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Bayesian networks (BNs) provide a powerful graphical model for encoding the probabilistic

relationships among a set of variables, and hence can naturally be used for classification.

However, Bayesian network classifiers (BNCs) learned in the common way using likelihood

scores usually tend to achieve onlymediocre classification accuracy because these scores are

less specific to classification, but rather suit a general inference problem. We propose risk

minimizationbycrossvalidation (RMCV)using the0/1 loss function,which is a classification-

oriented score for unrestricted BNCs. RMCV is an extension of classification-oriented scores

commonly used in learning restricted BNCs and non-BN classifiers. Using small real and

synthetic problems, allowing for learning all possible graphs, we empirically demonstrate

RMCV superiority tomarginal and class-conditional likelihood-based scores with respect to

classification accuracy. Experiments using twenty-two real-world datasets show that BNCs

learned using an RMCV-based algorithm significantly outperform the naive Bayesian classi-

fier (NBC), tree augmentedNBC (TAN), and other BNCs learned usingmarginal or conditional

likelihood scores and are on par with non-BN state of the art classifiers, such as support vec-

tor machine, neural network, and classification tree. These experiments also show that an

optimized version of RMCV is faster than all unrestricted BNCs and comparable with the

neural network with respect to run-time. Themain conclusion from our experiments is that

unrestricted BNCs, when learned properly, can be a good alternative to restricted BNCs and

traditional machine-learning classifiers with respect to both accuracy and efficiency.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

One fundamental task ofmachine learning is classification,where instances (patterns) are assigned to their corresponding

classes. This is a supervised learning task, where a training dataset of instances with labels representing instance classes is

used to train a classifier. Since a Bayesian (belief) network (BN) [1–3] provides a graphical model for encoding relationships,

such as dependencies and conditional independencies between variables, and for inferring probabilistically about variables,

it is natural to use the BN for classification.

Indeed, along with the traditional classifiers based on the neural network (NN), the support vector machine (SVM), and

the (decision) classification tree (CT), classifiers based on BN have recently been introduced and studied [4–11]. Learning a

Bayesian network classifier (BNC) requires learning the structure (graph) of the graphical model and its parameters so that

the learned BN will excel in inference of a specific variable, that is the class variable, and not necessarily of all variables.

When focusing on structure learning, exhaustively searching the space of possible graphs is infeasible [2], and thus search

and score (S&S) structure learning algorithms sub-optimally search the space and select the structure achieving the highest

value of a score [2,3,12]. However, until very recently, all S&S structure learning algorithms used a generative score, and

thereby led to learning a generative model that is not specific to classification, but to general inference.
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Commonapproaches for learningamodel are roughlypartitioned intogenerative, discriminative, or a combinationof both

approaches [13–15]. Generativemodels (e.g., BN, density estimation) summarize data probabilistically and aremore flexible,

since the user can bring in conditional independence assumptions, priors, and hidden variables. Generative classifiers learn

a model of the joint probability of the variables and the related class label, and use Bayes’ theorem to compute the posterior

probability of the class variable and make predictions. Discriminative models (e.g., NN and SVM) only learn from data to

make accurate predictions by directly estimating the class posterior probability or via discriminant functions, and thus offer

the user less flexibility in data representation and inference. The dilemma in the machine learning community regarding

which approach of learning – generative or discriminative – is more appropriate for learning a BNC structure, has gained

considerable attention in recent years. Most empirical studies demonstrate superiority of the discriminative approach with

respect to the accuracy of the learned BNC [5–7,16]. For somemodels, however, it is shown [13] that the choice of either of the

approaches depends on the sample size; for small sample sizes, the generative approach,which relatively quickly approaches

its asymptotic error, is favored, whereas the discriminativemethod is preferred for larger sample sizes. Classifiers combining

generative anddiscriminativemodelingusegenerativemodels, yet estimate themodel structure and/orparameters to reduce

the classification error.

Several studies [4–7,10,17] have demonstrated that BNC structures learned using generative scores do not usually con-

tribute to high classification accuracy since there is lack of agreement between the score used for learning and the score used

for evaluation, i.e., the classification accuracy. That is, classifiers based on structures having high values of the generative

scores are not necessarily highly accurate. To address this issue, we propose risk minimization by cross validation (RMCV)

for a classification-oriented score and S&S algorithm for learning unrestricted BNCs. Note that other uses of classification-

oriented scores in learning unrestricted BNCs [7,18] are in a somewhat different context. Moreover, RMCV is an extension

to common use of classification-oriented scores in learning restricted-BNCs and non-BN classifiers. While commonly used

S&S algorithms use likelihood-based scores suitable for general inference, RMCV minimizes an empirical estimation of the

classification error rate, and thereby learns highly accurate BNCs. That is, RMCV performs discriminative learning of a gen-

erative (BN) model. This model does not need to estimate the true distribution, generate data from this distribution, or infer

about any non-class variable. It needs to perform a discriminative classification task. RMCV learns generative models that

are complicated, only to discriminate accurately among classes.

In the beginning, we suggest and compare several variants of the RMCV score and algorithm. We further show that the

RMCV score is better suited for classification than any other score commonly used for learning a BNC, i.e., compared with

other scores and BNCs, the accuracy of an RMCV-based classifier increasesmonotonicallywith the improvement in the value

of theRMCV score. Then,we compare the classifier learnedusingRMCVwith likelihood-based, conditional-likelihood-based,

and other BNCs, as well as with non-BN classifiers, such as NN, SVM, and CT. This involves nine leading BNCs and five state

of the art non-BN classifiers in a most extensive comparison of BNCs and non-BN classifiers using twenty-two real-world

datasets. The comparison demonstrates that an RMCV-based classifier is faster and significantlymore accurate than all BNCs

and comparable (usually favorably), with respect to accuracy, with the non-BN classifiers. These are encouraging news for

researchers and practitioners who appreciate the benefits of the BN model, but once they encounter a classification task,

replace the BN with a traditional classifier and thereby lose the BN benefits.

We begin by reviewing BN in Section 2. In Section 3, we focus on learning a BNC using common scores. The RMCV score

and algorithm are presented in Section 4, and classifiers learned using RMCV are experimentally compared to other BNCs

and non-BN classifiers in Section 5. Section 6 describes recent studies in learning a BNC. Finally, we draw conclusions and

summarize the study in Sections 7 and 8, respectively.

2. Bayesian networks

A BN model B for a set of random variables X = {X1, X2, . . . , Xn}, each having a finite set of mutually exclusive states,

consists of twomain components, B = (G, �). The structure G = (V, E) is a directed acyclic graph (DAG). V is a finite set of

nodes of G corresponding to X, and E is a finite set of directed edges of G connecting V.� is a set of parameters that quantify

the structure. The parameters are local conditional probability distributions (or densities), P(Xi = xi|Pai, G), for each Xi ∈ X

conditioned on its parents in the graph, Pai ⊂ X. In this study, we are interested only in discrete variable BNs and complete

data.

The joint probability distribution over X given G – assumed to encode this distribution – is the product of these local

probability distributions [2,3],

P(X = x|G) =
n∏

i=1

P(Xi = xi|Pai, G), (1)

where x is the assignment of states to the variables in X and xi is Xi’s state.

During inference, the conditional probability distribution of a subset of nodes in the graph (the ‘hidden’ nodes) given

another subset of nodes (the ‘observed’ nodes) and the BN model is calculated. A common method for exact inference is

the junction tree algorithm [19], butwhen there is only onehiddennode (e.g., the class node in classification), direct inference

based on (1) and Bayes’ rule ismore feasible. Note that the computation of conditional probability distributions for inference

depends on the graph. Thus, a structure, either based on expert knowledge or learned from the data, must first be obtained.
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The S&S approach to learning a structure from data [2,12] comprises a search for the structure achieving the highest

score, e.g., hill-climbing (HC) [3,12], and a score, generally the Bayesian score [2],

P(G|D) = P(D|G)P(G)

P(D)
= P(D, G)

P(D)
(2)

for a structure G given a dataset D = {v1, v2, . . . , vN}, which is a random sample of N independent instances from the joint

probability distribution of X.

3. Learning a Bayesian network classifier

It is clear from (2) that a score should reflect a correspondence between the structure and the data. The minimum

description length (MDL) score [20] can approximate P(D|G) – the marginal likelihood [3] – but [4] argued that this score is

not suitable for classification and recommended the class-conditional log likelihood (CLL) (as opposed to log likelihood (LL)),

CLL(G|D) =
N∑

i=1

log P(ci|v′
i), (3)

where the vector vi for the ith instance in D consists of a feature vector v′
i and a class label ci, so that vi = (ci, v

′
i). Notice

that CLL(G|D) = ∑N
i=1 log P(vi) − ∑N

i=1 log P(v′
i) = LL(G|D) − ∑N

i=1 log P(v′
i).

By maximizing CLL, the structure that best approximates the probability of predicting the class given feature values for

every instance is learned [5]:

P(cN |v′N, G) = P(cN, v′N |G)

P(v′N |G)
= P(D|G)∑

c′N P(c′N, v′N |G)
, (4)

where v′N consists of all feature vectors and cN consists of all possible combinations of the rC states of the class variable C

in a random sample D of size N. The computation of this score is infeasible, since the sum in the denominator is exponential

in N (rNC terms), let alone score maximization.

An approximation [5] considers the left-hand side of (4) and the marginal likelihood (2) as the supervised and unsuper-

vised marginal likelihoods, respectively. The marginalization over the parameters in (4) is:

P(cN |v′N, G) =
∫
�
P(cN |v′N, �, G)P(�|v′N, G) d�, (5)

and its approximation [5] using a single term is

P(cN |v′N, G) ≈ P(cN |v′N, �̂, G). (6)

�̂ is the parameter configuration maximizing the parameter posterior probability, P(�|v′N, cN, G), which is a different

solution than that derived when maximizing P(cN |v′N, �, G). However, there is no general closed-form solution to the

supervised form of the score and the posterior is not decomposable in this case, hence the need for approximation [4].

