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We discuss the relations between power series methods, weighted mean meth-
ods, and ordinary convergence for double sequences. In particular, we study
Tauberian theorems for methods being products of the related one-dimensional
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1. INTRODUCTION

Let (p,,,) be a double sequence of nonnegative numbers (where, if
not indicated otherwise, the indices run through N, = {0,1,2,...}) with
Poo > 0 such that

p(x,y) = X ppx"y" <= forx,ye(0,1) (11

m,n=0
and
p(x,y) > asx,y—>1—, (1.2)
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where within this paper a limit in two variables is meant in the sense of
Pringsheim, i.e., the two variables tend to their limit independently. Condi-
tions (1.1) and (1.2) will be assumed throughout the paper without further
mentioning them. Since

m,n

p(x,y) = X puxfy'  forx,y e (0,1),
k,1=0

we have that p(x,y) » was x,y - 1—, iff

m,n m n
Pmn = Z DPri = E Zpkl_):>o am,n — .
k,I1=0 k=01=0

We consider complex double sequences S = (s,,,) with increments (a,)),
i.e.,

m,
Smn = Z A
k,1=0

Let
1 m,n
Opnn = P_ Z DPriSkis
mn k,[=0
" (1.3)
pS(X’y) = Z smnpmn'xmyn7
m,n=0
and
os(x,y) =ps(x,y)/p(x,y). (1.4)
We say that:

(i) S is boundedly convergent to s and write b-lim s,,, = s if

lims,, = Ilm s,,=s and supls,,,| < o;

m,n—®

mn
m,n

(i) S is summable to s by the power series mean J, and write
J-lims,  =s if the double power series pg(x,y) converges for all
(x,y) €(0,1)? and

os(x,y) —s asx,y—>1—;

(iii) S is boundedly summable to s by the power series mean J, and
write bJ,-lims,,, = s if

J,lims,, =s  and sup  |og(x,y)| < ;
x,y€(0,1)
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(iv) S is summable to s by the weighted mean method M, and write
M,lims,, =sif 0,, > sas mn — »
(v) S is boundedly summable to s by the weighted mean method
M, and write bM -lim s,,,, = s if

M,lims,, =s  and suplay,,| < .

m,n

Under the conditions

rp,/P,—>0 ad P,/P, —0 as m,n — « for any fixed k, [,

(1.5)

we have by the theorem of Kojima and Robinson (see, e.g., [11, Theorem
20] that for bounded sequences the corresponding weighted mean method
is regular (shortly is b-regular), i.e.,

Spn —> S a@ m,n — oand supls,,,| <« implies bM,lims,, =s.

mn
m,n

Furthermore, under the condition that, for any fixed w, v,

Y P X /p(x,y) =0, Xpy/p(x,y) >0 asx,y—1-
k=0 =0

(1.6)

holds, we have that the corresponding power series method J, is b-regular
(see, e.g., [5, p. 84]. It is the aim of this paper to derive converse
conclusions, i.e., Tauberian results. However, this can only be true under
additional assumptions on the sequence S, the so-called Tauberian condi-
tions.

So far for power series methods J, our main Tauberian result is
restricted to weights (p,,) which factorize, i.e., we have p,, = p.q, with
nonnegative sequences p = (p,) and g = (g,,) satisfying

n
O<Pn:: Zpk—)OO’ O<Qn::ZQk_)OO asn_)ooy

k=0 k=0
p(x) =Y pxF <o for x € (0,1),

k=0

. (1.7)
q(y) =% qy' <= forye(0,1).

=0
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We denote the associated power series method based on weights ( p, q,) for
double sequences by J,, and the associated arithmetic mean method by
M,,,. Both methods are b-regular under (1.7). In the literature on Taube-
rian results for power series methods applied to double sequences there
exist (to our knowledge) only results on the Abel method for double
sequences, where p,, = p,q, with p, =g, =1 (see [25] for references and
also [1, 2]). For weighted mean methods in particular the Cesaro method
C, , was studied (see, e.g., the book [25] for references or [9, 20] where
C, s methods are discussed). For more general weighted mean methods
there is also a recent result in [4].

2. MAIN RESULTS

First we have to introduce the following quantities which were used in a
series of papers [8, 12—14, 16-19, 23] to study power series methods in the
one-dimensional case:

AP = inf p(x)x™" and Al = inf g(y)y™. (2.1)
0<x<1 0<y<1
The infima for, e.g., A? are attained at points x,, € (0, 1). For details and
the most important properties of these quantities A,,, see Lemma 1 below
or consult the papers [7, 16—18]. They are in many cases of the same order
as the quantities P, resp. Q, but not always.

