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Abstract In this paper, the formulas of elasto-hydrodynamic traction coefficients of three Chinese

aviation lubricating oils, 4109, 4106 and 4050, were obtained by a great number of elasto-

hydrodynamic traction tests. The nonlinear dynamics differential equations of high-speed angular

contact ball bearing were built on the basis of dynamic theory of rolling bearings and solved by

Gear Stiff (GSTIFF) integer algorithm with variable step. The impact of lubricant traction coeffi-

cient on cage’s dynamic characteristics in high-speed angular contact ball bearing was investigated,

and Poincaré map was used to analyze the impact of three types of aviation lubricating oils on the

dynamic response of cage’s mass center. And then, the period of dynamic response of cage’s mass

center and the slip ratio of cage were used to assess the stability of cage under various working con-

ditions. The results of this paper provide the theoretical basis for the selection and application of

aviation lubricating oil.
� 2016 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

As one of basis parameters for dynamic design of rolling bear-
ing, lubricant traction coefficient is affected by the combined
impacts of slip velocity, rolling velocity and contact stress

between roller and raceway, the temperature of lubricating
oil, etc. Any changes in the above-mentioned factors might
revise the traction behavior of lubricant between roller and

raceway, causing the changes of collision force and collision
frequency between cage and ball, which directly affect the sta-
bility of cage. Three types of Chinese aviation lubricating oils,

namely 4109, 4106 and 4050, are commonly used for lubrica-
bearing,
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Fig. 1 Construction of test rig.
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tion of angular contact ball bearing for high-speed spindle
under various working conditions. However, owing to the dif-
ferent physics, chemistry and mechanics properties of lubri-

cants, the systematic researches in the connections of
lubricant traction coefficient and cage’s dynamic characteris-
tics are quite rare.

In 1971, Walters1 firstly built the analytic model of high-
speed ball bearing, which set the foundation of dynamic anal-
ysis of high-speed ball bearing. Gupta2–5 built the dynamics

differential equations of ball bearing with six degrees of free-
dom, and then studied the cage’s whirl orbit. By stimulating,
Gupta P K indicated that the frictional coefficient between ball
and raceway had great impact on cage’s whirl orbit, but he did

not further study the influencing factors of cage’s stability.
Further to previous research, Gupta6 studied the relationship
between structural parameters of cage pocket clearance, guide

clearance and cage stability, but neglecting the impact of lubri-
cant properties on the stability of cage. Based on the simplified
traction model of lubricant, Boesiger et al.7 studied the impact

of operation conditions on cage’s whirl orbit and unsteady
characteristic frequency in ball bearing, pointing out that oil
lubrication was more preferable than grease lubrication in

terms of cage stability. Lord and Larsson8 did the experimen-
tal studies of elasto-hydrodynamic traction properties for
VG46, VG68 and VG150, analyzing the impact of lubricant
properties on lubricant film and traction coefficient, but their

research did not involve the impact of lubricant properties
on cage’s stability. Rahman and Ohno9 did the experiments
of the fatigue life and impact performance of bearings, which

were lubricated by eight types of synthesized lubricants, ana-
lyzing the lubrication film between cage and ball and the rea-
sons for cage’s failure. In addition, in their research, they

indicated that lubricant traction coefficient had great impact
on cage’s failure. Based on the quasi-dynamic theory of angu-
lar contact ball bearing, Deng and Hao10 studied the effect of

different working conditions and structural parameters on the
offset of cage’s mass center, which had been used to assess
cage’s stability. Pederson et al.11 developed a flexible cage
model with six degrees of freedom in deep groove ball bearing,

and studied cage’s instability and ball-to-cage pocket contact
forces. Based on dynamic theory of angular contact ball bear-
ing, Liu and Deng12 studied the effect of working conditions

and structural parameters on cage’s whirl orbit and the speed
deviation ratio of cage, which were used to assess the cage’s
stability. Based on dynamic theory of rolling bearing, Deng

