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1. INTRODUCTION

Ž . ŽLet p be a double sequence of nonnegative numbers where, ifm n
� 4.not indicated otherwise, the indices run through N s 0, 1, 2, . . . with0

p ) 0 such that00

`
m np x , y [ p x y - ` for x , y g 0, 1 1.1Ž . Ž . Ž .Ý m n

m , ns0

and

p x , y ª ` as x , y ª 1y, 1.2Ž . Ž .
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where within this paper a limit in two variables is meant in the sense of
Pringsheim, i.e., the two variables tend to their limit independently. Condi-

Ž . Ž .tions 1.1 and 1.2 will be assumed throughout the paper without further
mentioning them. Since

m , n
k lp x , y G p x y for x , y g 0, 1 ,Ž . Ž .Ý k l

k , ls0

Ž .we have that p x, y ª ` as x, y ª 1y, iff
m , n m n

P [ p [ p ª ` as m , n ª `.Ý Ý Ým n k l k l
k , ls0 ks0 ls0

Ž . Ž .We consider complex double sequences SS s s with increments a ,m n k l
i.e.,

m , n

s s a .Ým n k l
k , ls0

Let
m , n1

s [ p s ,Ým n k l k lPm n k , ls0
1.3Ž .

`
m np x , y [ s p x y ,Ž . ÝSS m n m n

m , ns0

and

s x , y [ p x , y rp x , y . 1.4Ž . Ž . Ž . Ž .SS SS

We say that:

Ž .i SS is boundedly convergent to s and write b-lim s s s ifm n

< <lim s [ lim s s s and sup s - `;m n m n m n
m , nª` m , n

Ž .ii SS is summable to s by the power series mean J and writep
Ž .J -lim s s s if the double power series p x, y converges for allp m n SS

Ž . Ž .2x, y g 0, 1 and

s x , y ª s as x , y ª 1y;Ž .SS

Ž .iii SS is boundedly summable to s by the power series mean J andp
write b J -lim s s s ifp m n

J -lim s s s and sup s x , y - `;Ž .p m n SS

Ž .x , yg 0, 1
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Ž .iv SS is summable to s by the weighted mean method M and writep
M -lim s s s if s ª s as m, n ª `;p m n m n

Ž .v SS is boundedly summable to s by the weighted mean method
M and write bM -lim s s s ifp p m n

< <M -lim s s s and sup s - `.p m n m n
m , n

Under the conditions

P rP ª 0 and P rP ª 0 as m , n ª ` for any fixed k , l ,ml m n k n m n

1.5Ž .

Ž wwe have by the theorem of Kojima and Robinson see, e.g., 11, Theorem
x20 that for bounded sequences the corresponding weighted mean method

Ž .is regular shortly is b-regular , i.e.,

< <s ª s as m , n ª ` and sup s - ` implies bM -lim s s s.m n m n p m n
m , n

Furthermore, under the condition that, for any fixed m, n ,

` `
k lp x rp x , y ª 0, p y rp x , y ª 0 as x , y ª 1yŽ . Ž .Ý Ýkn m l

ks0 ls0

1.6Ž .

holds, we have that the corresponding power series method J is b-regularp
Ž w x.see, e.g., 5, p. 84 . It is the aim of this paper to derive converse
conclusions, i.e., Tauberian results. However, this can only be true under
additional assumptions on the sequence SS , the so-called Tauberian condi-
tions.

So far for power series methods J our main Tauberian result isp
Ž .restricted to weights p which factorize, i.e., we have p s p q withk l k l k l

Ž . Ž .nonnegative sequences p s p and q s q satisfyingn n

n n

0 - P [ p ª `, 0 - Q [ q ª ` as n ª `,Ý Ýn k n k
ks0 ks0

`
kp x [ p x - ` for x g 0, 1 ,Ž . Ž .Ý k

ks0
1.7Ž .

`
lq y [ q y - ` for y g 0, 1 .Ž . Ž .Ý l

ls0
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Ž .We denote the associated power series method based on weights p q fork l
double sequences by J and the associated arithmetic mean method byp q

Ž .M . Both methods are b-regular under 1.7 . In the literature on Taube-p q
rian results for power series methods applied to double sequences there

Ž .exist to our knowledge only results on the Abel method for double
Ž w xsequences, where p s p q with p s q ' 1 see 25 for references andk l q l k l

w x.also 1, 2 . For weighted mean methods in particular the Cesaro method`
Ž w x w xC was studied see, e.g., the book 25 for references or 9, 20 where1, 1

.C methods are discussed . For more general weighted mean methodsa , b

w xthere is also a recent result in 4 .

