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We describe the theory and implementation of an algorithm for computing the normalizer of 
a subgroup H of a group G, where G is defined as a finite permutation group. The method 
consists of a backtrack search through the elements of G, with a considerable number of tests 
for pruning branches of the search tree. 

1. Introduct ion 

The general problem of  computing the normalizer, in a finite permutat ion group G, of  a 
subgroup H has long been recognized as being unusually difficult to solve efficiently. The 
corresponding problem for centralizers is much easier, although this too has some bad  
cases. The solution to the centralizer problem is relatively simple and probably difficult 
to improve upon, whereas there seems to be almost unlimited scope for possible improve-  
ments to the normalizer problem. The aim of this paper  is to describe some of  these 
improvements which have been successfully implemented by the author. The ability to 
compute normalizers is important,  not only in itself, but because it is potentially an 
ingredient in other algorithms, such as computing Sylow subgroups of groups or 
automorphisms of  groups. 

One attempt at a solution of the normalizer problem has been described in Butler 
(1983). The author 's  program uses the same general method, but tries much harder  to 
keep the cpu time as low as possible. More specifically, the general idea is to impose the 
structure of a tree on the elements of G, and to perform a backtrack search through the 
tree, looking for elements of  G which normalize H. At a given node in the tree, it is often 
possible to use group-theoretical arguments to show that  none of  the elements of  G lying 
below that node can possibly normalize H, in which case we do not need to search that  
part of  the tree; in other words, we can chop off the branch at that node, and save 
ourselves a lot of  time. Naturally, the higher the node, the more we chop off, and the 
more time we save. The improvements introduced by the author have been more of  these 
group-theoretical tests designed to prune the search tree. Of course, the tests themselves 
introduce certain overheads in terms of both time and space, but the experimental evidence 
suggests that the time saved overall is enormous in many cases, whereas space is unlikely 
to be a serious problem. 

For example, the case in which Butler's algorithm performs worst is when H is a regular 
group (that is, it acts transitively, with all of its non-trivial elements acting fixed-point- 
freely), and G is the whole symmetric group. In fact it becomes impractical in most 
examples for degrees greater than about 20. The author's algorithm, on the other hand,  
can cope reasonably quickly with this case for degrees over 100 in many examples. As 
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can be seen from the comparative performance statistics given at the end of this paper, 
it is not uniformly superior to the Butler algorithm (particularly in view of the fact that 
the overheads in CAYLEY may slow things down by a factor of 2 or 3), but it is much 
more consistent. This is largely due to its handling of regular orbits. 

The algorithm described here, which is implemented in the "C" programming language, 
and forms part of the author's suite of programs to compute cohomological properties of 
finite groups, has been successfully applied in hundreds of cases, with the degree of G 
going up into the thousands at times. (The example of largest degree to date was in fact 
G =  U7(2) of order 221 x38 x 5x 7 x 11 x43 --- 2.27 x 1014 and degree 2709.) As a by- 
product, the same program can be used to compute centralizers, with roughly the same 
efficiency as other programs for this purpose. It has also been integrated into a program 
for computing Sylow subgroups in permutation groups, which may be a serious 
competitor for that used in CAYLEY, which is described in Butler & Cannon (1989). 
Furthermore, the author has used it on several occasions to compute automorphisms of 
groups, in cases which would otherwise be very difficult. These ideas will be discussed 
further at the end of the paper. I believe that it could be extended in the same way as in 
Butler (1983) to solve the problem of whether two subgroups of G are conjugate, although 
this has not yet been attempted. 

The plan of the paper is as follows. The concepts of bases, strong generating sets and 
backtrack searches in permutation groups will be described briefly in section 2. This is 
principally to introduce notation, and the reader should preferably have some prior 
familiarity with these topics. Sections 3 and 4 will be devoted to descriptions of the tree- 
pruning tests -that we use. in section 5, we shall provide more technical descriptions of the 
author's implementation of the material described in sections 2, 3 and 4, using the syntax 
of the PASCAL programming language. In section 6, we shall describe how the bases of G 
and H are chosen, and then, in section 7, the full algorithm will be presented concisely. The 
reader who is not interested in technicalities could skip sections 5, 6, and 7. Finally, in 
section 8, we shall discuss related algorithms, such as the computation of Sylow subgroups, 
and provide some performance statistics. 

2. Bases, Strong Generating Sets and Backtrack Searches 

The notions of bases and strong generating sets in permutation groups were first 
introduced in Sims (1971a, b) and are fundamental to virtually all of the existing 
algorithms for computing in finite permutation groups. 

Let G be a permutation group acting on the set ~ = {1, 2 . . . . .  n}. For g e G and ~ f 2 ,  
the image of a under g will be denoted by ag, ao will denote the orbit of a under G, and G~ 
will denote the stabilizer of ce in G. A sequence of points/31,/3~,...,/3k in ~ is called a 
base for G, if its stabilizer G0,,~ 2 ..... ~ in G consists of the identity element only. We 
shall assume r �9 �9 is a base for G for the remainder of this section. For 0-- i < k, 
let G~i+~= G~a.~., ..... ~, (so that GCl~= G). A subset S of G is called a strong generating 
set relative to the base if ( S n G m ) = G  c~, for l<-i<-k. (In other words, S contains 
generators for each subgroup in the stabilizer chain.) For each 1 - i< -k ,  let A (~ denote 
the orbit of/3~ under G ti). Then, according to the Orbit-Stabilizer Theorem, G (t) is in 
one-one correspondence with a set U (') of right coset representatives of G (~+~) in G u). 
The importance of the strong generating set lies in the fact that it can be used to compute 
the ~(il and U (~ quickly. For a given a ~ ~(~, let u~" (~ be the element in U ~ which maps 
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( i )  /3; to a. We shall always choose ut~ , to be the identity element. Then every element g o f  
G has a unique representation of the form 

. (k) , (2)~(11 
g ~ U a k  " " " l a t ~ 2  ~ 1  ~ 

for suitable e~ E A ~), and so we have an easity computable one-one correspondence between 
the elements of G and the set T of k-tuples (ek . . . . .  et)' 

If S is a strong generating set for G, we will denote Sc~G I~ by S c~ For each element g of 
S, we store an associated integer i, which is the largest i for which g e S ~, and so S I~ can 
easily be calculated. 

Let us now order each A e') arbitrarily, except that fl~ must come first. This induces a 
reverse-lexicographical ordering on T, and hence an ordering on the elements of G, in 
which the identity element comes first and, for each i, the elements of G t~ precede those in 
G \ G  ~~ [-This is not quite the same ordering as that used in Butler (1983), which is an 
ordering by base-image, but this makes little difference to the algorithm.] This is the order 
in which we shall be searching through the elements of G in our  quest for elements which 
normalize the subgroup H. 