and Xie13 studied the dynamic characteristics of cage in
high-speed angular contact ball bearing, pointing out that
too big or too small pocket clearance and the guiding clearance
of cage were adverse to cage’s stability. Sathyan et al.14 con-

ducted various tests such as run-in test, temperature test, and
over-lubrication test to study the instability of cage in ball
bearings, and the study results show that square pocket retain-

ers are more stable compared to circular pocket retainers. Ash-
tekar and Sadeghi15 developed a 3D explicit finite element
model (EFEM) of the cage to analyze the cage dynamics,

deformation, and resulting stresses in a ball bearing under var-
ious operating conditions. Ye16 studied the effect of cage clear-
ance ratio, bearing load and bearing rotation speed on cage’s

whirl orbit and the speed deviation ratio of cage, suggesting
that too big or too small pocket clearance and guiding clear-
ance of cage were not beneficial to cage’s stability. Abele et al.17

promoted two new image evaluation algorithms to capture
Please cite this article in press as: Zhang W et al. Impact of lubricant traction coeffici
Chin J Aeronaut (2016), http://dx.doi.org/10.1016/j.cja.2016.08.019
cage’s whirl with sensors installed on a bearing test rig, and
analyzed the cage motion in an angular contact ball bearing
under the operation conditions. All the above mentioned

researches mainly focused on the impact of bearing working
conditions and structural parameters on cage’s dynamic char-
acteristics and stability, while the impact of lubricant traction

coefficient on cage’s dynamic characteristics and stability has
not aroused any attention.

In this paper, the formulas of elasto-hydrodynamic traction

coefficients of three Chinese aviation lubricating oils, 4109,
4106 and 4050, are obtained through a great number of
elasto-hydrodynamic traction tests. The nonlinear dynamics
differential equations are built on the basis of dynamic theory

of rolling bearings and solved by Gear Stiff (GSTIFF) integer
algorithm with variable step. The impact of lubricant traction
coefficient on cage’s dynamic characteristics is investigated,

and Poincaré map is used to analyze the impact of three types
of aviation lubricating oils on dynamic response of cage’s mass
center and the slip ratio of cage. The period of dynamic

response of cage’s mass center and the slip ratio of cage are
used to assess cage’s stability and the research results of this
paper provide theoretical basis for the selection of aviation

lubricating oil.

2. Elasto-hydrodynamic traction coefficient tests

The tests of elasto-hydrodynamic traction coefficients for three
Chinese aviation lubricating oils, 4109, 4106 and 4050, were
conducted by using a self-made test rig. The construction of
test rig is shown in Fig. 1, where B direction denotes the left

view of local type view.
According to the dynamic viscosity and temperature-

viscosity coefficient, the three Chinese aviation lubricating oils,

4109, 4106 and 4050, are categorized to the low viscosity lubri-
cant, medium viscosity lubricant, and medium viscosity, high-
temperature resistant lubricant, respectively.

The parameters of aviation lubricant oil, 4109, 4106 and
4050, are shown in Table 1, where g0 is dynamic viscosity at
ambient temperature, a pressure-viscosity coefficient, b
temperature-viscosity coefficient, and K thermal conductivity.

The formulas of elasto-hydrodynamic traction coefficients
l of 4109, 4106 and 4050 were obtained by applying the curve
fitting technic to the test data.
ent on cage’s dynamic characteristics in high-speed angular contact ball bearing,
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Table 1 Parameters of aviation lubricating oil.

Name g0 (Pa�s) a (Pa�1) b (�C�1) K (N/(s��C))
4109 0.033 1.28 � 10�8 0.0215 0.0966

4106 0.055 1.85 � 10�8 0.031531 0.0965788

4050 0.060 2.02 � 10�8 0.035 0.0966
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l ¼ ðAL þ BLSÞe�CLS þDL ð1Þ
In Eq. (1), S is slide-roll ratio of ball; AL, BL, CL, DL are func-
tions of normal load, lubrication temperature of inlet and
velocity of contact surface, and the expressions of AL, BL,

CL, DL for 4109, 4106 and 4050 are shown as Eqs. (2)–(4),
respectively.

