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Abstract—We give a solution to a problem posed by Totik at the 1992 Texas conference con-
cerning the strong converse inequality for approximation by Bernstein-Kantorovich operators. The
approximation behaviour of these operators is characterized for 1 < p < oo by using an appropriate
K-functional which, for 1 < p < o0, is equivalent to a second order modulus and an extra term.
Crucial in our approach are estimates for the derivatives of iterated Kantorovich operators.
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1. INTRODUCTION AND MAIN RESULTS

Recently two independent proofs of a strong converse inequality (of type A, according to the
classification of Ditzian and Ivanov [1]) were given for the classical Bernstein operator B, by
Knoop and Zhou [2]! and by Totik [3)2. As is well known, these operators are defined by

Bn(f,x) := kzzo f (%) pk(z),  fecCp1], zel0,1],

where the fundamental functions are given by

n!

m]lk(]. - l‘)n—k, 0 < k <n.

Pri(z) =
For convenience, we shall suppose p,x(z) = 0 in case k < 0 or k > n. The three authors
mentioned showed that for some constant C > 0 independent of f and n one has

C7lw? (f,n‘”z)oo <Nf = Buflloo < Cu (f~n””2)oo» vfeClo.1]. (1.1)
Here w?p( fit)oo denotes the second order modulus of smoothness with weight function p(z) =
(z(1—1z))Y/2 (see [4] for details). Moreover, all quantities subscribed by oo are taken with respect
to the uniform norm in C[0,1].

*The main result was presented at the Second International Conference in Functional Analysis and Approximation
Theory held in Acquafredda di Maratea, Italy, September 14-19, 1992.

1The first part of this paper will be published in Constr. Approz. The second part is published in Results in
Mathematics, 25 (1994), 300-315.

2In fact, in {3] only the strong converse inequality for Szész-Mirakjan operator was proved.
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104 H. H. GONSKA AND X.-L. ZHOU

There is one particular modification of the Bernstein operator for the approximation of L,
functions, 1 < p < oo, (for p = oo, we will always consider C[0, 1] instead of L [0, 1]) which has
been attracting special interest in the past. This is given by the Kantorovich operators K, which
are obtained if one replaces f(k/n) in the definition of Bernstein operators by

(k+1)/(n+1)
(n+1) £(t) dt.
k/n+1

The operators obtained in this way are thus

(k+1)/(n+1)

Kalfiz) =+ DY [ £(2) dtpos(@).

k—p Yk/(n+1)

It is a natural question to ask if there is a strong converse inequality (of type A) for Kantorovich
operators as well, and what it should look like. In his survey paper [5] for the 1992 Texas
conference proceedings, Totik asked if it were possible to have

W (£,n77) < Clf = Kaflp (1.2)

Obviously, to have an upper estimate like (1.1) is impossible as the simple example f(z) = z,
with w2(f,n~'/2), =0, but ||f — Knfllp ~ n~*, shows. However, the problem is that for some p
even the relation (1.2) is not valid. In fact, for p =1 and f = Inz one has w2(f,t); > Ct?|Int|.
But (see (6]) [If — Knfls < Cn™".

However, it is not the point to focus on some special modulus, but to give a full analogy of (1.1),
i.e., to find a functional which is equivalent to | f — Ky f|lp. It is the aim of our present note
to find such an analogy. In order to formulate the main result of this paper, we will need the
following conventions.

The symbol P(D) will denote the differential operator given by

P(D)f:=(¢*f)',  VfeC*O1].
We define the functional K(f,t), for f € Lp[0,1], 1 < p < 0o, as below:
K(fit)p :=inf {|If = gll, + t*| P(D)gll : g € C*[0, 1]} .
Using this functional, we shall prove the following theorem.
THEOREM 1.1. There exists an absolute positive constant C such that for all f € L,[0,1],

1 < p < ¢, there holds

CK (£n7?) <If — Kaflly < CK (£,0717) . (13)

P

In order to characterize the K-functional used in Theorem 1.1, we also show the following
theorem.

THEOREM 1. 2. We have
K(fvt)p Nwi(f,t)p-Hon(f)p, 1<p<oo,
and

K(f,t)oo ~ wi(frt)oo +w(ft%)oo-

Here w(f,t), is the classical modulus and Ey(f), denotes the best approximation constant of f
defined by
Eo(f)p = inf || — cllp-
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REMARK 1.3. We note that one cannot drop the term t2Ep(f), on the right-hand side of the
relations of Theorem 1.2 in case 1 < p < oo, and a term w(f,#2)o, for p = co. Moreover, one
cannot replace w(f,t?)o in the second relation of Theorem 1.2 by t2Eo(f)eo. For, otherwise
we would get that wa( fit)oo = O(t?) implies f € Lip 1. However, this is not the case as for
f(z) = zlnz, Wi(f,t)eo = O(t?), but w(f,?)ee # O(t?). Of course, we can replace t2Eo(f)so in
the first relation of Theorem 1.2 by w(f,t?).. Thus, one may reformulate Theorem 1.2 as

K(f,t)p ~wy(f,t)p +w (f,t%),, 1<p<oo
2. UPPER ESTIMATION

Throughout this paper, we shall denote by C absolute positive constants and by C, 3 constants
depending on o and 3. These constants may be different on each occurrence. As usual, by I1,,, we
denote the set of algebraic polynomials of degree < m. In this section, we will give some upper
estimates for the operator K,, and some inequalities concerning polynomials. Our first result is

LEMMA 2.1. Let 1 < p < co. Then for g € C%[0,1] one has

1
Kng~g—- ——— P(D)g

< Cn-2 4 _(4) "
ot T < cn 2 {llg*g@llp + 9" llp + llgly }, (2.1)

p

P(D)g)'

w(Kng—g—

___1 _ -2 5 (5)

< . .
TOEEY < on 2 {Je*g @, + llgly } (2.2
p

PROOF. Following (3.7) of [6], we have (2.1) for all g € II| ;. In general, let P; € II; be the
polynomial of best approximation of g. Then (see [4, p. 79])

Cio i S
Ei(9)p =llg - Pill, < -jllw’g‘”llp, i2 7] (2.3)

Thus, for j = 4 writing g — P 5 as an infinite telescoping sum of terms of the form Pyipym —
Py.-1(/m) and using Bernstein’s inequality for each term, we obtain by (2.3)

12D (9 - Ba)ll, < ool (2.4

Therefore, if we write g = (9— P /m)) + Pl /7)» by (2.3) and (2.4) we see that in order to verify (2.1)
it is enough to show

e P, < clietal, (2.5)
and
|7l <€ ([lets]], + ho"to+ 2lghs) (26)

The estimate of (2.5) follows directly from the following inequality (see [4, p. 84]):

4 p(4)
[e*Pin )

<o (un), <ol

To prove (2.6), we notice that

< ma,

On the other hand, one may write Pz as a sum of terms of the form Pp. — P.-1 with 28 < \/n
and then use (2.3) and Markov’s inequality to get

J#tzall, <€ (nllta®], + 1ot ).

Combining these two inequalities with (2.3) we deduce (2.6).