The backtrack search procedure which we shall now summarize is common to many 
algorithms in group theory and combinatorics. It has been described, for example, in 
Butler (1983), Leon (1984) and Cannon (1985). We first define a tree whose nodes are 
arranged in k + 1 layers. Layer 0 (which is never actually used) has a single node labelled (), 
and, for 1 <_ i _< k, layer i has nodes labelled (e~ . . . . .  el), where ej e A t/) for 1 ~<j _< i. A node x 
is joined to a node y in the next layer down if y is derived from x by adjoining an element 
at the front of the sequence. The nodes in the bottom layer k correspond to elements of G. 
Nodes at higher levels i correspond to indeterminate elements of G, for which only the 
images of the first i base points are known. The search starts at the top of the tree, and 
proceeds down. At each node, at level i, we apply as many tests as possible in an at tempt to 
prove that any element of G with the given images of the first i base points cannot possibly 
lie in the normalizer of  H (or that, if it does, then we know about it already). These tests 
will be described in the following two sections. If we succeed in this aim, then we need 
go down no further from this node, and we can proceed to the next node at level i. If 
we arrive at layer k, then we have a specific element of  G, and we can test directIy whether  
this normalizes H. The required normalizer Nc(H) will be built up as we proceed. We 
start by putting N = H, and every time we find a new element g a NG(H), we replace N 
by (N, g). Of course, the tests at the higher levels of  the tree should rule out elements 
which are already in N, as well as those which cannot possibly lie there. 

3. Tests Based on Orbit Structure 

The complete algorithm is divided into two phases. During the first phase, the bases of 
G and H are chosen, and various information that will be used in the tests during the main 
search is computed and stored. The second phase consists of the search itself. Of course, in 
all but the smallest of examples, the vast majority of the time is taken up with the search, 
and the first phase is simply an overhead resulting from a complex algorithm. The criteria 
underlying the choice of bases will become apparent from the descriptions of the 
individual tests in this and the following section. 

In g~N6(H), then g must permute the orbits of H. More generally, if g maps the 
sequence of points ill, ]32 . . . . .  /?~ to el,  ea . . . . .  c~, then it must map the orbits of Hp,,~ ...... ~j 
to those of H~,~  ..... ~j for 0 _ j  < i. When we are at level i in the search tree, we are in a 
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very convenient position to test that this condition applies, when ill,/~2 . . . . .  fit is the 
sequence of the first i base points. This will be one of our tests to apply at a node in the 
search tree. (It is, in fact, Test 3 in the list of tests given in section 7 below.) To facilitate this 
test, we compute and store all of the orbits of each of the subgroups Iffr in the stabilizer 
chain of H before we start the main search. At a given point during the search, when we 
are considering a potential g eNG(H) that maps B1, f12 . . . . .  fit to ~1, ~2, . . . ,  ~t, we need to 
compute the corresponding orbits of H~,.~ ...... ~,, which involves changing the base of H to 
~ ,  ~z . . . . .  a~ . . . .  Further technical details will be provided in section 5, but it is not 
difficult to see how to apply the test once the relevant orbits have been computed. In fact, 
there are three ways in which this test can be failed: (i) a point in an orbit maps onto a 
point in an orbit of different length; (ii) two points in the same orbit map onto points in 
different orbits; (iii) two points in different orbits map onto points in the same orbit. 

It is also, in principal, possible to apply this test with ill, Bz,. . . ,  fit replaced by any 
permutation of itself. This is technically more difficult, since it is not feasible to store in 
advance all orbits of all of the possible stabilizers of subsets of {~1, ~2 . . . . .  fit}. We content 
ourselves with the following compromise, which seems fairly effective in a number of 
examples. If fit lies in a basic orbit A~) for some j < i, then we compute the orbits of the 
stabilizer of the points ~1,/~2,..., ~j-~,/3t during zhe search, by conjugating the orbits of 
H r by an element o f H  c:) that maps ~i to/~l, and we do the same for the potential images 
a~, a2, . . . .  ~j_l ,~ .  We can then carry out the corresponding orbit permutation test. Of 
course, these extra orbit computations are themselves somewhat time consuming but, 
where they do not help they result in only a small increase in cpu time, whereas in 
favourable cases they can result in a dramatic improvement. 

Let us now illustrate the use of these tests with a small example. Let H (which is the 
~direct product of two copies of the dihedral group of order 12) be generated by the 
permutations (1,2,3,4,5,6), (7,10,9,8,11,12), (2,6)(3,5) and (10,12)(9,11), and suppose that 
/~1 = 1, /32=2 and we are considering an element g e G  with 1u= 7. Then g will have to 
map the orbit {1,2,3,4,5,6} of H to {7,8,9,10,11,12}. We now change the base of H such that 
fll = 7, and compute the orbits of Hr. We may now try 2" = 8, but the orbit {2,6} of H~ has 
length 2, whereas the orbit {8} of H7 has length 1, so this is impossible. Trying 2 g = 9, we 
find that the orbit {2,6) of H~ is mapped to the orbit {9,11} of H6, and so we must have 
6 ~ = 11. (This means, incidentally, that 6 is the correct choice for ~3.) By conjugating H~ by 
(1,2,3,4,5,6) e H, we find that H 2 has an orbit {1,3} which must be mapped to the orbit 
{7,11) of Hg, and so we have 3g= 11, which is impossible since 6~= 11. Thus 2g=9  is 
impossible. Moving on to 2 g = 10, {2,6} is mapped to {10,12} and so 6 g = 12. Conjugating 
by (1,2,3,4,5,6) as before, we find that {1,3} is mapped to the orbit {7,9} of Hlo, and so 
3 ~= 9. We then quickly deduce in a similar way that 5 ~= 11 and 4"=  8. Now, since 
H ~ N G ( H  ) and H7,8.9,10,~.~2 has an orbit {1,2,3,4,5,6}, we can effectively assume that 
7 ~ = 1. Trying 100 --- 2, we get 9 a = 3, 8~ = 4, 1 la = 5 and 12~ = 6 using orbital arguments as 
before, and we have completely constructed g, which does indeed turn out to normalize H. 
Apart from 10"=6,  which is essentially equivalent, since {6,10} is an orbit of 
H1,7,s,9,1O,l~,12, all other possibilities for 10" turn out to be impossible in the same way 
that 2 ~ = 8 or 9 was impossible above. 

The reader may justifiably object that the above example can be explained much more 
clearly by observing that H is acting as a group of automorphisms of a graph consisting of 
two disjoint hexagons. Indeed, the algorithm could be implemented by bringing in graph 
automorphisms in this fashion, and it would even be somewhat more efficient on certain 
examples, but we have preferred to avoid this, since it involves so much additional 
machinery. 
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Concerning the initial choice of bases for G and H, the main lesson to be learnt from the 
discussion above is that when a base point 1~ of H (and G) has been chosen, then as many 
as possible immediately subsequent base points of G should be chosen from A~ J. However, 
when we have to choose a base point ~ for H from one of a number of distinct orbits of 
H r then it can be difficult to know how to select the orbit from which to choose it. This 
can have a crucial effect on the time taken by the search, but unfortunately it does not  
seem easy to find a general rule that works well on all examples. The author's current 
strategy is to choose the shortest orbit on which H ") acts faithfully, if any, but  otherwise to 
choose the longest orbit. However, the user has the option of overriding this choice 
interactively. 

