observed evolutionary statistics (left) and differences between observed and ex-

pected statistics (right) for 6 kb around the H19 ICR (red box). The tracks depicted include data on CpG percentage (gray), overall number of substitutions (black),

CpG deaminations (CG / TG/CA, green) and CpG loss through nondeamination events (CG / XG, where X is not T, blue).

(B) The GTL2/DLK1 imprinting control region. Similar to (A), showing 6 kb around the GTL2/DLK1 ICR.

(C) Low CpG loss rates at ICRs. Shown are the distributions (boxplots) of rates for four types of substitutions for 2 paternally (blue) and 7 maternally (light blue)

methylated ICRs. Data for hypodeaminated islands (green) and BGC islands (red) are provided for reference. Although relatively few examples of ICRs are

characterized, their evolution provides evidence for low rates of nondeamination CpG loss substitutions at both the paternal and maternal ICRs.
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d Regional variables - including the G/C variable which reflects the mean

value of G/C content in each region k and is denoted by Gk .

Random variables are connected via different types of factors, which assign

potentials to each combination of variable values. Themodel uses four types of

factors. First, the mutational factor mj
iðs j

i ; s
j
paðiÞ; c

j�1
i ; c j + 1

i ;gbðjÞÞ, represents the
conditional probability of observing a nucleotide sji at loci j in species i given the

nucleotide at the same locus of the ancestral species pa(i), the flanking context

variables and the regional G/C content at region k=b(j). Second, the back-

ground factor b jðs j
r ; s

j�1
r ; s j�2

r ;gbðjÞÞ, represents the conditional probability of

observing a nucleotide s j
i at loci j of the root species r, given the preceding

two nucleotides. Third, the context factor d j
i ðc j

i ; s
j
i ; s

j
paðiÞÞ represents the condi-

tional probability of the context variable at locus j of lineage i given the

sequence variables at the end points of the lineage. Last, the GC factor

gðgk ; s
bðjÞ= k
r Þ represents the G/C content of region k. We note that other factor-

izations can be used to represent the context-dependent evolutionary

process, but for our genomewide and parameter rich application, lineage

segmentation (Hwang and Green, 2004) or explicit model of context depen-

dent rate matrices (Cohn et al., 2010) were not sufficiently efficient.

Modeling Regional Variation in CpG Deamination Intensity

In order to address the variable deamination rate of CpGs, an additional

regional deamination intensity variable Mk (similar to the GC variable) is

considered in the mutational factor. This discrete variable takes values in the

range [0..9] . The mutation factor is then parameterized such that the new

variable affects only the rate of C-to-T substitutions in CpG context (CG /

TG or CG/CA):

m
0 j
i

�
s j
i ; s

j
paðiÞ; c

j�1
i ; c j + 1

i ;gbðjÞ;mbðjÞ
�
=(

m
j
i

�
s j
i ; s

j
paðiÞ;c

j�1
i ; c j + 1

i ;gbðjÞ
�

:ðXCG/XTG;CGX/CAXÞ
n
j
i

�
gbðjÞ;mbðjÞ� XCG/XTG;CGX/CAX

Where n represents the deamination probability for specific values of the

G/C content variable and the deamination rate variable. We note that the M

variables are defined per region and are common to all lineages. This allows

more robust inference of the methylation intensity in each region, and is sup-

ported by the scaling of regional deamination rates between lineages

(Figure 2B).

In summary, the model joint distribution is defined by combining all factor

potentials:

Pðs; c;g;mÞ =
1

Z

Y
j

bj
�
s j
r ; s

j�1
r ; s j�2

r ;gbðjÞ�
Q
i;j

m
0j
i

�
s j
i ; s

j
paðiÞ;c

j�1
i ; cj +1

i ;gbðjÞ;mbðjÞ
�Q

i;j

d
j
i

�
cj
i ; s

j
i ; s

j
paðiÞ

�Q
k

g
�
gk ; s

bðjÞ= k
r

� :

Inferring Substitution Statistics

The joint marginal distribution of all variables connected to a mutation factor

m
j
i ðs j

i ; s
j
paðiÞ; c

j�1
i ; c j + 1

i ;gbðjÞ;mbðjÞÞ, is approximated by an extended loopy belief

propagation algorithm (see supplementary methods) using the factor belief

formula:

bj
i

�
s j
i ; s

j
paðiÞ; c

j�1
i ; c j + 1

i ;gbðjÞ;mbðjÞ
�
f

m
j
i

�
s j
i ; s

j
paðiÞ; c

j�1
i ; c j +1

i ;gbðjÞ;mbðjÞ
� Q

var˛Nðm j
i Þ

Q
n˛NðvarÞ mj

i

mn/varðxvarÞ :

We used this approximation to collect statistics on the number of substitu-

tions in 50 bp genomic windows. On each lineage i, we sum up all the muta-
(D and E) Evolutionary dynamics at the GSC and MEISeis1 DMRs. Similar to (A), b

which were characterized as tissue-specific DMRs (Doi et al., 2009; Ji et al., 201