�W¼W=ðER2Þ
�U¼g0U=ðERÞ
�T¼T

ffiffiffiffiffiffiffiffiffiffiffi
Kg0b

p
=ðERÞ

�WC¼7:956015�1012� �T� �Tþ5553:090� �Tþ1:758455�10�6

AL ¼�4:793526�10�8 �W0:0068361�j �WC= �W�1j �U�0:4047492 �T�0:1833848

BL ¼8:37449�10�15 �W0:01409715�j �WC= �W�1j �U�0:5868325 �T�0:8173636

CL ¼1:180823�10�4 �W0:0061321�j �WC= �W�1j �U�0:2061700 �T�0:3431740

DL¼4:793526�10�8 �W0:0068361�j �WC= �W�1j �U�0:4047492 �T�0:1833848

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð2Þ

�W¼W=ðER2Þ
�U¼g0U=ðERÞ
�T¼T

ffiffiffiffiffiffiffiffiffiffiffi
Kg0b

p
=ðERÞ

�WC¼�2:279669�1012� �T� �Tþ5959:008� �Tþ1:647125�10�6

AL ¼�1:172032�10�7 �W0:0104047�j �WC= �W�1j �U�0:530571 �T�0:0371558

BL ¼1:164665�10�11 �W0:0146206�j �WC= �W�1j �U�0:6592641 �T�0:443983

CL ¼3:962211�10�6 �W0:00992�j �WC= �W�1j �U�0:3987271 �T�0:3237042

DL¼1:172032�10�7 �W0:0104047�j �WC= �W�1j �U�0:530571 �T�0:0371558

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð3Þ

�W ¼ W=ðER2Þ
�U ¼ g0U=ðERÞ
�T ¼ TK=ðg0U2Þ
AL ¼ 0:0016 �W1:1227 �U0:8493 �T0:8816

BL ¼ 7:2804 �W�0:1372 �U0:2116 �T0:1766

CL ¼ 61:4605 �W0:3831 �U2:9404 �T1:6113

DL ¼ 16:7177 �W0:3403 �U0:4748 �T0:2488

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4Þ

where E is equivalent elasticity modulus of two contact bodies;
R equivalent radius of curvature; U rolling velocity

(U= (U1 + U2)/2, U1 and U2 are the linear velocities for the

surfaces of ball and disc specimens, respectively); �U dimension-

less parameter of U; �W dimensionless parameter of load W; �T

dimensionless parameter of lubricant temperature T; �WC

dimensionless parameter of a critical normal load.

3. Dynamic model of high-speed angular contact ball bearing

In this paper, outer ring is fixed, inner ring rotates at constant
speed, and cage is guided by outer ring. The surfaces of bearing
components are absolutely smooth, and the component’s mass

center coincides with its centroid. In order to build the
Please cite this article in press as: Zhang W et al. Impact of lubricant traction coeffici
Chin J Aeronaut (2016), http://dx.doi.org/10.1016/j.cja.2016.08.019
dynamic model of bearing, the following five coordinate sys-

tems in Fig. 2 are defined.

(1) Inertial coordinate system {O;X,Y,Z} is fixed in space, X

axis coincides with rotating axis of bearing, and YZ
plane parallels to radial plane through bearing center.

(2) Coordinate system of ball mass center {obj;xbj,ybj,zbj},
where subscript j denotes the jth ball or cage pocket.

obj coincides with ball’s mass center, ybj axis is along
radial direction of bearing, and zbj axis is along circum-
ferential direction of bearing. {obj;xbj,ybj,zbj} moves but

doesn’t spin with ball’s mass center, and each ball has
its own local coordinate system.

(3) Coordinate system of cage’s mass center{oc;xc,yc,zc}. xc
axis coincides with rotating axis of cage, yczc plane par-
allels to radial plane through cage center, oc coincides
with geometric center of cage, and {oc;xc,yc,zc} moves

and spins with cage.
(4) Coordinate system of inner ring mass center {oi;xi,yi,zi}.

xi axis is along with rotating axis of inner ring, yizi plane
parallels with radial plane through inner ring mass cen-

ter, oi coincides with geometric center of inner ring, and
{oi;xi,yi,zi} moves and spins with inner ring.