2. MAIN RESULTS

First we have to introduce the following quantities which were used in a
w xseries of papers 8, 12]14, 16]19, 23 to study power series methods in the

one-dimensional case:

D p s inf p x xym and Dq s inf q y yyn . 2.1Ž . Ž . Ž .m n
0-x-1 0-y-1

p Ž .The infima for, e.g., D are attained at points x g 0, 1 . For details andm m
the most important properties of these quantities D , see Lemma 1 belowm

w xor consult the papers 7, 16]18 . They are in many cases of the same order
as the quantities P resp. Q but not always.m n

Ž . Ž .EXAMPLE. i In case p s 1r n q 1 we findn

1
p1 y x ; , D ; log n , P ; log nn n nn log n

so we have D p ; P .n n
g n q gŽ . Ž . Ž .Ž .ii In case p s n q 1 or p s G g q 1 with g ) y1 wen n n

obtain that

1 y x ; g q 1 r n q g q 1 ,Ž . Ž .n

gq1e
p gq1 gq1D ; n , P ; n r g q 1 .Ž .n nž /g q 1

So we obtain again that D p and P are of the same order.n n
Ž . Ž g . Ž w x.iii In case p ; exp n with 0 - g - 1 we have see, e.g., 7, 8, 18n

1r22p
gy1 p 1yg r2 g1 y x ; yg n , D ; n exp n ,Ž .n n ž /g 1 y gŽ .

P ; n1ygexp ng rg .Ž .n
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Now P is of smaller order than D p. Similar calculations can be done for an n
w xmuch larger class of weights; see, e.g., 18 .

For a general discussion of the relation between D p and P , see Lem-n n
ma 1 below.

The following condition will be used as our basic Tauberian condition:

m qn
sup a F b for n s 1, 2, . . . ,Ý mn n qDmgN nms00

2.2Ž .
n pm

sup a F a for m s 1, 2, . . . ,Ý mn m pDngN mns00

Ž . Ž .with suitable nonnegative sequences a and b to be specializedm n
Žbelow. In the case of the Abel method in two dimensions we have see

Ž . .example ii above

q p 1n ns 7 .q pD D n q 1n n

Our first result is very general for product-power series methods.

Ž .THEOREM 1. Assume that the double sequence SS satisfies 2.2 with null
Ž . Ž .sequences a , b . Then we ha¨em n

J -lim s s s implies lim s s sp q m n m n

and
b J -lim s s s implies b-lim s s s.p q m n m n

Ž .Remark 1. i In the case of the Abel method or the generalized Abel
m q g n q dŽ . Ž .methods A with p s , q s where g , d ) y1, a sufficientg , d m nm n

Ž .condition for 2.2 is given by

1
a s o 1 as m or n ª `Ž .m n 2 2m q n

Ž w x .see, e.g., 15 for the ordinary Abel method . This condition can be
Ž w x.replaced see 9 by

1
a s o 1 as m or n ª `,Ž .m n p qm q n

with conjugate indices p, q ) 1 with 1rp q 1rq s 1.
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Ž .Considering the logarithmic method where p s q s 1r n q 1 , wen n
obtain the somewhat stronger assumption

1
a s o 1 as m or n ª `.Ž .m n 2 2m log m q 1 q n log n q 1Ž . Ž .Ž . Ž .

Ž g . Ž d .However, for methods using weights p s exp m , q s exp n wherem n
Ž . Ž .g , d g 0, 1 a sufficient condition for 2.2 is given by

1
a s o 1 as m or n ª `.Ž .m n 2yŽ1yg rdqg r2. 2yŽ1yd rgqd r2.m q n

Ž . Ž .ii The Tauberian condition 2.2 is called o-type for obvious reasons.

The question arises now whether the o-Tauberian condition in Theo-
rem 1 can be replaced by the so-called O-type condition. This is indeed the

Ž .case if we assume that the weight sequences p behave nicely. Wem n
Ž . Ž .assume in the following that the partial sums P and Q are un-m n

Ž w xbounded regularly varying sequences see, e.g., 6 for the notation and
.basic properties . That means we have representations

a bP s m q 1 L m q 1 and Q s n q 1 L n q 1 , 2.3Ž . Ž . Ž . Ž . Ž .m 1 n 2

Ž .with constants a , b G 0 and slowly varying functions L and L on 0, ` ,1 2
i.e., they are positive, measurable, and satisfy

L lt L ltŽ . Ž .1 2
, ª 1 as t ª ` for all l ) 0.