ExampLe. (i) In case p, = 1/(n + 1) we find

1—x,~ A? ~logn, P, ~logn

nlogn’
so we have AP ~ P, .
(i) In case p,=(n+ 1) or p,=T(y+ (") with y> —1 we
obtain that
1—x,~(y+1)/(n+y+1),

e y+1
AgN(‘y—i—l) n?tl, P, ~n"/(y+1).

So we obtain again that A2 and P, are of the same order.
(i) In case p, ~ exp(n”) with 0 < y < 1 we have (see, e.g., [7, 8, 18]

2
y(1-v)
P, ~n'"exp(n")/y.

1/2
1—x,~—-yn" ', A0~ ( ) nt=7/%exp(n”),
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Now P, is of smaller order than AZ. Similar calculations can be done for a
much larger class of weights; see, e.g., [18].

For a general discussion of the relation between A? and P,, see Lem-
ma 1 below.

The following condition will be used as our basic Tauberian condition:

m

sup | 2 a,,| < ”Z_Z forn=1,2,...,

m<Nolu=0 " 22
. » (2.2)

sup | X a,,,| <@, form=1,2,.,

neNg|p=0 Am

with suitable nonnegative sequences (e«,,) and (B,) to be specialized
below. In the case of the Abel method in two dimensions we have (see
example (ii) above)

4y Pn 1

~
=

A AT pg1

Our first result is very general for product-power series methods.

THEOREM 1. Assume that the double sequence S satisfies (2.2) with null
sequences (a,,), ( B,). Then we have

Jolims,, =s  implies lims,, =s
and

bJ,lims,, =s implies b-lims,,, =s.

Remark 1. (i) In the case of the Abel method or the generalized Abel
methods A4, ; with p, = ("}'7), g, = ("} ?)where y, § > —1, a sufficient
condition for (2.2) is given by

1
amn=0(1)m asmorn — ®

(see, e.g., [15] for the ordinary Abel method). This condition can be
replaced (see [9]) by

1
= _ — 00
a,,=o(l) P — as morn ,

with conjugate indices p,g > 1 with1/p +1/g = 1.
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Considering the logarithmic method where p, = ¢, =1/(n + 1), we
obtain the somewhat stronger assumption

1
) (mlog(m + 1))2 + (nlog(n + 1))2

a,, =o(1 as morn — o«

However, for methods using weights p, = exp(m?”), g, = exp(n®) where
v, 6 € (0,1) a sufficient condition for (2.2) is given by

1
Ay = 0(1) - (—7/5%7/D) 4 p2-(-5/7%5/2)

asmorn — o,

(ii) The Tauberian condition (2.2) is called o-type for obvious reasons.

The question arises nhow whether the o-Tauberian condition in Theo-
rem 1 can be replaced by the so-called O-type condition. This is indeed the
case if we assume that the weight sequences (p,,,) behave nicely. We
assume in the following that the partial sums (P,) and (Q,) are un-
bounded regularly varying sequences (see, e.g., [6] for the notation and
basic properties). That means we have representations

P,=(m+1)"L(m+1) and Q,=(n+1)° L,(n+1), (2.3)

with constants «, 8 > 0 and slowly varying functions L, and L, on (0, %),
i.e., they are positive, measurable, and satisfy
Ly(Ar)  Ly(At)

, -1 ast — o forall A > 0.
Li(t)  Ly(t)

Now we can give an O-type Tauberian theorem.

THEOREM 2.  Assume that for the partial sums of the sequences (p,,), (q,)
property (2.3) holds and that S satisfies (2.2) with bounded sequences
(a,), (B,). Then we have

bJ,,lims,,, =s implies b-lims,,, =s.

