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a b s t r a c t

Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires
catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic
function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the
same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g.,
receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conforma-
tional changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell
membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and
cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and
postfusion conformations of illustrate the beginning and end points of a process that can be probed by
single-virion measurements of fusion kinetics.

& 2015 The Author. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Enveloped viruses require membrane fusion to enter a cell.
They expose on their surface many copies of a fusion protein, held
in a “prefusion conformation” by constraints that come either from
another part of the same protein or from a different viral protein.
Two events lead to a fusogenic conformational transition. One

(“priming”) makes the transition possible, often by virtue of a
proteolytic cleavage; the other (“triggering”) initiates the transi-
tion, usually as a result of ligand binding. The ligand can be a
proton, in the case of low-pH induced conformational changes
(example: influenza virus); it can be a co-receptor on the cell
surface or in an internal compartment to which the entering virus
traffics (example: HIV); or it can be a distinct protein on the virion
surface, itself triggered to signal fusion, often by interaction with
the cell-surface receptor for the virus in question (example:
paramyxoviruses). Viral fusion proteins are “suicide enzymes”,
because they undergo an irreversible priming step and act only
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once; intracellular fusion proteins, such as the well-known
SNAREs, recycle, through the agency of an ATP-dependent protein
such as NSF, and priming is therefore reversible.

Why is catalysis of fusion necessary? Although thermodyna-
mically favorable, fusion of two membranes must overcome a
kinetic barrier, due to a repulsive “hydration force”, which incre-
ases steeply as the distance between the surfaces of the two
bilayers falls below 20 Å (Parsegian et al., 1979; Rand and
Parsegian, 1984). Because of this barrier, the two membranes
require a source of free energy other than thermal fluctuation to
bring them closer together than the 20 Å spacing at which the
hydration force becomes very strong. Bilayer fusion proceeds
through a so-called “hemifusion intermediate”, in which apposed
leaflets have merged, but not yet distal ones (Kuzmin et al., 2001;
Yang and Huang, 2002; Lee, 2010). Considerable evidence supports
the picture shown in Fig. 1, for the hemifusion transition and for
subsequent fusion pore formation. The productive, hemifused
state is simply a narrow stalk, minimizing the area of close contact
and hence minimizing the work done to overcome hydration force
repulsion. Widening of the stalk into a “hemifusion diaphragm” is
probably a kinetic dead end, at least if the diaphragm is more than
a few lipid molecules wide (Diao et al., 2012).

Viral fusion proteins fall into a small number of structural
classes – three reasonably well characterized ones at the time of
this review (Harrison, 2008). The first of these three includes many
of the best studied human pathogens, such as influenza virus
(Skehel and Wiley, 2000) and HIV-1 (Chan and Kim, 1998). The
proteins are trimers of a single-chain precursor, which requires a
proteolytic cleavage to make it fusogenic. The cleavage, which may
simply eliminate a single peptide bond, generates two fragments.
The N-terminal fragment, in many cases a receptor-binding
domain (e.g., the HA1 fragment of influenza virus hemagglutinin
or the gp120 fragment of HIV-1 envelope protein), constrains the
C-terminal, fusogenic fragment (e.g., HA2 or gp41), until triggered
to release it. The latter bears a hydrophobic “fusion peptide” at or
near its newly generated N-terminus and a transmembrane
anchor, which holds it in the viral membrane, near its C-terminus.

Most members of the second structural class of fusion proteins
– those found on flaviviruses, alphaviruses, and bunyaviruses – are
in an icosahedrally symmetric array on the mature virion (von
Bonsdorff and Harrison, 1975; von Bonsdorff and Pettersson, 1975;
Lescar et al., 2001; Zhang et al., 2002; Kuhn et al., 2002). Although
the virion of rubella virus is less regular that those of the closely
related alphaviruses (Battisti et al., 2012), its fusion protein has a
characteristic class II structure (DuBois et al., 2013). For flaviviruses
and alphaviruses, the priming event is cleavage of a second viral
surface protein, which is, in effect, a “chaperone” that blocks any
response to conditions of triggering (Lobigs and Garoff, 1990;
Guirakhoo et al., 1991). When cleavage has inactivated the chaper-
one, triggering (exposure to reduced pH in case of both flavi- and
alphaviruses) induces a reorgnization of the surface lattice and
trimerization of the fusion protein. The hydrophobic segment that
engages the target membrane during the fusogenic conforma-
tional change is an internal “fusion loop”.

Members of the third class of fusion proteins, found on rhabdo-
viruses (G protein), herpesviruses (gB), and group 1 alphabaculoviruses

(gp64) combine certain features of the first two (Backovic and
Jardetzky, 2009). Herpesvirus gB is part of a larger fusion complex
that includes several other proteins; the rhabdovirus G proteins are
the sole surface proteins of those viruses. There is no obvious primi-
ng event, and most of the conformational transition in G that induces
rhabdovirus fusion is reversible (Roche and Gaudin, 2002). The
proteins, which have two spatially adjacent, hydrophobic fusion loops
on each subunit, are trimeric in both pre- and postfusion conforma-
tions, and they do not form a regular array on the virion surface.