4. Tests Based on Induced Automorphisms 

Two tests will be described in this section. They both make use of the fact that an 
element of G that normalizes H must induce an automorphism of H, by conjugation. The 
idea is to use the first few base images to deduce enough properties of this automorphism 
to enable the machine to compute some of the later base images. When this is possible, it 
clearly represents a considerable reduction in the total search time. 

The first of these tests is based on regular actions of certain sections of H. If H acts 
regularly on the points, then the tests described in section 3 yield no information 
whatsoever. However, in this case, for any point ct, the group NG(H)~ is isomorphic to a 
subgroup of Aut(H) (and in case G is the symmetric group, we get the whole of Aut(H)), 
and so the normalizer problem is really equivalent to the problem of computing an 
automorphism group. The only properties of automorphisms that we attempt to use are 
that an automorphism maps a subgroup onto a subgroup of the same order and an 
automorphism is uniquely determined by its action on the generators, but  these will be 
enough to render the algorithm practical for groups of degree a few hundred (depending 
on G), in the case of a regular subgroup H. More generally, we can apply this test to any 
regular orbit of A~ ) for any i. 

As an example, suppose that H is the elementary abelian group of order 9 with 
generators h=(1 ,4 ,7 ) (2 ,5 ,8 ) (3 ,6 ,9 )  and k =(1,2,3)(4,5,6)(7,8,9). Suppose also that fll = 1, 
flz = 4 and we are considering 9 e G with 1 a = 1 and 4 0 = 5. Then, since 1 g- ~ha = 5, if h g E H 
then h ~ = hk.  It then follows that 5 hk = 5~ 7 g = 9, and so 7 is the correct choice for f13. 
The choice of f14 is unimportant, so suppose that f14 = 2 and we attempt 2g = 2. Then k g = k 
and we now know the action of g on the whole of H and we quickly deduce 3 a = 3, 5 g = 6, 
6g = 4, 8 a = 7 and 9 g = 8. The case in which H is elementary abelian is admittedly the 
easiest, since every sensible choice of base images will extend to an element of N(H). This is 
not  always the case. If, for example, H is abelian of order 8 with generators 
h = (1,2)(3,4)(5,6)(7,8) and /~= (1,5,3,7)(2,6,4,8), then we may initially try fll = 1, f12 = 2, 
1 ~ = 1 and 2 a = 3, which gives h a = k 2. It is not immediately clear (to the computer) that this 
does not extend to an automorphism of H, but this will eventually be deduced from the 
fact that no choice of 3 g will work, and so the time lost will not be enormous. 

We turn now to the second of the tests to be described in this section. The idea is as 
follows. Suppose that H has orbits A1 . . . . .  Ar and it acts faithfully on A1. Suppose further 
that the action of the candidate for geN(H)  on A~ has been determined. Then the 
automorphism of H induced by g is also determined. It follows that, for each Ai with i > 1, 
as soon as the action of 9 on one point of Ai has been specified, then the action can be 
deduced on the whole of A~. If the action on A1 is not faithful, then the same is true 
provided that the kernel of the action on A~ is a subgroup of the kernel of the action on A~. 
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As an example, suppose that H is isomorphic to the dihedral group of order 14 with 
generators 

h = (1,2,3,4,5,6,7)(8,9,10,11,12,13,14) 
and 

k = (2,7)(3,6)(4,5)(8,10)(11,14)(12,13), 

and we are trying fl~ = 1, f12 = 2, 10 = 1 and 2~= 3. Then, using orbit  tests as in section 3, 
we might choose fla = 7, fl, = 3, f15---6, f16 = 4, f17 = 5 and deduce 7 o = 6, 3g = 5, 6 o = 4, 
4 0 = 7, 5 o = 2. We now know the action o fg  on the faithful orbit {1,2,3,4,5,6,7} of H, and so 
we can compute the automorphism of H induced by conjugation by g, which is hg = 
hZ, ko=k.  The best choice for f18 is, in fact, 9, since Fix(H1)={1,9}, and we can 
immediately deduce that 9 o = 9. We then get 10 ~ = 9 h~ = 9 ~ = 9 hz = 11, and we deduce 
the images of each of the other points in this fashion. In fact, the author's current 
implementation is not  quite so clever, so it would probably choose fls = 8. It would then 
try all possibilities for 8 o. From 8 g = 8, it would deduce 9g = 10, and reject this, since it 
cannot permute the orbits of Hr. Eventually, it would try 8 o = 14 and deduce 9g = 9, which 
is correct. 

5. Technicalities and Implementation 

In this section we shall discuss the technicalities involved in the implementation of the 
material described in sections 2, 3 and 4. We start with a formal description of the 
backtrack-search algorithm described in section 2. This will be amplified in section 7. We 
shall use the syntax of PASCAL, but  with some additions to the operations available on 
sets. We shall use the normal mathematical symbols " u "  and " n "  rather than " + "  and 
" ~ " ,  and we shall use IS[ to denote the cardinality of the set S. In order to allow us to loop 
over the elements of a set, we introduce two functions first and next. If S is a set, then 

first(S) will denote some arbitrary first element of S, and for x 6 S, next(x) will denote the 
next element, with next(x) = 0 on the last element x of the set. 

We shall now change some of the notation to a more "computerish" style, n_pts will 
denote the number of points being permuted, and fen G base the number of base points. 
The base points will be G_ base[ l J . . . . .  G_ base[ len_G_ basel. G_ base_no[l: n__pts] will be 
the inverse function to G_ base on the base, and equal to zero on points not in the base. 
(Later on in the paper we shall use similar names for the functions of the subgroup H, 
where "G"  is replaced by "H"  in the names.) testperm[1:npts] will be the permutation 
that we are currently testing for membership of No(H ) . The variable level will denote the 
level of the current node in the search tree. We assume that we have a function image 
defined for computing the value of testperm at G_ base[level]. This is, of course, merely the 
image of G_ base[level] under the permutation "(1) u(2bJ C1) where i=  level. The points /'~r162 . . . . .  a 2  " ' ~ 1  ' 

al . . . .  ,0q in this expression will be denoted by base_ira[l] . . . . .  base ira[level], and 
base ira[j] will be zero for values o f j  larger than the current level. In order to move on to 
the next value of a~ at level = i, we need functions next(i, point). We assume, without going 
into details, that these functions are defined when A ~) is computed. It is convenient to put 
next(i,O) = G base[i], and next(i,~) = 0 for the last point ~ in the orbit, so as to achieve a 
circular linked list. We assume that subgroups K of G (like H and N) are defined by sets of 
strong generators Sg(K). In practice, this will mean storing some additional information 
for K, such as Schreier vectors, but we omit details of this, since it is reasonably well 
known. We can then test arbitrary permutations for membership of K [using the 
algorithm "Str ip"  described in Cannon (1985)] and so we can define a Boolean function 
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member(perm, K). Finally, the variabtefirstmoved will denote the least value of i for which 
el is not equal to/3t, or, in other words, base_ira[i] is not equal to 0 or Qbase[i]. The 
order  of the search ensures that, iffirstmoved = i, then N u} = NG(H) u}, for all j > i. Thus, 
whenever we find a new element of N, we can immediately return to leoel =firstraoved. 
A " * "  will be used for permutation multiplication. 

