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1. Introduction

Let K[[X]] be the power series ring in one variable X with coefficients in an algebraically
closed field K, K((X)) be its field of fractions (the field of Laurent series in the variable X ) and
f ∈ K((X))[Y ] – a monic and irreducible polynomial. For any l|degY f the approximate l-th root of f
is a monic polynomial g ∈ K((X))[Y ] such that

degY

(
f − gl) < degY f − degY f

l
.

In [1,2] Abhyankar and Moh proved many properties (see Theorem 2 for a compilation of their re-
sults) of l-th approximate roots for so-called characteristic divisors l of degY f , and applied them in
affine algebraic geometry (embedding of the line in the plane [3], the Jacobian conjecture [4], analytic
irreducibility at ∞ [5]).

In the paper we show that almost all of the nice properties of approximate roots found by Ab-
hyankar and Moh have their ‘non-characteristic’ analogues (Theorem 5), at least in the case when
char K = 0. The results are a continuation of the investigations started in [6], cf. also [7].
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2. Basic notions and known results

In what follows we concentrate on [4] as our main source of references. For the convenience
of the Reader we recall some basic notions from the Abhyankar–Moh’s theory. We start with the
fundamental definition (cf. [4, Definition (4.3)]).

Definition 1. Let R be a commutative ring with unity, let f ∈ R[Y ] be a monic polynomial of degree
k and let l|k be a positive divisor of k such that 1/l ∈ R (i.e. l is invertible in R). A monic polynomial
g ∈ R[Y ] satisfying the relation

degY
(

f − gl) < k − k

l

is called an approximate l-th root of f .

The following theorem is well known.

Theorem 1. (See [4, Theorem (4.4)].) Under the above assumptions an l-th approximate root of f exists and is
uniquely determined.

Notation 1. In what follows, the unique element of Theorem 1 will be denoted by l
√

f .

Remark 1. There exists an easy-to-implement algorithm for computing approximate roots. It is based
on the so called Tschirnhausen transformation, which in turn reduces to the division with remainder
(cf. [4, §3]).

In the sequel we will make use of a more precise version of Theorem 1. We state it as a lemma
(cf. [7]).

Lemma 1. Under the assumptions of the theorem, let additionally Q ⊂ R. Put f̂ := Y k f (Y −1) ∈ R[Y ]. There
exists ĝ ∈ R[[Y ]], such that ĝ(0) = 1 and ĝl = f̂ . What is more, if such a ĝ is of the form

ĝ =
k
l∑

j=0

a j Y
j

︸ ︷︷ ︸
g:=

+ terms of order greater than
k

l
, (2.1)

then

l
√

f = Y
k
l g

(
Y −1) =

k
l∑

j=0

a j Y
k
l − j. (2.2)

Proof. Consider h ∈ R[[Y ]] of the form h := ∑+∞
j=0

( 1
l
j

)
Y j . It is clear that h(0) = 1 and hl = 1 + Y .

Composing h with the series f̂ − 1, which has no free term since f is monic, we find the required

series ĝ . Suppose ĝ and g are of the form (2.1). Then (Y
k
l ĝ(Y −1))l = Y k f̂ (Y −1) = f . Notice also that

deg Y
k
l g(Y −1) = k

l and that

Y
k
l ĝ

(
Y −1) = Y

k
l g

(
Y −1) + terms of order less than 0.
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Raising both sides of this equality to the l-th power we thus get

f = (
Y

k
l g

(
Y −1))l + terms of order less than (l − 1)

k

l︸ ︷︷ ︸
r:=

.

Since f , Y
k
l g(Y −1) ∈ R[Y ], then also r ∈ R[Y ]. Since by (2.1) g(0) = 1, Y

k
l g(Y −1) is monic and

degY r < k − k
l . From the definition of an approximate root it follows that l

√
f = Y

k
l g(Y −1). �

Remark 2. Lemma 1 and its proof are also valid in the general case (i.e. without the assumption

Q ⊂ R). One must only prove that
( 1

l
j

) ∈ Z[l−1] for any j ∈ N0 and use the canonical homomorphism

Z[l−1] → R .

2.1. Characteristic sequences of a parametrization (cf. [4, §6])

Let there be given: a positive integer k ∈ N and a Laurent series y(t) ∈ K((t)) with coefficients in
a field K of characteristic p ∈ N0. The couple (tk, y(t)) will be called a parametrization. The support
of y(t) (the set of those exponents of the powers of t that occur with a non-zero coefficient in the
Laurent expansion of y(t)) will be denoted by Suppt y(t).

From the expansion of y(t) in the powers of t we read off so-called characteristic sequences of the
parametrization (tk, y(t)). Namely, if y(t) = 0 we define m0 := k,1 m1 := +∞, d1 := k and h := 0. If
y(t) �= 0, we put m0 := k, d1 := k, m1 := ordt y(t), d2 := gcd(m0,m1) and, inductively, if m0, . . . ,mi
and d1, . . . ,di+1 are already defined for some i � 1, we put

mi+1 := inf
{

j ∈ Suppt y(t): j �≡ 0 (mod di+1)
}
.