Stuctures and fusogenic structural transitions

Class I: priming by cleavage of trimeric, single-chain precursor

The classic, and still best characterized, example is influenza
virus hemagglutinin (HA) (Skehel and Wiley, 2000; Wilson et al.,
1981). Fig. 2a shows the pre- and post-fusion ectodomains of HA1:
HA2, joined schematically to their transmembrane anchors; Fig. 3
shows the presumed sequence of events that links the two
conformations. A crucial stage of the interpolated transition is an
extended intermediate, in which the fusion peptide at the N-
terminus of HA2 has engaged the target membrane, creating a
bridge between the two bilayers destined to fuse. Evidence for this
intermediate is strong, but indirect. Studies on other class I fusion
proteins leave little doubt that a moderately long-lived, extended,
so-called “prehairpin” intermediate is a general, on-pathway state.

To get from this intermediate to the observed postfusion state,
the long central helix breaks, and the segment between the break
and the membrane reconfigures so that it runs back along the
central coiled-coil, ultimately drawing together the fusion peptide
and the C-terminal transmembrane anchor – along with the two
membranes in which they reside (Bullough et al., 1994; Chen et al.,
1999). An important characteristic, emphasized originally in a
model for HIV gp41-mediated fusion, is that the zipping up
of the three C-terminal “outer-layer” segments is asymmetric
(Weissenhorn et al., 1997). In none of the known postfusion
structures do these segments interact with each other around
the outside of the postfusion trimer, consistent with an asym-
metric collapse. Full threefold symmetry is regained at the end of
the transition, when a fusion pore has opened and the membrane-
proximal parts of the structure have clicked into place (Chen et al.,
1999). The full transition turns HA2 “inside out”, in the sense that
most of the central coiled-coil in the postfusion structure comes
from parts of the polypeptide chain that were on the outside of the
trimer in the prefusion structure, while the outer part of the
overall HA2 postfusion hairpin comes from parts of the polypep-
tide chain that were on the inside of the trimer before the
transition.

Other class I fusion proteins appear to conform, with some
variation, to the scheme shown in Fig. 3 for influenza virus HA.
Recently determined structures for a prefusion conformation HIV-1
gp120:gp41 envelope protein confirm earlier proposals that its
fusogenic conformational change would follow an HA-like sequence
(Bartesaghi et al., 2013; Lyumkis et al., 2013; Julien et al., 2013;
Pancera et al., 2014), but the triggering events are more complex. The

Fig. 1. Steps in fusion of two lipid bilayers. Apposed leaflets in blue; distal leaflets in brown.
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Fig. 2. Pre- and postfusion structures (left and right, respectively) of representative fusion-proteins from each of the three known classes, with approximate positions of
membrane shown. A. Class I: influenza virus HA ectodomain (Protein Databank entries 2YPG and 1QU1 for pre- and postfusion forms of the ectodomain, respectively). HA1

chains in shades of red/gold and HA2 chains in shades of blue (paired as red-blue, gold-cyan, and dark red-marine blue). The N terminus of HA1 and the C-terminus of the
HA2 ectodomain are labeled. Blue arrow: position of fusion peptides inserted near threefold axis in prefusion form. Only HA2 is shown on the right. The N-terminus (blue
arrow; note that the fusion peptide is not part of the structure shown) and C-terminus of the cyan-colored subunit are indicated. B. Class II: dengue virus type 2 E protein
(3J27, 1OAN and 1OK8). The tangential (“side”) view shows a dimer of the complete E polypeptide chain and the M polypeptide chain from the cryoEM model (3J27); the
radial (“top”) view shows just the “stem-less” ectodomain (1OAN). Colors: domain I: red; domain II: yellow; domain III: blue; stem: cyan; transmembrane anchor: slate; M:
orange. Colors for domains I, II and III are the same in the postfusion representation. A dashed cyan arrow on the postfusion trimer shows where the stem emerges from
domain III. Red asterisks: fusion loops. Class III: VSV G ectodomain (2J6J and 2CMZ). The three chains are in red, blue, and magenta. Dashed lines show the location of a
disordered, C-terminal segment that connects the folded protein to the transmembrane anchor. Only the red-subunit C-terminal segment is shown on the right. The curved
red arrow indicates that in the transition from the conformation on the left to the conformation one the right, the domain bearing the fusion loops flips over by about 1801 to
engage the host-cell membrane. Red asterisks: fusion loops. Figure made with Pymol (Schrödinger).
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relatively simple trigger for influenza virus HA is proton binding,
leading to a transition when the endosomal pH falls below about 5.5;
for the HIV-1 envelope protein, receptor (CD4) binding induces an
initial conformational change that exposes a co-receptor binding
surface, and only when co-receptor (CXCR4 or CCR5) has engaged the
latter does the full transition proceed. The postfusion structure of the
gp41 ectodomain trimer is quite simple: a central, three-chain coiled-
coil (with the fusion peptide at its N-terminus), a relatively short loop
with a conserved disulfide, and an outer layer of three helices (one
from each chain), leading to the transmembrane segment
(Weissenhorn et al., 1997; Chan et al., 1997). This six-helix bundle,
defined originally by biophysical experiments on the SIV protein
(Blacklow et al., 1995) and subsequently by X-ray crystallography, has
been a prototype for other six-helix bundle postfusion structures. The
HA2 and Ebola GP2 postfusion structures (Bullough
et al., 1994; Weissenhorn et al., 1998) both show, however, that the
essential characteristic of all these proteins is not six helices,
although the central element is usually a coiled-coil, but rather three
“hairpins”, to ensure proximity of the membrane-associated ele-
ments at each end of the ectodomain polypeptide chain.