for level:=1 to  l e n Q  base do base_im[level] :=  O; 
level:=1; Sg(N) '=Sg(H);  firstmoved:=len G base; 
wh i l e  (level > O) do 
begin base_im [level] : = next (levet, base_im [level] ); 

i f  base_im[level] = 0 then 
begin level: = level-  1 ; 

if level < firstmoved then firstmoved: = level; 
end else 
begin basept: = Q base [level]; testperm [basept] '= image(basept); 

i f all tests passed at this node then 
begin i f  level<len G base then level:= level+l else 

begin for  i :=1 to  n_pts do i f  Qbase_no[i ]  = 0  then 
testperm [i] := image(i); 

ok: =true; h =first(Sg(H)); 
wh i le  (ok and h#O) do 
begin i f  not  member(testperm -1 * h*testperm,H) 

then ok: =false; 
h := next(h); 

end; 
i f  ok then 
begin Sg (N) : = Sg (N) u rtestperm-I; 

wh i le  level>firstmoved do 
begin base_im [level] :=0; level:= level--1 
end; 

end; 
end; 

end; 
end; 

end; 

We turn now to the implementation of the orbital tests discussed in section 3. The 
variables H base, H_ base_no and lenH_ base correspond to the same variables wi th  "G"  
in place of "H", and we assume that H_ base is a subsequence of Q base. It is convenient to 
define//base_no[~3] to be negative when 13 is in the base of G but not that of H, so that 
we can locate how far we are along the H-base at a given level. For  example, if the base of 
G is 1,3,4,6,8 and that of H is 1,4,6 then the values of H base_no on 1,3,4,6,8 will be, 
respectively, 1,-1,2,3,--3.  The variable HeqGno will denote the highest value of i, for 
which the basic orbit A~ } of/3j under H is the same as A~ I < j  < i. For example, let G 
be the full symmetric group on five symbols. Then, in the four cases in which H is, 
respectively, Alt(5), a Frobenius group of order 20, a dihedral group of order 10, and a 
cyclic group of order 3, HeqG no is equal to 3, 2, 1 and 0. Since the main search starts off 
with N = H, it is only really necessary to conduct the search on the nodes of the tree a t  
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levels larger than HeqG_ no. Furthermore, we will make no use of the orbits of H ~ for 
j <_ HeqG_ no, since they are likely to be the same as those of G ~ and they are unlikely to 
yield useful information. 

The required orbital information will be computed by a procedure 
allorbs(S, orb_no, orb__len, orb_rep), where S is a set of permutations, and orb_no, orb_fen 
and orb_rep are three arrays whose values are computed by the procedure. The orbits 
under the group generated by S are computed, orb_no[O: tLpts] assigns an orbit number in 
the range 1 . . . . .  m to each point, where orb_no[O] is used to denote the total number m of 
orbits, orb len[l:m] gives the length of each orbit, and orb_rep[l:m] gives a 
representative point from each orbit. Since the computation of orbits in permutation 
groups is well understood, we need not discuss the code for allorbs. 

From now on, we shall denote the base of H by ~1, ~z . . . .  and its image under testperm 
by Ca, 6z,. �9 �9 We shall need the orbital information for the subgroups H t~+ 1) = H~,,~ ...... ~, 
where i + 1 ranges from HeqG_ no + 1 to len 1-1 base. We therefore need two-dimensional 
arrays H_ orb_no, H_ orb_len and /-/_ orb_rep. (These are best thought of as arrays of 
arrays; for example, we have 

t1_ orb_no [HeqG_ no + 1: len_fl_ basel ['0: n_pts].) 

They can be computed before we start the search. When we are at level i in the search 
tree, we shall also need the corresponding orbital information for the subgroups 
ImH ~ = H~,.a ...... %, for the appropriate values of j. (To be precise, j will range from 
HeqG_no to the larger of abs(H_ base_no[G_base[i]]) and len H base-1.) This will have 
to be computed during the course of the search, and to do this we need to change the base 
of H to fix, 62 . . . .  ,6j. [An algorithm for changing the base in a permutation group is 
described by Sims (1971a).] This information will be stored in the arrays imH_orb_no, 
imH_ orb_fen and imH_ orb_rep. The actual orbital maps induced by testperm will be 
stored in arrays H_ orb_im[i][l:m], which are defined on the m orbits of H "), where 
m =H_ orb_no[i][O]. Since these maps will be updated continually, it is vital to know the 
value of level at which each entry was made. This is stored in arrays deftime[i][1 : rn]. To be 
precise, whenever we make an entry H_ orb_im[i][j] = k, we put deftime[i][j] equal to the 
current value of level. Then, whenever base_ira[level] is changed, we must delete all entries 
in H_ orb_ira for which the corresponding value of deftime is greater than or equal to level. 

As described in section 3, there are three possible causes of failure in this test. Provided 
that all of the information described above is available, the code to test these conditions is 
straightforward to write. It must be stressed that, at level i, the tests are made on the orbits 
of H u) for as many values o f j  as possible at this level. 

There is one further test, of a slightly different nature, that can be applied with this 
information. Suppose there is an element of N~(H) that maps the H-base point ~j to some 
point 6j. Then, since H _= NG(H), there is an element of N d H )  mapping Vj to ej, for any e 1 in 
the orbit of ImH ~i) with the number imH_ orb_no[j][fj]. We may therefore reject 61 as a 
possible image of ~i in the search, unless 

~i = imI-I orb_rep[j][imH orb_no[j][Sj]]. 

In fact, we only apply the test in this form when level >firstmoved. When level=firstmoved, 
we apply a slightly stronger test, by computing all of the orbits of N "), for i=  level, and 
insisting that  fl~ is mapped onto the chosen representative of the orbit onto which it is 
mapped. (In other words, we are applying the test to N rather than to H.) To apply it to N 
at higher levels would involve making base changes in N as well as in H, which would 
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considerably complicate the program. These tests (which comprise Test 2 in the list in 
section 7), correspond to one of the "first element in coset" tests described on pp. 328-330 
of Leon (1984). 