Pl — 7203 Pum
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To verify (2.2), we first consider g € II,,, m < \/n. Thus, it follows from Taylor’s formula that
t—
o(t) = Z L = 40)(z) + Re(g,t,)

and

5. ¢ )
Kn(g,z) — g(z) - Z g Jj!(x) Kn ((- —z),z) = Kn(Re(g, -, 2), 2). 2.7

Now, as the left-hand side of (2.7) is a polynomial of degree < m, so is the right-hand side. Hence
we can use Bernstein’s inequality for the interval [0, 1] to obtain the first inequality below and
then using the estimates of [4, p. 134] we arrive at

lo(Kn(Ro(g, 7). 2))'llp < Cmll(Kn(Ro(g,,2), D)l
< omn= (g9 @1, + g1l

< Cm?2n~3 (Ilsosg(s)”p + ||9“p) )

where in the last step we have again used the Bernstein inequality. Using (2.7) and the last
+

estimate, we deduce
/
5. o@(x ,
o[ D k(o)
= 7 )

+n7% (lle ("9") Ip + 6%l + lgllp) - (28)

@ (Kng -g- mP(D)g), ) <

To complete the proof, we also need the following estimate, the proof of which can be carried out
by using a Hardy-type inequality (see e.g., [4, p. 135]): for i = 1, 2,

H(ps—zz'f(s—i)

<C[e®59| +1fllp
P P

Using this inequality and the estimate of K,((- — t)7,z) (see [4, p. 139]), one may get (2.2)
from (2.8) for g € Il,,,m < y/n. Just using the approach in proving (2.1), we get (2.2) for all
g € C%0,1]. i

The following upper estimate is due to Berens and Xu (see [7]).

THEOREM 2.2. For g € C?|0,1]

g~ Kuglly < = PD)gll (29)

with1 < p < oo.
To prove some further inequalities, we need also the so-called Bernstein-Durrmeyer opera-
tor My, which is defined if one replaces f(k/n) in the definition of B,, by

1
(n+1) /0 F(OPn(t) dt.

This operator has many interesting properties. We collect some of them below (for details see,
e.g., [7-9]): for f € Ly[0,1] and g € C?[0,1], we have

P(D)Mng = MnP(D)g’ P(D)Mnf = n(n + 1)(Mn—1f — My, f),
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o 4. 1)®|| < Cn?i 1,

and c
lg = Mnglip < — §P(D)gll;- (2.10)

Using these estimates, we deduce

@)
)@ = ¢* (M P(D)g)
* (Mng) Z kk+1)

Thus,
[t :0)®|| < CnilpD)gly, Vg€ 0,11 (2.11)

The last inequality can be used to prove the following useful assertion.

LEMMA 2.3. For g € C?[0,1], one has

E.(9)p < Cn™2E,(P(D)g)y, 1<p< oo (2.12)
PROOF. It is enough to prove
En(9)p < Cn7?||P(D)gllp- (2.13)
In fact, if this holds, one may replace g by ¢ — P with P € I1,,. Thus

En(9)p < Cn™2 inf [ P(D)g — P(D)P|}. (214)

On the other hand, the eigenfunctions of P(D) are the Legendre polynomials defined on [0, 1].
More clearly, let P;, € II; be the Legendre polynomial, then P(D)P, = Ap Py with Ag = 0, At #0
if k # 0. As every polynomial P* € I, can be written as a linear combination of {P;}}_,, we
have

n n
= Z ap Py = ao Py + P(D) Z ak/\,:lPk
k=0 =

=:agPy + P(D)P.

Suppose
At [|P(D)g — Pll, = [ P(D)g ~ P*ll.

By orthogonality, we have

1
laol = | [ e0)g - Py as| < 1PD)g ~ P

Hence we can replace P(D)P in (2.14) by P and C by 2C. In this way we get (2.12).
It remains to prove (2.13). Due to (2.3), we get by (2.10) and (2.11),

C
E'n,(g)p < En(g — Mmg)p + ;Lz ”§04(Mmg)(4)”p
c c
< o 1P(D)glly + = IP(D)glly

Choosing m = n? we deduce (2.13) from the above. 1

For future purposes, we also need the Bernstein-type inequalities for Bernstein-Kantorovich
polynomials.
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LEMMA 2.4. Let 1 <p < oo and f be a polynomial. Then

H(pj(an)(jH) < C;an(H0/ 247 || pi=vu plo—vti=r) ) (2.15)
where0 <v,u<j, 0<v—-u<j,and0 <7<
|t Ean)| < C 2o (PD)FY I (2.16)
|e*&an®| < on21P2 D) A1, (2.17)
¢ Eap)@| < cnt’21PD) 1l (2.18)

PROOF. (2.15) can be found in [4, p. 125 and 156] if j is an even number and u = i = 0. For
other cases the proof is analogous.

To prove (2.16) we notice: if P; € II; is the best polynomial approximation of f, then using
the linearity of K, (2.12) and (2.3) for any m we get

[etEan®] <c (nzm-3||so(P(D)f>'|'p +[lotrt ’H,,) '

Representing P, as a sum of terms of the form P»: — Pi+1 and using Bernstein’s inequality,
Lemma 2.3 and (2.3), we get for the last term

|22 < CmleP@) 1

Choosing m = [/n], (2.16) follows.
(2.17) and (2.18) can be proved in a similar fashion. ]

REMARK 2.5. The reader may find out that in Lemmas 2.1 and 2.4 the conditions on g and f are
too strong. Of course, we can weaken them in some sense. However, this is not necessary, since
later we will replace them by their Bernstein-Kantorovich polynomials. On the other hand, such
restriction makes the results neater. In the next section, we will also often use such consideration.

3. ESTIMATES FOR THE ITERATES K,ZLV

The results in this section play a centre role in proving the lower estimation of Theorem 1.1.
Some lemmas (Lemmas 3.3, 3.4 and 3.6) have the same form as in [2]. But, since now the
situation is somewhat more complicated, we have to prove them in this paper again. The proofs
of Lemmas 3.3 and 3.4 are given completely. We omit the proof of Lemma 3.6, because it can be
carried out almost word for word as in [2].

In the next section, we will prove a theorem for the iterates of K, (see Theorem 3.1). This result
is in fact the key step in order to get the lower estimate for Bernstein-Kantorovich operators. It
shows that these operators behave similarly as a semi-group operator in the sense that the NP
iteration of a Bernstein-Kantorovich operator of degree n has similar properties as the same
operator with degree n/N. This property will be understood better after seeing Lemma 3.5.

As usual, we write K3f = f, Ki f = K,(K 1 f), i = 1,2,.... For the iterates K~ we prove
the following theorem.

THEOREM 3.1. For1 <p<o,2< N <Cn and f €Il,, one has

|P* DK, < S IP(D)Sll + Cnap(1); (3.1)
ImN\° ,. .,
[ @], <o () w1l (32)

-1
lono] <e(B%) w s, i=2a (33)
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Here

2upl0i= 3 { [0, 3 70, + 100}

The main aim of this section is to prove two iterate inequalities (see Lemmas 3.3 and 3.4),
which will be needed in order to verify Theorem 3.1. We begin with the following computational
result.

LEMMA 3.2. The following five inequalities hold:

t1+t2 1
/ / / t3+1 dty dto dtz < 1.15; (3.4)

1 t2

1+1% +1s —tfa

eltti+ts dty dig dts < —; 3.5
/// (14181 +t2 +13)? PR = (3:5)

ot

(V]

1+t _Qititta)?\ 6 1
1-— 1+t 1+t dt dig < = .
/ / [(EET AT b a2 s (3.6)
2
ittt A 1 ,
T dty dty < —, > 2 3.7
// J+t1+t2 2°¢ 1=y 3.7)
/ / J+t1 dty dty < -1- ji>1 (3.8)
0o J+ J’
Moreover, let 0 < a < 1 and Go(t) = t, Gi(t) = 1 — e 2Cs1(); | = 1,2,.... Then, for
0<u<v-—1andb >0, we have
1
POR) e In(N +1)
/0 t—”e v gt < C, L (3.9)

where C,, depends only on v.