The paramyxovirus fusion protein, F, requires cleavage to per-
form its fusogenic function, but unlike influenza HA0 or HIV
gp160, activation at physiological temperature and pH depends
on receptor binding by a second viral surface protein, variously
known as HN, H or G (Jardetzky and Lamb, 2014). Cleavage of F
generates a smaller, N-terminal F2 and a larger, C-terminal F1. The
latter has a fusion peptide at its N-terminus, followed by a
segment that becomes the long, central helix of the postfusion
coiled-coil and a further, helix-forming segment just before the
transmembrane anchor near its C-terminus (Yin et al., 2005). The
partner protein is a tetramer, with a four-chain coiled-coil stalk
and a globular head that closely resembles influenza virus neur-
aminidase (Crennell et al., 2000; Colf et al., 2007; Lawrence et al.,
2004; Yuan et al., 2005). When the head binds receptor, changes in
its orientation with respect to the stalk expose surfaces that in
turn bind F1, inducing the fusogenic conformational transition
(Navaratnarajah et al., 2011; Bose et al., 2012; Brindley et al., 2013;
Liu et al., 2013; Welch et al., 2013). Mix-and-match experiments,
co-expressing the relevant proteins on the surface of cells and
assaying for cell–cell fusion, show that activation is, in general,
specific for the autologous receptor-binding protein (Hu et al.,
1992; Horvath et al., 1992).

The Ebola virus envelope glycoprotein, GP, which becomes GP
(1) and GP(2) upon furin cleavage, adds further complexity to the

sequence in Fig. 3 (White and Schornberg, 2012). Although the
initial cleavage occurs in the producing cell, generating a trimer of
disulfide-linked GP(1):GP(2) subunits (Lee et al., 2008), fusion
activation requires cathepsin-mediated cleavage after uptake into
the new host cell, stripping GP(1) of much of its mass (Chandran
et al., 2005), and subsequent interaction with a specific, endo-
some/lysosome-resident receptor, the Niemann–Pick C1 (NPC1)
protein, a cholesterol transporter (Cote et al., 2011; Carette et al.,
2011). This last interaction may be the fusion trigger. The postfu-
sion conformation of GP(2) is a trimer of hairpins, formally
analogous to the structure of other class I fusion proteins, but
the fusion peptide is not directly at the N-terminus of GP(2)
(Weissenhorn et al., 1998).

During the fusion reaction for the various groups of viruses
with class I fusion proteins, specific steps differ, both in intracel-
lular location and in biochemical character, but current data
appear to be consistent with the following general picture. A
required priming step is specific cleavage of a trimeric precursor
protein, often by a furin-like activity in the trans-Golgi network
(TGN) of the producing cell or on its surface, but in some cases by a
soluble extracellular protease (which may cleave subunits left
intact during passage through the TGN) or potentially by an
endosomal protease in the target cell. The triggering step may be
as simple as proton binding or as complex as interaction with
receptor-activated partner proteins or with an intracellular recep-
tor, following further proteolytic processing. The trigger releases
constraints imposed by the N-terminal fragment on the C-term-
inal, fusogenic fragment. The latter then undergoes a series of
fusion-inducing conformational changes, passing through an
extended trimeric intermediate that bridges the two fusing mem-
branes and progressing to a final state in which the N-terminal
(or N-proximal) fusion peptides and the C-terminal transmem-
brane anchors are all at one end of a trimer of hairpin-configured
subunits.

Confusion sometimes attends the use of the word “metastable”
in connection with the conformational changes just described. The
uncleaved precursor is stable – its conformation, achieved on
folding in the endoplasmic reticulum (ER), is a free energy
minimum. (This statement is not necessarily true of the ectodo-
main alone – the evolved free-energy minimum includes anchor-
ing in the membrane.). Cleavage renders the protein metastable,
because now the minimum free energy state of the system is
different – it is the rearranged, trimeric, C-terminal fragment in its
postfusion state, plus the three released N-terminal fragment (or
effectively released if, as is the case with influenza virus HA, there
remains a disulfide tether). In the absence of coupling to a partner
membrane, the C-terminal fragment will simply invert, inserting
its fusion peptides back into the viral membrane.