It is sometimes worthwhile to perform further orbital tests, based on permutations of the 
first few base points. Suppose that G_base[level]eA~ ) for some i. Then, for each k 
satisfying i<k<level, we compute a permutation h e l l  (i) that  maps G_base[i] to 
G_base[k], and conjugate the orbits of H ct+l) by h, to give the orbits of the stabilizer of 
G_base[k] in H r This is done during the course of the search, since storing the 
information in advance would take up a great deal of space. We also compute the 
corresponding orbits of the stabilizer of testperm [ G_base [k]] in the current group H ci). We 
then cheek that the orbital mapping induced by testperm on the points G_base[l] for 
i < l <_ level is consistent, in the usual way. The problem with this procedure is that  it is 
somewhat time consuming to carry out and it often yields no new information. In some 
cases, however, it results in a dramatic improvement, and so one has to make a careful 
decision about when it should be attempted. The author's current implementation has 
options to employ several different possible strategies in this respect, since the optimal 
approach unfortunately seems to vary from example to example. 

We turn now to a more technical discussion of the automorphism tests described in 
section 4. As before, we assume that tes~perm maps the H-base points Yl, ~2,.. . ,  ?~ to 
Ca, 62 . . . .  ,61. For l<i<len__Hbase, let F (~ = Fix(Hr ), where "Fix" denotes the 
fixed point set of a subgroup, and let ImF c~) be defined similarly in terms of ImH r x). Note 
that  7~eF (~) and 6~clmF (i). If g ~ H  c0 satisfies ?f = ? ~ F  C~), then g permutes the set F t~ It 
follows that, if FH (~) is the subgroup of H r that permutes F t~ then FH c~ acts regularly on 
F r176 and the same thing applies for the corresponding subgroup ImFH r of ImHr that 
permutes the set ImF c~). The permutation testperm maps F Ct) onto ImF (~ and conjugates 
F H  c;) to ImFH (~ and so we can apply tests based on induced automorphisms. 

The choice of the bases of H and G will be discussed in the next section, but, in this 
situation, we always choose as many G-base points as possible following ?~ to lie in F c~ 
(These will not be H-base points.) Let.us call them p~, P2 . . . . .  Pk, and let g~ be an element 
in F H  r176 satisfying yfJ = Pl, for 1 < j  < k. Whenever we have chosen P l , . . . ,  Pj, for some j, we 
compute the orbit F j (~F  r of ?t under (9~ . . . . .  Oj) and remember its size. If possible, we 
next choose pj+l ~Fj. We can then choose gj+ ~ ~ (gl . . . . .  gj), and in this case we store the 
word in O~,..., gj which represents g~+ ~. This information is used in the following manner 
in the course of the search. When we are at the node corresponding to 7t, we can compute 
the set ImF m, and test that it has the same size as F c~). This is part of Test 6 in section 
7. When we are at a node corresponding to a pj for which we have no stored word, we 
compute the set ImF~ (defined in the obvious manner), and test that it has the same size 
as Fj. This is Test 4 in section 7. When we are at a node corresponding to a p~+~ for  
which we have a stored word, we compute the corresponding word using elements hj in 
place of gj, where hj is chosen such that 6~', is the image of oj under testperm (hi can be 
computed using the current Schreier vector of H). The image of  pj+~ under testperm can 
then be computed as the image of ~ under this word. This is Test l a  in section 7. 

The data that we need to remember to carry out the above test is stored during the 
init ial  choice of base. One possibility is to have an array wordinfo to hold the strings 
expressing gi+t in terms of 9~ . . . .  , gj, and possibly the lengths of the F~. Another array, 
pointtype[l:len G base], can be used to indicate, in some convenient fashion, to which 
category each G-base point belongs, and to point, if necessary, to the relevant string in 
wordinfo. In order to be specific, let us use the value of pointtype modulo 16 to denote the 
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category, and the integral part of pointtype/16 for the pointer. So far, we have four 
categories 0, 1, 3 and 2 corresponding, respectively, to nothing in particular, a point y~ for 
which we will compute a set ImF t~), a point pj for which we will compute a set ImFj, and a 
point Pj+I for which we ean compute the image under testperm. 

Finally, we consider the second of the automorphism tests described in section 4. Once 
again, we need to apply this idea also to the stabilizers H "), and we shall take As to be the 
basic orbit A~ ). The policy will always be to choose as many G-base points y~, p~, P2 . . . . .  P~ 
as possible that lie in A i. (Here j _> 0, and the pj might or might not be H-base points.) This 
ensures that the action of any g E G is determined on the whole of A 1 by its action on these 
base points. If i>j  >_0 and A~ ) c A~ ), then it is convenient to restrict ourselves to orbits A~ 
of H (~ that lie within A~ ) (since the points outside of A~ ) will come within the scope of the 
search for orbits of Hi'). At this point, we search for a suitable A2 satisfying the required 
condition on the kernel of the action; namely, the stabilizer in H "+ 2) of pl, P2,. �9 P; must 
fix A2 pointwise. We then choose as many G-base points a~, cr 2 . . . . .  a~ as possible in A2. 
(These will definitely not be H-base points.) For each such at with t>  1, we compute an 
element of H I~ mapping a~ to at, and remember this element as a string in the (original) 
generators of H. We can then go on to seek further orbits A~ satisfying the required 
conditions. (Of course, in many examples there will be no suitable A~ or, if there are some, 
then there may be no G-base points to be found within them.) 

The information described in the preceding paragraph is computed and stored during 
the initial choice of base. The arrays pointtype and wordinfo can again be used to record 
this data. We now have some more categories of point. Points of type pj, which are the last 
G-base point in a basic H-orbit will lie in category 4, 6 or 7, depending on whether they 
already lie in category 0, 2 or 3. Points of type al lie in category 8, and those of type a~ for 
j >  1 in category 10. Note that the G-base points in categories with numbers equal to 2 
modulo 4 are exactly those for which the image under testperm can be computed. For 
points in category 4, 6, 7 or 8, it is also important to be able to locate the H-base point y, at 
the beginning of the corresponding basic H-orbit; to this end, we shall introduce an 
additional array backpointer, and put backpointer[level] equal to i. Similarly, for points ~ 
in category 10, we have to be able to locate G_ baseno[as], and backpointer can be used 
for this purpose. 