If, now, mi+1 < +∞, we also define

di+2 := gcd(m0, . . . ,mi+1),

and in the case when mi+1 = +∞, we put h := i and finish the inductive definition.
Since in the above construction, there is always 0 < d j+1 < d j for j � 2, the process ends after

finitely many steps. Thus we end up with two sequences:

m := (m0,m1, . . . ,mh+1)

and

d := (d1, . . . ,dh+1).

We call them, respectively: the characteristic (of the parametrization (tk, y(t))) and the sequence of char-
acteristic divisors (of the parametrization (tk, y(t))).

Immediately from the above definition, we get:

Property 1.

1. h � 1 if y(t) �= 0,

1 We could also take m0 = −k; the value of m0 isn’t important for the results of this work.
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2. m1 < m2 < · · · < mh+1 = +∞,
3. di+1 = gcd(m0, . . . ,mi) for 0 � i � h,
4. dh+1|dh| . . . |d1 = k and dh+1 < dh < · · · < d2 ,
5. if M ∈ Z ∪ {+∞} and mi−1 < M � mi for some i ∈ {2, . . . ,h + 1} (or only M � mi , if i = 1),

then

gcd
({k} ∪ (

Suppt y(t) ∩ (−∞, M)
)) = gcd(m0, . . . ,mi−1) = di .

On the basis of the sequences m and d we also define the following derived characteristic sequences:

s = (s0, . . . , sh+1),

putting s0 := m0, si := m1d1 + ∑
2� j�i(m j − m j−1)d j for 1 � i � h, and sh+1 := +∞;

r = (r0, . . . , rh+1),

putting r0 := m0, ri := si
di

for 1 � i � h, and rh+1 := +∞;

n = (n1, . . . ,nh),

putting ni = di
di+1

for 1 � i � h.
The following property is self-evident.

Property 2. The sequences m, d, s, r, n are integer-valued (or +∞). What is more

di+1 = gcd(r0, . . . , ri) for 0 � i � h,

si = si−1 + (mi − mi−1)di for 2 � i � h,

s1 < s2 < · · · < sh+1 = +∞.

Remark 3. Although all the sequences defined above depend on the parametrization (tk, y(t)), we
will omit this dependency, since it will always be clear from the context which parametrization they
belong to. If we face the necessity of distinguishing characteristic sequences of two parametrizations,
we will use decorations, e.g. m, d, etc.

2.2. The Basic Assumptions and the results of Abhyankar and Moh

The following assumptions will be made in our main results. We will call them the Basic Assump-
tions.

Let Uk(K) := {ε ∈ K: εk = 1}. Let f be an irreducible and monic element of K((X))[Y ], K = K,
char K = 0, degY f = k. Then, by Newton–Puiseux Theorem,

f
(
tk, Y

) =
∏

ε∈Uk(K)

(
Y − y(εt)

)

for some y(t) ∈ K((t)) of the form

y(t) =
∑
j∈Z

y jt
j, where y j = 0 for j 
 0.
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Using the parametrization (tk, y(t)) (or any of its ε-conjugates) we define the characteristic sequences
of f as the characteristic sequences m, d, s, r and n of (tk, y(t)). Note that since gcd({k} ∪ Suppt y(t))
= 1, by Property 1 item 5 it follows that dh+1 = 1.

To formulate the Abhyankar–Moh theorem we need a few definitions; all of them can be found
in [4].

Notation 2. Let K be a field. The symbol o− is to denote any (unspecified) non-zero element of this
field.

Notation 3. Let K be a field. By K((t∗)) we denote the field of Puiseux series in the variable t with
coefficients in K. In the sequel, if z(t) ∈ K((t∗)) then the notation z(t) = ∑

q∈Q zqtq (a formal sum)

means that there exists k ∈ N such that zq = 0 for kq /∈ Z and z(tk) ∈ K((t)); so in fact z(t) can be
written as z(t) = ∑

i∈Z zi/kti/k with zi/k = 0 for i 
 0.

Definition 2. Let K be a field, z(t) ∈ K((t∗)) and ordt z(t) = q, q ∈ Q. Then z(t) = αtq + z̄(t) for some
α = o−and z̄(t) ∈ K((t∗)), ordt z̄(t) > q. We define the leading form infot z(t) of z(t) as the term αtq and
the leading coefficient incot z(t) of z(t) as α. If z(t) = 0, we put infot z(t) := 0 and incot z(t) := 0.

Definition 3. Let K be a field, U – an indeterminate, Q ∈ Q and z(t) ∈ K((t∗)) be of the form z(t) =∑
q∈Q zqtq . We say that z∗(t) is a (Q , U )-deformation of z(t) if z∗(t) ∈ L∗((t)), where L is an extension

field of K(U ), and

infot

(
z∗(t) −

∑
q<Q

zqtq
)

= U · t Q .

Remark 4. The definition of a deformation in [4] is slightly different (cf. [4, Definition (7.14)]), because
it allows only deformations on ‘characteristic places’.

The most important properties of approximate roots of characteristic degrees, found by Abhyankar
and Moh, can be summarized as follows.