Comparison of unprimed and primed influenza virus HA in the
prefusion conformation shows that cleavage (priming) produces
only a very local structural change (Chen et al., 1998). The
hydrophobic N-terminus of HA2 (the fusion peptide), exposed in
a loop on HA0, tucks into a pocket along the threefold axis of the
HA trimer, so that he three fusion peptides in the trimer contact
each other (Wilson et al., 1981). The cleaved and uncleaved
conformations of a paramyxovirus F protein are likewise essen-
tially the same (Welch et al., 2012).

Class II: priming by cleavage of heterodimeric partner protein
(“chaperone”)

Flaviviruses and alphaviruses have icosahedrally symmetric
outer coats, which conceal an underlying membrane (Lescar
et al., 2001; Zhang et al., 2002, 2003; Kuhn et al., 2002;
Mukhopadhyay et al., 2006; Roussel et al., 2006). The viral fusion
protein, designated E for flaviviruses and E1 for alphaviruses, is in

Fig. 3. Schematic diagram of stages of influenza virus fusion. (1) Receptor attach-
ment. (2) Separation of HA1 heads triggered by reduced pH. (3) Extended inter-
mediate. (Only HA2 shown, although HA1 remains tethered to it through a disulfide
bond.). Fusion peptides engage the target membrane. Arrows show incipient
folding back of the coiled-coil. (4) Hemifusion induced by refolding of HA2. (5) Final
refolding steps stabilize nascent fusion pore.
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1:1 association with a second protein (prM and pE2, respectively) –
a chaperone that prevents the fusogenic conformational change.
The chaperone and fusion protein, sequential in the polyprotein
precursors encoded by these plus-sense RNA viruses, are cleaved
from each other during synthesis in the ER by signal protease.
Further cleavage of the chaperone, by furin in the trans-Golgi
network (TGN), allows the fusion protein to undergo a low-pH
induced, fusogenic transition when the particle arrives in an
acidified endosome of a new host cell (Lobigs and Garoff, 1990;
Guirakhoo et al., 1991).

E and E1 have essentially the same folded structure (Lescar
et al., 2001; Rey et al., 1995). A central, beta-sandwich domain
(“domain I”) organizes their common, three-domain fold (Fig. 2b).
Domain II, formed by two long, disulfide-stabilized loops that
emanate from the central domain I, bears at its tip a hydrophobic
“fusion loop”. Domain III, an Ig-like structure that probably
recognizes cellular receptors, terminates in a segment called the
“stem”, which connects it with the transmembrane anchor. The
stem of alphavirus E1 is relatively short; the longer stem of
flavivirus E forms two amphipathic helices, submerged in the
outer leaflet of the lipid bilayer (Zhang et al., 2013).

Unlike the fusion proteins, the chaperone proteins in the two
groups of viruses, prM and pE2, have unrelated overall structures
(Li et al., 2008, 2010; Voss et al., 2010). Nonetheless, both protect the
fusion peptide in the immature form of the particle and both extend
along the surface of the fusion protein, so that the C-terminal,
membrane anchors of the chaperone and fusion proteins are adja-
cent. In addition to covering the E1 fusion loop, alphavirus pE2 has a
receptor-binding domain, which bears apparent homology with
domain III of flavivirus E.

Flaviviruses assemble by budding into the ER and mature by
passage through the Golgi and the trans-Golgi network (TGN).
Immature flavivirus particles, recovered from cells by inhibiting furin
cleavage, have a “spikey” appearance at neutral pH, with the 180
prM:E heterodimers clustered into 60 projecting trimers (Zhang
et al., 2003). At the reduced pH of the TGN (about 5.7), the E
subunits rearrange into a collapsed, herringbone-like packing indis-
tinguishable from the packing of E on mature virions, but with prM
associated (Yu et al., 2008). The reorganization exposes the furin
sensitive site on prM, allowing cleavage to prþM. At pHo6, the pr
fragment, which covers the fusion loop, remains in place. Only when

the pH returns to neutral – i.e., when the particle emerges from the
cell – does pr dissociate, allowing fusion to take place whenever the
particle again experiences a low-pH environment.

Alphaviruses assemble by budding at the plasma membrane.
Thus, the processing of the glycoproteins occurs before, rather
than after, their incorporation into particles. Cleavage of pE2 to
E3þE2 yields an E1:E2:E3 product, from which E3 dissociates in
some cases and not in others. The budded particle has 240 E1:E2
or E1:E2:E3 subunits, organized into the (T¼4) icosahedral lattice
as trimeric “spikes”, in which E2 mediates the threefold contact,
surrounded by E1 (Voss et al., 2010; Li et al., 2010).