We now describe how this data is used during the search. Since the base of H is changed 
frequently during the course of the search, and we also need the original generators of H 
from time to time, it is necessary to keep a copy of the original generators. Let Old_Sg(H) 
denote this original strong generating set, where Sg(H) will always denote the current set. 
Suppose first that we are at a node corresponding to a point in category 4, 6 or 7. Then we 
compute the image of our current partial expression u (k) ,,~2),,~) for testperm on the 
whole of A~, and check that this image is precisely the image orbit ImA~ of ~5~ under the 
current H t~ For each g; ~ Old_Sg(H) t~ we now conjugate gj by testperm, and compute the 
image Imgj on ImAx, whilst testing this restriction of Imgj for membership of the restriction 
of H (o to ImAm. This is a very useful partial test to confirm that testperm actually lies in the 
normalizer of H. If this test does not fail, then we get a word for each Imgj in the (current) 
generators of H, which is accurate on ImAm, but it will also be accurate on each ImA~ for 
which the appropriate condition on the kernel holds. In practice, we multiply this word 
out in full at this stage, and store the resulting permutation (which we shall continue to 
refer to as Img;). The above test is Test 7 in section 7. 

Secondly, suppose that we are at a node in the search tree corresponding to a G-base 
point in category 8, and let z~ be the proposed image of a s under testperm. Then we check 
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that the required kernel condition holds for the orbit ImAi of 7t under the current H ci), 
which merely involves checking that the generators of the relevant stabilizer in H t~ fix 
Im&~ pointwise. This is Test 5 in section 7. Finally, suppose that we are at a node 
corresponding to a base point crj in category 10. Then we extract the word in Old_Sg(H) u) 
that we stored for a permutation taking o"1 to ~j, and compute the same word with the 
Img~ in place of gi. The image of ~'1 under this word will be the image of c 0 under testperrn. 
This is Test lb in section 7. 

6. The Choice of the Bases 

In this section we shall summarize the algorithm for the choices of the bases for G and 
for H and the computation of associated data, in the light of the demands imposed upon 
us by the tests described in the preceding sections. The base points will be chosen in order 
for both G and H, and all H-base points will also be G-base points. In practice, G and H 
will have initial bases, and so these choices will involve base changes. We assume that we 
have a function base_change(K,x,i) available, which changes the ith base point of the 
group K to x without changing the first i -1  base points, and makes the appropriate 
changes to Sg(K). The variable i represents the number of H-base points found so far and 
lev the number of G-base points found so far. depth represents the current degree of 
embedding of the basic H-orbits, and basenordepth] is the number of first H-base point at 
that depth. The functionfix is computable as the set of points in the orbits of the subgroup 
of length 1. The operations below that involve intersections with the AHU) are 
straightforward to carry out, since the relevant orbital information for H will have been 
stored. 

i: = lev: = 0; depth: = 0; 
Zero the arrays G_ base_no, H_ base_no, pointtype, backpointer; 
a llorbs (Sg (H) o I, H_ orb_ no [1 ], H_ orb_ len [1 ], H_ orb._ rep [1 ] ); 
S : = ~ ;  i 1 : = i + 1 ;  
w h i l e  Sg(H)( i l )# [ ] do 
beg in  i : = i l ;  l e v : = l e v + l ;  i 1 : = i + 1 ;  

Choose an orbit o f  H (i) of length> 1 that lies within S, and choose any point x 
in this orbit; 
base__change(H,x, i); !-I_ baseno [x ]  : = i; 
base_change(G,x, lev); G_ base_no[x] :=  lev; 
allorbs (Sg (H)(M), 14_ orb no[ i l  ], H_ orb_len [i l  ], 14_ orb_ rep [ i l  ]) ;  
depth :=  depth + 1 ; baseno[depth] : = i; 
S:= Z~H(i); F0):= Snf ix (H 01)); 
oldlev: = lev; 
Choose as many G-base points as possible in the set F ~ and increase lev 
accordingly. Store the relevant data in the arrays pointtype and wordinfo,  as 
described in Section 4; 
I f  any such points are found, then pointtype[oldlev] : = 1 ; 
The Boolean variable nomoreorbs is now set t r u e  if and only if H il) has no 
orbits of length> 1 that lie within S; 
j : = i ;  
w h i l e  nomoreorbs and dep th>0  do 
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begin if pointtype[lev] mod 8 < 4  then 
pointtype[lev] : = pointtype [lev] + 4; 
backpointer[lev] :=j; 
depth: =depth--  1 ; 
if depth>O then begin k:=baseno[depth]; S:=Z~H (k) end 

else S:=~;  
Look for orbits A of H ~ within S which are fixed pointwise by each element 
of  Sg(H)(Jl); choose as many G-base points as possible within such A and 
store the relevant data in the arrays pointWpe, backpointer and wordinfo, as 
described in Section 4; 
Set variable nomoreorbs as before; 
j :=k ;  

end; 
end, 

For  simplicity, we have omitted the parts of the above code that set the value of 
HeqGno. This presents no difficulty, since we merely have to look out for the first G-base 
point for which the basic orbit differs from the basic H-orbit. One can also adapt the code 
to check that  H is indeed a subgroup of G, and to recognize exceptional cases like H = 1 
and H = G. 

Finally, observe that the same G-base point may be put into category 4, 6 or 7 more 
than once in the course of the algorithm but, each time, it will point back to an earlier 
H-base point. 

6. The Main Searching Algorithm 

This is an elaboration of the basic searching algorithm, as presented in section 2. We 
start with explanations of a few points. As mentioned in section 3, when level=firstmooed, 
we make use of orbits of N. The idea of putting the representative of the orbit containing 
the base point to be 0, is to avoid finding elements that already lie in N. The procedure 
calc N_ orbs(x) consists of the following three lines of code. 

S: = Sg (N)(X); 
allorbs(S, N_ orb_ no, N_ orb_len, N_ orb_rep); 
N_ orb_rep[N_ orb_no[G_ base[x]]] := O; 

For simplicity, we use the same base for N as for G, although this is likely to be 
unnecessarily large in practice. (For example, if pointtype[level] =2(rnod4) ,  then 
G_ base[levelJ is redundant as an N-base point.) 

The variable orbim_ no is used to record how far along the H-base we are. If we are 
between two H-base points, it takes the value of the following one. It is chiefly important 
because the orbit tests are carried out on the orbits of H u~, where j ranges from 
HeqG_no+ 1 to orbim_no. The procedure update orbims(level) is used, as described in 
section 5, to zero those values of defim[i][j] for which deftime[i][j]>level, for all 
appropriate i. The function calc_image(level) is used to compute the value of testperm on 
the current G-base point, as described in section 5, whenever this is possible; that is, 
whenever pointtype[level] _ 2 (mod 4). We shall omit the details of this process. 
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Zero a# values of defim and deftime; 
OId_Sg(H):=Sg(H);  Img~:=g~ for each g~OId Sg(H); 
f o r  level:=1 to  H e q G n o  do 

testperm [ Q  base [level] ] : = base_im [level] : = Q base [level]; 
f o r  level:= HeqQ no+ 1 to  len_G base do base_im[level] :=0;  
level:= HeqQ n o + l ;  Sg(N) :=  Sg(H); 
f i rstmoved:=len_Qbase; calc N orbs(len G base); 
w h i l e  (level > HeqQ no) do 
begin basept: = Q base[level]; 