Theorem 2. Under the Basic Assumptions, let l = di for some 1 � i � h + 1. Then:

1. l
√

f is an irreducible element of K((X))[Y ],
2. if 2 � i, then for every Puiseux root z(t) ∈ K((t∗)) of the polynomial l

√
f and every σ ∈ Uk(K),

ordt
(

y(σ t) − z
(
tk)) � mi,

3. if 2 � i, then for every ε ∈ Uk(K) there exists a Puiseux root z(t) of the polynomial l
√

f such that

ordt
(

y(εt) − z
(
tk)) = mi,

4. if 2 � i, then for every Puiseux root z(t) of the polynomial l
√

f there exists ε ∈ Uk(K) such that

ordt
(

y(εt) − z
(
tk)) = mi,

5. if 2 � i, then

ordt
(

l
√

f
(
tk, y(t)

)) = ri,
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6. if 2 � i � h, then for every (mi, U )-deformation y∗(t) of y(t) it is

infot
(

l
√

f
(
tk, y∗(t)

)) = o−Utri .

Proof. The items 1 and 3 are the content of [4, Theorem (13.2)]. The item 5 is proved in [4, Theo-
rem (8.2)], and the item 6 – in [4, Theorem (7.19)]. It remains to prove the items 4 and 2. Let, then,

i � 2 and let us consider any Puiseux root z(t) of l
√

f . Define w(t) := z(t
k
l ). Then l

√
f (t

k
l , w(t)) = 0.

Since l
√

f is irreducible and degY
l

√
f = k

l , then from the Newton–Puiseux theorem it follows that

w(t) ∈ K((t)). Let, according to item 3, z0(t) be such a Puiseux root of l
√

f that

ordt
(

y(t) − z0
(
tk)) = mi .

Like above, z0(t
k
l ) ∈ K((t)). Again by Newton–Puiseux theorem, there exists ε0 ∈ U k

l
(K) such that

w(ε0t) = z0(t
k
l ). Hence

ordt
(

y(t) − w
(
ε0tl)) = mi

that is

ordt
(

y
(
ε

− 1
l

0 t
) − z

(
tk)) = mi .

Thus, the item 4 is proved.
As for item 2, note that the relation ordt(y(σ t) − z(tk)) > mi , for some Puiseux root z(t) ∈ K((t∗))

of l
√

f and some σ ∈ Uk(K), implies that z(t
k
l ) has a non-zero (equal to ymi σ

mi ) coefficient by t
mi

l .

Since on the one hand z(t
k
l ) ∈ K((t)) and on the other – mi

l = mi
di

/∈ Z by the definition of mi , this is
absurd. �
Definition 4. Under the Basic Assumptions, a positive divisor l of k such that l ∈ {d1, . . . ,dh+1} will be
called a characteristic divisor of k (with regard to f ). A positive divisor l of k that is not characteristic
will be called a non-characteristic divisor of k (with regard to f ).

In [6] we’ve examined non-characteristic approximate roots and we’ve proved that, in the above
theorem: in general Property 1 is not true while Properties 2 and 4 partly are – in the form of
greater-or-equal-inequalities (Theorems 1 and 3 of [6]), that happen to be equalities in some special
case (Theorems 2 and 3 of [6]). In the present work we improve those results, obtaining almost full
analogue of Theorem 2 (in the case of char K = 0; see Remark 7 for directions for the general case).

For the current purpose, we cite only the following theorem, which is a combination of Theorems 1
and 3 of [6].

Theorem 3. Under the Basic Assumptions, let l be a non-characteristic divisor of k and let i := max{1 � j �
h + 1: l|d j}. Then:

1. for every Puiseux root z(t) of the polynomial l
√

f there exists ε ∈ Uk(K) such that

ordt
(

y(εt) − z
(
tk)) � mi,

2. ordt
(

l
√

f
(
tk, y(t)

))
� ri

di

l
.
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3. Auxiliary results

Some of the facts stated here are simple and well known. Nevertheless they are crucial for the
prove of the main theorem, so we decided to include them in the work.

We start with the following theorem, which is stated (without a proof) in Section 2 of [5].

Theorem 4 (Newton’s polygon method). Let K be a field, char K = 0, and let g be a monic element of
K((X))[Y ] that splits into linear factors Y − z j(X), where z j(X) ∈ K((X∗)) for 1 � j � degY g. In another
words, let

g(X, Y ) =
∏

1� j�degY g

(
Y − z j(X)

)
. (3.1)

Let us consider any u(t) := ∑
q�Q uqtq ∈ K((t∗)), where Q ∈ Q. Then the following two conditions are equiv-

alent:

(i) there exists 1 � j0 � degY g such that ordt(u(t) − z j0 (t)) > Q ,
(ii) the polynomial h := incot g(t, u(t) + Ut Q ) ∈ K[U ] is not constant and one of its roots is U = 0.

What is more, if U = 0 has multiplicity l > 0 as a root of h, then there exist exactly l different indices
j1, . . . , jl ∈ {1, . . . ,degY g} for which ordt(u(t) − z ji (t)) > Q , for i = 1, . . . , l.

Proof. (i) ⇒ (ii). If there exists 1 � j0 � degY g such that ordt(u(t) − z j0 (t)) > Q , then incot(u(t) +
Ut Q − z j0 (t)) = U . Hence and from (3.1), h = Uh1, for some non-zero h1 ∈ K[U ]. This gives (ii).