Remark 2. (i) In the case of the two dimensional Abel methods a
sufficient condition for (2.2) is given by

c

S(m+1)2+(n+1)2

for m,n € N, with some ¢ > 0,

la,,,!

a condition used by various authors. Actually this condition works for any
power series method based on weight sequences (p,,), (g,) satisfying (2.3)
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(see Remark 5). So in particular this condition applies to the generalized
Abel methods A4, ; where y, 6> —1.
For the logarithmic method we obtain as a Tauberian condition

C

= ((m +1)log(m +1))° + ((n +1)log(n +1))?

form,n e N,

la,,,!

with some ¢ > 0.
(i) Condition (2.3) can be relaxed somewhat. Assume that a positive
unbounded sequence (P,) satisfies

~ ~

- PZn . P[tn]
limsup = <%  and Mp(t) = IlmsupPT—>1 ast— 1+,

n— o n n— o n

(2.4)

i.e., Ma(¢) exists for ¢+ > 1 and is continuous at ¢t = 1. Following [10], we
could call such sequences intermediate regularly varying. Instead of (2.3)
we may assume that (2.4) holds for both (P,) and (Q,).

The second result will be proven in two steps, which are of interest
themselves. In a first step J,- and M ,-summability are related. First we
show that the J -method is stronger than the M, -method and then we
discuss an inverse Tauberian result.

PROPOSITION 1.  Assume that (p,,,) is a weight sequence satisfying (1.6).
Then we have

bM,-lims,, =s implies bJ,-lims,, =s.

Proof. 1If (1.6) holds then the power series method J, with weights
(P,,) is b-regular as well. Hence we find from (1.3) with the notation
P(x,y) =X P,,x"y" the relations

m,n=0"mn

n

1 - 1 >
s < Z Pmna-mnxmyn = Z pmnsmnxmy
P(x’y) m,n=0 p(x'y) m,n=0

since p(x,y) = (1 —x)1 —y)P(x,y) and obviously the J,-mean is
bounded as well. |

Now we return to the Tauberian aspect. Assume in the following that
(P, ) satisfies (1.6) and we define

m(u,v) = Y, pg foru,v=0 (2.5)
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and put, for any £ € (0, 1),
B(1, &) ={(ey, e,) € R?|e;, e, >0
such that & < e; /e, < 1/e and e? + e3 = 1}.
Suppose now that, with some ¢ € (0,1) and any fixed (e, e,) € B(1, &),

a(um, vn)
lim 7-—— exists forall u,v > 0
moan—w  (em,eyn) (2.6)

and is continuous at (u#,v) = (e;, e,).

Furthermore, we suppose that for any 6 > 0 there exists some M > 0
such that, for all m,n € N,

a(um, vn)
— < M et foru,v > 1and (e, e,) € B(1, 2.7
Sem ey <M (ere2) € B(Le) (27)

holds. In the unit square the quotient is bounded then by monotonicity
arguments. Conditions (2.6) and (2.7) are satisfied, e.g.,incase P,,, = P, Q,
where (P,),(Q,) satisfy (2.3) (or also (2.4)) with arbitrary & < (0,1).
Observe that in this case

u\“(v\?

€ €

forall u,v > 0and e;,e, € B(1, ¢)

a(um, vn)
Hm,n(u7v; €1, 62) =

m(em,eyn)

and
H, (u,v;ey,e,) < Cs ,max{l,u*"°vh*?} forall u,v >0

for any &, 6 € (0,1) with a suitable constant Cj; .. Observe that slowly
varying functions can be bounded by arbitrarily smaII powers (consult, e.g.,
the book [6, Theorem 1.5.6]) and that (P,),(Q,) are nondecreasing. Then
we have the following Tauberian theorem.

THEOREM 3.  Assume that (P,,,) is a weight sequence satisfying (2.6) and
(2.7). Then s,,, = OQ) is a Tauberian condition for the conclusion

J-lims,, =s implies bM,-lims,, =s.

Remark 3. For bounded sequences S the methods J, and M, are
equivalent and consistent provided the weights satisfy (2.6) and (2.7).
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The second step in the proof of Theorem 2 uses a Tauberian result from
M, ,-summability to convergence for regularly varying weights.

THEOREM 4.  Assume that the weights (P,,),(Q,) satisfy (2.3). Then
M, lims,, =s implies lims,, =s

and
bM, lims,, =s implies b-lims,, =s,

provided the following Tauberian condition holds:

- q
sup | X a,,|<C— forn=1,2,...,
meNy | u=0 Qn
(2.8)
“ P
sup | Y. a,,,|<C— form=1,2,....
neNy | v=0 Pm

Remark 4. (i) For the class of weights considered in Theorem 4,
conditions (2.2) with bounded sequences («,),(8,) and conditions (2.8)
are equivalent, because of Lemma 1(iii). Furthermore, if, e.g., g is already
regularly varying then ¢g,,/Q,, < 1/m as m — .