i f  H_ base_no [basept] > 0 then orbim_ no: = H_ base_ no [basept] 
else orbim_ no:= - H _  base_no[basept] +1; 
i f  orbirn_ no>len H base then orbim_ no:=len_H_base; 
update_orbims(level); 
base_im [level] : = next(level, base_im [level]); 
i f  base_im[level] = 0  then 
begin level: = level-  1 ; 

wh i le  pointtype[level] rood 4 = 2  do 
begin base__im[level] :=0; level: = level -1 end; 
if level <firstmoved then 
begin firstmoved:=level; calc N orbs(level) end; 

end else 
begin ira_ basept: = image(basept); 

if all tests passed at this node then 
begin testperm [basept] : = ira_ basept; 

if level<len G base then 
begin level: = level + 1; 

if pointtype[level] mod 4 = 2  then 
testperm[Q base[level]] := calc image(level); 

end else 
begin fo r  i :=1 to  n_pts do if G base_no[i] =0  then 

testperm [i] : = image (i); 
ok: =true; h:=f irst(Sg(H));  
wh i l e  ok and h ~ 0  do 
begin if no t  member(testperm -1 * h*testperm, H) 

then ok: =false; 
h:= next(h); 

end; 
if ok then 
begin Sg (N) : = Sg (N) u [testperm]; 

wh i le  level > firstmoved do 
begin base_im rlevel] : = 0; level: = level- 1 
end; 
calc N orbs(level); 

end; 
end; 

end; 
end; 

end; 
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We can now list the individual tests that will be applied during the search, Of course, if 
any of these result in failure, then it is not necessary to continue with the remainder. The 
tests are arranged roughly in order of decreasing ease of execution. They make use of any 
variables from the main program that are currently defined, and also some local variables. 

Test 1 

i f  pointtype[level] mod 4 = 2  and testperm[basept]=~im_basept then fail; 

REMARK. There are really two different cases involved here, which we can call Test la  
and Test lb ,  depending on whether pointtype is less than or greater than 8 modulo 16.) 

Test 2 

i f  (level = firstmoved and ira_ basept #= N_ orb_ rep [ N orb_ no Jim_ basept] ] ) 
o r  (level=~firstmoved and H base_no[level] >0  and 

im_ basept p orbrep [orbim_ no] [ H_ orb_ no rorbim_ no] [irn_ basept] ] ] ) 
then  fai l ;  

Test 3 

This a t tempts  to set  defim [i] and deftime [i] for H eq G_ no <i_< orbi rn  no, and it fails 
i f  an inconsistency is encountered. Other orbit tests using permutations of the base 
points, as described in section 3, may also be carried out. 

Test 4 

i f pointtype[level] rood 4 = 3  then 
begin hbasept: = H_ base[ -  H_ base_no[basept]]; 

regstart: = G_ base_no[hbasept]; 
f o r  i :=regstar t+ l  to level do if pointtype[i] rood 4 = 3  then 

compute a permutation h~  H mapping hbasept to G_ base[i]; 
Compute the orbit IrnFLeve ~ of hbasept under the hi. 
i f  IImF~evetl~lF~ove~l then fail; 

end; 

Test 5 

i f  pointtype[level] mod 16=8 then 
begin i: = backpointer[level]; orbno: = imH_ orb_no[i] [im_ basept]; 

j: = -- H_ base_.no[basept]; S: =Sg(H)(J+I); 
Check that each permutation of  S fixes all points pt satisfying 
imH_ orb_no[i] [pt] =orbno; 
I f  any does not then fai l ;  

end; 

Test 6 

hbno:  = H_ base_no [basept]; 
if h b n o > O  t h e n  
b e g i n  base_change(H, im_ basept, hbno); 
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if hbno<len H base then 
begin k : = h b n o + l ;  S:=Sg(H)(k);  

allorbs (S, im H_ orb_ no [k], im H orb_ len [k], im H__ orb_ rep [k] ); 
Check that the number and lengths of these orbits correspond to those given 
by H_orb_no[k],  etc. I f  not then fail; 
if pointtype[level] rood 4 =  1 then 
begin Check that the set ImF (hbn~ which is the intersection Of AH(hbno) with 

the points in orbits of  length I has the same size as F(hbn~ I f  not then 
fail; 

end; 
end; 

end; 

Test 7 

if pointtype[level] rood 8_>4 then 
begin i: = backpointer [level]; j: = abs(H_ base_noFbasept] ); 

S :=  OId_Sg(H)~ 
ok:=true;  h: =f irst(S); 
while  ok and h#O do 
beg in hc: = testperm-1, h * testperm; 

Use the Schreier vectors for H in the standard fashion to attempt to find and 
store a permutation lmh satisfying hc* l rnh- l~  H(J+I); 
(c.f. Algorithm "'Strip" in (Cannon, 1985)0 
If  Inh does not exist then ok: =false; 
h: = next(h); 

end; 
if not ok then fail; 

end; 

7. Related Algorithms and Possible Improvements 

The same algorithm can easily be modified to compute the centralizer of H in G, and 
the author's implementation has an option to do this. All that we really need to do is to 
set Imgl equal to gj for all g; ~ Old Sg(H), and never change these values. Then all G-base 
points will have pointtype equal to 8 or 10. We store the orbits of H (~ for i = 1 only. Then 
the only tests that we need to carry out are Test lb, and Test 3 with i =  1. (Test 5 is not 
applicable in this situation.) This computation nearly always runs very quickly. 

The author has also written an algorithm for computing Sylow subgroups of 
permutation groups, which uses the normalizer algorithm. This is a very different 
algorithm from that described in Butler & Cannon (1979), which depends on the 
computation of centralizers, and so it would be interesting to carry out a comparison of 
their respective performances on a wide variety of examples. What seems to be true is that 
the author's algorithm finds a Sylow subgroup relatively quickly in some examples (mainly 
wreath products) on which the Butler & Cannon method is very slow. This does not really 
provide grounds for a valid comparison, however, since there may well be other examples 
in which the author's method is slower. We also made a comparison with a soluble group 
of degree 768 and order 2113~2, and their performances were similar in this case (about 10 
minutes cpu time on a VAX 780 for either prime). 
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The author's method is to find a p-subgroup H of G and, if this is not already a 
complete Sylow p-subgroup, a p-element g is sought in No(H), and H is replaced by 
(H, g). Initially, the search is fairly simple-minded: the elements of G are considered in 
order, subject only to the restrictive tests of permuting the orbits of H, and having no 
cycles of lengths not divisible by p. If no suitable element g is found after a reasonable 
number of attempts (say 500), then we give up, and use the normalizer algorithm to 
compute the whole of NG(H). There remains the problem of finding a p-element in 
NG(H)~H. (This problem also arises at the beginning, when H = 1.) To do this, we look at 
random elements of NG(H) until we find an element with order divisible by p, and then 
replace it by a suitable power, and check that it does not lie in H. If this does not work 
after a certain number of tries (say 10), then we start trying commutators of the random 
elements already found; this helps a great deal in certain soluble examples, in which the 
percentage of p-elements is low. In fact, I have yet to encounter an example in which this 
technique has not worked fairty quickly. 