In their postfusion conformation, class II fusion proteins are trimers
(Modis et al., 2004; Gibbons et al., 2004) (Fig. 2b). To undergo a
fusogenic conformational change, the flavivirus E proteins, packed as
homodimers in the virion surface, must therefore dissociate into
monomers and rearrange; the alphavirus E1 proteins, packed as
heterodimers on the periphery of the E1:E2 trimeric spikes, must
likewise dissociate and rearrange. Fig. 4 shows a proposed scheme for
the fusogenic conformational change of a flavivirus E protein and for
the relationship between the conformational transition and changes in
the two fusing membranes. As in the scheme described above for
influenza virus HA, there is an extended intermediate, with the fusion
loop at the tip of domain II inserted into the target membrane. The
refolding of each subunit in the trimer leads to a structure in which
the fusion loops and the transmembrane anchors are adjacent –

essentially the equivalent of the hairpin-like final conformation of
class I fusion proteins.

Bunyaviruses have two surface glycoproteins, GN and GC,
arrayed in T¼12 icosahedral lattice. The structure of GC from Rift
Valley fever virus (RVFV) (Dessau and Modis, 2013) confirms
earlier suggestions that it is a class II fusion protein (Garry and
Garry, 2004). When it crystallizes, RVFV GC forms dimers very
similar to those of flavivirus E. The homology suggests that GN is a
chaperone of some kind, but their heterodimeric relationship and
their packing in the surface lattice of the virion are not yet clear.

The genome organization of pestiviruses and hepaciviruses
relate them to flaviviruses and somewhat more closely to each
other, and it had been assumed until structures appeared that the
proteins designated E1 and E2 might resemble prM and E,
respectively. The structure of bovine diarrhea virus E2 is not a
class II fusion protein, however, nor does it have an obvious fusion

Fig. 4. Schematic diagram of stages of dengue virus fusion (modified from (Modis et al., 2004)).
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loop (Li et al., 2013; El Omari et al., 2013), and hepatitis C virus
(HCV) E2 resembles neither class II fusion proteins nor pestivirus
E2 (Kong et al., 2013). A potential commonality is that E1 and E2
may act together as a fusogen, with E1 providing the hydrophobic
segment that engages the target membrane.

Class III: triggering but no priming

The G-protein of VSV (Roche et al., 2006), gB of herpes simplex
virus (Heldwein et al., 2006) and Epstein–Barr virus (EBV) (Zhang
et al., 2003), and gp64 of the insect-cell baculovirus (Kadlec et al.,
2008) define a third class of viral fusion proteins. Like those of
class II (and unlike those of class I), the folded structures of all
known members are similar. Most of the ectodomain is a set of
successively embedded domains, organized so that a subunit
exposes the two fusion loops, each at the tip of a β-hairpin. Only
for VSV G do we know the structures of both pre- and postfusion
forms (Fig. 2C) (Roche et al., 2006, 2007). The two interconvert as
the pH is lowered or raised, with a transition around pH6.5.
Reversibility is the thermodynamic counterpart of the absence of
cleavage (or any other irreversible modification), either of the
fusion protein itself or of a co-folded chaperone such as prM
or pE2.

The relatively complex domain organization of class III proteins
presents a “fusion module” (domain I) with two long β-hairpins
bearing hydrophobic loops at their tips (Backovic and Jardetzky,
2009). One can consider the most of the ectodomain as a β-
sandwich core module (domain IV) with a succession of nested
inserts (domains III, II and I) and a very long C-terminal extension
(sometimes called domain V). The transition between pre- and
post-fusion configurations is a rotation of domains I and II with
respect to domain IV and some refolding of domain III. The
transition resembles influenza-virus HA2 refolding in some
respects: an extension of the central coiled-coil correlates with
the rotation of domains I and II, and folding back of the C-terminal
segment brings together the transmembrane segment and the
domain-I hydrophobic fusion loops. Thus, the “trimer of hairpins”
description applies to the postfusion form of these proteins, as it
does to those of the other two classes.

The ectodomain of VSV-G is monomeric in solution at pH47.5
(Albertini et al., 2012), but trimeric in the crystal structure –

probably because of the very high effective protein concentration
at which the crystals grew. Anchored in the virion membrane at
neutral pH, the full-length molecule may be in an equilibrium
between monomer and trimer. A pHo6.5, a postfusion trimer is
the stable conformation. A short segment (about two heptads) of
the central coiled-coil is present in both the prefusion and
postfusion trimers, but inspection of the structures, analysis of
protein conformational equilibria in solution, and electron micro-
scopy of virions all suggest the relevance of a monomeric,
extended intermediate, in which domains I and II have rotated
to present the fusion loops to the apposing target membrane and
in which domain III has undergone some of its conformational
reorganization. Association of soluble ectodomain with liposomes
at low pH is reversible if the pH returns to neutral (Albertini et al.,
2012).

VSV-G is the only protein on the virion surface, and its fusion
activity requires no cofactors in vitro other than protons (low pH).
The herpesvirus fusion machinery is more complex: in addition to
gB, fusion requires the heterodimeric gH/gL and receptor or co-
receptor binding, usually by yet a fourth protein (gD of HSV, gp42
of EBV, etc.). Structures of these triggering factors have shown how
they respond to receptor binding, but not yet how that signal
transfers to gB (Carfi et al., 2001; Krummenacher et al., 2005;
Kirschner et al., 2009; Chowdary et al., 2010; Matsuura et al., 2010;
Sathiyamoorthy et al., 2014).