Another predictive local criterion (LC) [3] for learning a BNC [5] is based on the prequential approach [21],

LC(D, G) =
N∑

i=1

log P(ci|{vj}i−1
j=1, v

′
i, G). (7)

Other cumulative logarithmic loss scores [5] use 10-fold cross validation (CV) or leave-one-out, which are reputablemethods

for model selection [22], both described here under the general term CV-K , where K = 10 or K = N for the two cases,

respectively. A score using CV-K for predicting a class is defined:

CVK(D, G) =
K∑

k=1

N/K∑
i=1

log P(ci+Ak |D\DK
k , v′

i+Ak
, G), (8)

where Ak = (k − 1)N/K and DK
k = {vj+Ak}N/K

j=1 is a validation set derived from the training set D.

Using either of the supervised (conditional)marginal likelihood scores ((5), (7), or (8)) for learning a BNC is asymptotically

optimal. However, for a finite sample, though a high score value may indicate correct classification, it cannot guarantee it.

A score that measures the degree of compatibility between a possible state of the class variable and the correct class is

the 0/1 loss function:

L(ci, ĉi) =
⎧⎨⎩ 0, ci = ĉi,

1, ci �= ĉi,
(9)

where ci is the true class label and ĉi is the estimated class label for the ith instance.
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To demonstrate the difference between a class-conditional score and the 0/1 score, consider a two-class classification

problem, two candidate classifiersA andB, and two instances v′
1 and v′

2 [17]. ClassifierApredicts the correct class for instances

v′
1 and v′

2 withprobabilities of 0.3 and0.51, respectively,while classifierB predicts the correct class for the same two instances

with probabilities of 0.45 and 0.49. Since the sum of log probabilities (i.e., “log-loss” score) is larger for classifier B than for

classifier A, the former classifier will be selected. However, if evaluating the 0/1 loss values, classifier B is inaccurate for both

v′
1 and v′

2, whereas classifier A is correct for v′
2. Thus, choosing classifier A based on the 0/1 loss score is more sensible for

classification than choosing classifier B based on the log-loss score. We therefore suggest using the classification-specific

0/1 loss function for learning BNCs of enhanced classification accuracies.

4. Risk minimization by cross validation

Instead of selecting a structure based on summation of supervised marginal likelihoods over the dataset ((7) or (8)),

we suggest selecting a structure based on summation of false decisions about the class state over the dataset. Our score is

based on risk minimization [23] using the 0/1 loss function measured on a validation set. The training set D is divided into a

validation set DK (having N/K of N instances) and an effective training set (having N(K − 1)/K instances). The classification

error rate (0/1 loss) is measured for each candidate structure and in any iteration of the search on DK . During learning, no

use of a (third) test set is made. As part of a CV experiment, the score of a candidate structure is computed by averaging the

error rates over K non-overlapping validation sets. Since the structure that minimizes the empirical risk is being searched

for, we call the score risk minimization by cross validation (RMCV)1
(
and we deliberately do not simplify 1

K
K
N

)
:

RMCVK(D, G) = 1

K

K∑
k=1

K

N

N/K∑
i=1

L

⎛⎝cki, argmax
c∈{c1,..,crC }

P(C = c|D\DK
k , v′

ki, G)

⎞⎠ , (10)

where vki = (cki, v
′
ki) is the ith instance of DK

k and L(, ) is the 0/1 loss function (9). Being a CV-based score, RMCV is easy to

implement and computationally feasible (see, for example, (6)) and it depends ononly oneparameter (K). Further, it is argued

[5] that a CV-based score can be regarded as an approximation of a factorization of the supervised marginal likelihood (4).

Note that the RMCV score is normalized by the dataset size N, whereas (7) and (8) are not. Although normalization has the

same effect on all learned structures, it can clarify themeaning of the score (i.e., an error rate) andhelp comparing scores over

datasets.Moreover, sharing the same range of values ([0, 1]), RMCV establishes its correspondence to classification accuracy.

To compute RMCV, the candidate structure has to be turned into a classifier by learning its parameters. Local probabili-

ties are modeled using the unrestricted multinomial distribution [3] (assuming discrete variables), where the distribution

parameters are obtained using maximum likelihood (ML) [2], similar to [5]. Moreover, Grossman and Domingos [6] argued

based on experiments that ML parameter estimation does not deteriorate the results compared to maximum conditional

likelihood estimation, which can only be obtained by computationally expensive numerical approximation. Learning a BN

rather than a structure has an additional cost of parameter learning, though this cost is negligible while usingML estimation

and fully observed data.

To prevent over-fitting the training set, RMCV is computed by K-fold CV. Thus, over-fitting is controlled through the

score itself, and not through the search dynamics as in other algorithms discussed later. Also, note that the samemeasure is

used for learning the BNC and for evaluating its accuracy, which makes learning oriented towards classification. Similar to

CLL-based scores [5,6], RMCV is not decomposable.

A suggested S&S structure learning algorithm consists of the RMCV score and a simple HC search:

Algorithm: RMCV

Input: An initial DAG, G; A training set that is partitioned to K mutually exclusive validation sets, D = {DK
k }Kk=1.

Output: BN model (G,�).

compute RMCVK(D, G)
converged := false

While converged = false

For each G′ ∈ Neighborhood(G)
compute RMCVK(D, G′)

G∗ := arg minG′ RMCVK(D, G′)
If RMCVK(D, G∗) < RMCVK(D, G)

Then G := G∗
Else converged := true

� := LearnParameters(D, G)
Return (G, �)

1 The proposed score and algorithm are based on [17] with changes.
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Algorithmdescription: The RMCV algorithm starts with an initial graph and a training set that is divided into K mutually

exclusive validation sets. For each k ∈ 1, K , the parameters are learned using the effective training set D\DK
k and the error

rate is evaluated using DK
k . The average error rate over the K validation sets DK

k , ∀k ∈ 1, K is the RMCV score (10). The initial

graph and its score are kept as the current graph and score, respectively. Next, the neighborhood of the current graph is

generated by all single edge additions, deletions, and reversals. Since only DAGs are allowed, any cyclic directed graphs in

the neighborhood are excluded [24]. The graph having the lowest RMCV score in the neighborhood is chosen. Its score is

compared to the current score, and the search is halted if the current score is lower than or equal to the score of the chosen

graph. If, however, the chosen graph has a lower score than the current score, it becomes the current graph and the procedure

repeats itself.

Algorithm initialization: The algorithm is not limited to any specific DAG to start from. Here we start from either the

empty graph, or the naive Bayesian classifier (NBC) [25] – a learning-free structure, which is obtained with virtually no

computational effort, and is considered a state of the art classifier [4].

Algorithm termination: During structure evaluation, only the effective training sets D\DK
k , ∀k ∈ 1, K are used for

parameter learning. Yet, once the search for a structure completes, the role of the validation sets is finished and the entire

training setD canbeused for amore reliableparameter learning for this structure, rendering the structure aBN. Thealgorithm

then returns the learned BN defined by (G, �).
Note thatwhen usingMLparameter estimation, fully observed data, and the suggested search, there is no need to reassess

all of the parameters for the different structures during each HC step. Parameters are changed only for nodes whose sets of

parents have been modified. In case of an addition or deletion of an edge, only one node is affected, and in case of a reversal

of an edge, only two nodes are affected. For the same reason, it is beneficial to keep the history of the probability calculations,

using the factorization of (1), for the initial/current DAG.

5. Experiments, results, and analysis

Three experiments were conducted to evaluate RMCV. In Section 5.1, RMCV is compared to risk minimization holdout

(RMHO) [17] – a variant of RMCV. Furthermotivation for using the RMCV score is given in Section 5.2, where several common

scores are compared toRMCVwith respect to classification accuracy. In Section 5.3, a comparison of anRMCV-based classifier

to other state of the art classifiers is presented.

Twenty-two UCI natural datasets [26] were used in Sections 5.1 and 5.3. Their basic characteristics are presented in

Table 1. Continuous featureswere quantizedusing theMLC++ library [27] and instanceswithmissing valueswere eliminated,

similarly to [4] and [6]. The BN implementation was aided by the BNT [28] and SLP [29] toolboxes. Experiments with SVM

and NN were performed using LIBSVM [30] and PRTOOLS [31], respectively.

To reduce the sensitivity to CV data partitioning, ten random permutations were created for each dataset (Sections 5.1

and 5.3). For each permutation, the classifiers were evaluated using a CV5 experiment. The data had been randomly divided

into five complementary subsets, and in each of the five folds of the experiment a fifth of the dataset was used for the test

and the remainder of the dataset for training. During the operation of the RMCV algorithm, the training set was further

divided into four mutually exclusive validation sets needed for computing the RMCV score (K = 4). One should not confuse

Table 1

Characteristics of the studied datasets.

Dataset # Classes # Features # Instances

1 Australian 2 14 690

2 Breast 2 9 683

3 Chess 2 36 3196

4 Cleve 2 11 296

5 Corral 2 6 128

6 Crx 2 15 653

7 Diabetes 2 8 768

8 Flare 8 10 1389

9 Glass 6 9 214

10 Glass2 2 9 163

11 Hayes 3 4 160

12 Heart 2 13 270

13 Hepatitis 2 19 80

14 Iris 3 4 150

15 Letter 26 16 20,000

16 Lymphography 4 18 148

17 Mofn 2 10 1324

18 Pima 2 8 768

19 Shuttle 6 8 5800

20 Tic-Tac-Toe 2 9 958

21 Vehicle 4 18 846

22 Voting 2 16 232
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this CV4,whichwas internal to theRMCValgorithm,with the CV5used for classifier training and evaluation. For eachdataset,

all evaluated algorithms were compared using the same permutations and CV folds of the 10xCV5 experiment.

Following [32], accuracies of all classifiers were compared using the Friedman test, which is a non-parametric test

recommended for comparing several algorithms over multiple datasets. This test was followed by either the Bonferroni–

Dunn post-hoc test, which compares all algorithms with a control algorithm (RMCV in our case), or the Wilcoxon signed-

rank test, which compares pairs of algorithms (RMCV vs. other) over multiple datasets and, for our experimental setting, is

preferred over the parametric t-test.