(5) Coordinate system of the jth cage pocket center {opj;xpj,

ypj,zpj}. opj coincides with geometric center of cage
pocket, ypj axis is along radial direction of bearing,
and zpj axis is along circumferential direction of bearing.

{opj;xpj,ypj,zpj} moves and spins with cage, and each cage
pocket center has its own local coordinate system.
Fig. 2 Coordinate system of ball bearing.

ent on cage’s dynamic characteristics in high-speed angular contact ball bearing,
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3.1. Nonlinear dynamics differential equations of ball

When angular contact ball bearing is working at high speed,
the forces acting on ball are shown in Fig. 3. For the detailed
expressions of symbols, please refer to Ref. 18.

In Fig. 3, subscript g, n denote the short axis and long axis
of contact zone between ball and raceway; subscript o, i denote
outer ring and inner ring; aij, aoj are contact angles between

ball and raceway; Qij, Qoj are normal contact forces between
ball and raceway; Tgij, Tgoj, Tnij, Tnoj are traction forces of con-

tact surfaces between ball and raceway; Qcj is collision force
between the jth ball and cage; Fnj, Fsj are components of ball’s

inertia force; PRgj, PRnj are rolling frictional forces acting on

ball’s surface; PSgj, PSnj are sliding frictional forces acting on

ball’s surface; FHgij, FHgoj, FHnij, FHnoj are horizontal compo-

nents of hydrodynamic force acting on ball’s center; FRgij,

FRgoj, FRnij, FRnoj are hydrodynamic frictional forces at inlet

zone of contact between ball and raceway; Jx, Jy, Jz are com-

ponents of ball’s moment of inertia of xbj, ybj, zbj directions;
Gyj, Gzj are components of ball’s inertia moment of ybj, zbj
directions; FDj is aerodynamic resistance acting on the ball
by gas-oil mixture; xxj, xyj, xzj are components of ball’s angu-

lar velocity of xbj, ybj, zbj directions; _xxj, _xyj, _xzj are compo-

nents of ball’s angular acceleration of xbj, ybj, zbj directions.
The nonlinear dynamics differential equations of the jth

ball are shown as Eqs. (5)–(10):

Qij sin aij �Qoj sin aoj þ Tgij cos aij � Tgoj cos aoj

� FRgij cos aij þ FRgoj cos aoj þ FHgij cos aij � FHgoj cos aoj
þ PSnj þ PRnj ¼ mb€xbj ð5Þ

Qij cos aij �Qoj cos aoj � Tgij sin aij þ Tgoj sin aoj

þ FRgij sin aij � FRgoj sin aoj � FHgij sin aij þ FHgoj sin aoj
þ Fnj � PSgj � PRgj ¼ mb€ybj ð6Þ

Tnoj�Tnij�FRnojþFRnijþFHnoj�FHnijþQcj�FDj�Fsj¼mb€zbj

ð7Þ

Tnoj � FRnoj

� �Dw

2
cos aoj þ Tnij � FRnij

� �Dw

2
cos aij

� PSgj þ PRgj

� �Dw

2
� Jx _xxj ¼ Ib _xbjx ð8Þ

FRnoj � Tnoj

� �Dw

2
sin aoj þ FRnij � Tnij

� �Dw

2
sin aij

� Gyj � PSnj þ PRnj

� �Dw

2
� Jy _xyj ¼ Ib _xbjy � Ibxbjz

_hbj ð9Þ
Fig. 3 Schematic diagram of forces acting on ball.