PROOF. The first three inequalities can be verified directly. Of course, they can also be proved
using the method of proving (3.7) and (3.8). Next we verify (3.7). Using Taylor’s formula

t2 2 t%i tg
eitt < — - 3.10
<Y aGeny TGy (3.10)
and o ;
i+t 1 i ( to )
- = - -1 +1 - , 3.11
(G+ti+12)? J+h ;( "EHGra 311

we deduce that the integral on the left side of (3.7) with respect to ¢5 is smaller than

1 + 1 2 + 5
1+x 322 523  623(1+x)

with £ = j + t1. To see this, we notice that after integrating with respect to to we obtain

- i (Z+1) 1 1 1 1
2V Gy {m R R s e s 3(i+7>(j+t1>3}'

We consider this as four sums. Then the first one is 1/(1 + x), the first term of the second sum
is 1/3z2. Adding the rest of the second sum to the third one, then the first term of the obtained
sum is —2/5z%. Again adding the rest to the fourth sum, this is smaller than 5/6z3(1 + x).
Therefore, to prove (3.7), it is enough to show, with x = j + ¢, that

1
1 1 2 5 1
—— = ) dt< ——.
/0(1+x+3z2 5x3 613(1+x)> — i+
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Indeed, for j = 2,3 the integral is 0.332549..., 0.245791.. ., respectively. If j > 4, then, since

1
dt 1
A H—x—‘ln(l“ﬁ)

oo}
<+ 12 :
Jj+2 2(]+2)2 3 & J+2'+1

1
1 2 1 5 2
— - dt<———— d

/o(3x2 5z3) =3tz / ot U= 3G

the integral is less than
1
E(J+21+1 (=j+1)'

To prove (3.8), we use (3.10) to obtain for the case j > 2

j+1 1 25 +1 32+35+1
J+t1dt dtp<in? ™4 - +
/ /0 i+ 17 i 35 +1) 202G +1)? " 6353( +1)°

Thus direct calculation shows that the right-hand side of the above is not larger than 1/j.
For j = 1 we use (3.10) with e/6 in place of 1/3.

It remains to verify (3.9). We consider the function Gn. It is clear that Gy (t) > 0if0 <t <1
and by induction one gets Gn(t) < a™t, 0 <t < 1. On the other hand, by the definition,

N
Gn(t)=a" [] e+,
k=1
Thus, G/ (0) = &V, |G%(0)] < Na¥ and G/(t) > 0, which implies
N N o N
(t—Et>SGN(t)Sa t, 0<t<l. (3.12)

Next we divide [0, 1] into [0,2/3N] and [2/3N,1]. The integral in (3.9) can be written as

2/3N
/ ! / tuGN e bON ) g .= I + Is.
2/3N v

Using (3.12), we deduce

2/3N % N C
Nv p,—Fa't
L <fa /0 the™ 3 dts_buﬂ'

To estimate I, we notice that, as 4 < v — 1, one has by (3.12),

Gy (t)e NG C
tv = et

Hence
In(N +1)

L<C prat1

The estimates of I} and I, imply (3.9). (]
Throughout this paper, we will use the notation: pp, () = pp k() and

 p1/(n+1) 1/(n+1)
Pnjk(2) = (n+1) /o / Prj+1e(Z + b1+ +t5)dty - dt;.
0
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We will also use the following associated operator:

n—j+1 k
Ln;f:= Z f(n+1>pn,j,k
k=0

and its iterations LN We will denote by L, n,; the operator in which py ; x is replaced by p,_; .
It is clear that for some Qn,; With |an ; — 1| < Cjn~! and the Steklov function

- rl/(n+1) 1/(n+l
falz)i=(n+1) / / flz+ti 4+ +1t;)dty-- - dtj, (3.13)
0 0
one has

Lo f97Y = ap ((an)(j—1)> or L, f97Y = oy ((Bn+1F)(j))n

n

where B,, is the Bernstein operator and F’ = f.

Let now -
n—j
- k+1
w@= 3 o (25 misto) (3.14)
k=0

We have the first iterate inequality as follows.

LEMMA 3.3. Forj>1,v=0,1,2,...,jand 2< N < Cn,

L,; (LY 71y, z) < Cjmin {p~*(z),n"} In N.

PROOF. It is enough to verify this inequality for ¢ ~2"(z) in place of min{p~2(z),n"}, since
Py(z) € Cyn?. For v = 0 the inequality is trivial. We assume in the following that v > 1.
Denote by 1, 1 and 1, 2 the function defined by (3.14) with ¢~2Y(z) being replaced by =¥ and
(1 — z)™", respectively. We have 1, < 2¥(¢,1 + ¥y2). Furthermore, withy =1 -2z —j/(n +1)
one gets easily pp ; k(T) = Pn jn—j+1-k(y) and Py 2() < 9y1(y). In this way, we deduce

Lnj (LY p02,2) < Tnj (LY 01,1 - 7).

Hence, in order to verify the assertion of this lemma, it is enough to prove it for 1, ; instead

of v,,.

To this end, we observe that, by using the binomial formula, we have

n—j+1

> 1*Ppnjk(@)
k=0
pl/ntt 1/n+1 _
=(n+1)7/0 /0 (L= (@4ti 4+ +t)(L—m)" I dty - dt;. (3.15)

Making use of the inequality 1 + a < e®, one deduces from (3.15)

n—j+1 j _n=—j+i1 (1-n)
n+l ~(n-j4Dz(1-n) [ 1—€ "
. 1
Z npn,,km)_(n g+1)e T (3.16)

On the other hand, as

1 v 1 1 k
(m) =/0 "‘/o T dr
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with 7% = (7 -- -Ty)* and dT = dmy - - - d7y,, we have by (3.16)

n—j+1 J
n+1 1—¢ nt1 77
< 2)? —(n j+1)z(1-7)
boa(e) < (042" (7 ]H) / / s dr.

The benefit of this estimate is that instead of estimating Ly, ;(y,1, ) one needs only to do this for
Ly ;(e~(=3+DU=7) 2} The latter is easy to deal with if we use (3.16) for e~(»=3+1(1-7)/(n+1)
instead of 7. Setting Ho(t) =1 —t, Hi(t) = 1 — e"(n—3+D/(+)Hialt) 4 =1 2 . . the above
inequality can be rewritten as

o1(z) < (n+2)° (nn‘;i 1) / / ¢~ (n—j+1)zHo(7) (Z;ET;) dr. (3.17)

In this way, we get recursively

Ni n 1 g7d
- +1 HL(t}y _(nei
Lo (LN Y, 4,2) < n+2v(_L_) / coo | N o=+ DHN(T)Z gp

Therefore, in order to complete the proof, it is sufficient to show that for

Flu) := Hy(®) e~ (P-i+DHN W)z (3.18)
Hi(u)
one has
/ 1 / 1 % (N +1) 3.19
I:= F(r)dr < n{N + 1). .
0 0 ) (nz)? (3.19)

We consider the function F' in more detail. Since ye™® < C;b7*if0 <k < jand y € [0,1]
and since 0 < Hy(u) < 1if 0 < u < 1 we have that for u < 1/2, F(u) < C(nz)~". Moreover,
T =17 ---Ty < 1/2if at least one of the 7; is smaller than 1/2. Thus, we need only to prove (3.19)
over the domain of integration [1/2,1] x - - x {1/2,1]. Noticing 7 = 71 - - - 7, the last integral can

be rewritten as
1 1 T1 1 To—1
/ —/ —/ F(r,)dry --- dn
1/2 T1 Jry2 T2 Ty-1/2

Noticing further that if 7, < 1/2 in the above integral, then 7,43 < 1/2, thus 7, < 1/2 and
F(r,) € C(nz)~". Therefore,

r<ovt / / F(ry)dry - d7'1+—C——
j1/2 1/2 1/2 (nx)¥

o 1 1 o C
:m/mu—u) () du t o

Finally, the last integral is
1 V2 g1 (1 - ) ;
1— v—1 — N‘ —(n-j+1)Hn(l—u)z .
/1/2( u)'" F(u)du /0 ppwEa du
To calculate this integral, we use (3.9) with Gy(t) = Hy(1—t),a=(n—j+1)/(n+1) and
b= (n—j+ 1)z to obtain

1/2 _I_:I_]_(l_—_y_)_ —(n—j+1)Hn(1-u)z g, <Ci— In 7
o uj—v+1 ( )

The proof is complete. |
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The second iterate inequality is as follows.