5.1. Risk minimization holdout

In the first experiment, the RMCV classifier was compared to a classifier based on the RMHO score [17]:

RMHOK(D, G) = K

N

N/K∑
i=1

L

⎛⎝ci, argmax
c∈{c1,...,crC }

P(C = c|D\DK , v′
i, G)

⎞⎠ , (11)

where vi = (ci, v
′
i) is the ith instance ofDK and L(, ) is the 0/1 loss function. The RMHO algorithm [17] is similar to the RMCV

algorithm, but uses (11).

There are two substantial differences between RMCV and RMHO. While the RMHO score is based on a single holdout

experiment, the RMCV score is based on a CV experiment. RMCV uses the training data repeatedly and thus much more

effectively, but RMHO is cheaper computationally. Second is that while the RMCV algorithm uses the same partitioning of

the training data throughout the entire HC search, the RMHO algorithm selects a random DK in each step of the search, and

thereby reduces the score consistency and increases the score variability.

Experiments with both algorithms, where the search starts from either the NBC structure or the empty graph, were

conducted using K = 4 folds in the internal CV (a holdout ratio of 1/4, in the case of RMHO). Also tested was a variant

of the RMHO algorithm, where DK is fixed during the entire HC search (referred to as RMHO-f, ‘f’ for ‘fixed set’). By fixing

the set, this variant copes with the increased variability of RMHO. In a third variant that is proposed, the search procedure

avoids those neighboring graphs that differ from the current graph by a single edge reversal (referred to as RMHO-ar, ‘ar’ for

‘avoids reversals’). In RMHO-ar, DK is fixed as well. By considering only edge additions and deletions and avoiding reversals,

we reduce the size of the graph neighborhood and thereby also the search run-time, but this may undermine classification

accuracy. Results for the comparison of RMCV and the three RMHO variants are presented in Table 2.

Table 2 shows that avoiding edge reversals does not undermine accuracy, as results are almost completely identical for

RMHO-f and RMHO-ar regardless of the initial structure. Thus, we will not address the latter further. A deeper inspection

of the table shows that it is generally advantageous to start the HC search from the NBC structure, but not always. It also

seems that RMHO has a stochastic nature, in comparison to RMHO-f, leading to a few good results, but also a fair number of

failures due to the repeated random selection of the holdout dataset during the search.

Table 2

Mean (std) of classification accuracies for RMCV and three RMHO variants. Bayesian network initial structures appear in heading brackets. Bold/italic fonts are

used, respectively, for the best/worst classifiers for a dataset.

Dataset RMCV RMHO RMHO-f RMHO-ar RMCV RMHO RMHO-f RMHO-ar

(NBC) (NBC) (NBC) (NBC) (empty) (empty) (empty) (empty)

Australian 86.14 (2.3) 86.01 (2.6) 85.65 (2.4) 85.65 (2.4) 85.10 (2.5) 85.33 (2.6) 84.86 (2.9) 84.86 (2.9)

Breast 96.91 (1.4) 96.85 (1.4) 96.79 (1.4) 96.79 (1.4) 96.56 (1.6) 94.79 (2.0) 95.54 (1.8) 95.54 (1.8)

Chess 97.43 (0.8) 92.78 (1.8) 94.93 (1.1) 94.93 (1.1) 94.25 (0.7) 94.01 (1.0) 93.83 (1.4) 93.83 (1.4)

Cleve 81.53 (3.8) 82.53 (3.6) 81.87 (3.4) 81.87 (3.4) 76.73 (5.7) 73.37 (4.9) 74.80 (5.2) 74.80 (5.2)

Corral 99.57 (2.8) 92.50 (8.4) 91.29 (7.2) 91.29 (7.2) 81.86 (12.2) 72.14 (9.6) 74.71 (12.2) 74.71 (12.2)

Crx 85.71 (2.0) 85.67 (2.3) 85.31 (2.6) 85.31 (2.6) 85.71 (2.0) 85.67 (2.3) 85.31 (2.6) 85.31 (2.6)

Diabetes 74.03 (2.6) 73.73 (3.4) 73.73 (3.3) 73.73 (3.3) 74.50 (2.5) 73.64 (2.8) 73.29 (2.8) 73.29 (2.8)

Flare 84.03 (1.9) 81.20 (2.6) 82.57 (2.6) 82.57 (2.6) 84.32 (1.7) 84.32 (1.7) 84.32 (1.7) 84.32 (1.7)

Glass 57.39 (6.4) 57.13 (6.1) 57.43 (7.0) 57.43 (7.0) 56.87 (6.7) 50.35 (6.7) 54.26 (7.3) 54.26 (7.3)

Glass2 75.03 (7.8) 74.97 (7.8) 75.20 (7.7) 75.20 (7.7) 75.03 (7.8) 72.40 (8.2) 73.49 (8.3) 73.49 (8.3)

Hayes 84.75 (5.1) 82.31 (6.5) 82.19 (6.4) 82.19 (6.4) 84.38 (6.1) 64.69 (13.8) 72.56 (12.6) 72.56 (12.6)

Heart 81.52 (4.7) 82.41 (5.1) 81.70 (5.7) 81.70 (5.7) 74.59 (6.2) 72.37 (5.6) 74.00 (6.6) 74.00 (6.6)

Hepatitis 81.75 (9.6) 82.25 (9.6) 81.75 (9.6) 81.75 (9.6) 77.00 (11.2) 77.13 (10.4) 77.63 (11.2) 77.63 (11.2)

Iris 93.73 (3.9) 93.33 (3.9) 93.67 (4.1) 93.67 (4.1) 94.60 (3.2) 95.27 (2.8) 94.93 (3.2) 94.93 (3.2)

Letter 83.40 (0.5) 81.58 (1.1) 82.93 (0.5) 82.93 (0.5) 83.24 (0.7) 79.82 (1.7) 82.40 (0.8) 81.94 (0.8)

Lymphography 79.06 (6.6) 77.81 (6.2) 76.94 (6.7) 76.94 (6.7) 76.13 (7.4) 69.13 (6.8) 70.00 (7.0) 70.00 (7.0)

Mofn 94.77 (5.8) 89.20 (2.7) 90.82 (3.9) 90.82 (3.9) 77.98 (2.3) 77.98 (2.3) 77.98 (2.3) 77.98 (2.3)

Pima 74.71 (3.0) 74.44 (2.9) 74.31 (2.8) 74.31 (2.8) 73.96 (3.3) 71.45 (3.9) 73.32 (3.1) 73.32 (3.1)

Shuttle 99.49 (0.2) 99.41 (0.2) 99.45 (0.2) 99.45 (0.2) 99.61 (0.1) 99.56 (0.2) 99.57 (0.1) 99.57 (0.1)

Tic-Tac-Toe 89.98 (5.9) 73.31 (4.5) 80.75 (7.0) 80.52 (7.0) 79.13 (9.1) 69.00 (3.5) 72.38 (6.7) 72.38 (6.7)

Vehicle 69.51 (3.1) 66.52 (3.7) 68.39 (3.2) 68.39 (3.2) 69.51 (3.8) 64.73 (4.1) 67.24 (3.4) 67.24 (3.4)

Voting 94.71 (2.7) 93.83 (3.5) 93.75 (3.2) 93.75 (3.2) 96.88 (2.1) 96.83 (2.0) 96.92 (1.9) 96.92 (1.9)

Average 84.78 (3.8) 82.72 (4.1) 83.25 (4.2) 83.24 (4.2) 81.72 (4.5) 78.36 (4.5) 79.70 (4.8) 79.68 (4.8)
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Table 3

Statistical significance tests for the accuracies of RMCV, RMHO, and RMHO-f in Table 2.

Algorithm Average rank Post-hoc tests significance values

Bonferroni–Dunn Wilcoxon

The Friedman test for RMCV and RMHO variants

RMCV (NBC) 2.00

RMCV (empty) 3.11 Non-significant 0.007

RMHO-f (NBC) 3.16 Non-significant <0.001

RMHO (NBC) 3.45 0.0496 0.002

RMHO-f (empty) 4.39 <0.001 <0.001

RMHO (empty) 4.89 <0.001 <0.001

The Friedman test statistics

N 22 Chi-square 32.844

Degrees of freedom 5 Significance value <0.001

Table 3 contains results of the Friedman test for the accuracies of RMCV, RMHO, and RMHO-f. The null hypothesis that

all BNCs are the same had been rejected with high confidence, and post-hoc tests were applied to validate which algorithms

are different. RMCV (NBC) is ranked highest according to the Friedman test. Based on the Bonferroni–Dunn post-hoc test

(right part of Table 3) with RMCV (NBC) as the control classifier, RMCV (NBC) is superior to RMHO (NBC/empty) and RMHO-f

(empty)with a significance level of at leastp < 0.05. TheWilcoxon signed-rank test (right part of Table3) is less conservative,

and finds RMCV (NBC) to be superior (with p < 0.01) to all examined classifiers. The Friedman test ranking demonstrates

how starting the HC search from the NBC structure is advantageous over starting from the empty graph.We can also see that

RMCV is ranked before all RMHO variants, regardless of the search initial structure. For these reasons, the RMHO algorithm

had been excluded in Section 5.3 and the experiments were continued with the superior RMCV (NBC) algorithm.

5.2. Between score and accuracy

In this section, we explore the relation between a score used for learning a BNC and that BNC accuracy. We expect from

a ‘good’ score that an improvement in its value for a structure will lead to an improvement in the accuracy of a BNC that

is based on the structure, and that the accuracy corresponding to the best score value achieved during the search will be

the highest possible. To test how ‘good’ a score is, we examined the relation between the score values and the classification

accuracies of all possible DAGs for a problem. However, the number of possible DAGs increases more than exponentially

with the number of variables, n [33]

r(n) =
n∑

i=1

(−1)i+1

(
n

i

)
2i(n−i)r(n − i) = n2

O(n)

. (12)

According to (12), r(2) = 3, r(3) = 25, r(5) =29,281, and this number grows rapidly to r(6) =3,781,503 and r(10) ≈
4.20 · 1018. That is, it is infeasible to consider all DAGs, except in low-dimensional domains.