Please cite this article in press as: Zhang W et al. Impact of lubricant traction coeffici
Chin J Aeronaut (2016), http://dx.doi.org/10.1016/j.cja.2016.08.019
Tgij � FRgij

� �Dw

2
þ Tgoj � FRgoj

� �Dw

2
� Gzj � Jz _xzj

¼ Ib _xbjz þ Ibxbjy
_hbj ð10Þ

where mb is mass of ball; €xbj, €ybj, €zbj are displacement acceler-

ations of the jth ball mass center in {O;X,Y,Z}; Ib are moments

of inertia of ball in {O;X,Y,Z}; xbjx, xbjy, xbjz are angular

velocities of the jth ball in{O;X,Y,Z}; _xbjx, _xbjy, _xbjz are angu-

lar accelerations of the jth ball in {O;X,Y,Z}; _hbj is orbit speed
of the jth ball in {O;X,Y,Z}; Dw is ball diameter.

3.2. Nonlinear dynamics differential equations of cage

The forces acting on cage are shown in Fig. 4, and {or;yr,,zr} is

cage’s reference coordinate system. For the expressions of sym-
bols in Fig. 4, please refer to Ref. 18.

In Fig. 4, ec is relative eccentricity of cage center; Dyc, Dzc
are components of ec along yr, zr directions; Uc is the angle
between {oc;yc,zc} and {or;yr,,zr}; h0 is minimum oil film thick-
ness; Fcy, Fcz are components of hydrodynamic force acting on

cage’s surface along yc, zc directions; Mcx is friction moment
acting on cage’s surface.

The nonlinear dynamics differential equations of cage are

shown as Eqs. (11)–(16):

XBN
j¼1

ðPSgj þ PRgj þQcxjÞ ¼ mc€xc ð11Þ

XBN
j¼1

ðPSnj þ PRnjÞ cosuj þQcyj

� �þ Fcy ¼ mc€yc ð12Þ

XBN
j¼1

ðPSnj þ PRnjÞ sinuj �Qczj

� �þ Fcz ¼ mc€zc ð13Þ

XBN
j¼1

ðPSnj þ PRnjÞDw

2
�Qcj

dm
2

	 

þMcx

¼ Icx _xcx � Icy � Icz
� �

xcyxcz ð14Þ

XBN
j¼1

PSgj þ PRgj

� � dm
2

sinuj ¼ Icy _xcy � Icz � Icxð Þxczxcx ð15Þ
Fig. 4 Schematic diagram of forces acting on cage.
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Table 2 Major parameters of bearing.

Item Value

Bearing outside diameter (mm) 62

Bearing bore diameter (mm) 30

Bearing width (mm) 16

Ball number 11

Ball diameter (mm) 9.525

Cage outside diameter (mm) 52

Cage bore diameter (mm) 44.4

Cage pocket radius (mm) 4.8125

Cage width (mm) 11

Material of inner ring, outer ring, ball GCr15

Material of cage Porous polyamide
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XBN
j¼1

PSgj þ PRgj

� � dm
2

cosuj ¼ Icz _xcz � Icx � Icy
� �

xcxxcy ð16Þ

where mc is mass of cage; €xc, €yc, €zc are displacement accelera-

tions of cage mass center in {O;X,Y,Z}; Icx, Icy, Icz are

moments of inertia of cage in {O;X,Y,Z}; xcx, xcy, xcz are

angular velocities of cage in {O;X,Y,Z}; _xcx, _xcy, _xcz are angu-

lar accelerations of cage in {O;X,Y,Z}; Qcxj, Qcyj, Qczj are com-

ponents of Qcj in {O;X,Y,Z}; BN is ball number; dm is pitch

diameter of bearing; uj is azimuth angle of the jth ball.