∼ (i) ⇒ ∼ (ii). If for every 1 � j � degY g it is q j := ordt(u(t) − z j(t)) � Q , then

incot
(
u(t) + Ut Q − z j(t)

) =
{

o−, if q j < Q

U + o−, if q j = Q
= δ

q j

Q U + o−,

where δ is the Kronecker delta. Hence

h =
∏

1� j�degY g

(
δ

q j

Q U + o−)
,

which means that the polynomial h has no roots equal to zero, that is ∼ (ii).
The last assertion follows by a careful examination of the above reasoning. For, let A := {1 � j �

degY g: ordt(u(t) − z j(t)) > Q } and B := {1 � j � degY g: ordt(u(t) − z j(t)) � Q }. Then, like before,

incot

(∏
j∈A

(
u(t) + Ut Q − z j(t)

)) =
∏
j∈A

U = U card A

and

incot

(∏
j∈B

(
u(t) + Ut Q − z j(t)

)) =
∏
j∈B

(
δ

q j

Q U + o−)
,

where again q j := ordt(u(t) − z j(t)) for j ∈ B . Therefore, together we get

h = U card A
∏
j∈B

(
δ

q j

Q U + o−)
,

which means that the polynomial h has a zero of exactly card A multiplicity, at zero. �
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Remark 5. The above theorem and the next two results are also valid (along with their proofs) in the
case char K =: p �= 0 if one replaces the Puiseux series with Kedlaya’s generalized series (cf. [8]) and
assumes that k �≡ 0 (mod p) (see below).

As an easy consequence of Theorem 4, we prove the following.

Property 3. Let K be a field, K = K, char K = 0 and let there be given a parametrization (tk, w(t)) of the
form w(t) := ∑

j<a w jt j , where a ∈ Z. Put k1 := gcd({k} ∪ Supp w(t)). Then:

1. card
{

w(εt): ε ∈ Uk(K)
} = k

k1
,

2. if U is an indeterminate and for some g ∈ K((X))[Y ] it is

incot g
(
tk, w(t) + Uta) = o−P (U ),

where o−∈ K, P ∈ K[U ], and degU P =: l > 0, then to every ε ∈ Uk(K) there exist exactly l (counting
multiplicities) roots of g(tk, Y ) of the form

w(εt) + terms of order � a. (3.2)

Therefore

degY g � k

k1
l.

What is more, if every root of the polynomial g(tk, Y ) is of the form (3.2) for a suitable ε ∈ Uk(K), then
degY g = k

k1
l.

Proof. Concerning item 1. Notice that for any ε1, ε2 ∈ Uk(K) the following equivalences take place:

(
w(ε1t) = w(ε2t)

) ⇔ ∀ j∈Suppt w(t)∪{k}
(
ε

j
1 = ε

j
2

) ⇔ ∀ j∈Suppt w(t)∪{k}
(

ε1

ε2

) j

= 1

⇔
((

ε1

ε2

)gcd({k}∪Supp w(t))

= 1

)
⇔

(
ε1

ε2

)k1

= 1 ⇔ (
ε

k1
1 = ε

k1
2

)
.

This means that

card
{

w(εt): ε ∈ Uk(K)
} = card

{
εk1 : ε ∈ Uk(K)

} = k

k1
. (3.3)

Concerning item 2. We can assume that g is monic. Fix ε0 ∈ Uk(K). From the assumption,

incot g
(
tk, w(ε0t) + U (ε0t)a) = o−P (U ).

Let x ∈ K be any root of P and let i(x) be its multiplicity. Substituting ε−a
0 U + x for U in the above

equality, we get

incot g
(
tk, w(ε0t) + (

U + εa
0x

)
ta) = o−P

(
ε−a

0 U + x
) = o−U i(x)Hx
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or

incot g
(
t, w

(
ε0t

1
k
) + (

U + εa
0x

)
t

a
k
) = o−P

(
ε−a

0 U + x
) = o−U i(x)Hx,

for some polynomial Hx ∈ K[U ] such that Hx(0) �= 0. Using Theorem 4 we conclude that there exist
exactly i(x) roots zx,1(t), . . . , zx,i(x)(t) ∈ K((t∗)) of the polynomial g(t, Y ) (written according to their
multiplicities) such that

ordt
(

w(ε0t) + εa
0xta − zx, j

(
tk)) > a for j = 1, . . . , i(x).

From the last formula it follows that if x1, x2 are different roots of P , then zx1, j1 (t) �= zx2, j2 (t) for
j1 = 1, . . . , i(x1), j2 = 1, . . . , i(x2). Hence to the given ε0 there correspond exactly degU P = l roots of
the polynomial g(tk, Y ) and all of them are of the form w(ε0t) + terms of order � a.

Since ε0 was an arbitrarily fixed element of Uk(K), then from (3.3) we get that g(tk, Y ) has at
least k

k1
l roots, hence that degY g � k

k1
l. What is more, if every root of the polynomial g(tk, Y ) is of

the form w(εt) + terms of order � a for some ε ∈ Uk(K), then – again by Theorem 4 – degY g � k
k1

l,
which gives the required equality. �
Remark 6. Although Property 3 is simple, it can be treated as a generalization of the Main Lemma 1
of [4]. Indeed, using this property, Newton’s Polygon Method and Proposition 1 below, one can give a
one-liner proof of the Main Lemma 1.