A further possible application, which has been employed by the author on several 
occasions, is to use the normalizer algorithm to compute the automorphism group of a 
group H. The idea is to find a core-free subgroup K of H for which we know in advance 
that any automorphism of H maps K onto a conjugate of itself. (A Sylow normalizer is 
a good candidate for such a K.) We then compute the permutation representation of H 
on the cosets of K, and compute the normalizer of this permutation group in the symmetric 
group. This will yield all automorphisms of H (and also, of course, the centralizer of H 
in the symmetric group). This idea was used, for example, to compute Aut(H) when H 
is the McLaughlin group acting on 275 points. More generally, if K is a core free subgroup 
of H and H has t ( > l )  conjugacy classes of (core free) subgroups isomorphic to K, then 
we can form the intransitive sum of the permutation representations of H on the cosets 
of a representative of each of these conjugacy classes, and again compute the normalizer 
in the symmetric group. 

We conclude with some performance statistics. In most cases, times are given for the 
same example run on the CAYLEY group theory system (see Cannon, 1984, for example), 
for comparison. In this case, x means that the calculation did not complete after running 
for at least an hour of cpu time (and sometimes much longer). In several cases, CAYLEY 
did not compute the relevant Sylow-subgroup in a reasonable time, so we had to provide it 
directly with the generators. The notation for the groups is as follows: Z denotes the full 
symmetric group, C,, E, and A, denote cyclic and elementary abelian groups of order n, 
and the alternating group of degree n, respectively, and Syl, denotes a Sylow subgroup of 
G. In this ease, the numbers given in brackets are, respectively, the order of the Sylow 
group and (in some cases) the time taken to compute it--this is relevant, since it also 
involves runs of the normalizer algorithm on subgroups of the Sylow group. When G = ~, 
we used the CAYLEY function "symmetric normalizer". In several cases, we have cheated 
slightly by giving the shortest time, after a number of different options (for example, for 
the choice of the base points for H) had been tried. This does not seem unreasonable 
for a big calculation, although it does require some intelligent interactive decisions to be 
taken by the user. All computations were carried out on a SUN 3/60 Workstation, and 
all times given are in seconds. 

These figures must be treated with some caution, since the cpu time recorded for 
identical runs at different times sometimes varied by up to a 50~ difference. Furthermore, 
for the larger groups like PSL(5,5), the author's program could on occasion complete up to 
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Degree H G INdH): HI Time CAYLEY time 

11 M11 X 1 0.1 3.6 
20 PSL(2,19) X 4 0-4 7.0 
20 Eto2, X 29 x 101 0.8 ? 
24 M24 E 1 7-8 54.6 
32 Ea2(regular) Z 21~ x 32 x 5 x 7 x 31 0.3 33'2 
32 AGL(5,2) Z 1 134 98.8 
49 AGL(2,7) Z 1 573 24"3 
50 PSL(2,49) I; 4 4.0 95.8 
50 PSU(3,5) ~ 2 1"4 x 
60 As(regular ) Z 120 0.7 x 
64 C~ a Z 32 5.6 34.6 
64 E64(regular) I; 2 is x 34 x 5 x 72 x 31 8-1 2252 
97 ~97 ~ 96 11"4 93"5 
97 D19 4 Z 48 155 130 

100 J2 I; 2 4"3 184 
100 HS Z 2 56.4 x 
121 Sy12(29,0"8) PSL(5,3) 1 4"0 6.0 
121 Syl~(5,1.3) PSL(5,3) t6 3.1 5.1 
121 Syll 1(112,1.5) PSL(5,3) 5 4.5 x 
210 Sy12(217,115) A21 1 17.4 x 
210 Syl~(7a,65.7) A21 2 ~ x 3* 9.1 x 
210 A7 Aai 1 I1.1 x 
275 McL Z 2 266 x 
275 Sylz(27) McL 1 6.4 7-5 
275 Syl t 1(11) McL 5 4-9 30.7 
364 Sy12(211,152) PSL(6,3) 1 27.9 36"9 
364 Sy13(31 s, 8.5) PSL(6,3) 16 54.2 34.1 
364 Sy1~(5,3.5) PSL(6,3) 2 s x 3 27.9 99"6 
364 Syll t(112,4"2) PSL(6,3) 5 34"0 x 
364 C4 PSL(6,3) 29 x 32 30.6 31"5 
781 Sy12(211,74.7) PSL(5,5) 1 82.8 53.3 
781 Sy13(3z,232) PSL(5,5) 29 100 142 
781 Sy15(51~ PSL(5,5) 28 293 70.2 
781 Sy1~3(13,5"1) PSL(5,5) 26 x 3 700 589 
781 Sy171(71,2"6) PSL(5,5) 55 96'0 x 
781 C a PSL(5,5) 29 x 3 x 53 x 31 157 159 

2 7 0 9  Sy12(221,179) PSU(7,2) 27 172 116 

10 t imes quicker  by increas ing the avai lable s torage,  since coset  representa t ives  in the  
s tabi l izer  chain for G could  then be  s tored as pe rmuta t ions  ra the r  than indirect ly ,  using 
Schreier  vectors, A n o t h e r  cons idera t ion  is that  the C A Y L E Y  t imes may  be  s lowed d o w n  
by a factor of 2 or 3 by the overheads  present  in C A Y L E Y ' s  handl ing  of da ta .  T h e  
performances  seem to suggest  tha t  the a lgor i thm represents  a significant i m p r o v e m e n t  
over  existing a lgor i thms  for some classes of g roups  (par t icular ly  when G is the  full 
symmetr ic  g roup  and  when H has  large or modera te ly  large orbi ts  on  which i t  ac ts  
regularly), and  to  be abou t  the same as existing a lgor i thms in mos t  o ther  cases. I t  c a n n o t  
be denied, however,  t ha t  there a few cases (such as the  A G L  groups)  in which it is n o t  
doing  very well, and  so there is still  r oom for further refinements.  Since I a m  not  fami l ia r  
with the details of  the a lgor i thms  current ly  used in CAYLEY,  I a m  no t  ab le  to expla in  the  
reason why the C A Y L E Y  times are  so variable;  in par t icular ,  I do  not  unde r s t and  its 
relatively good  per formance  on examples like H = A G L ( 2 , 7 ) ,  or  indeed its p o o r  
performance on H = PSU(3,5). 
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