3.3. Nonlinear dynamics differential equations of inner ring

The nonlinear dynamics differential equations of inner ring are
shown as Eqs. (17)–(21):

Fx þ
XBN
j¼1

ðQij sin aij � FRgij cos aijÞ ¼ mi€xi ð17Þ

Fy þ
XBN
j¼1

Qij cos aij þ FRgij sin aij
� �

cosuj þ Tnij � FRnij

� �
sinuj

� �

¼ mi€yi ð18Þ

Fz �
XBN
j¼1

Qij cos aij þ FRgij sin aij
� �

sinuj þ Tnij � FRnij

� �
cosuj

� �

¼ mi€zi ð19Þ

Myþ
XBN
j¼1

rij Qij sinaij�FRgij cosaij
� �

sinujþ
Dw

2
fiTnij sinaij cosuj

	 


¼ Iiy _xiy� Iiz�Iixð Þxizxix ð20Þ

Mzþ
XBN
j¼1

rij Qij sinaij�FRgij cosaij
� �

cosuj�
Dw

2
fiTnij sinaij sinuj

	 


¼ Iiz _xiz� Iix�Iiy
� �

xixxiy ð21Þ
where mi is mass of inner ring; €xi, €yi, €zi are displacement accel-
erations of inner ring mass center in {O;X,Y,Z}; Iix, Iiy, Iiz are

moments of inertia of inner ring in {O;X,Y,Z}; xix, xiy, xiz are

angular velocities of inner ring in {O;X,Y,Z}; _xiy, _xiz are angu-

lar accelerations of inner ring in {O;X,Y,Z}; Fx, Fy, Fz, My, Mz

are external loads and moments acting on the inner ring;
rij ¼ 0:5dm � 0:5Dwfi cos aij, fi is inner ring raceway curvature

radius coefficient.

4. Impact of lubricant traction coefficient on cage’s dynamic

characteristics

The major parameters of high-speed angular contact ball bear-
ing are shown in Table 2.

Due to the strong nonlinearity of dynamics differential
equations of high-speed angular contact ball bearing, the solu-

tion of nonlinear equations is more complicated. Here, the
nonlinear dynamics differential Eqs. (5)–(21) were solved by
GSTIFF integer algorithm with variable step19, and Poincaré

map20 was used to analyze the whirl orbit of cage.
Please cite this article in press as: Zhang W et al. Impact of lubricant traction coeffici
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4.1. Impact analysis of lubricant temperature on dynamic
response of cage’s mass center

We assume that the speed of inner ring is set to 14,000 r/min,
axial force Fx applied on inner ring is set to 1000 N, and T are

set to 27 �C, 80 �C, 130 �C and 180 �C. The whirl orbit and
Poincaré map of cage under different lubricant temperatures
are shown in Figs. 5 and 6, where DY and DZ are the displace-
ment of cage’s mass center in {O;X,Y,Z}, and VY is the velocity

of cage’s mass center in {O;X,Y,Z}.
As shown in Fig. 5, with the temperature of 4109 increas-

ing, the whirl orbit of cage presents the single circle whirl,

the less obvious multi-circle whirl and the obvious multi-
circle whirl. One Poincaré mapping point, three Poincaré map-
ping points and the closed curve formed by Poincaré mapping

points in Fig. 5(a)–(c) indicate that cage undergoes one period,
three periods and quasi-periodicity at different lubricant tem-
peratures, respectively.

In Fig. 6, both the temperatures of 4106 and 4050 have tiny
impact on the dynamic response of cage, and cage keeps whir-
ling along one circle and less obvious multiple circles, respec-
tively. The Poincaré points in Fig. 6(a) and (b) also show

that cage is in the state of one periodic motion and four peri-
odic motion respectively, no matter how the temperature of
4106 and 4050 changes.

4.2. Impact analysis of axial force on dynamic response of cage’s

mass center

We assume that the speed of inner ring is set to 14,000 r/min,
axial force Fx applied on inner ring are set to 100 N, 500 N,
1000 N, 2000 N, 3000 N and 6000 N, and lubricant tempera-
ture T is set to 130 �C.

In Fig. 7, bearing is lubricated by 4109, and when axial load
is small(Fx = 100 N), the whirl orbit of cage and Poincaré
mapping points in Fig. 7(a) are disorderly, indicating that cage

is in the chaotic state. With axial load increasing (Fx = 500–
2000 N), cage successively undergoes the single circle whirl
and the multi-circle whirl. Four Poincaré mapping points in

Fig. 7(b) and the closed curve formed by Poincaré mapping
points in Fig. 7(c) show that cage is in the four periodic and
quasi-periodic state, respectively. When axial load Fx is in
ent on cage’s dynamic characteristics in high-speed angular contact ball bearing,
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Fig. 6 Whirl orbit and Poincaré map under different tempera-
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Fig. 7 Whirl orbit and Poincaré map under different axial forces

of 4109.
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the range of 3000–6000 N, the disorderly Poincaré mapping
points in Fig. 7(d) show that cage is in chaotic state.