Although for aesthetic reasons we stated Theorem 4 in its most natural form, it is general enough
to be used with the deformations of Definition 3, too. Such possibility is a consequence of the follow-
ing observation.

Proposition 1. Let K be a field, char K = 0, let g ∈ K((X))[Y ] and let u(t) := ∑
q�Q uqtq ∈ K((t∗)). If

infot
(

g
(
tk, u(t) + Ut Q )) = o−P · tM , (3.4)

where k ∈ N, o−∈ K0 , K0 – a subfield of K, P ∈ K[U ], P �= 0, M ∈ Q, and if u∗(t) is any (Q , U )-deformation
of u(t), then

infot
(

g
(
tk, u∗(t)

)) = o−P (U − uq) · tM with o−∈ K0.

In particular, if u Q = 0 then

infot
(

g
(
tk, u∗(t)

)) = infot
(

g
(
tk, u(t) + Ut Q ))

.

Proof. From the definition of a deformation it follows that u∗(t) = ∑
q<Q uqtq + Ut Q + ū(t), where

ordt ū(t) > Q . Assume first that u Q = 0, which gives

u∗(t) =
∑

q�Q

uqtq + Ut Q + ū(t) = u(t) +
(

U + ū(t)

t Q

)
t Q (3.5)

where ordt
ū(t)
t Q > 0. It means that for every j ∈ N0 and q ∈ Q it is infot((U + ū(t)

t Q ) jtq) = U jtq =
infot(U jtq). Hence also for any H ∈ K[U ] and q ∈ Q,
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infot

(
H

(
U + ū(t)

t Q

)
tq

)
= infot

(
H(U )tq). (3.6)

If we write

g
(
tk, u(t) + Ut Q ) = o−P (U ) · tM +

∑
q>M

Pq(U ) · tq,

where Pq(U ) ∈ K[U ], then, substituting U + ū(t)
t Q for U in this equality, we get by (3.5)

g
(
tk, u∗(t)

) = o−P

(
U + ū(t)

t Q

)
· tM +

∑
q>M

Pq

(
U + ū(t)

t Q

)
· tq

which by (3.6) means that

infot
(

g
(
tk, u∗(t)

)) = infot

(
o−P

(
U + ū(t)

t Q

)
· tM

)
= o−P (U ) · tM = infot

(
g
(
tk, u(t) + Ut Q ))

.

For u Q �= 0 it is u∗(t) = u(t) + (U − u Q + ū(t)
t Q )t Q , where ordt

ū(t)
t Q > 0. Similarly as above,

info t(H(U − u Q + ū(t)
t Q )tq) = H(U − u Q )tq , for every H ∈ K[U ] and q ∈ Q. In this case, the substi-

tution of U − u Q + ū(t)
t Q for U in (3.4) leads to

infot
(

g
(
tk, u∗(t)

)) = o−P (U − u Q ) · tM .

This ends the proof. �
In the following the symbol �·� denotes the integer-part function and the symbol {·} – the

fractional-part function.

Lemma 2. Let q, Q ∈ Q, q � 1 and P := ∑
0�e�Q

(q
e

)
(−1)e ·U �Q �−e ∈ Q[U ]. Then

U (U − 1)P ′(U ) = �Q �(U − 1)P (U ) + qP (U ) + (−1)�Q �+1q

(
q − 1

�Q �
)

.

Proof. A calculation. �
4. Main results

We start with the following corollary from Theorem 3.

Corollary 1. Under the assumptions of Theorem 3, let y∗(t) be an (mi, U )-deformation of y(t). Then

degU
(
incot

(
l

√
f
(
tk, y∗(t)

))) = di

l
.

Proof. Let us consider y(t) := ∑
j<mi

y jt j . Then by Property 1 item 5, gcd({k} ∪ Supp y(t)) = di and
by Property 3,
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√

card
{

y(εt): ε ∈ Uk(K)
} = k

di
. (4.1)

Let z0(t) be any of the Puiseux roots of the polynomial l
√

f . From Theorem 3 it follows that y(ε0t) +
Utmi , for a suitable ε0 ∈ Uk(K), is an (mi, U )-deformation of z0(tk). Put

h0(U ) := incot
l

√
f
(
tk, y(ε0t) + Utmi

)
. (4.2)

By Theorem 4 it is degU h0 > 0, and since according to Theorem 3 every root of the polynomial
l f (tk, Y ) is of the form

y(εt) + terms of order � mi

for a suitable ε ∈ Uk(K), then by Property 3 and (4.1) we conclude that

k

di
degU h0 = degY

l
√

f = k

l

and so degU h0 = di
l . From equality (4.2) we easily deduce that

degU

(
incot

(
l

√
f
(
tk, y(t) + Utmi

))) = di

l
,

and using Proposition 1 we finish the proof. �
Now we prove the main theorem.