L t L tŽ . Ž .1 2

Now we can give an O-type Tauberian theorem.

Ž . Ž .THEOREM 2. Assume that for the partial sums of the sequences p , qm n
Ž . Ž .property 2.3 holds and that SS satisfies 2.2 with bounded sequences

Ž . Ž .a , b . Then we ha¨em n

b J -lim s s s implies b-lim s s s.p q m n m n

Ž .Remark 2. i In the case of the two dimensional Abel methods a
Ž .sufficient condition for 2.2 is given by

c
< <a F for m , n g N with some c ) 0,m n 02 2m q 1 q n q 1Ž . Ž .

a condition used by various authors. Actually this condition works for any
Ž . Ž . Ž .power series method based on weight sequences p , q satisfying 2.3m n
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Ž .see Remark 5 . So in particular this condition applies to the generalized
Abel methods A where g , d ) y1.g , d

For the logarithmic method we obtain as a Tauberian condition

c
< <a F for m , n g N,m n 2 2mq1 log mq1 q nq1 log nq1Ž . Ž . Ž . Ž .Ž . Ž .

with some c ) 0.
Ž . Ž .ii Condition 2.3 can be relaxed somewhat. Assume that a positive

˜Ž .unbounded sequence P satisfiesn

˜ ˜P P2 n w t nx
lim sup - ` and M t s lim sup ª 1 as t ª 1q,Ž .P̃˜ ˜P Pnª` nª`n n

2.4Ž .

Ž . w xi.e., M t exists for t ) 1 and is continuous at t s 1. Following 10 , weP̃
Ž .could call such sequences intermediate regularly varying. Instead of 2.3

Ž . Ž . Ž .we may assume that 2.4 holds for both P and Q .n n

The second result will be proven in two steps, which are of interest
themselves. In a first step J - and M -summability are related. First wep p
show that the J -method is stronger than the M -method and then wep p
discuss an inverse Tauberian result.

Ž . Ž .PROPOSITION 1. Assume that p is a weight sequence satisfying 1.6 .m n
Then we ha¨e

bM -lim s s s implies b J -lim s s s.p m n p m n

Ž .Proof. If 1.6 holds then the power series method J with weightsP
Ž . Ž .P is b-regular as well. Hence we find from 1.3 with the notationm n
Ž . ` m nP x, y [ Ý P x y the relationsm , ns0 m n

` `1 1
m n m ns ¤ P s x y s p s x yÝ Ým n m n m n m nP x , y p x , yŽ . Ž .m , ns0 m , ns0

Ž . Ž .Ž . Ž .since p x, y s 1 y x 1 y y P x, y and obviously the J -mean isp
bounded as well.

Now we return to the Tauberian aspect. Assume in the following that
Ž . Ž .P satisfies 1.6 and we definem n

p u , ¨ [ p for u , ¨ G 0 2.5Ž . Ž .Ý k l
0Fk-u
0Fl-¨
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Ž .and put, for any « g 0, 1 ,

B 1, « [ e , e g R2 ¬ e , e ) 0Ž . Ž .� 1 2 1 2

such that « F e re F 1r« and e2 q e2 s 1 .41 2 1 2

Ž . Ž . Ž .Suppose now that, with some « g 0, 1 and any fixed e , e g B 1, « ,1 2

p um, ¨nŽ .
lim p exists for all u , ¨ ) 0

e m , e nm , nª` Ž . 2.6Ž .1 2

and is continuous at u , ¨ s e , e .Ž . Ž .1 2

Furthermore, we suppose that for any d ) 0 there exists some M ) 0d

such that, for all m, n g N,

p um, ¨nŽ .
d Žuq¨ .F M e for u , ¨ G 1 and e , e g B 1, « 2.7Ž . Ž . Ž .d 1 2p e m , e nŽ .1 2

holds. In the unit square the quotient is bounded then by monotonicity
Ž . Ž .arguments. Conditions 2.6 and 2.7 are satisfied, e.g., in case P s P Qm n m n