LEMMA 3.4. For1 <v <4 and0 < j <n - v there exists a positive constant C,, such that

i Pru+1,k (J/(n+1)) < 1+Cvn_l
= (k+Dn—v+1-kpnuie(i/(n+1)) ~ G+Dn—v+1-j)
PROOF. In [2] (see Lemma 3.2 there) the case v = 2 was proved. The proof for other cases is
essentially the same. However, as now the situation is more complex, the assertion cannot be
deduced from our earlier result.
Denote the term of this sum as Ix,. We begin with the case j = 0. A routine calculation
shows that for all 0 <u < (v —1)/(n+1)

M) n+1 1
n—v tZ T 4 Mn—v . .
(n+1) /0 Pr-vt1k(t +u)d 1 Pl (n+1 +u> (3.20)

Using this estimate, Cauchy’s inequality yields

1)v+2 1/(n+1) 1/(n+1) _
Ty < ((_"l_ / / (n . v)Aan-v—k dty - dtysr (= Jkw),s
0 0

n+1—uv)?
where ) .
B Aty e B
_ (t1+ta 4 +tugr) and B = (1-t1—t2 to+1) .
t1+---tv_1+1/(n+1) 1—t1—--'—tv_1——1/(n+1)

We then replace I, by Ji. for & > 2. Using the binomial formula, we get after omitting the
term Iy, — Jo v,

(n+ 1)v+2 1/(n+1) 1/(n+1) B
Z Iy < CESEnY /0 /0 (A+B)" Vdty - dtyg1 + (10 — J10). (3.21)
To estimate this integral, we use the inequality

(1-z%)e® <14z <e€ (3.22)
Thus, for u; = (n+ 1)t;, i =1,...,v+1,

(A + B)n_” < (1 + g) evrt o tuy_1+1
n

Therefore, by (3.4) and this inequality, the first term on the right-hand of (3.21) is less than
1.15(1+C/n)(n—v+1)~1if2 < v < 4. Ifv = 1, then this term is less than 1.5(1+C/n)(n—v+1)"!
as computation shows.

To estimate the second term of (3.21), we use again (3.22) to obtain

1+C/n (v+1)2
< 1
W0 v+l (

._1)u+1 (1-2e71)

and

1-C/n U1+ -+ u 2 e2u1+"-+2u,,+1

Jip 2 1=C/n / ( vi1) X duy -+ diysr
n—v+1 U+ -+ Uy + 1 e Ul

[0,1]u+1
1-C/n)e e2u1+ 2yt
> (n—’v/-'-_)l / ('U:l + o Uyt +2u'u +2'U~U+1 — 1)—————6"1‘1""*“-1;-1 dul duv+1
[0,1]v+1

= ———i(ln—_c;/z)le) (1-e?)(1-e )7 (v=1)(1+eV) (1 -21) +2-5e72).

CAMWA 30:3/6-1
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We obtain from these two estimates that, for 2 < v < 4,

1+C/m  (1-e?

4
) (7—3e—19¢™! + 25¢7%)

Liy—J1p <

e S T T Y T 4
1
<i/nx(_0‘1g),
n—v+1

and

1-C 19 9 1-C
Ill—Jll_iT{:ll)(l—e—l) (3—6——e+'—> S—ﬂX(—082)

Consequently, we get

That is the assertion of this lemma in case j = 0.
Next we consider the case 1 < j < n — v. Making use of Cauchy’s inequality, we have

p?z,v—}—l,k (j/(n+1))
Pnyvk (]/(n + 1))

(4 1)+ /1/(n+1)m/1/(n+1) Pi—u,k G/n+1)+t1+ -+ typ1) e ds
0 0 Pnvirk G/ N+ 1)+t + - +ty) vl
Write now
AU/ttt tty)? o (-Gt l) —t =~ b))
G/(n+1)+t1 4 +t) (1=j/n+1)—t1—-—t,)
Then,
("+1)t1+1
(A+ B)" < e#?(/(ntDFtrtotto) (3.23)

Hence, using Taylor’s formula, one gets

(n+1)%¢2
<1+9>e—~‘—, Lo P

(A+B)" < (3.24)

C\ DMy g4y
(1+ )e n+l-z —5-Sj5n—v,

where £ = j + (n+1)(t1 + - - + t,). Using these estimates, we obtain

n—v ﬁ n—v (n v) Aan k— ”dtl . dt 1
Ly < 1v+1/ /+ DR
kz=0 ko < (n+1) Z n—v+1k+1)1—-j5/(n+1)~t1 - —t,)

_ (n+1* 1yv+l / /n+1 / (Au+ B)"—"
me———" T/t —ti = tvdudtl dt,,.
Writing Au+ B=A+ B — (1 — u)A and using (3.23), we deduce for
S'u = Ik v
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(n+ 1)v+1 1/(ﬂ+1) 1/(n+1)
<
Svs m—v+1l /0 / /

e—(1-u)A(n+1) ﬁl_(/(("‘*';)tv“ )
* (7 /(n+1)4t14-+ty .
xl—j/(n+1)~t1—---—tve 1 dudty dtyi1.

Calculating the integral with respect to u and then taking u; = (n+1)t;, i =1,...,v+1, we get
fory=j+ur+--+uy

_rtugg)?
1 ye y l1-e v
du1

1+C/n / / 2 duv+1, 1 S] S ’42’
S, < n+1—j—v (y + Upt1) 5
1 n+1 Yy 4
+C/n/ / :_l_l__ ..-duv+1, ?HS]STL—'U

In what follows, we shall use Lemma 3.2 to estimate these integrals. Now if j =1 and v =1

then by (3.6) of Lemma 3.2
n-1 C 1
Z Ik,l S (1 + —) 2———1'
pard n) 2n-1)

If 1 < j <4n/5 and 1 < v < 4, we consider the function

1 1 . t2
t+1t —2
J(t) = / / - jtith 5 eIttt dty dis.
o Jo GHt+t+t2)

As J'(t) < 0,t > 0; we have J(t) < J(0) and, by (3.7) in Lemma 3.2, J(0) < 1/(j+1). Therefore,

_ye v v:;’1 _ (ytuesn)® 1
/ / 1-e Y duy -+ - duyr < ——.
(y + ups1)? j+1

In case j = 1 and 2 < v < 4, the above estimate still holds due to (3.5).
It remains to show the case 4n/5 < j < n —v. We have by using (3.8)

en+1 y
n+tl-y U1 G
“3+1

1 1 entl—j—vtur+—+u, 1
=/ -.-/ - dul...duv+1§—‘____
0 o Ntl—g—vtur+--+u n+l—j—-v

Lemma 3.4 follows from these estimates. ]

The following inequality is analogous to the estimation of the moments of Bernstein polynomials
(see [10]).