(F) Neutral CpG loss rates at DMRs. Shown are the distributions (boxplots) of ra

variable techniques and two different species. Data for hypodeaminated islands (g

to general hypodeaminated CpG islands with respect to all evolutionary attribute
tional factors j in the window, collecting posterior probabilities in order to

report the number of observed substitutions X/Y in each context LXR (i.e.,

LXR/LYR):

obsði; l; x; r; yÞ=
X
j

X
g

X
m

b j
i ðy; x; l; r;g;mÞ

The observed number of substitutions in a window can be compared to the

number expected by the model. In order to compute the latter we multiply the

expected number of appearances of each context LXR by the model’s substi-

tution probability in that context:

expði; l; x; r; yÞ=
X
j

X
g

X
m

 X
o

b j
i ðo; x; l; r;g;mÞ

!
Pðy; x; l; r;g;mÞ

Similarly, we can report the number of cases in which specific ancestral

sequence is observed, i.e., the ancestral sequence LXR on lineage i is

observed:

obsði; l; x; rÞ=
X
j

X
g

X
m

X
o

b j
i ðo; x; l; r;g;mÞ

Using these formulas, we can compute evolutionary statistics on different

classes of substitutions, including CpG deaminations and nondeaminations

(see supplementary methods for complete details).
Learning the Model in Practice: Step by Step

Primate Multiple Alignments

Multiple alignment data for the five primate species in the phylogeny:

Marmoset, Rhesus, Orangutan, Chimp and Human were downloaded from

UCSC. Human exonic regions were removed from the multiple alignments

using the UCSC known genes annotation.

Initial Evolutionary Model

An initial evolutionary model was learned from alignments of extant

sequences, as described above, using generalized EM in a context-dependent

evolutionary model, but first without taking into account regional variability in

CpG deamination rates.

Evolutionary Statistics

Based on the initial model, nonexonic ancestral sequences in the phylogeny

were inferred and evolutionary statistics were extracted. The inferred deami-

nation rate in each genomic window (400 bp) and on each of the lineages

was recorded.

Quantification of CpG Deamination Rates across Lineages

The deamination rates observed on the rhesus lineage were quantitatively

correlated with the other lineages. The rhesus deamination rate was divided

into 10 bins, ranging from slow to fast deamination. For each rhesus deamina-

tion bin, average deamination rates were computed for each of the other line-

ages – this served to initialize the model in the next step.

Extending the Evolutionary Model with the Deamination Rate

Regional Variable

Regional deamination variables were next introduced to the model. All non-

CpG context parameters were initialized to the values learned for the simpler

model. The CpG deamination rates were initialized for the ten values of the

deamination intensity variable, using the rhesus bins as described in the

previous step. Model parameters were re-optimized through the generalized

EM procedure.
ut including data on 5 kb around GSC and 8 kb around MEIS1 regions, both of

0).

tes for four types of substitutions for TDMRs derived from three studies using

reen) andBGC islands (red) are provided for reference. TDMRs behave similarly

s. See also Figure S5.
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Figure 7. CpG Polymorphisms Support a Nonselective Evolutionary Regime in DMRs

(A) Evolution with selection for G/C content. A simple theoretical evolutionary model was designed to imitate the behavior of observed hypodeaminated

CpG islands. The model uses mutational input favoring A/T over G/C (middle-top) and a fitness landscape selecting for some minimal G/C content (middle-low).

The model also deaminates CpGs at a somewhat high (but not very high) rate characteristic of hypodeaminated CpGs. We extract stationary dinucleotide

distributions for pure A/T dinucleotides (AA/AT/TA/TT), pure G/C dinucleotides (CC/GC/GG), CpGs and deamination products (TG/CA) (top) using direct
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Inference and Extraction of Evolutionary Statistics

from the Enhanced Model

Following the learning of the methylation dependent evolutionary model,

ancestral sequences were inferred and the evolutionary statistics were re-esti-

mated, now corrected for the variability of regional deamination rates.

Defining BGC Regions

We quantified the relative conservation of G/C nucleotides in large sliding

genomic windows of 50 kbp by first scaling the number of G/C losing substi-

tutions to reflect variation in the regional conservation rate:

ScaledGCloss=
obsðGClossÞ

max

�
1:2;

obsðGCgainÞ
expðGCgainÞ

�

The scaling ensured that we will not define regions that are generally

conserved as BGC hotspots. We then quantified the G/C substitution asym-

metry as:

Z � ScaledGCloss� expðGClossÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðGClossÞp

The human genome was then segmented into regions with significant G/C

conservation (Z<-4) and regions with background behavior. Empirical G/C

conservation was validated to follow closely other metrics used before to iden-

tify candidate BGC regions.

Estimating Model Parameters in BGC and Non-BGC Sequences

Two separate sets of parameters were learned independently as described

above on the BGC and non-BGC fractions of the genome. Both models

were initialized with the same methylation dependent evolutionary model

previously learned.

Extraction of Substitution Statistics from the Final Model

Refined evolutionary statistics were inferred based on the combined BGC and

non-BGC model in 50 bps windows. These final statistics provided adequate

control for variability in substitution patterns due to heterogeneity in methyla-

tion and BGC intensities.
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Wright-Fisher simulations. Frequencies of low heterozygosity SNPs were compu

shown).

(B) Evolutionwith selection onG/C andCpG content. An extended theoretical mod

similar to that described in A, but with a fitness landscape selecting for a minima

regime without selection on CpGs, however, the effect of CpG selection on the f
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Error bars represent binomial confidence intervals. See also Figure S6.
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