Therefore, we experimented with three datasets with n = 5 variables (including the class variable). These are the Iris

dataset (Table 1), the UCI Balance dataset, which has 625 instances and three classes, and a synthetic dataset with 10,000

instances generated from the BN shown in Fig. 1. While creating the synthetic dataset, we opted for a structure in which the

Markov blanket [1] of the class node consists of oneparent, one child, and one co-parent of that child (Fig. 1(a)). For simplicity,

all variableswere chosen to be binary. Probabilitieswere chosen almost arbitrarily, avoiding uniformdistributions (Fig. 1(b)).

For the small tomedium Iris and Balance datasets, CV5 experiments were conducted. For the large synthetic dataset, a single

holdout experiment used half of the data for training and the other half for the test. For all three datasets, each of the MDL,

K2, CMDL, CLL (Part I of Table 4), RMHO, RMHO-f (Section 5.1), and RMCV scoreswas evaluated for each of the 29,281 possible

DAGs using the training set, and the DAG accuracy was computed using the training and test sets.

Figs. 2-6 plot the relations between training/test accuracies and score values of all DAGs for each dataset and score

evaluated. Each dot in a figure represents one of the 29,281 possible DAGs. The left side plots in Fig. 2 show for the MDL

score that a better (lower) score value does not necessarily mean a higher training classification accuracy. Generalization

is much more important than the training set performance, and the right side plots show that the most accurate DAGs do

have relatively low MDL score values. However, except for the synthetic dataset, many DAGs with low MDL score values do

not classify accurately (Iris and Balance), and other DAGs having high score values classify quite well (Iris). The synthetic

dataset has several advantages over the other twodatasets since it is noise-free, hasmany instances, and its instances are i.i.d.

These advantages are reflected in the dataset asymptotic behavior. While we do care about asymptotic behavior, real-world

problems usually behave differently (see the Iris and Balance datasets).

Similar phenomena were exhibited with the K2 score (and hence results are not shown), supporting our previous re-

sults [37] that BNCs learned based on K2/MDL are not necessarily accurate. It should be mentioned that the more instances

that exist in a dataset, the more similar are the MDL and (logarithmic) K2 score values (though their signs are opposite),

since MDL is a large sample approximation to the marginal likelihood (K2 score) [3].

A visual comparison between the results for the CMDL score (Fig. 3) and those for the MDL score (Fig. 2) reveals only a

slight difference. Considering Table 4, the difference betweenMDL and CMDL is reflected in the difference between LL (MDL)
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Table 4

Algorithms and classifiers compared to RMCV.

I. Search and score BN algorithms:

MDL [20]

Score:MDL(D, G) = 1
2
Dim(G) log N − LL(G|D) = 1

2
Dim(G) log N − ∑N

i=1 log P(vi), where Dim(G),N, and 1
2
log N are the number of parameters in G, data

sample size, and number of bits used to encode each parameter of G, respectively.
Search algorithm: The algorithm is initialized using either NBC or the empty graph and uses HC search.

K2 [2]

Score: P(D, G) = P(G)
∏n

i=1

∏qi
j=1

(ri−1)!
(Nij+ri−1)!

∏ri
k=1 Nijk!, where n, qi, ri, and Nijk are the numbers of: nodes in G, configurations of the parents of the ith

node, mutual exclusive states of the ith node, and instances in which the ith node is in its kth state and its parents are in their jth configuration in the dataset

D, respectively, and Nij = ∑ri
k=1 Nijk .

Search algorithm: The algorithm is initialized using either NBC or the empty graph and uses HC search (instead of the K2 search).

BNC-MDL [6]

Score: CMDL(G|D) = 1
2
Dim(G) log N − CLL(G|D), where CLL was defined in (3), and Dim(G),N, and 1

2
log N were defined for the MDL score.

Search algorithm: The algorithm is initialized using the empty graph and uses HC search.

BNC-2P [6]

Score: The CLL score is used instead of the CMDL score.
Search algorithm: The algorithm is initialized using the empty graph and is limited to DAGs in which each node has a maximum of two parents.

II. Non-BN classifiers:

Naive Bayesian classifier (NBC) [25], tree augmented NBC (TAN) [4], classification tree (CT) [34] with pruning, multilayer perceptron neural network (NN)
[35], and support vector machine (SVM) [36] with either a linear, polynomial, or Gaussian kernel.

Fig. 1. BN used to generate the synthetic dataset.

and CLL (CMDL). Following the presentation in Section 3, LL comprises CLL plus a term that estimates the joint distribution

of the features. This term dominates CLL for large problems [4]. However, for small problems such as ours (n = 5), this is

not the case and, practically, there is almost no difference between LL and CLL, as is shown in Figs. 2 and 3 (Iris and Balance).

Comparing the plots for CMDL (Fig. 3) and CLL (Fig. 4), we observe differences that are attributed (Table 4) to the penalty

term in CMDL that balances CLL and depends on the number of parameters in the graph. That is, DAGs of the almost 30,000

that create Fig. 3 are penalized differently by CMDL, but not by CLL (Fig. 4). Moreover, the CLL score seems to perform very

well on the training set; however, at the cost of over-fitting (clearly apparent with the Balance dataset, and to a lesser degree

with the Iris dataset). That is, the test classification accuracy starts to decline, although the value of the CLL score keeps

growing. There is no over-fitting of the synthetic dataset due to the previously mentioned asymptotic behavior.

Figs. 5 and 6 show the relations between test set classification accuracies and values of one minus the RMHO/RMHO-f

and RMCV scores, respectively. Since each such score estimates the training classification error rate of a DAG, we may view

oneminus the score as a predictor of the test classification accuracy of the DAG. The advantage of RMCV over RMHO/RMHO-f

is clear from the figures, as the disparity around the y = x line is smaller for RMCV, meaning that RMCV predicts the test

classification accuracy better than RMHO/RMHO-f.

The accuracy predicted by the RMCV/RMHO scores (or by the training set accuracy) can be easily compared to the test

classification accuracy and evaluated using the mean squared error (MSE):

MSE = 1

r(n)

r(n)∑
i=1

e2i , (13)

where ei is the difference between the predicted accuracy due to a score and the test set accuracy of the ith DAG, and r(n)
is the number of possible DAGs (12). Graphically, MSE is relative to the sum of squared distances of the r(5) =29,281 dots
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Fig. 2. Training/test set classification accuracies vs. MDL values for all possible DAGs as obtained using the Iris, Balance, and synthetic datasets. Each dot in the

figure represents results for a DAG (dots may overlap).

(DAGs) in a plot from the y = x line normalized by r(5). Table 5 demonstrates the advantage of RMCV over RMHO and

RMHO-f, with respect to MSE and hence also to prediction accuracy. As demonstrated in Table 5, when there is enough data

(synthetic dataset), using the training set accuracy as well as the score values, as a test accuracy predictor, works. However,

for the small Iris and Balance datasets, the training set accuracy and the values of the RMHO variants err considerably more

than RMCV does, indicating over-fitting of the training set by the formers.
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Fig. 3. Training/test set classification accuracies vs. CMDL values for all possible DAGs as obtained using the Iris, Balance, and synthetic datasets. Each dot in the

figure represents results for a DAG (dots may overlap).

Generally, wewould like to see correspondence between the test accuracy of a classifier, which is learned using a specific

score, and the score value, because this will guarantee that every time we select a structure achieving the highest score

value, this structure would yield the most accurate classifier. By processing the results for the synthetic dataset, we found

that 3766 of the 29,281 legitimate DAGs achieved the highest possible test set accuracy of 82.6%, and that the generating
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Fig. 4. Training/test set classification accuracies vs. CLL values for all possible DAGs as obtained using the Iris, Balance, and synthetic datasets. Each dot in the

figure represents results for a DAG (dots may overlap).

structure (Fig. 1) is included in this group. These and only these DAGs were ranked the highest by RMCV and RMHO-f. This

can visually be seen in well-confined points (each representing 3766 DAGs) in the upper-right corners of the graphs for the

test accuracy on the synthetic dataset of RMHO-f (Fig. 5) and RMCV (Fig. 6). On the other hand, RMHO ranked the highest

only 55 of the 3766 structures that yielded the highest classification accuracy (none of these 55 is the generating structure).

This can be seen visually in the right end (representing 55 DAGs) of a wide line (representing the same 3766 DAGs) in the
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Fig. 5. Test set classification accuracies vs. RMHO/RMHO-f values for all possible DAGs as obtained using the Iris, Balance, and synthetic datasets. Each dot in the

figure represents results for a DAG (dots may overlap).

upper-right corner of the graph for the test accuracy on the synthetic dataset of RMHO (Fig. 5). Therefore, it seems that

RMHO is less suitable for choosing a best candidate within a group of DAGs. We attribute this inferiority of RMHO to the

random selection of a validation set for each DAG. From examination of those highest ranked DAGs, values of the predicted

accuracies using RMCV (83.4%), RMHO (85.3%), and RMHO-f (84.0%) exhibit a higher degree of over-fitting (compared with
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Fig. 6. Training/test set classification accuracies vs. RMCV values for all possible DAGs as obtained using the Iris, Balance, and synthetic datasets. Each dot in the

figure represents results for a DAG (dots may overlap).

82.6%) of the two latter scores. Compared with RMCV and RMHO-f that scored the highest all of the 3766 DAGs with the

highest test accuracy, K2, MDL, CMDL, and CLL scored the highest only 1, 1, 1, and 158, respectively, of the 3766 DAGS having

the highest test accuracy. In addition, all of the DAGs that were ranked the highest by the latter scores belong to the above

mentioned group of 3766 DAGs.
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Table 5

MSE for test accuracy predictors.