Coupling protein conformational change with lipid-bilayer
fusion

The pre- and postfusion structures of a viral fusion protein tell
us about the configuration of a fusion catalyst before and after
the event, but do not show directly how the catalyst facilitates
the event itself. The one universal feature of all the postfusion
structures, regardless of their other characteristics, is spatial proxi-
mity of the two membrane-associated elements – the fusion loop
(s) or peptide and the transmembrane anchor. This adjacency is
probably the strongest evidence that a triggered conformational
change in the protein overcomes the hydration-force barrier by
coupling release of free energy from refolding to the spatial
separation of the two fusing membranes. Together with related
studies of SNARE-mediated fusion, the structures leave little doubt
that this essentially mechanochemical description is correct.

Bilayer perturbations

Coupling refolding to close approach of two bilayers need not
be the only contribution that fusion proteins make to facilitating
membrane merger. Perturbations in the target bilayer, caused by
insertion of a fusion loop or fusion peptide, could enhance the
likelihood of a transition to hemifusion in the apposed bit of
membrane surface (the “dehydration” to “stalk” step, Fig. 1), for
example by stabilizing curvature. Experimental evidence for this
frequently invoked possibility remains indirect. Moreover, we
know from studies of non-protein fusogens that hemifusion stalk
formation can proceed without such contributions, if the two
membranes approach each other closely enough. The mechanism
of fusion induced by polyethylene glycol is desolvation of the
inter-membrane space – effectively what fusion proteins do when
they force two bilayers together – without any apparent require-
ment for lipid-headgroup interaction or other disruption of local
membrane organization (Evans and Metcalfe, 1984; Evans and
Needham, 1988; Kuhl et al., 1996).

We can have some idea of potential contributions to memb-
rane curvature by considering what we know about fusion-peptide
or fusion-loop insertion. The conformation of the 23-residue influenza
virus HA fusion peptide bound on a dodecyl-phosphatidylcholine
micelle is a hairpin of two tightly packed, antiparallel α-helices
(Lorieau et al., 2010). Hydrophobic residues project into the micelle
and somewhat more polar residues, including two glutamic acids,
project away from it. If the same orientation holds in the outer leaflet
of a lipid bilayer, three HA trimers (see below), contributing a total of
nine such hairpins to a nascent hemifusion stalk, would displace
(laterally) about 3500 Å2 of lipid, less than 10% of the area of even a
very sharp hemispherical cap and a small part of the difference
between the areas of the inner and outer leaflets. The flavivirus E-
protein fusion loops likewise insert only into the proximal membrane
leaflet, occupying a similar total area. Thus, in both cases, the contri-
bution of partial protein insertion to membrane curvature in the
transition state is probably modest. At the hemifusion stalk stage,
however, the HA fusion peptides from three trimers could occupy as
much as 30% of the total lateral area (if they were to migrate into it
from the target membrane) and hence affect either the transition to
this intermediate or the transition out of it.

Many viral fusion proteins have hydrophobic “membrane proxi-
mal regions” at the junction between ectodomain and transmembrane
anchor. The “MPER” of HIV gp41 and the membrane-proximal
segment of the flavivirus stem are good examples. In both of those
cases, experimental data suggest a change in conformation or expo-
sure of the membrane proximal region during the fusogenic transition
(Zhang et al., 2013; Modis et al., 2004; Frey et al., 2008). The effect of
this change on the viral membrane could in principle accelerate fusion,
but we do not yet have a structure for the postfusion membrane
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proximal region of a viral fusion protein, and only for the flaviviruses
(dengue) dowe know its prefusion structure (Zhang et al., 2003, 2013).

Extended protein intermediates

Insertion of the fusion loop or peptide into the target mem-
brane, demonstrated for several viral fusion proteins by photo-
chemical crosslinking experiments, necessarily implies that some
conformational intermediate bridges from one membrane to the
other. Because of the “inside-out” character of the influenza virus
HA2 conformational change (Fig. 3), the extended inner helical
bundle must form before the outer layer can surround it. That
extension in turn projects the fusion peptide, initially tucked into a
cavity along the axis of the prefusion HA2, toward the target
membrane and exposes it for insertion. A similar argument applies
to HIV gp41. Moreover, inhibition of the gp41 mediated fusion by
peptides representing the outer layer of the postfusion six-helix
bundle (e.g., the T-20 peptide, developed as a drug, entfuvirtide or
Fuzeon) or by reagents designed to represent the inner helical
bundle, shows directly that the inner bundle directs the zipping up
of the outer-layer helices and that “extended” is a reasonable
description of the bridging intermediate (Weinstock et al., 2012).
An engineered trimer, designed to represent the gp41 extended
intermediate based on the known final structure, has properties
consistent with its intended mimicry (Frey et al., 2008).