In Fig. 8, bearing is lubricated by 4106, and when axial load

is small (Fx = 100 N), the disorderly whirl orbit of cage and
Poincaré mapping points in Fig. 8(a) show that cage is in a
chaotic state. With axial load increasing (Fx = 500–3000 N),

both the single circle whirl of cage and one Poincaré mapping
point in Fig. 8(b) represent that cage is in the state of single
Please cite this article in press as: Zhang W et al. Impact of lubricant traction coeffici
Chin J Aeronaut (2016), http://dx.doi.org/10.1016/j.cja.2016.08.019
period. When axial load Fx is up to 6000 N, the less obvious
multi-circle whirl of cage and the closed curve formed by Poin-
caré mapping points in Fig. 8(c) also represent that cage is in a

quasi-periodic state.
In Fig. 9, bearing is lubricated by 4050, and when axial load

is small (Fx = 100 N), the disorderly whirl of cage and Poin-

caré mapping points in Fig. 9(a) represent that cage is in the
state of chaotic motion. When axial load Fx is up to 500 N,
both the single circle whirl of cage and one Poincaré mapping

point in Fig. 9(b) show that the motion of cage’s mass center is
in the state of single period. With axial load increasing
(Fx = 1000–2000 N), four Poincaré mapping points in Fig. 9
(c) represent that cage is in the state of four periodic motion.

When axial load is big enough (Fx = 3000–6000 N), as shown
in Fig. 9(d) and (e), cage undergoes the quasi-periodic motion
and the chaotic motion, respectively.

4.3. Impact analysis of combined loads on dynamic response of

cage’s mass center

We assume that the speed of inner ring is set to 14,000 r/min,
radial forces Fy applied on inner ring are set to 100 N, 500 N
ent on cage’s dynamic characteristics in high-speed angular contact ball bearing,
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and 1000 N, axial force Fx applied on inner ring is set to

1000 N, and lubricant temperature T is set to 130 �C.
In Fig. 10, when bearing is lubricated by 4109, the multi-

circle whirl of cage is less obvious, and the closed curve formed

by Poincaré mapping points also represents that cage is in the
state of quasi-periodic motion, no matter how radial force Fy

changes.
In Fig. 11, bearing is lubricated by 4106. When radial load

is small, cage undergoes a single circle whirl, and one Poincaré
mapping point in Fig. 11(a) shows that cage is in the state of
one periodic motion. With radial load increasing, the multi-

circle whirl increases obviously, and closed curve in Fig. 11
(b) and disorderly Poincaré mapping points in Fig. 11(c) also
show that cage undergoes quasi-periodic motion and ulti-

mately tends to chaotic motion.
In Fig. 12, when bearing is lubricated by 4050, Poincaré

mapping points in Fig. 12(a) and (b) indicate that cage under-
goes four periodic and chaotic motion with the increase of the

radial load, respectively.

5. Impact analysis of lubricant traction coefficient on cage’s

stability

According to the above analysis in Section 4, the motion of
cage in angular contact ball bearing lubricated by 4109, 4106

and 4050 shows the different dynamic responses and changing
pattern under various working conditions. However, it is inad-
equate to assess the stability of cage with just a dynamic

response result.
Please cite this article in press as: Zhang W et al. Impact of lubricant traction coefficient on cage’s dynamic characteristics in high-speed angular contact ball bearing,
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In this paper, the slip ratio of cage and the period of
dynamic response of cage’s mass center were used as the crite-
ria to assess the stability of cage. The cage’s slip ratio and the

period of nonlinear dynamic response of cage’s mass center
under different lubricant temperatures, axial loads and radial
loads are shown in Figs. 13–15 and Tables 3–5.