Dataset RMCV RMHO RMHO-f Training

Iris 0.15 · 10−2 0.37 · 10−2 0.52 · 10−2 2.46 · 10−2

Balance 8.98 · 10−4 0.12 · 10−2 0.19 · 10−2 15.1 · 10−2

Synthetic 1.56 · 10−4 3.87 · 10−4 3.88 · 10−4 0.57 · 10−4

Table 6

Mean (std) of classification accuracies. Bayesian network initial structures and SVM kernel types appear in heading brackets. Bold/italic fonts are used,

respectively, for the best/worst classifiers for a dataset.

Dataset RMCV (NBC) MDL (NBC) MDL (empty) K2 (NBC) K2 (empty) BNC-MDL BNC-2P

Australian 86.14 (2.3) 86.26 (2.7) 85.72 (2.5) 84.33 (3.1) 83.96 (2.9) 84.77 (2.9) 81.14 (3.3)

Breast 96.91 (1.4) 97.08 (1.6) 96.29 (1.9) 96.71 (1.6) 95.40 (2.4) 91.83 (2.1) 77.12 (7.3)

Chess 97.43 (0.8) 95.64 (1.2) 94.66 (1.2) 94.89 (1.2) 95.40 (1.1) 95.41 (1.2) 93.16 (1.2)

Cleve 81.53 (3.8) 80.27 (4.1) 81.20 (3.9) 79.93 (4.1) 80.47 (4.3) 80.70 (4.2) 79.63 (4.7)

Corral 99.57 (2.8) 99.71 (1.0) 99.86 (0.7) 99.43 (1.8) 100.0 (0.0) 100.0 (0.0) 98.57 (2.9)

Crx 85.71 (2.0) 86.21 (2.6) 86.17 (2.8) 84.21 (2.6) 84.26 (2.7) 85.62 (2.3) 81.80 (3.1)

Diabetes 74.03 (2.6) 73.41 (3.4) 73.94 (3.0) 73.54 (3.1) 73.95 (3.0) 75.60 (2.4) 71.09 (3.8)

Flare 84.03 (1.9) 84.07 (2.0) 84.09 (2.0) 83.95 (1.9) 84.00 (2.0) 84.32 (1.9) 83.08 (1.9)

Glass 57.39 (6.4) 50.30 (6.8) 47.48 (8.3) 51.22 (6.1) 50.13 (7.3) 46.52 (7.8) 56.78 (7.9)

Glass2 75.03 (7.8) 70.97 (9.0) 69.31 (8.8) 71.26 (8.9) 72.29 (8.5) 69.31 (8.8) 70.86 (9.1)

Hayes 84.75 (5.1) 85.69 (5.4) 85.69 (5.4) 85.69 (5.4) 81.56 (12.5) 85.69 (5.4) 66.69 (8.4)

Heart 81.52 (4.7) 81.96 (5.8) 81.07 (5.5) 81.44 (5.2) 81.26 (5.5) 80.52 (4.9) 59.56 (6.6)

Hepatitis 81.75 (9.6) 70.88 (13.2) 71.13 (14.4) 57.00 (15.7) 58.75 (14.6) 74.63 (10.5) 46.50 (13.3)

Iris 93.73 (3.9) 93.20 (4.4) 93.73 (3.7) 93.27 (4.1) 93.33 (3.7) 95.07 (3.4) 94.13 (4.0)

Letter 83.40 (0.5) 74.91 (0.6) 74.56 (0.6) 78.48 (1.5) 78.39 (1.5) 74.51 (0.6) 81.32 (0.5)

Lymphography 79.06 (6.6) 76.00 (7.4) 69.94 (7.6) 72.75 (7.0) 71.06 (7.7) 72.94 (6.8) 61.50 (9.7)

Mofn 94.77 (5.8) 93.50 (2.4) 93.75 (1.9) 95.35 (5.7) 99.43 (2.0) 90.63 (4.4) 92.75 (1.8)

Pima 74.71 (3.0) 72.08 (2.9) 72.08 (2.9) 73.18 (2.9) 73.18 (2.9) 71.94 (3.2) 53.50 (5.2)

Shuttle 99.49 (0.2) 97.99 (2.0) 95.79 (2.1) 99.08 (0.3) 98.91 (0.3) 99.57 (0.2) 99.37 (0.3)

Tic-Tac-Toe 89.98 (5.9) 68.21 (2.8) 68.59 (3.1) 68.64 (2.8) 68.34 (3.0) 72.74 (3.6) 72.45 (3.0)

Vehicle 69.51 (3.1) 62.88 (4.3) 60.25 (4.6) 67.31 (3.9) 64.92 (3.8) 61.92 (4.1) 70.99 (3.3)

Voting 94.71 (2.7) 92.83 (4.5) 94.67 (3.3) 90.04 (5.5) 91.00 (4.7) 96.83 (2.2) 96.71 (2.3)

Average 84.78 (3.8) 81.55 (4.1) 80.91 (4.1) 80.99 (4.3) 80.91 (4.4) 81.41 (3.8) 76.76 (4.7)

TAN NBC CT NN SVM (linear) SVM (polynomial) SVM (Gaussian)

Australian 82.86 (3.1) 85.46 (2.3) 83.96 (2.9) 82.62 (3.8) 85.38 (2.8) 86.35 (3.2) 85.51 (2.8)

Breast 89.65 (2.3) 96.71 (1.5) 95.01 (1.8) 94.75 (2.0) 96.99 (1.5) 95.68 (1.6) 97.05 (1.6)

Chess 92.55 (1.1) 87.59 (1.1) 99.33 (0.3) 99.31 (0.3) 94.77 (0.8) 92.56 (1.0) 93.84 (0.7)

Cleve 80.73 (4.0) 82.87 (3.6) 78.67 (4.4) 76.67 (5.7) 83.50 (3.6) 83.07 (4.0) 83.87 (3.7)

Corral 98.14 (2.9) 87.00 (6.8) 91.07 (5.7) 99.93 (0.5) 87.14 (6.2) 91.79 (6.9) 96.36 (4.0)

Crx 83.89 (2.7) 85.61 (2.3) 83.97 (2.9) 81.14 (3.8) 86.38 (3.0) 86.12 (2.9) 86.38 (3.0)

Diabetes 72.59 (3.3) 73.90 (2.8) 71.77 (2.8) 66.58 (3.9) 75.59 (2.4) 74.60 (3.3) 75.96 (2.7)

Flare 82.22 (2.0) 77.74 (1.9) 82.37 (2.0) 84.25 (1.9) 84.29 (2.0) 84.32 (1.9) 84.32 (1.9)

Glass 56.65 (7.8) 57.61 (6.4) 57.74 (8.4) 56.91 (8.0) 55.78 (6.8) 31.04 (5.6) 50.00 (7.6)

Glass2 74.63 (8.1) 75.09 (7.7) 76.17 (8.0) 76.40 (7.9) 76.00 (7.4) 54.34 (10.2) 69.89 (11.9)

Hayes 72.13 (6.6) 83.50 (5.2) 82.75 (5.2) 76.38 (7.2) 51.56 (9.1) 42.13 (5.5) 51.75 (8.8)

Heart 77.11 (5.0) 83.00 (4.6) 78.07 (5.6) 75.26 (5.6) 84.07 (4.4) 82.48 (4.3) 84.04 (3.8)

Hepatitis 84.25 (10.2) 82.25 (9.2) 84.63 (9.3) 82.00 (10.5) 83.38 (9.5) 83.75 (8.3) 83.75 (8.3)

Iris 94.20 (3.7) 93.20 (4.0) 95.00 (3.5) 94.87 (3.6) 94.73 (3.3) 95.20 (4.6) 94.60 (3.9)

Letter 87.32 (0.5) 74.71 (0.6) 85.60 (0.6) 79.09 (1.9) 82.10 (0.5) 53.73 (1.0) 74.00 (0.6)

Lymphography 77.19 (6.4) 78.56 (6.2) 75.38 (7.6) 80.81 (5.5) 83.81 (5.5) 77.69 (6.7) 81.13 (7.9)

Mofn 93.51 (2.1) 86.29 (2.8) 99.85 (0.6) 99.69 (0.6) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)

Pima 71.51 (3.5) 74.35 (2.9) 72.01 (2.9) 70.13 (3.9) 76.69 (2.5) 67.95 (4.5) 76.28 (2.7)

Shuttle 99.75 (0.1) 98.74 (0.3) 99.63 (0.1) 99.81 (0.1) 98.54 (0.5) 97.05 (0.6) 99.24 (0.2)

Tic-Tac-Toe 76.23 (3.0) 69.96 (3.0) 85.30 (3.0) 95.98 (3.5) 65.42 (2.9) 65.44 (2.9) 67.31 (3.6)

Vehicle 73.85 (3.6) 63.71 (3.5) 70.12 (3.3) 71.42 (3.6) 70.44 (2.6) 61.11 (4.4) 67.79 (3.5)

Voting 94.33 (3.8) 91.92 (3.6) 95.83 (2.8) 94.33 (3.1) 96.79 (2.3) 94.29 (3.3) 96.79 (2.2)

Average 82.51 (3.9) 81.35 (3.7) 83.83 (3.8) 83.56 (4.0) 82.43 (3.6) 77.30 (3.9) 81.81 (3.9)

5.3. Comparing RMCV to other classifiers

In the third experiment, the RMCV classifier was compared to other BNCs and to state of the art machine-learning

classifiers as detailed in Table 4. Table 6 and Fig. 7 compare the RMCV classification accuracy with those of the other tested

algorithms using the twenty-two UCI datasets. Table 6 shows that while RMCV is never the best performing classifier for

a dataset, it is always reasonably good and never fails. On average, over the datasets, RMCV is the most accurate classifier.

Inspection of standard deviations shows that our algorithm is also quite stable in comparison to the others. Each dot in Fig. 7

represents the average accuracies of two algorithms over the same dataset, while the cross size is determined according to
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Fig. 7. Classification accuracies of RMCV compared to those of the competing classifiers. Charts are shown for the MDL and K2 (NBC) initializations and SVM

(linear) kernel that were found most accurate on average in Table 6.

one standard deviation. Points below the y = x line are in favor of the RMCV algorithm. Our algorithm generally outperforms

every other BN algorithm. In those cases where it does not, it mostly ties with the competitor, or loses by a neck. Also, RMCV

seldom falls short relative to CT, NN, or SVM.