(ii) Conditions (2.8) are also sufficient if (P,),(Q,,) satisfy (2.4) instead
of (2.3) (see again Lemma 1 and the proof of Theorem 4 below).

3. AUXILIARY RESULTS

For dealing with the quantities AZ the following lemma is important.
LEMMA 1 (cf. [7, 16, 17]). Let there be given a nonnegative sequence
p = (p,) satisfying (1.7). For the associated sequence (A?) defined in (2.1)
the following hold:
(i) There exists a sequence (x,) » 1 such that Af = p(x,)x," for
n € Ny;
() Xi_y po/A} = oo
(iii) P, < AL and (A2 = O(P) iff P,, = O(P)).
Remark 5. So in particular we have A? = O(P,) in case that (P,) is

regularly varying. Furthermore, if ( p,) is already regularly varying, then we
have p,/A? ~ ¢, p,/P, ~ c,/n with suitable constants ¢, c, > 0.

The following lemma is the key to our results.
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LEMMA 2. Assume that the double sequence S satisfies (2.2) and let
os(x,y) denote the J, -means as defined in (1.4). Then we have, for any
I-‘Ly V! m1 n € NO!

“ Pk % q
(I) SMV—Smn| < Z akp + Z BIE,
k=pt1 Bk =g 1 Al

where p, = min{u, m}, p, = max{u, m} and 6, = min{v, n}, 6, =
max{v, n}.

(i)

|US(xm’yn) - smnl =< Z akpkxfn/p(xm) + Z BIQZyrIz/q(yn)
k=1 =1

COROLLARY. If in Lemma 2 the sequences (a,,),( B,) are bounded then
we have

sup|US(xm’yn) - smnl <o

m,n

if they are null sequences then we have

lim |O-S(xm’yn) - smnl = 0.

m,n

4. PROOFS

Proof of Lemma 2. (i) For w > m and v > n we have

w, v m,n o v m v
1S, = Spunl = Yoay— L oay|<| X Xay|t| X X ay
k,1=0 k=0 k=m+11=0 k=0l=n+1
M v 14 m
< Y ([ Xagylt+ X | Xay
k=m+1|[/=0 I=n+1|k=0
“ Px i q;
< Z akF"' Z BZE:
k=m+1 k I=n+1 !

where we used (2.2).
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For w < m and v > n we find

m v

n w
Loyl + Y

18 = Spal < 2 X
k=p+111=0 I=n+1|k=0
m
P
< X akA + Z 'BIA"
k=p+1 I=n+1

where we used (2.2) again. The remaining cases are to be dealt with
similarly.

(ii) using the sequences (x,,), (y,) defined in Lemma 1(i) for A2 and A?
respectively, we obtain by Lemma 2(i) that

|US(xm'yn) _smnl

1
S T Z p qvls v mn|xlUL
p(xm)q(yn) w,v=0 " g

= mp,éOPMQV k=§}+1 il‘;’ 92+:1 'Bl Aq i
P(xm) Z Puctn k %ﬂakip " u=§+1PMXMk %ﬂakii
- p(im) (kil‘“i—x_kzop(fc_m)
1 ]— v—1
e ( i“ qi i’)z i_:qu,v(%)

=]

v—1I
q yn
¢+ T ot Tan(2) |
1=n+1 A yi v=1 Yi

Now observe that (x,),(y,) are nondecreasing. Hence (x, /x,)* ¥,
(y,/y)"~" < 1in all occurring cases and that by Lemma 1(i) Afy! = g(y)),
A?xf = p(x,) and we end with

o

Y appxn +

p(xm) k=1

|US(xm’yn) - Smnl =

Z Bl%yli-
) =1
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The corollary follows from the regularity and positivity of the one-dimen-
sional power series methods. |

Proof of Theorem 1. The proof follows directly from the corollary. |

Proof of Theorem 3. The proof of Theorem 3 is based on a Tauberian
theorem for multivariate Laplace transforms in [22]. For the moment we
assume that S is real. Now we use the following notation:

S(M,U) = Z S[.LVp[J.V'

O<u<u
0O<v<v

Then

My, V
pp,vsy,yx y
=0

Ps(x,y)

v

Y PuSpe ™ withx=e ¢ y=e"
wm, v=0

/ox/:oe*f”*m/' ds(u,v),

and analogously we write

0 .00

p(x,y) :fo fo e s dm(u,v).