LEMMA 3.5. There exist constants C; ; which depend only on i, j such that for N < Cn

ILY; (¢ -2 2)| < Cij (\/gw(w) + %) : (3.25)

ProoOF. Write Ty, j,(z) = Ln ;((- — z)7,z). We have

1 T—V
T3 2)| < Cry (“’\(/g + ;) . 0<v<T (3.26)
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In fact, using (3.13) and the estimates for the moments of Bernstein polynomials, we have (3.26)
for v = 0. On the other hand, the v*! derivative of L, ;(f) is an operator of the same type

with (n—j+1)---(n—j +1—v) [/ [V g0 (k) (n 4+ 1) + 61 +...8,) dty - - dt, and
Dn—v,;,k () in place of f(k/(n+1)) and py, ; x(z), respectively. This implies that by the binomial

formula, namely
k
(t —x)k Z()t—u (u —z)k*,

one has

(T )' < Crj {ZLn—i,j(l c—z|"7, 1) + nfl_,,} .
i=0

Combining this with (3.26) for v = 0, we get (3.26) forall 0 <v < 7.

We verify (3.25) by induction. Applying (3.13) and by the above consideration, one can easily
get (3.25) for ¢ = 1,2. Supposing now that (3.25) holds for all ¢ < k — 1, we have, with a special
choice of u in the above binomial formula,

L ( i ( ) (o) = 2)4,2) .

We notice that, by the definition of Ly, j, Ty j.(t) is a polynomial of ¢ with degree u. By the
Taylor expansion of Ty, ; ,(t) at =, we get then

" l‘t! sJ
wv) )

* Z ( ) Z ‘T“’J,',—‘;iLﬁfl (( )"+, z). (3.27)

Furthermore, as in case v = p — 1, T, -1 is g linear function, it follows from (3.26) that

o
|T,£"] “1)( )] € Cjun~1. Thus,

k {u)
B (- ate) = 3 (£) 2 1 (- o)
=0

k )
by (5) 22 1

with I/B'n.,j,kl < Cj‘kn_l.
Denote the second sum of (3.27) by 7, jk—1,~v—1(z). Then the induction assumption, (3.26)
and the above consideration imply

k-1
1 N-1 N-1
[¥n,5k-1,8-1(2)] < Cj k-1 {; ( olz) + )

p(z) 1 N-1 N-1
+ ( n + n) (\/ 0 olz) + — . (3.28)
Hence, recursively we get

LY (= 2k 2) = (1 + Buju) LY (- — @), 2) + Y jk—1.n-1(T)
N-2

= (1 + Bn,j,k)N—an,j (( - x)k, -'L') + Z (1 + ,@n.J,k)M'Yn,j.k—1.N—1—u(z)-
pu=0

Now as N < Cn, (14 Cjn~ 1) < CJ, the assertion follows from (3.26) and (3.28). [}
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The following lemma is an analogue of Lemma 3.5 of [2]. Its proof is also the same as in {2].

LEMMA 3.6. Forv=1,2,3,4and0<j<n—-v-1

1/(n+1) 2
) ((n+ 1) /0 P or G/ (n+1) + 1) dt)

i+ 1
< Conp~? _9__)
Pk G/ (R + 1)) = Tne (n—v+2

n

o
I
°©

4. PROOF OF THEOREM 3.1

Before proving Theorem 3.1, we verify some identities and inequalities. Following the notations
in Section 3, we define for v=1,2,...,i = Mo,..., M

nn—1)---(n—v+2)

Any =
v (n + 1)1}'—1
and
Ead kurt
M—i
pk"""’k’”'”(x) = Opy zpﬂ—u,kM (:17) }_:Iz Pno.k, <;Lﬁ+—i->

with the understanding H e M = 1. We also define the following quantities:

1/(n+1)

n-u+) /0 P, (ki /(n+1) + 1) dt
o=
o Do /(0 ¥ 1))

and
(n = v+ 1) Pryi1k, (Kj+1/(n+ 1))

Y (4 1) Pk, (ki1 /(n+ 1))
with j = My, ..., M — 1. Furthermore,

2

qM—1,v =1y 14 G = iseIM-1,0, j=My,...,M -2
¥ J’

and
M-1
Akptyye-skrrv = Z qj,v-
j=Mo

The reader should note that by the definition of the fundamental functions of the Bernstein
polynomials (see Section 1) all quantities above are well defined. Moreover, one has l;, = 0 if
kj > n —v + 1. With these notations, we have the following basic identity: for f € C?~[0,1]
and 1 < j < N -1, there holds

n—v+1 n—v+1

() _ (4t
(a'f) Z Z n—v+1)!

k1=0 kn=0
1/n+1 1/n+1 . kl
X / / f(v—— ) <_— ‘+‘t1 +-. +tv> dtl"'dtvpkl,...,kN,vqj,v- (4-1)
0 0 n+1
In fact, for the fundamental functions of the Bernstein polynomials, we have (see [10])

Prk(Z) = n(Pr-1,k-1() — Pn—1k(x)). (4.2)
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Using this and Abel’s transformation, we get

(-1 _ _(p+ 1!
(Knf) (n-v+1)!
n—v+l  .1/(n+1) 1/(n+1) k
X Z /(; /; f(v_l) <(n+1) +t +"'+tv) dtl"'dtvpn—v-i-l,k(x)‘
k=0 )

Applying this formula to KY~1f,... K,f instead of the function f there and working out, we
deduce

n—v+1 n-v+1

o +1)
(Ka HCV=adlt 3 e Y (n:’fv+1

k1=0 kn=0

1/(n+1) Yok g
X / e / f(v_ ) +ty, ) dty--- dtvpn—v+1,kN
0 0 n+1

H o, (722).

We then take derivatives on both sides of the above. Now consider the terms of the right side.
Those which depend on ky are of course

; kn
pn—u—f—l,kN(x)pn,U,kN—l n+1/"

Hence, by (4.2) and the Abel transformation with respect to kx, these terms change to

1/(n+1) , kn kn
(n_v+1)pn—v,k)v (‘T) A Prvkn_1 <_n+_1 + t) dt = Prn—v,kn (x)pﬂyv;kN—-l (m) gN-1,v-

In other words, (4.1) holds for j = N — 1. Let us deal next with the general case. Suppose we
have proved (4.1) for j = u. In order to show the case j = y— 1, we note that (4.2) and the Abel
transformation imply in our notations

n—v+1 1 n—v+1
k n+1
Z g<n+1)/0 pnvkx+t Z / (

k=0

n—v+1
t) dt —W pn,‘u+1,k (IC)

That is g(k/n + 1) replaced by

1/(n+1) , k
t] d
/0 I (n+1+ ) ¥

and
1/(n+1)
[ e
0
by
n—v+1
il Pnv+1,k(T),

respectively. Now we observe that the expression Pky.....kn (£)qu.» has only the factor

k k .
Pnyvk,_1 (TL—-CI) Pru,k, <nlt:;) ll-t

ku 1/(n+1) , kﬂ+1
_ n—v+1 SutL 4t at
Pn.v,k,t-l (n+ 1) ( v ) \/0 pn,v,k,, (TL +l + )




Strong Converse Inequality 119

depending on k,. Thus, the Abel transformation with respect to k, is simply to replace

k 1/(n+1) , k
(n—v+1)Pnwk., ( K ) by /0 Prv.k, (—“— +t) dt

n+1 n+1
and 1/ (nt1)
n k — k
, 1 n—v+1 ut1
t}dt by ——
/(; pn,u,ku (n+ 1 + ) Y n+1 pn,v+1,k,, (TL + 1) 3

respectively, and therefore

k k +1 * k k +1 *
Prw.k, (#{) Pnv.k, (n“_}_ 1) lu by Pnuk, 1 (;{f'i‘) Pk, (TLI:- 1 lu—llu'