Ž . Ž . Ž . Ž Ž .. Ž .where P , Q satisfy 2.3 or also 2.4 with arbitrary « g 0, 1 .m n
Observe that in this case

a bp um, ¨n u ¨Ž .
H u , ¨ ; e , e [ ªŽ .m ,n 1 2 ž / ž /p e m , e n e eŽ .1 2 1 2

for all u , ¨ ) 0 and e , e g B 1, «Ž .1 2

and

� aqd bqd 4H u , ¨ ; e , e F C max 1, u ¨ for all u , ¨ ) 0Ž .m , n 1 2 d , «

Ž .for any « , d g 0, 1 with a suitable constant C . Observe that slowlyd , «

Žvarying functions can be bounded by arbitrarily small powers consult, e.g.,
w x. Ž . Ž .the book 6, Theorem 1.5.6 and that P , Q are nondecreasing. Thenn n

we have the following Tauberian theorem.

Ž . Ž .THEOREM 3. Assume that P is a weight sequence satisfying 2.6 andm n
Ž . Ž .2.7 . Then s s O 1 is a Tauberian condition for the conclusionm n

J -lim s s s implies bM -lim s s s.p m n p m n

Remark 3. For bounded sequences SS the methods J and M arep p
Ž . Ž .equivalent and consistent provided the weights satisfy 2.6 and 2.7 .
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The second step in the proof of Theorem 2 uses a Tauberian result from
M -summability to convergence for regularly varying weights.p q

Ž . Ž . Ž .THEOREM 4. Assume that the weights P , Q satisfy 2.3 . Thenm n

M -lim s s s implies lim s s sp q m n m n

and
bM -lim s s s implies b-lim s s s,p q m n m n

pro¨ided the following Tauberian condition holds:

m qn
sup a F C for n s 1, 2, . . . ,Ý mn QmgN nms00

2.8Ž .
n pm

sup a F C for m s 1, 2, . . . .Ý mn PngN mns00

Ž .Remark 4. i For the class of weights considered in Theorem 4,
Ž . Ž . Ž . Ž .conditions 2.2 with bounded sequences a , b and conditions 2.8n n

Ž .are equivalent, because of Lemma 1 iii . Furthermore, if, e.g., q is already
regularly varying then q rQ 7 1rm as m ª `.m m
Ž . Ž . Ž . Ž . Ž .ii Conditions 2.8 are also sufficient if P , Q satisfy 2.4 insteadn m
Ž . Ž .of 2.3 see again Lemma 1 and the proof of Theorem 4 below .

3. AUXILIARY RESULTS

For dealing with the quantities D p the following lemma is important.n

Ž w x.LEMMA 1 cf. 7, 16, 17 . Let there be gï en a nonnegatï e sequence
Ž . Ž . Ž p. Ž .p s p satisfying 1.7 . For the associated sequence D defined in 2.1n n

the following hold:

Ž . Ž . p Ž . yni There exists a sequence x p 1 such that D s p x x forn n n n
n g N ;0

Ž . ` pii Ý p rD s `;ks1 k k

Ž . p Ž p Ž . Ž ..iii P F D and D s O P iff P s O P .n n n n 2 n n

p Ž . Ž .Remark 5. So in particular we have D s O P in case that P isn n n
Ž .regularly varying. Furthermore, if p is already regularly varying, then wen

have p rD p ; c p rP ; c rn with suitable constants c , c ) 0.n n 1 n n 2 1 2

The following lemma is the key to our results.
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Ž .LEMMA 2. Assume that the double sequence SS satisfies 2.2 and let
Ž . Ž .s x, y denote the J -means as defined in 1.4 . Then we ha¨e, for anySS p q

m, n , m, n g N ,0

r uo op qk l
< <i s y s F a q b ,Ž . Ý Ýmn m n k lp qD Dk lksr q1 lsu q1u u

� 4 � 4 � 4where r s min m, m , r s max m, m and u s min n , n , u su o u o
� 4max n , n .

iiŽ .
` `

k ls x , y y s F a p x rp x q b q y rq y .Ž . Ž . Ž .Ý ÝSS m n m n k k m m l l n n
ks1 ls1