Table 7 contains results for the corrected repeated k-fold cross validated paired t-test [38] for RMCV and competing

algorithms. This test was found to have the highest replicability among common paired t-tests [38]. Each entry in the

table results from a pairwise comparison between RMCV and a competing algorithm over a single dataset based on the

classification accuraciesmeasuredusing the 10xCV5 experiment. As can be seen in the table, RMCV significantly outperforms

(with p ≤ 0.05 or p ≤ 0.10) the other algorithms frequently. In those cases where it does not, the differences are mostly

non-significant. It should be noted, however, that final conclusions should be based on the Friedman test that compares all

classifiers over all datasets simultaneously [32].

Table 8 shows results of the Friedman test for the classifier comparison in Table 6. The null hypothesis that accuracies of

all BNCs are the same had been rejected with high confidence, and post-hoc tests were applied to validate which accuracies

are different (Table 8(a)). RMCV is ranked highest according to the Friedman test. Based on the Bonferroni–Dunn post-hoc

test with RMCV as the control classifier, RMCV is superior to all other BNCs with a significance level of p < 0.05, with the

exception of BNC-MDL, for which p < 0.1.
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Table 7

Significance values for RMCV classification accuracy compared with those of the competing algorithms using the corrected repeated k-fold cross validated

paired t-test. Bayesian network initial structures and SVM kernel types appear in heading brackets. A minus sign (-), if present, indicates that RMCV is not

favored over its competitor. Significance values of p ≤ 0.10 appear in bold representing significant advantage of RMCV over the other classifier (unless (-)

appears to indicate the opposite). Wins/losses are of RMCV compared to a competing algorithm with respect to all datasets.

RMCV (NBC) vs. MDL (NBC) MDL (empty) K2 (NBC) K2 (empty) BNC-MDL BNC-2P TAN

Australian -0.914 0.700 0.165 0.095 0.241 0.002 0.009

Breast -0.577 0.523 0.581 0.216 0.000 0.000 0.000

Chess 0.009 0.001 0.001 0.006 0.009 0.000 0.000

Cleve 0.599 0.886 0.445 0.652 0.750 0.444 0.669

Corral -0.932 -0.861 0.886 -0.787 -0.787 0.752 0.450

Crx -0.661 -0.714 0.232 0.261 0.944 0.012 0.162

Diabetes 0.731 0.958 0.728 0.962 -0.201 0.183 0.356

Flare -0.881 -0.839 0.779 0.918 -0.268 0.031 0.003

Glass 0.044 0.031 0.037 0.013 0.014 0.878 0.867

Glass2 0.158 0.078 0.252 0.084 0.078 0.039 0.836

Hayes -0.453 -0.453 -0.453 0.587 -0.453 0.000 0.001

Heart -0.841 0.831 0.975 0.903 0.626 0.000 0.124

Hepatitis 0.056 0.070 0.002 0.003 0.108 0.000 -0.698

Iris 0.689 1.000 0.702 0.739 -0.410 -0.774 -0.740

Letter 0.000 0.000 0.000 0.000 0.000 0.000 -0.000

Lymphography 0.361 0.027 0.071 0.017 0.096 0.001 0.672

Mofn 0.673 0.733 -0.871 -0.193 0.154 0.490 0.676

Pima 0.093 0.093 0.297 0.297 0.117 0.000 0.106

Shuttle 0.149 0.001 0.001 0.000 -0.411 0.255 -0.022

Tic-Tac-Toe 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Vehicle 0.004 0.000 0.260 0.025 0.000 -0.412 -0.036

Voting 0.263 0.975 0.066 0.077 -0.065 -0.118 0.784

Wins (p ≤ 0.05) 22.73% 31.82% 27.27% 36.36% 27.27% 59.09% 27.27%

Losses (p ≤ 0.05) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 13.64%

Wins (p ≤ 0.10) 31.82% 45.45% 36.36% 50.00% 36.36% 59.09% 27.27%

Losses (p ≤ 0.10) 0.00% 0.00% 0.00% 0.00% 4.55% 0.00% 13.64%

NBC CT NN SVM (linear) SVM (polynomial) SVM (Gaussian)

Australian 0.409 0.081 0.064 0.562 -0.855 0.645

Breast 0.581 0.063 0.036 -0.899 0.173 -0.842

Chess 0.000 -0.000 -0.000 0.000 0.000 0.000

Cleve -0.389 0.243 0.107 -0.284 -0.446 -0.210

Corral 0.002 0.013 -0.824 0.000 0.053 0.223

Crx 0.888 0.212 0.009 -0.633 -0.760 -0.633

Diabetes 0.917 0.155 0.000 -0.275 -0.743 -0.207

Flare 0.000 0.016 -0.433 -0.269 -0.268 -0.268

Glass -0.938 -0.935 0.895 0.674 0.000 0.083

Glass2 -0.877 -0.458 -0.490 -0.626 0.000 0.454

Hayes 0.450 0.387 0.020 0.000 0.000 0.000

Heart -0.490 0.244 0.045 -0.282 -0.652 -0.273

Hepatitis -0.853 -0.601 -0.969 -0.790 -0.714 -0.714

Iris 0.689 -0.432 -0.489 -0.528 -0.526 -0.508

Letter 0.000 -0.000 0.000 0.000 0.000 0.000

Lymphography 0.855 0.439 -0.653 -0.246 0.729 -0.679

Mofn 0.002 -0.132 -0.137 -0.119 -0.119 -0.119

Pima 0.708 0.146 0.013 -0.114 0.011 -0.267

Shuttle 0.000 -0.245 -0.018 0.000 0.000 0.030

Tic-Tac-Toe 0.000 0.154 -0.103 0.000 0.000 0.000

Vehicle 0.001 -0.711 -0.376 -0.601 0.000 0.303

Voting 0.068 -0.338 0.809 -0.025 0.765 -0.053

Wins (p ≤ 0.05) 36.36% 9.09% 31.82% 27.27% 40.91% 22.73%

Losses (p ≤ 0.05) 0.00% 9.09% 9.09% 4.55% 0.00% 0.00%

Wins (p ≤ 0.10) 40.91% 18.18% 36.36% 27.27% 45.45% 27.27%

Losses (p ≤ 0.10) 0.00% 9.09% 9.09% 4.55% 0.00% 4.55%

As expected [4–6], MDL (Empty) is ranked relatively low. However, MDL (NBC) is ranked relatively high, demonstrating

the influence of the initial structure on accuracy. BNC-2P is ranked the lowest.We suspect that this is because BNC-2P, which

circumvents over-fitting by limiting the number of possible parents of each node to two, misses the true (data faithful)

underlying network in some of the datasets. Some of our results for BNC-2P and most of our results for TAN and NBC

are consistent with [6]. Factors to the disparity between the studies may be the different test methodologies and dataset
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Table 8

Statistical significance tests for the accuracies in Table 6 for (a) the BNCs and (b) all classifiers.

Algorithm Average rank Post-hoc tests significance values

Bonferroni–Dunn

(a) The Friedman test for BN classifiers

RMCV 2.591

BNC-MDL 4.659 0.0981

MDL (NBC) 4.932 0.0367

NBC 5.000 0.0282

TAN 5.091 0.0197

MDL (empty) 5.341 0.0069

K2 (empty) 5.364 0.0063

K2 (NBC) 5.386 0.0057

BNC-2P 6.636 <0.0001

The Friedman test statistics

N 22 Chi-square 26.424

Degrees of freedom 8 Significance value <0.001

Post-hoc tests significance values

Bonferroni–Dunn Wilcoxon

(b) The Friedman test for all classifiers

RMCV 5.136

SVM (linear) 5.205 Non-significant 0.610

SVM (Gaussian) 5.727 Non-significant 0.570

CT 6.682 Non-significant 0.147

NN 6.932 Non-significant 0.276

BNC-MDL 7.341 Non-significant 0.006

MDL (NBC) 7.841 Non-significant 0.001

TAN 8.068 Non-significant 0.013

NBC 8.182 Non-significant 0.004

SVM (polynomial) 8.205 Non-significant 0.033

MDL (empty) 8.523 0.0944 0.001

K2 (NBC) 8.523 0.0944 <0.001

K2 (empty) 8.545 0.0894 <0.001

BNC-2P 10.091 0.0011 <0.001

The Friedman test statistics

N 22 Chi-square 33.081

Degrees of freedom 13 Significance value 0.002

quantizations. Nevertheless, in most cases where CLL values in both studies were similar the corresponding classification

accuracies were similar too.

Table 8(b) contains results of the Friedman test for all of the classifiers. RMCV is ranked highest according to the Friedman

test. Again, the null hypothesis that all algorithms are the same had been rejected with high confidence and post-hoc tests

were applied to validatewhich algorithms are different. Due to the large number ofmodels compared (fourteen), a relatively

large difference of average ranks is required by the Bonferroni–Dunn test to indicate a significant difference, and RMCV is

found to be significantly superior (with p < 0.1) only to four other classifiers. Two pairs of classifiers (i.e., NBC and TAN

as well as K2 (Empty) and K2 (NBC)) swap places between Table 8(a) and (b). This is simply because each of the tables

represents a somewhat independent Friedman test using different candidates, except of the two classifiers in the pair. Such

a setting may yield different rankings. Besides, there is almost no difference between the rankings of the classifiers in a pair

between the two tables. The less conservativeWilcoxon signed-rank test finds RMCV to be superior (with p < 0.05) to all of

the evaluated BNCs and also to SVM (polynomial). For CT, NN, and SVM (Gaussian/linear), RMCV is not significantly superior

with p ∈ [0.147, 0.610]. This means that RMCV, CT, NN, and SVM (Gaussian/linear) are comparable in terms of classification

accuracy, which may be considered an achievement for RMCV.