Theorem 5. Under the Basic Assumptions, let l be a non-characteristic divisor of k. Define i := max{1 � j �
h + 1: l|d j}, a := � di+1

l � and b := ni{ di+1
l }. Then:

1. if di+1 > l then l
√

f is reducible in K((X))[Y ] and

l
√

f = f1 · · · fa · g,

where f1, . . . , fa, g ∈ K((X))[Y ] are monic, f1, . . . , fa are irreducible in K((X))[Y ] and pairwise differ-
ent, degY f j = k

di+1
for j = 1, . . . ,a, degY g = k

di
b; what is more, for every (mi, U )-deformation y∗(t) of

y(t),

infot f j
(
tk, y∗(t)

) = o−(
Uni − (α j ymi )

ni
) · trini for j = 1, . . . ,a (4.3)

and

infot g
(
tk, y∗(t)

) = o−U b · trib,

where α1, . . . ,αa ∈ K∗\Uni (K) and α
ni
1 , . . . ,α

ni
a are pairwise different,

2. for every Puiseux root z(t) ∈ K((t∗)) of the polynomial l
√

f and every σ ∈ Uk(K),

ordt
(

y(σ t) − z
(
tk)) � mi,
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3. for every ε ∈ Uk(K) there exists a Puiseux root z(t) of the polynomial l
√

f such that

ordt
(

y(εt) − z
(
tk)) = mi,

4. for every Puiseux root z(t) of the polynomial l
√

f there exists ε ∈ Uk(K) such that

ordt
(

y(εt) − z
(
tk)) = mi,

5. ordt
(

l
√

f
(
tk, y(t)

)) = si

l
= ri

di

l
,

6. for every (mi, U )-deformation y∗(t) of y(t) it is

infot
l

√
f
(
tk, y∗(t)

) = o− l
√(

Uni − yni
mi

)di+1 · t
si
l

= o−
∑

0�e�a

(di+1
l

e

)
(−1)e ynie

mi
Unia−nieU b · t

si
l (4.4)

= o−(
Uni − (α1 ymi )

ni
) · · · (Uni − (αa ymi )

ni
)
U b · t

si
l , (4.5)

where o−∈ K, and α1, . . . ,αa are defined as above.

Proof. We will consider the items of theorem in the following order: 6, 2, 5, 4, 3, 1.
Concerning item 6. Using Proposition 1 we can assume that y∗(t) = ∑

e<mi
yete + Utmi . By [4,

Lemma (7.16)] it is

infot f
(
tk, y∗(t)

) = α
(
Uni − yni

mi

)di+1tsi , for some α ∈ K\{0}, (4.6)

and for P (U ) := incot
l

√
f (tk, y∗(t)) we have, by Corollary 1,

degU P (U ) = di

l
. (4.7)

According to the Definition 1,

f = (
l

√
f
)l + H, (4.8)

where H ∈ K((X))[Y ] and degY H < k − k
l . Let k := degU (incot H(tk, y∗(t))). Applying Property 3 to

the parametrization (tk,
∑

e<mi
yete) we get

k

di
k � degY H < k − k

l
,

which leads to

k < di − di

l
. (4.9)

Since by (4.6) it is degU (incot f (tk, y∗(t))) = di > k and at the same time di = degU Pl(U ), it follows
from (4.8) that
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ordt
(

l
√

f
)l(

tk, y∗(t)
) = ordt f

(
tk, y∗(t)

) = si (4.10)

or

ordt
l

√
f
(
tk, y∗(t)

) = si

l
= ri

di

l
. (4.11)

Since by definition di+1 �≡ 0 (mod l) and ymi �= 0, it cannot be α(Uni − yni
mi

)di+1 = P (U )l , and so it is

ordt H
(
tk, y∗(t)

) = si . (4.12)

Combining (4.6)–(4.12) we get

α
(
Uni − yni

mi

)di+1 = P (U )l +
(

a poly of degree < di − di

l

)
. (4.13)

Putting P1 := α−1/l y−di/l
mi

· P (U · ymi ), substituting U · ymi for U into the above equality and simplifying
the coefficients of the highest powers of U , we get

(
Uni − 1

)di+1 = P1(U )l +
(

a poly of degree < di − di

l

)
.

In the above equality one can choose P1 to be monic. It follows, then, that P1(U ) is the approximate
l-th root of the polynomial (Uni − 1)di+1 . Making use of the power series expansion of (1 − Uni )di+1/l ,
Lemma 1 and the uniqueness of an approximate root, we conclude that

P1(U ) =
∑

0�nie� di
l

(di+1
l

e

)
(−1)e · U

di
l −nie =

∑
0�e� di+1

l

(di+1
l

e

)
(−1)e · U

di
l −nie.

From the above equality we get

P1(U ) =
∑

0�e�a

(di+1
l

e

)
(−1)e · U

di
l −nie = U

di
l −nia ·

∑
0�e�a

(di+1
l

e

)
(−1)e · Unia−nie.