Flavivirus E proteins must hinge outwards to present their
fusion loops to the target membrane. Considerable evidence, both
direct observation by electron microscopy and inference from
properties of particles in solution, confirms this expectation
(Chao et al., 2014; Zhang et al., 2015).

Fusion dynamics

Hemifusion intermediate

The key intermediate for the bilayer comes when the protein
has nearly completed its conformational rearrangement. The
notion of a hemifusion stalk emerged from estimates of membrane
distortability, considering the bilayer as a continuous elastic
medium, with more direct experimental evidence subsequently
coming from X-ray crystallographic studies of lipid phase transi-
tions (Kuzmin et al., 2001). In kinetic studies, hemifusion can be
detected by transfer of a marker such as a fluorescent dye from
one membrane to the other, without concomitant transfer of a
different marker from the interior of one fusing compartment (e.g.,
a liposome) to a common, fused interior.

Influenza virus HA-mediated fusion gets “stuck” at the hemi-
fusion stage, if the protein is anchored by a lipid tail instead of a
transmembrane helix (Kemble et al., 1994). Moreover, truncation
of the transmembrane anchor (and deletion of the short interior
tail) so that it no longer emerges from the inner bilayer leaflet
likewise stalls the low-pH triggered reaction at the hemifusion
step (Armstrong et al., 2000). That is, the presence of some
hydrophilic protein segment, even just one amino-acid residue,
on the far side of the membrane appears greatly to accelerate
fusion pore opening. Evidence that a fusion pore can flicker open
and closed from the hemifusion stalk configuration (Chanturiya
et al., 1997) then suggests that influenza virus HA accelerates
fusion not only by overcoming the hydration force barrier to
hemifusion but also by trapping the fusion pore in an open state
– i.e., by reducing the kinetic barrier that separates hemifusion
from full fusion. One plausible mechanism can be imagined by
inspection of Fig. 3. Separation of the two interior compartments,
even at the hemifusion stalk stage, prevents completion of
ectodomain “zippering”, because the hydrophilic tail cannot move

away from its side of the membrane. If that tail can move into an
open pore, it will allow the zippering transition to finish, creating a
barrier to any reversal and thus inhibiting reclosure of the pore,
which will instead widen irreversibly and establish full continuity
of the two previously separate, membrane-bound compartments.
Interaction between the membrane proximal segment of the
flavivirus E-protein stem and the fusion loops of the trimer at a
late stage in the fusogenic transition might provide a similar
driving force (Schmidt et al., 2010a, b; Klein et al., 2013).

Catalytic mechanism

Structure-based analyses of fusion kinetics probe how fusion
proteins accelerate membrane merger, just as experiments on
enzyme kinetics probe how enzymes catalyze chemical reactions.
Observations recorded in a single-virion format yield not just the
average rate of a process for which one has a suitable reporter, but
also how that rate varies from particle to particle. From the
distribution of rates one can extract information about the number
of independent events required for the process being studied. The
effects on the rate distributions of mutations introduced into the
fusion protein then connect the mechanism with fusion-protein
structure.

Single-virion fusion studies of influenza-virus fusion with
receptor-containing target membranes confirm that hemifusion
(detected by dequenching of a fluorophore incorporated into the
viral membrane) precedes fusion (detected by loss of a soluble
fluorophore from the virion interior) (Floyd et al., 2008). Three
independent, rate-limiting molecular events, interpreted as
membrane-coupled conformational rearrangements in three HA
trimers, contribute to the hemifusion step; one rate-limiting step
governs the transition from hemifusion to fusion-pore opening.
Effects of mutations that affect interactions of the fusion peptide
show that (for the strains and mutational variants studied) expul-
sion of the fusion peptide from its pocket near the threefold axis
determines the rate at which an extended intermediate forms
(Ivanovic et al., 2013). The mutual contacts among the three fusion
peptides should make this step a single, cooperative transition for
each trimer.

A dense array of HA covers the surface of an influenza virus
particle, and the contact zone between a virus particle and a target
membrane will contain many more than three HA trimers (Calder
et al., 2010). When exposed to low pH (in laboratory experiments,
by an abrupt pH drop; in a cell, by acidification of the endo-
some that contains the virion), individual HA trimers have a
pH-dependent likelihood of exposing their fusion peptides, enga-
ging the target membrane, and transitioning to the membrane-
bridging, extended intermediate conformation. Experimental data
and corresponding simulations show that hemifusion requires
three adjacent trimers to extend in this way, so that their collapse
to the stable postfusion conformation can drive membrane defor-
mation (Ivanovic et al., 2013). Thus, within a contact zone of 100
HA trimers (about the expected number for a typical, slightly
elongated influenza-virus particle produced by mammalian cells
in culture), substantially more than three will have undergone the
transition to extended intermediate before three neighbors have
done so, but the presence of non-bridging trimers between them
will prevent any concerted action. A single trimer, or two adjacent,
extended trimers cannot collapse and bring about hemifusion,
because the elastic properties of the two membranes resist their
pull. Only when they are joined by a third trimer is the free energy
recovered from the three protein conformational changes great
enough to overcome the resistance of the membranes. At that
point, the transition to hemifusion is rapid. Cooperativity is a
consequence of the common insertion of the three neighboring
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HAs in the target membrane at one end and in the viral membrane
at the other. It does not require specific trimer-trimer contacts.