That is nothing but the expression pg, . ky(Z)qu. of (4.1) changes to Pk, kn(ZT)gu-1,0-
Thus, (4.1) holds also for j = p — 1. In this way, we get (4.1) for all 1 < j < N — 1. After we
proved (4.1), we then take the sum on the both sides of (4.1) with respect to j =1,...,N ~1 to
obtain

n—v+1 n—v+1

SN AP = S L _(n+1)!
k1=0 kn=0
1/(n+1) 1/(n+1) ) kl
X / .. / f(v‘ ) ( +t 4+ 4+ tu> dty--- dtupkl,..,,kN,Ule,..v,kN,v' (43)
0 0 'I'L+1

We note that (4.3) is in fact an important step to get the lower estimate for some operators (see
also {2]).
Under these new notations, Lemma 3.3 means that, for 1 < N < Cn and 0 < < 2v,

n—v+1 n—v+1 k41 . .
DS w( : )pkl,_,_,kN,v(x)SCumin {o7@ 2 v +1). (44)
k1=0 kn=0 n+2

Moreover, by Lemmas 3.3 and 3.6,

n—uv+1 n—v+1

Y Pkno(@, < Conpz), 1<v<4 1<j<N-1,
k1=0 kn=0

and by the definition of g,

n—-v+1 n—v+1

Z Z pkl,...,kN,v(-T)Qj,vQI,v=0a J#l Jvl: 1523"')N'—1'
k=0 kn=0

Thus, for 1 < v <4,

n—-v+1 n—v+1

Z Z Pis om0 (TG, . ko S CNp~2(2). (4.5)
ki=0  kn=0

Finally, Lemma, 3.5 implies for 1 < N < Cn

n—v+1 n—-v+1 j J
k . N N
> 2 | —xt Phyoin 0(2) < Cjo (\/‘;tﬂ(l)*'r—) : (4.6)
kim0  kn=0 n
We need some more inequalities. Noticing (K f)*~1) = 0 if f € II,_3, we can replace

FO Dk /(n+1) + 1+ 4+ 1) in (43) by [T f0-D(w) qu for any y € [0,1).
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In what follows, we shall take K.Y f in place of f in (4.3) and then substitute the expression of
(KN £)=1 by (4.3), in which

k
F2 <n+‘1 +t1+~-+t,,_1)

is replaced by

ki/(n+1)+t14-+t,y
/ OV () du.

T

In this way, we obtain
(N - 1) (2 )
1/(n+1) 1/(n+1)
= Qnw /; . /0 Z Z Ik1 (f(v_l)) Pl,le,vP2,vQ2,v dtl e dtm (4-7)
12

where any i< (n+1) - (n—v+2), 2= U TRUNE 2= TN Tl

1 i _kl_+u FROE
+1 +1 pTu2 Yo
Ly (f*)=(n+1)- - (n - v +3) /n /n /n+ £ (uy) duy - - - duy,
0 0 T

kn+1
Pl,v :=pk1,...,kN,‘U—1 (m + tl +--- + t'v L] Ql,v = le,...,kN,v—l,
P2,'u :=PkN+1,...,k2N,v(-’L'), Q2,v zzqu+1,...,k2N,‘v-

Now we are in the position to prove the following two inequalities: for 0 < 011 <
min{v —1,v/2},2<v <4 and 2 < N < CN one has

1/(n+1) 1/n+1
Gns / / Sy
0 0 1

2

ki

J
n + 1 Pl,v ' |Q1,'U| ' P2,‘U ’ |Q2,'u| dtl e dtu

-

n

J
<¢; (\/Ep(m%) o~} (z) min {¢~ (@), A} aN (I M)A, (48)

and

1/n+1 1/n+1 ki +1
G /0 2D 3 S (;H ) Pio @l Pro- |@aoldi - dt,
1T 2
< Cjp~?"*(z)nNInN. (4.9)

Indeed, we have

T

ki

J
n+1 Pl.'u * IQI,UI . P2,v * !Q2.v|

4 1/4
< (Z Z nlf: 1 -z Pl,vP2‘v) (Z Z Pl,v . P2,u ’ |Q2.u}2)
1 2 1 2
1/2
(SR Pl
1 2

To estimate the first factor on the right-hand side of the above, we write

45
J<24j kl _ kN+1
- n+1

- X

1/4

4 kv +1

n+1

ki
n+1

+th+rF+ty,—x

- T

)

+t1+---+tv) +‘
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Thus, by (4.6) we get
~ 5 n+1
N k N 4j N N 4j
N+1
< . _ —_ — —_
_C]{E ( nw(n+1+t1+ +t”)+n) P2’v++<\/n<p(:c)+n) }

On the other hand, as

(\/%) . %)4j <c, (@m ¥ %)4j + (B xl>2]} ,

we see the last sum can be estimated by the second term due to (4.6). In short, we obtain

43 N AN
Z Z PPy < Cj ( —cp(:c) + -‘) .
1 2 n n

Moreover, (4.5) yields

x

— T

ky
n+1

Y S Py Poy - |QanlP =) Poy-|Qaul? < CnNp%(z)
1 2 2

and

Y(ntl) 1/ nd) knas 4 1
P 20t dt, <CnNe-2(ZN+1 7 7Y
Qn.v A /(; ; 1,U|Q1,v‘ 1 v S UNIVY ( nto

Using (4.4) and (4.5) again, the last two inequalities imply

1/(n+1) 1/(n+1)
An, / / Z Z P, |Q1,u|2 Pyy - |Qapldty - - dt,
0 0 12

1/2
k +1
—4 N+1 2
< CnN ( E 74 (m—) P2,v) ( EZ P‘Z.U‘Q2,v| )

2
< Cy~Y(z) min {p~%(x),n} (nN)*2(ln N)V/2.

1/2

The inequality (4.8) follows from these estimates. (4.9) can be verified in the same way.
Now we are ready to prove Theorem 3.1. First we prove (3.2) and (3.3).

ProoOF OF (3.2) AND (3.3). Both inequalities follow from the three inequalities below: for
2 < N < Cn, one has

”soz (Kfl'f)(‘l)”p < C“cpf“)“p \/—%\ln N, (4.10)

le X ®| <o) \/% lnN, (411)

and, for 7 = 2,3,4,

|&xn?|| <o (412)

G-vj|
f ”,, TN,
In fact, if they are valid, then, e.g., to prove (3.2), we may use (4.10) for K2¥ f instead of f
and use (4.11) for KY f, and finally (4.12). In this way, we get (3.2) for 3N, which obviously
implies (3.2) for any 2 < N < Cn.
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All three inequalities can be deduced by using (4.3)-(4.9). Here we verify only the most complex
one, namely, (4.10). Furthermore, it is enough to prove it for p = 1 and p = oo in view of the
Riesz-Thorin theorem (see [11]), since the operator defined by

L(pf®) = * (KN )

is linear in @ f®.
To show (4.10) in case p = 0o we employ (4.3) with v = 4 to get

N/(K,ﬁ"f)(4)' < ”cpf(:”)Hoo "2—:3 nif ! (%%21-) Phr,...kn,4lQky,... kx4l
ki=0  kn=0

To estimate the last sum, we use Cauchy’s inequality, (4.4) and (4.5) to obtain

n—3 n-3 k +1

- 1 -_

E E @ 1( )pkl ..... kn 4lQks,... kv a| < Co~2(z)(nN In N)Y/2,
n+2

k1=0  kn=0

Thus,
N l(Kivf) (4)1 <C “(pf(a)”oo ¢~2(z)(nN ln N)/2,

which proves (4.10} in case p = co.