Analyses of the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) are commonly

used to evaluate binary classifiers. Table 9 presents mean AUC values for all BNCs evaluated using all two-class datasets. On

average, RMCV outperforms all BNCs. The Friedman test ranked RMCV highest. However, the null hypothesis had not been

rejected, and so the Bonferroni–Dunn post-hoc test was not performed. TheWilcoxon signed-rank test found RMCV in some

favor over all other BNCs, but not significantly (with the exception of BNC-2P, over which RMCV was found significantly

better with p < 0.05). Together with the results of the corrected repeated k-fold cross validated paired t-test (Table 10), we

can conclude that in terms of AUC, RMCV seldom falls short of other BNCs and is frequently better.

5.4. RMCV complexity and run-time

Following the evaluation of RMCV classification accuracy, the complexity and run-time of RMCV are examined. The

maximal number of iterations of the HC search is needed when the initial structure performs the most poorly, i.e., errs for

all N instances, and then is improved by classifying correctly an additional single instance at each iteration, until a perfect
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Table 9

Mean AUC values for all BNCs and all two-class datasets from Table 1. Bayesian network initial structures appear in heading brackets. Bold/italic fonts are used

for the best/worst classifiers for a dataset.

Dataset RMCV (NBC) MDL (NBC) MDL (empty) K2 (NBC) K2 (empty) BNC-MDL BNC-2P TAN NBC

Australian 0.9203 0.9238 0.9253 0.9201 0.9223 0.9085 0.8692 0.8835 0.9168

Breast 0.9807 0.9797 0.9793 0.9773 0.9763 0.9747 0.9669 0.9642 0.9773

Chess 0.9952 0.9907 0.9882 0.9906 0.9916 0.9903 0.9781 0.9819 0.9518

Cleve 0.8954 0.8881 0.8869 0.8866 0.8801 0.8738 0.8669 0.8848 0.9118

Corral 0.9981 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9381

Crx 0.9208 0.9338 0.9312 0.9313 0.9322 0.9197 0.8814 0.9005 0.9163

Diabetes 0.7981 0.7891 0.7859 0.7877 0.7917 0.8056 0.7862 0.7790 0.8048

Glass2 0.7943 0.7280 0.7111 0.7777 0.7934 0.6993 0.7892 0.7811 0.8006

Heart 0.8727 0.9005 0.8916 0.8901 0.8877 0.8887 0.8018 0.8467 0.9042

Hepatitis 0.8163 0.6911 0.7118 0.7033 0.6859 0.7452 0.7314 0.8731 0.8283

Mofn 0.9840 0.9995 0.9988 0.9997 1.0000 0.9997 0.9993 0.9998 1.0000

Pima 0.8209 0.7821 0.7821 0.7977 0.7979 0.7781 0.6993 0.7330 0.8092

Tic-Tac-Toe 0.9580 0.7078 0.7016 0.7054 0.7011 0.7859 0.7695 0.8202 0.7469

Voting 0.9671 0.9685 0.9804 0.9707 0.9749 0.9905 0.9869 0.9877 0.9658

Average 0.9087 0.8773 0.8767 0.8813 0.8811 0.8828 0.8662 0.8883 0.8908

Table 10

Significance values for RMCV AUC values compared with those of the competing algorithms using the corrected repeated k-fold cross validated paired t-test.

A minus sign (-), if present, indicates that RMCV is not favored over its competitor. Significance values of p ≤ 0.10 appear in bold representing significant

advantage of RMCV over the other classifier (unless (-) appears to indicate the opposite). Wins/Losses are of RMCV compared to a competing algorithm with

respect to all datasets.

RMCV (NBC) vs. MDL (NBC) MDL (empty) K2 (NBC) K2 (empty) BNC-MDL BNC-2P TAN NBC

Australian -0.696 -0.594 0.985 -0.840 0.334 0.002 0.010 0.556

Breast 0.745 0.645 0.290 0.213 0.410 0.118 0.009 0.290

Chess 0.083 0.015 0.076 0.073 0.032 0.016 0.000 0.000

Cleve 0.716 0.601 0.646 0.425 0.183 0.144 0.518 -0.290

Corral -0.787 -0.787 -0.787 -0.787 -0.787 -0.787 -0.787 0.010

Crx -0.178 -0.278 -0.227 -0.200 0.926 0.029 0.139 0.496

Diabetes 0.578 0.451 0.538 0.675 -0.593 0.494 0.208 -0.525

Glass2 0.107 0.028 0.466 0.951 0.076 0.755 0.447 -0.469

Heart -0.252 -0.460 -0.466 -0.536 -0.533 0.041 0.360 -0.189

Hepatitis 0.372 0.388 0.355 0.250 0.444 0.372 -0.554 -0.798

Mofn -0.215 -0.226 -0.208 -0.196 -0.207 -0.215 -0.201 -0.196

Pima 0.012 0.012 0.120 0.121 0.010 0.000 0.000 0.183

Tic-Tac-Toe 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Voting -0.922 -0.366 -0.822 -0.584 -0.100 -0.129 -0.115 0.923

Wins (p ≤ 0.05) 14.29% 28.57% 7.14% 7.14% 21.43% 42.86% 35.71% 21.43%

Losses (p ≤ 0.05) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Wins (p ≤ 0.10) 21.43% 28.57% 14.29% 14.29% 35.71% 42.86% 35.71% 21.43%

Losses (p ≤ 0.10) 0.00% 0.00% 0.00% 0.00% 7.14% 0.00% 0.00% 0.00%

RMCV score of 0. In the worst case, the HC search needs to consider n(n − 1) edge additions in each iteration (if starting

from the empty graph) or
∑n−1

i=1 i = n(n−1)
2

edge deletions or reversals. All are of complexity of O(n2). Therefore, this worst

case scenario imposes an upper bound on RMCV complexity of O(N · n2).
However, when using a discriminative score such as RMCV, changes to the current DAG, which do not affect the Markov

blanket of the class variable, have no effect on the score value and therefore can be avoided. For a general graph, it is difficult

to quantize the reduction in complexity due to this factor, but it is prominentwhen starting the search from the empty graph

and only moderate in the first steps when starting the search from NBC. Our experiments (see below) show that avoiding

changes that do not affect the Markov blanket of the class variable contributes to reduction in the run-time.

As previously mentioned (Section 4), the RMCV score (as other discriminative scores) is not decomposable. However,

the combination of ML parameter estimation together with the suggested HC search enables a speed-up by a factor of

approximately n in the run-time. Parameter learning of a neighboring DAG to the current DAG does not require a complete

re-assessment of all parameters. When a neighbor DAG differs from the current DAG by a single edge following deletion or

addition, only one of the DAG nodes has a different set of parameters; whereas when it differs by a single edge reversal, only

two of the DAG nodes have different sets. Following the factorization of the joint probability distribution (1), we can store in

memory and use for each instance and for each possible class only the few parameters needed for updating the calculation

of the RMCV score based on the relevant node(s) and their parents. Since the evaluations apply to only one or two of the n

nodes, a speed-up of the run-time by a factor of approximately n (for edge addition/deletion) or n/2 (for edge reversal) is

obtained by the suggested optimization. Since parameter learning is not in the scope of this work, we refrained from further

optimization of this stage.
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Table 11

Mean (std) of run-times (in seconds) for RMCV and the three RMHO variants. Bayesian network initial structures appear in heading brackets. Note that two

averages are presented: with and without the Letter dataset (see text).

Dataset RMCV (NBC) RMHO (NBC) RMHO-f (NBC) RMHO-ar (NBC)

Australian 9946.50 (2712.83) 1027.34 (389.96) 2136.03 (669.91) 1676.68 (609.69)

Breast 3142.34 (788.27) 510.21 (204.24) 539.31 (227.95) 496.24 (216.11)

Chess 5444149.77 (541897.27) 164791.69 (97797.66) 763328.45 (286418.61) 712681.75 (294780.70)

Cleve 1351.55 (537.61) 206.68 (62.13) 249.26 (103.73) 230.58 (95.52)

Corral 83.74 (21.66) 18.39 (5.80) 19.12 (5.70) 18.78 (5.96)

Crx 25249.94 (6533.89) 3322.63 (1044.42) 8833.84 (2943.41) 7364.66 (2570.07)

Diabetes 1512.45 (556.71) 221.67 (54.87) 350.10 (115.56) 316.63 (102.80)

Flare 18637.47 (2344.38) 2275.29 (972.84) 4041.15 (1019.66) 3766.32 (939.60)

Glass 361.25 (133.70) 74.29 (33.11) 79.27 (30.74) 72.65 (27.83)

Glass2 187.70 (61.59) 47.30 (25.64) 38.44 (13.19) 35.09 (11.85)

Hayes 20.04 (6.12) 7.04 (3.52) 6.68 (2.46) 6.33 (2.16)

Heart 2079.64 (736.39) 293.42 (89.93) 392.93 (140.38) 367.48 (129.01)

Hepatitis 4795.11 (1768.47) 612.37 (287.52) 587.18 (274.67) 564.68 (274.11)

Iris 33.34 (7.77) 6.21 (2.58) 6.78 (2.71) 6.04 (2.36)

Letter 805094.28 (87776.07) 97872.33 (27552.36) 197105.51 (43405.19) 186340.48 (40561.34)

Lymphography 8821.40 (2164.97) 853.61 (208.21) 1476.11 (531.27) 1103.27 (498.97)

Mofn 16589.88 (9063.84) 1789.13 (591.24) 2658.96 (1449.57) 2396.50 (1338.59)

Pima 1123.98 (338.79) 218.79 (75.88) 261.60 (93.96) 240.13 (88.57)

Shuttle 11349.08 (3650.13) 1557.95 (355.56) 1931.30 (650.92) 1760.68 (604.87)

Tic-Tac-Toe 7050.81 (2132.08) 511.33 (248.36) 1246.93 (579.40) 1131.68 (456.79)

Vehicle 111961.08 (23528.03) 7681.05 (2769.41) 21378.49 (4439.96) 20142.26 (4205.08)

Voting 7615.42 (2208.35) 1099.31 (325.97) 1066.50 (359.34) 1002.31 (331.59)

Average 294598.04 (31316.77) 12954.45 (6050.05) 45806.09 (15612.65) 42805.51 (15811.53)