Can three HA trimers generate a force sufficient to surmount
the kinetic barrier to hemifusion, generally estimated to exceed
50 kcal/mol? Since the restoring force exerted by the two mem-
branes resists collapse of a single HA from an extended inter-
mediate to a trimer of hairpins, the pull from that collapse must
not be so strong that it causes the fusion peptide to withdraw from
the target membrane. The binding free energy for association of a
single HA fusion peptide with a lipid bilayer is about 8 kcal/mol
(Li et al., 2005), so the pull on three fusion peptides from collapse
of a trimer should not exceed 24 kcal/mol. Three HA trimers
should therefore be just enough to overcome a 50–70 kcal/mol
barrier.

Single-particle kinetic studies of flavivirus fusion yield a qua-
litatively similar picture (Chao et al., 2014). E dimers dissociate,
allowing the subunits to project outwards from the virion surface
and to expose the fusion loop at the tip of domain II. This step is
fast and reversible. The rate-limiting molecular step is trimeriza-
tion, which depends in turn on the effective surface concentration
of activated (i.e., outward projecting) monomers in the contact
zone between the virus particle and the membrane with which it
is fusing. The hemifusion rate then depends, as it does with
influenza HA mediated fusion, on reaching a threshold number
of adjacent trimers. The critical number of trimers for West Nile
virus, as determined with virus-like particles, and for its close
relative, Kunjin virus, is 2. The rate of hemifusion does not appear
to depend on the overall curvature of the viral membrane, as it is
the same for virus-like particles of two different diameters (Chao
et al., 2014).

The mechanisms just described include long-lived, extended
intermediates, “waiting” for one or more extended neighbors. At
20–25 1C, the waiting time for a typical extended intermediate is
about a �30–60 s for both influenza and West Nile viruses.
Potentially much longer delays have been ascribed to the exten-
ded intermediate in HIV fusion, based on the time (ca. 15 min)

between contact and acquisition of insensitivity to peptide inhi-
bitors that target the prehairpin structure (Munoz-Barroso et al.,
1998). That interval is an upper limit, however, as it includes the
time between receptor binding and target-membrane engagement
of the extended (“prehairpin”) gp41. Moreover, the reported
measurements involved cell–cell fusion, rather than virion–cell
fusion, and hence a heterogeneous contact zone. If, like exposure
of the HA fusion peptide, a slow step precedes fusion-peptide
insertion into the target membrane, the extended-state lifetime
may be considerably less than the time between binding and
collapse (assumed to be the event that occludes the inhibitor
binding surface). HIV particles have very few envelope trimers
(Zhu et al., 2006), and an alternative explanation for a very long-
lived intermediate might be a requirement that two (or more)
extended gp41 trimers come within some critical distance of each
other to exert cooperative pull on the membranes they bridge.
Then further steps, such as association of the neighboring envel-
ope spikes with receptor and co-receptor, to trigger their activa-
tion and extension, would increase the delay between initial
encounter and hemifusion. Finally, if two (or more) extended
gp41 trimers are rarely close enough to cooperate and if a single
trimer contributes 25–30 kcal/mol to overcoming a 50 kcal/mol
barrier to hemifusion, the remaining barrier of 20–25 kcal/mol will
imply delay times of a minute or longer. The infectivity of particles
that display a mixture of wild-type and cleavage defective Env
indeed suggests that HIV fusion may require only one fusogenic
spike (Yang et al., 2006).

The SNARE protein complexes that catalyze synaptic–vesicle
fusion pause in the “zippering” step when the two membranes are
in contact, stalled by a specific component of the complex (Südhof
and Rothman, 2009). Binding of Ca2þ ions, the triggering signal,
releases this inhibition, allowing rapid, synchronized fusion of
docked vesicles. Although docking appears to bring the vesicle
membrane into very close contact with the target membrane, it
does not induce hemifusion (Diao et al., 2012). The millisecond
delay between triggering and release suggests, however, that the

Fig. 5. Comparison of fusion as catalyzed by influenza virus HA, SNAREs, flavivirus E protein (modified from (Chao et al., 2014)).
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stalled zippering has already overcome most of the hydration-
force barrier – i.e., that the reaction has stalled close to the
transition state. The diagrams in Fig. 5 compare fusion catalysis
by influenza HA, flavivirus E and SNARE complexes, as a way to
suggest their essential common features. Like serine proteases
with unrelated three-dimensional structures (e.g., elastase and
subtilisin), the essence of catalysis and the nature of the transition
state is the same, despite the quite different large-scale molecular
architectures of the catalysts.
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