Of course, the more complicated case is p = 1. We use the approach first used in [12]. Its
modification was also used to give estimates for other operators (see [4]). What we apply here is
essentially the modified form from [4, p. 146-147].

We define

Fl,z):= {u Hu—z[ < (+1) (\/j]ggo(a:) + %) } , G(liu):={z:2€(0,1,u € F(l,z)}.
Thus, if k satisfies

k1
n+1

i 4

(l/ﬁ_ﬁ o(z) + %) <l+1, (4.13)

then for Iy, (f®) of (4.7) one has

I () < (cp—l (’fi—l) +o@) [ o] O] an

n+2
F(l,x)

Next we divide 221;20 according to (4.13). We obtain

35 0 (19) Pra 1Qual Pra-1@ad <O i [ o) |70 a
1 2 1=0 Flo)
2 °
nyl "

(k1 +1 _
X;; (90 1(m) T l(z)) 1+ (\/N N>6 Prg|Qual - Poa- Q24

—n—<P(1‘)+;
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It follows from (4.8) and (4.9) that

1/(n+1) 1/(n+1) ki + 1)
Z Z ~1 1 —1
an PR P + T
. /(; /0 T ((p ( n+2 ol )>

6

k1
n+l _3
x |14 5 | Pra-1Qu4l-Poa-1Q24|dty--- dty <Cp~(z)nNInN.
" 12
Therefore, we get by (4.7)
4 > 1
N |k f) Y| <0 Y e / ¢(u) | ¥ (w)| dup=(z)nN In N,
1=0

F(l,z)

Finally, using the estimate in [4, p. 147], we obtain

lo? 22 5) @) < o™X g(l 5 o) O w)| | ¢ @ dzdu

G(lu)
<o\[Fw0]lor),

This completes the proof of (4.10) in case p = 1. (]
PROOF OF (3.1). Straightforward calculation shows that for f € II,,

P(D)Knf = KnP(D)f = zrrss KuP(D)f®+

n
k k
+(n+ 1) Z A1/(n+1) {‘P2 ( ) R, (*)}pn,lm
poard n+1 n+1 (4.14)

where

(n + 1)2 1/(n+1) 1/(n+1) t+ty—ts
Ra(t) = 210 / / / (£ + 1 — to — w2 fO () dudt, dty.
0 0 t

Using (2.15) we deduce from (4.14) that
0> (P(D)Kwf — Kn(P(D)f)"|], + [(P(D)Knf — KoP(D)f) Il < C®ypp(f) (4.15)
and @, (K2 f) < C;®, ,(f). Thus for a polynomial f

|P*(D)KY f — P(D)KY P(D)f||

N-1
<3 |[P(D) {K3P(D)KY~7f ~ KiF PD)KN 7 £} < Onnplf):
=0

Replacing f in (4.14) by KY~?~1(P(D)f) and using (2.15) again we obtain for 1 < j < N — 1

|P(D)KY P(D)f ~ KN~ P(D)KLP(D)f]|,
N-1-j
< Y. |KrP(DKY"P(D)f ~ KZ*' P(D)KY ™' P(D)f||, < CN®pyp(f).

v=0
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Thus, it follows from the above two inequalities that

N-
P*(D)KY f-%— Z KV P(D)KLP(D)f|| <Cn®np(f).

P

Therefore, in order to complete the proof of (3.1) we need to verify

N-
Z KN-IP(D)KJf

< CnVN||fll,.

P

Recalling the definition of the iterates of K,,, we deduce with

1/(n+1)
(n+1) /0 P(D)pu, (ksut/(n+1) +1) dt
Pn,1k; (Kjg1/(n+1))

lj =

and Zi=zzl=o“'z::~=o’

(4.16)

N-1 ‘ 1/(n+1) Kt N-1
> KYPOI =Sy [ g (n+1 ) Bt Dbk 3 b (417)
j=1 0 j=1

The Riesz-Thorin theorem shows that to verify (4.16) for all 1 < p < oo it is enough to do this

for p =1 and p = o0. By (4.17) it suffices to verify

N-1
Z Z Dky,....kn 1 lj < C\/N,
2=0  kn=0 j=1 )
and
n n N-1
Z e Z Pky,....kn 1 Z l] < C\/N’I’L
k1=0 kny=0 j=1 ©

(4.18)

As the proofs of the two inequalities are analogous, we show here the more difficult one,

namely (4.18). Cauchy’s inequality implies

n n N-1 1 1/2 n n
Z Z Dky,..kin 1 Ll < (n+1> Z Z Pk, kw1
ko=0 kn=0 j=1 1 ko=0 kn=0
as
5o mend| =
ko=0 kn=0

On the other hand, it is not hard to see that

n
/ : Z Phy,...kn,1llidz =0, i# 3.
0 k=0

kn=0

We obtain

n n N-1 2 N-1 n
Z Z Pky,....kn 1 l; = ( / Dk,,.. .kN,ll da:)
" ¢ i

ka=0 kn=0 j=1 J=1 2= kn=0

2111/2

1
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To complete the proof, it is therefore sufficient to show that the sum in parentheses of the
right-hand side of the above is not larger than Cn. To this end, we simplify this sum using
fol Prk(t)dt = (n+ 1)~1. We see that all we need is to verify, for 0 <[ <n,

1/(nt1) 2
(n+1)? (/0 P(D)pn,(k/(n+1)+1t) dt)
<C

Pn1 (k/(n+1)

n?.

n
k=0

But this is almost immediate if we divide this sum into 22;11 and the remaining part and use
the expression of P(D)py x(t) for the first one and some direct calculations for the remaining
part. |

5. THE PROOFS OF THEOREMS 1.1 AND 1.2

ProoOF OF THEOREM 1.1. The upper estimate follows from Theorem 2.2 and the definition of
the K-functional.

After proving Theorem 3.1, the lower estimate is not too difficult to obtain. We notice that by
the definition of our K-functional one has

K (£.0772) <1 = Kafllp + = 1P(D) Knflly (51)
p n

Thus, all we have to do is to show that there exists a positive constant C such that for all
n=12...

LIP(D)Knfll < Clf ~ Kl (52)
For this purpose, we prove next the following two inequalities: for n > N’ one has
1 C
SNP(D)Knfly < CNf = Kaflo+ o [t (Eut) @) (5.3)
and )
273 (PO Ka Yl < I = Kalo + =7 [ (Bar)®)] (5.4)

To verify (5.3), we note that by using Lemma 2.1 (see (2.1)) we get with g = K, f

1
2(n+1)

Now, if 1 < p < o0, then (see [4, p. 135])

|P(D)En flly < Ilf = Knfllp +C {Hw“(an)(‘*’Hp +|En®]| + nannp} n?

19"l < © {0+ tall .
If p = o0, then by (3.3) of Theorem 3.1 for n > N (note {|(Knf) |lcc < CHP(D)Knf|loo)

= |Ean@| < 2 s - Y|+ 5 |5

o o)
CinN
S Cn|If = Knflloo + ;. | P(D)Kr flloo-
Hence, in all cases, we get for proper N’ fixed and n > N’
1
s POl < CUS = Kl + € { 'K @] + 1t }n2. (55)
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As K,(f — a) = Kn(f) — a for any constant a, one can replace ||[K,f||p in (5.5) by ||(Knf)'|p.
But since K, f € II, we have (see [4, p. 91])

”(an)’”p < C'”(an)’”L,p[l/n'ﬂ’,l—l/n?]'
Hence, for F := (@?(K,f)')’ one gets
I(Knf) lL,1/n2,1-1/n7) < Clnn||Fllp = Clnn|| P(D)Kn fllp-

Combining this with (5.5) we get (5.3). The proof of (5.4) is similar to the proof of (5.3). The
only difference is instead of using (2.1) there we shall use (2.2).