But di
l − nia = ni(

di+1
l − � di+1

l �) = ni{ di+1
l } = b, so, rewriting the above equality in terms of P (U ) and

using (4.11), (4.13), we arrive at the first two equalities of (4.4).
In the rest of the reasoning we assume that di+1

l > 1 since there is nothing more to prove in the

opposite case. Let as consider the polynomial P2 ∈ K[U ] such that P2(Uni ) = P1(U )

U b = o− P (U ·ymi )

U b . In
other words,

P2 :=
∑

0�e�a

(di+1
l

e

)
(−1)e · U a−e = (

U − α
ni
1

) · · · (U − α
ni
a

)
,

for some α1, . . . ,αa ∈ K. In order to finish the proof of (4.5), we thus need to check that α
ni
1 , . . . ,α

ni
a /∈

{0,1} and that they are pairwise different, which in turn reduces to checking if P2 has no root equal
to 0 or 1 and if it is square-free. According to Lemma 2 it is
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U (U − 1)P ′
2(U ) = a(U − 1)P2(U ) + di+1

l
P2(U ) + (−1)a+1 di+1

l

(di+1
l − 1

a

)
.

Since di+1
l /∈ Z by the definition of i,

( di+1
l −1

a

) �= 0 and from the above equality we conclude that
P2(0) �= 0, P2(1) �= 0 and that P2 has only simple roots. This ends the proof of the item 6.

Concerning items 2 and 5. By item 6, α1, . . . ,αa ∈ K\Uni (K) which is equivalent to any of the
following conditions:

(
incot

l
√

f
(
tk, y∗(t)

))∣∣
U=ymi

�= 0, for every (mi, U )-deformation y∗(t) of y(t),

�

(
incot

l
√

f

(
tk,

∑
e�mi

yete + Utmi

))∣∣∣∣
U=0

�= 0 (Proposition 1),

��
(
incot

l
√

f
(
tk, y(t) + Utmi

))∣∣
U=0 �= 0 (Proposition 1).

By Newton’s Polygon Method, the inequality � means exactly that any Puiseux root z(t) of l
√

f fulfills

ordt

( ∑
e�mi

yete − z
(
tk)) � mi,

so equivalently

ordt
(

y(t) − z
(
tk)) � mi .

From the fact that the series y(t) in Basic Assumptions is an arbitrarily fixed root of f (tk, Y ) and by
Newton–Puiseux Theorem, it follows that the item 2 is proved.

The condition �� is equivalent to

ordt
l

√
f
(
tk, y(t) + Utmi

) = ordt
l

√
f
(
tk, y(t)

)
.

Since ordt
l

√
f (tk, y(t)+ Utmi ) = ordt

l
√

f (tk, y(t)+ (U − ymi )t
mi ) = ri

di
l , where the last equality follows

from (4.4), then we have proved the item 5 of the theorem.
The item 4 follows from the item 2 proved above and the item 1 of Theorem 3.
The item 3 is a consequence of the formula (4.4) applied to y∗(t) = ∑

e<mi
yete + Utmi and Prop-

erty 3. Indeed, we conclude that given any ε ∈ Uk(K), the polynomial l
√

f (tk, Y ) has a root z(tk) of
the form

∑
e<mi

ye(εt)e + terms of order � mi and so ordt(y(εt)− z(tk)) � mi , what together with the
item 2 proved above gives the equality.

Concerning item 1. Assume that di+1 > l. Were l
√

f irreducible in K((X))[Y ], then from Newton–
Puiseux Theorem it would follow that all the Puiseux roots of l

√
f have simultaneously zero or

simultaneously non-zero coefficient beside t
mi
k in their expansions. But a,b > 0 (since di+1 > l) and

this by Theorem 4 and the item 6 proved above means that, among the aforementioned roots, there

exist both kinds: such with zero and such with non-zero coefficients by t
mi
k . Contradiction.

Let, by Theorem 4 and item 6, z1(t), . . . , za(t) be such Puiseux roots of l
√

f that for any j ∈
{1, . . . ,a},

z j
(
tk) =

∑
e<m

yete + α j ymi t
mi + h.o.t., (4.14)
i
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where α j ∈ K∗ are those of (4.5). Let us define f j ∈ K((X))[Y ] as the monic minimal polynomial of
z j(t) over K((t)), for j = 1, . . . ,a. Then for j = 1, . . . ,a, f j(t, z j(t)) = 0 and l

√
f (t, z j(t)) = 0, which by

the minimality of f j means that f j | l
√

f in K((X))[Y ]. Let degY f j =: k j , j = 1, . . . ,a. Since by Newton–
Puiseux Theorem z j(tk j ) is a Laurent root of f j(tk j , Y ), then by (4.14) f j has the characteristic of the

form (m0
k j
k , . . . ,mi

k j
k , . . .) and the divisor sequence of the form (d1

k j
k , . . . ,di+1

k j
k , . . .). In particular,

di+1
k j
k ∈ Z. As a consequence, according to [4, Lemma (7.16)], for y∗(t) := ∑

e<mi
yete + Utmi it is

infot f j
(
tk j , y∗(t

k j
k
)) = o−(

Uni − (α j ymi )
ni

)di+1
k j
k · tsi(

k j
k )2

or

infot f j
(
tk, y∗(t)

) = o−(
Uni − (α j ymi )

ni
)di+1

k j
k · tsi

k j
k , for j = 1, . . . ,a. (4.15)

Since (α1 ymi )
ni , . . . , (αa ymi )

ni are pairwise different, (4.15) shows that also f1, . . . , fa are pairwise
different and since f1, . . . , fa are irreducible, too, they are pairwise coprime in K((X))[Y ]. Therefore
( f1 · · · fa)| l

√
f in K((X))[Y ] and

(
incot f1

(
tk, y∗(t)

) · · · incot fa
(
tk, y∗(t)

))∣∣ incot
l

√
f
(
tk, y∗(t)

)
in K[U ]. (4.16)

However K[U ] is factorial, so using (4.15) and (4.4) in (4.16) we see that for j = 1, . . . ,a it is

di+1
k j

k
= 1, that is k j = k

di+1
.