In Figs. 13–15, cage’s slip ratio shows the different chang-
ing trends under different lubricant temperatures and axial
forces. But, radial force has tiny impact on cage’s slip ratio

when bearing bears combined loads.
According to the above-mentioned analysis, it is apparent

that different types of lubricating oils have great impact on
cage’s dynamic characteristics and the stability of cage. Fewer

periods of dynamic response of cage’s mass center and smaller
slip ratio of cage are beneficial to cage’s stability. Therefore, in
order to improve the stability of cage, the type of aviation

lubricating oil is chosen according to Table 6 under different
working conditions.

6. Conclusions

(1) Lubricant traction coefficient affects the dynamic char-
acteristics of cage, and the motion of cage’s mass center
shows the abundant periodic and non-periodic (quasi-

periodic and chaotic) responses. In addition, cage’s whirl
orbit presents different periods of nonlinear response
and changing pattern in angular contact ball bearings

lubricated by different types of aviation lubricating oils.
(2) For three types of aviation lubricating oils, 4109, 4106

and 4050 in this paper, a too small or too large axial

force is adverse to cage’s stability. With the increase of
442

443

444

Fig. 11 Whirl orbit and Poincaré map under different radial

forces of 4106.

Fig. 13 Cage slip ratio under different lubricant temperatures.

Fig. 14 Cage slip ratio under different axial forces

(Speed = 14,000 r/min, T = 130 �C).
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axial force, cage might undergo from chaotic state to
periodic motion, and then ultimately tend to quasi-
periodic state or chaotic state.
ent on cage’s dynamic characteristics in high-speed angular contact ball bearing,
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Table 3 Nonlinear dynamic response period of cage at

different lubricant temperatures.

Temperature (�C) Nonlinear dynamic response period

4109 4106 4050

27 1 period 1 period 4 periods

80 3 periods 1 period 4 periods

130 Quasi-periodicity 1 period 4 periods

180 Quasi-periodicity 1 period 4 periods

Table 4 Nonlinear dynamic response period of cage at

different axial forces.

Axial force

(N)

Nonlinear dynamic response period

4109 4106 4050

100 Chaos Chaos Chaos

500 4 periods 1 period 1 period

1000 Quasi-

periodicity

1 period 4 periods

2000 Quasi-

periodicity

1 period 4 periods

3000 Chaos 1 period Quasi-

periodicity

6000 Chaos Quasi-

periodicity

Chaos

Table 5 Nonlinear dynamic response period of cage at

different radial forces.

Lubricant Nonlinear dynamic response period

Fy = 100 N Fy = 500 N Fy = 1000 N

4109 Quasi-

periodicity

Quasi-

periodicity

Quasi-

periodicity

4106 1 period Quasi-

periodicity

Chaos

4050 4 periods 4 periods Chaos

Table 6 Recommended working condition for three aviation

lubricating oils.

Lubricant Recommended working condition

Temperature Axial

load

Radial load

4109 Low

temperature

Light

load

From light load to heavy

load

4106 Low

temperature

Heavy

load

Heavy load

4050 High

temperature

Heavy

load

Heavy load
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(3) When bearing only bears an axial force, for the sake of
cage’s stability, lubricant with low viscosity is suggested
for lubrication of bearing working at high speed, light
load and low temperature; lubricant with medium vis-

cosity is suggested for lubrication of bearing working
at high speed, heavy load and low temperature; lubri-
cant with the medium and high temperature resistant

is suggested for lubrication of bearing working at high
speed, heavy load and high temperature.

(4) When bearing simultaneously bears an axial force and a

radial force, for the sake of cage’s stability, lubricant
with medium viscosity and high temperature resistant
is suggested for lubrication of bearing working at high

speed, high temperature and heavy radial load; lubricant
with low viscosity is suggested for lubricating of bearing
working under any other working condition.
Please cite this article in press as: Zhang W et al. Impact of lubricant traction coeffici
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