In what follows, we shall verify (5.2) for large n. More clearly, we will show that there exist
C and Nj so that for all n > Ny one has (5.2). We consider the last term of (5.3). Using (2.15)
and (2.16) this can be estimated in the following way:

% |t Ens )(4)“,, < ON|f — Knfllp + On/2||p (P(D)EN+35)

’P

and using (5.4) and (2.17) one also has
1 ' C
75 |le PDKEF)| < Olf = Kaflp + 15 [PPDIKY 1],
Now it follows from (5.3) and the above that
1 C ip2 N+1
= |[P(D)Knflly < CN|f = Knfllp + 5 [|PAD)KI* 1], (56)

We then estimate the last term of (5.6) by using (3.1) to obtain
o C C
3 [PDEI |, < —< IP(D)Knfllp + 3 @op(Knf).

Thus for N large enough such that C/v/N < 1/8 (say N = N"), we obtain from (5.6) and the
last inequality that for n > max{N’,N"} =: Ny

C
L\ PD)Kfly < OnllF Kl + DR p (K. (5.7

Thus, we must show that
n_Zq)n,p(an) < Clf = Knfllp-

Recalling the definition of @, , (see the definition in Theorem 3.1), we have to verify
n7? |2 f) O+ 07| Eaf) O+ IEn S Ny < OIS ~ Kl

To this end, we write K, f as a sum of terms of the form K f — Ki+! f with i <n and apply (3.2)
of Theorem 3.1 to obtain

[ Ean®| < Onlilf = Kaflly + Cnm)n 2 ()l (5:8)
Similarly applying (3.3) of Theorem 3.1 one gets

| £)®|| < Onfllf = K fllp + Cltnm)n 2 (K f) N (5.9)
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Hence, in order to complete the proof in case n > Ny, it remains to verify
n=52(Inn)*}|(Knf)'llp < CILf = Knfllp. (5.10)

The following fact can be easily verified:

i—1
I e <0n () Ml iz 5.11)

On the other hand, (2.15) implies (choose ¢ = 7 = 1 there)

| (Kot ~ K29 < Omllf ~ Kaflly and [[(KLS)'

< Cnlflls.

By the first inequality, it is clear that we need only to prove (5.10) for K2 on the left-hand side
instead of K, there. Moreover, using (5.11) and the last inequality, we have via the Riesz-Thorin
Theorem, for 1 < p < o0,

o0

i(1-1/
Jactn ], <onds () I =R

=2
Cn

<
1-(n/(n+1))

which obviously implies (5.10) in case p > 3/2. If 1 < p < 3/2, then since ||[Kpflleoc < Cn|lflip,
using the above estimate we have

—5 1~ Eafll

| (xar)’

<l <ot s iy

2/3)(3/2—
< Cn?||f — Ko fII23 ||Knf — K2 2/PC/27P
< ORGP £ _ K f|,

which implies (5.10) in case 1 <p < 3/2 as 3 —2p/3 < 5/2.
Next we deal with the case 1 <p < oo and 1 < n < Ny. Obviously, by (2.15), one has

|o® (x25)"

<ovale(is)|| <onl(xi)

and therefore
|P(D)Ko fllp < Cnllf = Knflly + | P(DIKSI|, < Cnllf = Kafllp+ On ||(K2F)]|

Writing K2 f as a sum of terms of the form Ki*! f — K} f and using (5.11), we get (notice again
[ Enflloo < Cnllfllp)

“(Kf,f)'”oo <cny (nj 1) | Knf — K2f|| . < Cn2|Kn(f — Knf)lloo
=0

< Cn®||f ~ Knfllp < CNGIf — Knfllp.

Hence, (5.2) holds. The proof is complete. ]
PROOF OF THEOREM 1.2. We have, for 1 < p < oo and arbitrary g € C?[0, 1],

IP(D)gllp ~ l|lo?g"|l,, + lg"llp- (5.12)
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On the other hand (see [4, p. 135]), for any constant c,

lo'lls < € (Ile*9”]l, + llg = ell) -

Thus,

1 = gl + #IPD)gly < C{1f = gllp + ¢ %" |, + ©*Eol 1)y }.

We get, by using the equivalence of the modulus of smoothness and the K-functional,

K(f,t)p < C{wl(f,t)p + t*Eo(f)p} -

But, in case 1 < p < o0,

[#%g"||, < CIP(D)glly,  llg'lls < ClIP(D)glip-
Therefore, again using the equivalence of the modulus of smoothness and the K-functional, we
obtain

wWh(F,0)p S CK(fit)y,  w(fst)y < CK(f1)p.
Obviously,

2
By < ¢l < clh Dy

Hence in the case 1 < p < oo there also holds

Wy (£, t)p + Eo(f)p < CK(f,)p.

For p = oo, we get from the above

W2 (f,t)oo + W(f,t%)oo < CK(f,t)c0-

On the other hand,

K(f,t)oo < Cinf {If = glloo +* |0°¢" ||, + 1?19 lloc } -

For some n ~ t~2 choosing g = B,(f) (the Bernstein polynomial of f), we get for arbitrary
h € C0,1]

K(f,t)oo < C (wi(f,t)oo + t2[1Bp flloo)
< C(Wi(f.t)oo + 21 BR(f — h) + Bpp(h)lloo)
< C (wi(f,t)oo + 20| f — Rlloo + £2]|A[loo) -

Here in the first inequality, we have used (1.1) and in the last step the simple facts: ||[(B,f)| <
f'|l and ||(Bnf)]| < 2n| f||. Taking the infimum over h € C1[0,1], we get

K(f,t)oo < C(wi(fit)oo +w (£,17) ) -

The proof of Theorem 2.2 is thus complete. ]

—

REFERENCES

Z. Ditzian and K.G. Ivanov, Strong converse inequalities, J. d’Analyse Mat. 61, 61-111, (1993).

2. H.-B. Knoop and X.-l. Zhou, The Lower Estimate for Linear Positive Operators, Schriftenreihe des Fach-

10.

11.
12

bereichs Mathematik, Duisburg, SM-DU-201, (1992).

. V. Totik, Approximation by Bernstein polynomials, Manuscript, (1992).
. Z. Ditzian and V. Totik, Moduli of Smoothness, Springer, New York, (1987).
. V. Totik, Approximation by algebraic polynomials, In Approzimation Theory VII, (Edited by E.-W. Cheney,

C.K. Chui, and L.L. Schumaker), pp. 227-249, Academic Press, New York, (1992).

. Z. Ditzian and X.-1. Zhou, Kantorovich-Bernstein polynomials, Constr. Approz. 6, 421-435, (1990).
. H. Berens and Y. Xu, On Bernstein-Durrmeyer polynomials with Jacobi weights, In Approzimation Theory

and Functional Analysis, (Edited by C.K. Chui), pp. 25646, Academic Press, New York. (1990).

. M.M. Derriennic, On multivariate approximation by Bernstein-type polynomials, J. Approz. Theory 45,

155-166, (1985).

. HH. Gonska and X.-l. Zhou, A global inverse theorem on simultaneous approximation by Bernstein-

Durrmeyer operators, J. Approz. Theory 67, 284-302, (1991).

G.G. Lorentz, Bernstein Polynomials, In Mathematical Ezxpositions, No. 8, University of Toronto Press,
Toronto, (1953).

J. Bergh and J. Léfstrom, Interpolation Spaces, Springer, New York, (1976).

R. Bojanic and O. Shisha, Degree of L! approximation to integrable functions by modified Bernstein poly-
nomials, J. Approz. Theory 13, 66-72, (1975).