By (4.15) this gives (4.3). Putting g := l
√

f
f1··· fa

∈ K((X))[Y ], we get

degY g = k

l
− a

k

di+1
= k

l
− nia

k

di
= k

l
−

(
di

l
− b

)
k

di
= k

di
b

and by (4.5),

incot g
(
tk, y∗(t)

) = incot
l

√
f (tk, y∗(t))

(incot f1(tk, y∗(t)) · · · incot fa(tk, y∗(t)))
= o−U b.

Since si
l −a · (rini) = si

l − ri(
di
l −b) = rib, from the definition of g it follows that ordt g(tk, y∗(t)) = rib.

Using Proposition 1, we can see that the proof of the theorem is finished. �
Remark 7. One can prove that if char K =: p �= 0 and k �≡ 0 (mod p), then the contents of items 2 and

5 of Theorem 5 are equivalent to the inequality
( di+1

l −1
a

) · 1 �= 0 in K (cf. Remark 2 and Remark 5).
The reducibility assertion of item 1 of Theorem 5 is also valid in that case. The details can be found
in [9].

From Theorem 5 it follows that the characteristics of the f j ’s are all the same – equal to
(

m0
di+1

, . . . ,
mi

di+1
), which is also the characteristic of di+1

√
f . This allows a possibility of giving a geo-

metric interpretation of the connection between di+1
√

f and the f j ’s in terms of blowing-ups (see
the work of Spivakovsky [10]). Note however, that it is not in general possible to say anything about
the (full) characteristics of g (and as a consequence – also about the full process of resolution of
singularities of l

√
f ). It is the content of the following example.
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Example 1. We will show that unlike in the case of the f j ’s, the behavior of g does not depend only
on the characteristic part of the parametrization (tk, y(t)) of f . Namely, we will find two irreducible
elements f and f of K[[X]][Y ] with the same characteristic and totally different g and g (for the
same non-characteristic divisor l).

First, consider the parametrization (t72, y(t)) := (t72, t48 + t88 + t91) and let f ∈ K[[X]][Y ] be the
irreducible monic polynomial with the above parametrization. It is seen that the characteristic of f is
equal to (72,48,88,91) and the divisor sequence – to (72,24,8,1). Consider the non-characteristic
divisor l = 3. Then i = 2. Using any computer algebra system one can compute 3

√
f (cf. Remark 1)

and check that incot
3
√

f (t72, t48 +√
2t108 + Zt132) = o−(10Z − 63

√
2). By Theorem 4 and Proposition 1

there exists a Puiseux root z(t) = t
2
3 +√

2t
3
2 +o−t

11
6 +· · · of 3

√
f (t, Y ) and by Theorem 5 it follows that

z(t) is a root of g(t, Y ) and is not a root of any of the f j ’s. Let h be the irreducible monic polynomial
vanishing on (t, z(t)). A simple consequence of Theorem 4 and Property 3 is that degY h � 6 · 1 = 6.
Since h is irreducible, h|g and so degY g � 6. On the other hand Theorem 5 says that degY g = 6. It
follows that h = g and g is irreducible.

Note that the sequence of characteristic Puiseux exponents of g ‘goes further’ than that of the f j ’s
– it is of the form ( 2

3 , 3
2 ) while the f j ’s have the exponents equal to ( 2

3 , 11
9 ). In another words, it

takes more steps to desingularize g than the f j ’s (or than di+1
√

f = 8
√

f ).
In order to construct f , we will now change y(t) a little. Namely, let (t72, y(t)) := (t72, y(t) + t92).

It is clear that the characteristic of this parametrization is the same as the one of (t72, y(t)). As
before, consider the irreducible and monic polynomial f with the parametrization (t72, y(t)). One

can compute 3
√

f and then

incot
3
√

f
(
t72, t48 + Zt96) = o−(Z + 18 − √

10 914)(Z + 18 + √
10 914). (4.17)

Like before, by Theorem 4 and Theorem 5 we conclude that in that case it has to be incot g(t72, t48 +
Zt96) = o− incot

3
√

f (t72, t48 + Zt96). Were g irreducible, it would have the characteristic of the

form (6,4, . . .) and since then t4 + Zt8 would be a deformation at a non-characteristic place of a
parametrization of g , it should be the case that incot g(t6, t4 + Zt8) is a power of a linear polynomial
(see [4, Theorem (14.2)]). However, since this inco is equal to the right-hand side of (4.17), it cannot
be such a power. The contradiction shows, that g is reducible. Similarly as in the first part of the
example, one can show that it is g = g1 · g2, where the g j ’s have the same characteristic, namely
(3,2).

In contrast with the behavior of g above, the characteristic Puiseux exponents of g are just the

sequence ( 2
3 ) so g desingularizes ‘faster’ than the f j ’s (or than di+1

√
f = 8

√
f ).
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