Ž . Ž .COROLLARY. If in Lemma 2 the sequences a , b are bounded thenm n
we ha¨e

sup s x , y y s - `;Ž .SS m n m n
m , n

if they are null sequences then we ha¨e

lim s x , y y s s 0.Ž .SS m n m n
m , nª`

4. PROOFS

Ž .Proof of Lemma 2. i For m G m and n G n we have

m , n mm , n n m n

< <s y s s a y a F a q aÝ Ý Ý Ý Ý Ýmn m n k l k l k l k l
k , ls0 k , ls0 ksmq1 ls0 ks0 lsnq1

m n n m

F a q aÝ Ý Ý Ýk l k l
ksmq1 ls0 lsnq1 ks0

m np qk lF a q b ,Ý Ýk lp qD Dk lksmq1 lsnq1

Ž .where we used 2.2 .
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For m - m and n G n we find
mm n n

< <s y s F a q aÝ Ý Ý Ýmn m n k l k l
ksmq1 ls0 lsnq1 ks0

m np qk lF a q b ,Ý Ýk lp qD Dk lksmq1 lsnq1

Ž .where we used 2.2 again. The remaining cases are to be dealt with
similarly.
Ž . Ž . Ž . Ž . p qii using the sequences x , y defined in Lemma 1 i for D and Dm n m n

Ž .respectively, we obtain by Lemma 2 i that

s x , y y sŽ .SS m n m n

`1
m n< <F p q s y s x yÝ m n mn m n m np x q yŽ . Ž .m n m , ns0

r u` o o1 p qk l m nF p q a q b x yÝ Ý Ým n k l m np qž /p x q y D DŽ . Ž .m n k lm , ns0 ksr q1 u q1u u

mmy1 m `1 p pk km mF p x a q p x aÝ Ý Ý Ým m k m m kp pž /p x D DŽ .m k kms0 ksmq1 msmq1 ksmq1

ny1 n ` n1 q ql ln nq q y b q q y aÝ Ý Ý Ýn n l n n kq qž /q y D DŽ .n l lns0 lsnq1 nsnq1 lsnq1

mykkm ky11 p x xk m mms a p xÝ Ýk m kp k ž /žp x D xxŽ .m k kkks1 ms0

mykk` `p x xk m mmq a p xÝ Ýk m kp k ž / /D xxk kkksmq1 msk

nylln ly11 q y yl n nnq b q yÝ Ýl n lq l ž /žq y D yyŽ .n l llls1 ns0

nyll` `q y yl n nnq b q y .Ý Ýl n lq l ž / /D yyl lllsnq1 nsl

Ž . Ž . Ž . mykNow observe that x , y are nondecreasing. Hence x rx ,m n m k
Ž .nyl Ž . q l Ž .y ry F 1 in all occurring cases and that by Lemma 1 i D y s q y ,n l l l l

p k Ž .D x s p x and we end withk k k
` `1 1

k ls x , y y s F a p x q b q y .Ž . Ý ÝSS m n m n k k m l l np x q yŽ . Ž .m nks1 ls1
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The corollary follows from the regularity and positivity of the one-dimen-
sional power series methods.

Proof of Theorem 1. The proof follows directly from the corollary.

Proof of Theorem 3. The proof of Theorem 3 is based on a Tauberian
w xtheorem for multivariate Laplace transforms in 22 . For the moment we

assume that SS is real. Now we use the following notation:

S u , ¨ [ s p .Ž . Ý mn mn
0Fm-u
0Fn-¨

Then

`
m np x , y s p s x yŽ . ÝSS mn mn

m , ns0

`
yj myhn yj yhs p s e with x s e , y s eÝ mn mn

m , ns0

` `
yj uyh ¨s e dS u , ¨ ,Ž .H H

0 0

and analogously we write

` `
yj uyh ¨p x , y s e dp u , ¨ .Ž . Ž .H H

0 0

Ž .where p is defined by 2.5 . If the sequence SS is bounded we are led by
partial integration to the formula

p eyj , eyh H` H` eyj uyh ¨S u , ¨ du d¨Ž . Ž .SS 0 0
s j , h [ s ,Ž .SS ` ` yj uyh ¨yj yj H H e p u , ¨ du d¨p e , e Ž .Ž . 0 0

which can be checked directly, partitioning the integrals in rectangles
Ž yj yh .where S, p are constant. Hence b J -lim s s s implies s e , e ª sp m n SS

as j , h ª 0 q . Since SS is bounded we can w.l.o.g. assume that s G 0m n
Ž . w xso that S u, ¨ is nondecreasing. Then Theorem 1 in 22 applies and it

yields

S u , ¨Ž .
ª s as u , ¨ ª `

p u , ¨Ž .

and the quotient is obviously bounded since SS is bounded. Observe that in
w x Ž .Theorem 1 in 22 the vector-valued function p can be written as p m s
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Ž Ž .. Ž .m, n m with n m p ` arbitrarily fast or slow. This yields the conver-
gence in the Pringsheim sense as stated.