where 7 is defined by (2.5). If the sequence S is bounded we are led by
partial integration to the formula

ps(e e ™) J fre tS(u,v) dudo
ple é,e7%) TS e 8 (u,v) dudv’

os(&m) =

which can be checked directly, partitioning the integrals in rectangles
where S, 7 are constant. Hence bJ -lim s,,, = s implies og(e™%,e™") — s
as ¢,m— 0+ .Since S is bounded we can w.l.o.g. assume that s,,, > 0
so that S(u,v) is nondecreasing. Then Theorem 1 in [22] applies and it
yields

S(u,v)

- asu,v —> ®
m(u,v)

and the quotient is obviously bounded since S is bounded. Observe that in
Theorem 1 in [22] the vector-valued function p can be written as p(m) =
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(m, n(m)) with n(m) ~» o arbitrarily fast or slow. This yields the conver-
gence in the Pringsheim sense as stated.

In case of a complex sequence S we split it into its real and imaginary
parts and proceed as before for both parts separately. The conclusion
above translates to

bM,-lims,, =s. |

Proof of Theorem 4. We proceed as in the one-dimensional case
thereby using similar ideas as in [15, p. 579] for the C, ;-mean applied to
double sequences. We have with

1 m,n

Onn = Z Sk1Prdrs
Pan k,1=0

for w > m, v > n,

I v
Z Z PrdiSk

k=m+1l=n+1
=pr0,0,-Hb0,0,—-P,0,0,,+P,0,0,,
+{P.0, - £,Q, - B,0,}0,,
-{P.0, - P,0, - P,0,}0,,
=F,0,(0,, = 0,,) = P.0Q,(0,, — 0,,)

- PmQV(O-mV - Umn) + O-mn((Pp, - Pm)(QV - Qn))
Consequently, we find, with the abbreviation D = (P, — P, XQ, — Q,),

PO,
D

b0, b, 0,
- MD (O-Mn_a-mn)_ D (a-mv_o-mn)'

I v
) Y PrdiSi = Oy +

k=m+1ll=n+1

(0 = Gn)

o =
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Thus we obtain

0, P,Q
|0—mn_smnlS MD |O;/,u_0-mn|+ l‘bn|oun_0mn|
PmQV 1 1 v
D |O-mv - O-mn| + 5 Z Z kal|skl - Smn"

k=m+1l=n+1

(4.1)

Now we put wp = argmin{P, > AP,} and v = argmin{Q, > pQ,} with
A p> 1. By (2.8), Lemma 1(iii), and Lemma 2 there exist constants
¢; > 0 (i =1,2,3) such that

" v
b, q;s
IS5 = Sl <1 2 F+C2 Y o =<ca((A-1)+(p-1))
r=m+1"r s=n+1 N
(4.2)

holds for all k,/ suchthat m <k <pand n <! < ».
Now observe that by (2.3) P,.,/P, > 1and Q,.,/0, — 1 and hence

P 0,
+ 5\ asm-ow and
P, 0,

—-p asn—>» (4.3)

Using in addition that by assumption ¢, — s and hence o, — g, = 0
fork=pormand [ = v or nas m,n — o, we obtain from (4.1), using
(4.2) and (4.3), that

Ap+A+p
la,,, — Sl < O —D(p=-1) (1+0(1))-0(2)

teg ((A=1) + (p= 1)1 +0(1)).

Hence, for any A, p > 1 we obtain

M SUp|o,,, — 5,0l < 5 (A= 1) + (p — 1)),

m,n— o

which yields the desired resultas A, p = 1 +. |

Remark 6. Actually the same proof shows that instead of (2.8) the
following Tauberian condition would work here as well:

limsup max |[s,; —s
m,n—w Pp<k<AP,
0,<l<p0Q,

| =0 as A p— 1+,

mn
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5. FINAL REMARKS

There are several open questions:

(1) Do there exist O-Tauberian results with the weights from Exam-
ple 1(iii) as in the one-dimensional case (see [18])?

(2) What is the situation in the case of nonmultiplicative weights?
The only answer we can give is: The results above apply if there exist
constants 0 < ¢, < ¢, and sequences (p,,), (g,) satisfying (1.7) such that

clmen Spmn =< CZPan'

(3) What is the proper version of regular variation in dimension 2 to
be applied in this context?

(4) What about one-sided Tauberian conditions?
(5) Is the order of the Tauberian conditions optimal?
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