In case of a complex sequence SS we split it into its real and imaginary
parts and proceed as before for both parts separately. The conclusion
above translates to

bM -lim s s s.p m n

Proof of Theorem 4. We proceed as in the one-dimensional case
w xthereby using similar ideas as in 15, p. 579 for the C -mean applied to1, 1

double sequences. We have with

m , n1
s s s p q ,Ým n k l k lP Qm n k , ls0

for m ) m, n ) n,

m n

p q sÝ Ý k l k l
ksmq1 lsnq1

s P Q s y P Q s y P Q s q P Q sm n mn m n m n m n mn m n m n

q P Q y P Q y P Q s� 4m n m n m n m n

y P Q y P Q y P Q s� 4m n m n m n m n

s P Q s y s y P Q s y sŽ . Ž .m n mn m n m n m n m n

y P Q s y s q s P y P Q y Q .Ž . Ž .Ž .Ž .m n mn m n m n m m n n

Ž .Ž .Consequently, we find, with the abbreviation D [ P y P Q y Q ,m m n n

m n1 P Qm n
p q s s s q s y sŽ .Ý Ý k l k l m n nm m nD Dksmq1 lsnq1

P Q P Qm n m ny s y s y s y s .Ž . Ž .mn m n mn m nD D
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Thus we obtain

P Q P Qm n m n
< < < < < <s y s F s y s q s y sm n m n nm m n m n m nD D

m nP Q 1m n
< < < <q s y s q p q s y s .Ý Ýmn m n k l k l m nD D ksmq1 lsnq1

4.1Ž .

� 4 � 4Now we put m s argmin P G lP and n s argmin Q G rQ withk m k n
Ž . Ž .l, r ) 1. By 2.8 , Lemma 1 iii , and Lemma 2 there exist constants

Ž .c ) 0 i s 1, 2, 3 such thati

m np qr s
< <s y s F c q c F c l y 1 q r y 1Ž . Ž .Ž .Ý Ýk l m n 1 2 3P Qr srsmq1 ssnq1

4.2Ž .

holds for all k, l such that m F k F m and n F l F n .
Ž .Now observe that by 2.3 P rP ª 1 and Q rQ ª 1 and hencemq1 m nq1 n

P Qm nª l as m ª ` and ª r as n ª `. 4.3Ž .
P Qm n

Using in addition that by assumption s ª s and hence s y s ª 0m n k l m n
Ž .for k s m or m and l s n or n as m, n ª `, we obtain from 4.1 , using

Ž . Ž .4.2 and 4.3 , that

lr q l q r
< <s y s F 1 q o 1 ? o 1Ž . Ž .Ž .m n m n l y 1 r y 1Ž . Ž .

q c ? l y 1 q r y 1 1 q o 1 .Ž . Ž . Ž .Ž . Ž .3

Hence, for any l, r ) 1 we obtain

< <lim sup s y s F c ? l y 1 q r y 1 ,Ž . Ž .Ž .m n m n 3
m , nª`

which yields the desired result as l, r ª 1 q .

Ž .Remark 6. Actually the same proof shows that instead of 2.8 the
following Tauberian condition would work here as well:

< <lim sup max s y s ª 0 as l, r ª 1 q .k l m n
P FkFl Pm mm , nª`
Q FlFr Qn n
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5. FINAL REMARKS

There are several open questions:

Ž .1 Do there exist O-Tauberian results with the weights from Exam-
Ž . Ž w x.ple 1 iii as in the one-dimensional case see 18 ?
Ž .2 What is the situation in the case of nonmultiplicative weights?

The only answer we can give is: The results above apply if there exist
Ž . Ž . Ž .constants 0 - c - c and sequences p , q satisfying 1.7 such that1 2 m n

c p q F p F c p q .1 m n m n 2 m n

Ž .3 What is the proper version of regular variation in dimension 2 to
be applied in this context?

Ž .4 What about one-sided Tauberian conditions?
Ž .5 Is the order of the Tauberian conditions optimal?
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