Excluding Letter 270288.69 (28628.23) 8910.75 (5026.14) 38601.35 (14289.20) 35970.51 (14632.96)

RMCV (empty) RMHO (empty) RMHO-f (empty) RMHO-ar (empty)

Australian 4895.87 (4382.60) 796.11 (336.42) 1027.80 (794.76) 855.83 (602.36)

Breast 3683.64 (707.21) 566.28 (172.33) 651.87 (126.98) 647.28 (126.87)

Chess 408920.01 (110659.53) 91445.65 (17168.82) 102272.67 (17067.51) 103254.38 (21616.94)

Cleve 1266.94 (650.58) 142.25 (48.34) 192.78 (99.35) 190.92 (99.07)

Corral 71.01 (45.61) 14.67 (6.86) 18.49 (10.87) 17.80 (9.31)

Crx 11016.94 (6112.15) 1785.69 (772.13) 2255.61 (1800.92) 2112.53 (1633.03)

Diabetes 1294.88 (349.32) 208.44 (92.89) 329.51 (120.99) 320.35 (115.84)

Flare 2175.73 (140.09) 556.49 (27.91) 573.60 (31.34) 579.24 (38.24)

Glass 542.21 (84.61) 77.52 (25.49) 107.48 (25.90) 106.00 (25.50)

Glass2 233.02 (31.18) 59.01 (16.07) 59.10 (7.90) 58.78 (7.61)

Hayes 42.16 (9.53) 8.29 (3.41) 12.44 (3.86) 11.98 (2.90)

Heart 1672.84 (830.14) 206.94 (79.34) 331.57 (137.72) 328.79 (132.84)

Hepatitis 2659.63 (832.38) 455.62 (189.27) 504.08 (215.38) 507.25 (207.02)

Iris 18.49 (3.20) 5.68 (1.38) 5.96 (1.07) 5.92 (0.96)

Letter 922519.85 (89425.91) 129311.40 (28266.37) 215100.29 (39077.66) 207979.07 (35388.85)

Lymphography 5144.18 (1410.12) 688.84 (263.46) 940.22 (245.92) 965.24 (262.35)

Mofn 2037.54 (105.37) 528.01 (28.48) 549.99 (24.16) 550.66 (24.20)

Pima 1306.10 (325.23) 207.51 (75.37) 325.64 (110.92) 317.40 (104.20)

Shuttle 6373.11 (1072.70) 1820.50 (416.51) 1666.66 (304.19) 1680.92 (296.05)

Tic-Tac-Toe 3521.21 (2827.62) 276.23 (125.56) 639.12 (599.37) 625.99 (602.88)

Vehicle 68690.84 (15797.94) 5933.07 (1866.99) 14382.61 (8226.40) 14392.50 (8300.24)

Voting 2803.47 (262.56) 889.74 (204.90) 732.24 (56.97) 724.98 (88.34)

Average 65949.53 (10730.25) 10726.54 (2281.29) 15576.35 (3140.46) 15283.36 (3167.53)

Excluding Letter 25160.47 (6982.84) 5079.65 (1043.90) 6075.21 (1429.16) 6107.37 (1633.18)

Table11 shows the run-times (in seconds) for theexperimentsof Section5.1. The run-timeswereobtainedusinga straight-

forward implementation of the algorithms, as presented in Sections 4 and 5.1, without the above special optimizations. It

is clear from the table that all RMHO variants have comparable run-times. RMHO is usually faster than RMCV, though this

virtue is diminished considering the inferior accuracy of the former (Table 2). RMHO-f and RMHO-ar have quite similar

run-times when starting from the empty graph. This is clear because RMHO-ar is RMHO-f that avoids edge reversal, and the

initial empty graph and its neighbor graphs have few edges, if any, to reverse. When starting from NBC, RMHO-ar has an

average advantage of seven percent over RMHO-f. Since RMHO-ar and RMHO-f have equal classification accuracies (Table 2),

RMHO-ar may be considered a viable alternative to RMHO-f, although the gain is minimal. RMCV usually takes about four

and six times longer to complete for the empty graph and NBC, respectively, compared to RMHO-f. This is expected, since

the RMCV score with K = 4 should take four (K) times longer to compute than the RMHO score. While this is the main

contributing factor for the differences, we should remember that the search paths are likely to be different, varying the

run-times even further.

Tables 12 and 13 present, respectively, the run-times (in seconds) for the experiments comparing RMCV to BN and

non-BN classifiers in Section 5.3. We excluded the (structure) learning-free NBC. RMCV (NBC), BNC-MDL, and BNC-2P all
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Table 12

Mean (std) of run-times (in seconds) for learning BNCs. Bayesian network initial structures appear in heading brackets. Note that two averages are presented:

with and without the Letter dataset (see text).

Dataset RMCV (NBC) RMCV (NBC) RMCV (NBC) MDL (NBC) MDL (empty)

optimized speedup

Australian 9946.50 (2712.83) 63.01 (13.36) x157.84 389.91 (47.32) 330.09 (71.98)

Breast 3142.34 (788.27) 25.86 (7.74) x121.49 24.99 (4.29) 52.28 (6.92)

Chess 5444150 (541897) 41152 (7548) x132.29 245292 (32997) 157168 (15679)

Cleve 1351.55 (537.61) 9.63 (3.37) x140.28 89.03 (17.26) 87.34 (9.84)

Corral 83.74 (21.66) 1.09 (0.20) x76.75 7.60 (1.26) 8.59 (1.37)

Crx 25249.94 (6533.89) 70.54 (23.14) x357.94 493.81 (57.61) 386.42 (78.53)

Diabetes 1512.45 (556.71) 18.96 (6.04) x79.78 47.04 (6.14) 35.63 (4.91)

Flare 18637.47 (2344.38) 886.89 (182.15) x21.01 302.03 (31.31) 149.78 (25.86)

Glass 361.25 (133.70) 10.49 (3.11) x34.43 37.21 (5.66) 25.69 (4.80)

Glass2 187.70 (61.59) 2.08 (0.56) x90.12 43.80 (5.60) 18.87 (3.68)

Hayes 20.04 (6.12) 0.61 (0.23) x33.09 1.93 (0.25) 2.19 (0.21)

Heart 2079.64 (736.39) 13.58 (4.89) x153.19 103.36 (12.89) 112.88 (20.50)

Hepatitis 4795.11 (1768.47) 13.87 (2.72) x345.61 722.92 (118.08) 402.04 (73.05)

Iris 33.34 (7.77) 0.65 (0.11) x51.63 1.30 (0.10) 2.13 (0.19)

Letter 805094 (87776) 1601337 (142266) x0.50 11580 (2129) 16048 (3459)

Lymphography 8821.40 (2164.97) 71.61 (16.52) x123.19 678.62 (106.24) 423.85 (59.26)

Mofn 16589.88 (9063.84) 238.27 (153.79) x69.63 117.31 (19.30) 107.60 (22.66)

Pima 1123.98 (338.79) 13.05 (3.43) x86.13 37.93 (5.93) 14.73 (2.91)

Shuttle 11349.08 (3650.13) 3643.50 (874.28) x3.11 459.42 (77.70) 265.45 (42.00)

Tic-Tac-Toe 7050.81 (2132.08) 219.32 (50.79) x32.15 129.70 (18.89) 73.28 (16.33)

Vehicle 111961.08 (23528.03) 1506.07 (286.77) x74.34 1576.41 (199.83) 1066.57 (147.96)

Voting 7615.42 (2208.35) 36.46 (8.02) x208.89 525.80 (76.20) 459.66 (70.22)

Average 294598.04 (31316.77) 74969.74 (6884.30) x108.79 11939.18 (1633.53) 8056.42 (900.08)

Excluding Letter 270288.69 (28628.23) 2285.60 (437.56) x113.95 11956.27 (1609.93) 7675.85 (778.21)

K2 (NBC) K2 (empty) BNC-MDL BNC-2P TAN

Australian 303.31 (45.64) 237.19 (51.47) 10668.87 (2003.44) 29140.34 (3597.51) 0.283 (0.066)

Breast 15.58 (3.13) 44.87 (10.79) 1485.20 (89.11) 7196.08 (2115.00) 0.289 (0.054)

Chess 236275 (43496) 159317 (34397) 1521928 (84560) 2601383 (186435) 2.472 (1.003)

Cleve 67.74 (12.49) 73.28 (13.16) 812.91 (126.17) 2070.97 (279.92) 0.307 (0.062)

Corral 6.13 (0.86) 6.95 (1.38) 408.24 (49.37) 409.64 (44.59) 0.073 (0.022)

Crx 377.43 (55.03) 306.94 (70.27) 25861.71 (6118.18) 57251.00 (10724.86) 0.462 (0.171)

Diabetes 31.96 (6.93) 27.44 (9.00) 753.95 (95.47) 1615.35 (436.58) 0.122 (0.030)

Flare 195.79 (24.75) 98.98 (21.99) 3485.26 (993.18) 20304.80 (4036.85) 0.735 (0.361)

Glass 38.47 (5.94) 29.23 (6.66) 190.46 (154.20) 777.05 (105.18) 0.203 (0.009)

Glass2 48.85 (5.64) 30.64 (7.05) 333.53 (215.07) 428.71 (123.25) 0.078 (0.005)

Hayes 1.64 (0.18) 1.95 (0.28) 83.39 (7.03) 129.56 (15.21) 0.031 (0.000)

Heart 95.68 (12.81) 84.38 (20.21) 1109.96 (218.01) 3436.49 (391.74) 0.252 (0.089)

Hepatitis 571.39 (167.86) 424.22 (123.69) 2425.09 (872.23) 17343.70 (2217.24) 0.355 (0.009)

Iris 1.82 (0.55) 2.35 (0.48) 29.92 (0.71) 79.40 (16.79) 0.020 (0.007)

Letter 11473 (2920) 10031 (3442) 757483 (23920) 980736 (22116) 17.602 (7.591)

Lymphography 436.14 (135.75) 425.01 (105.11) 3267.80 (1083.41) 18197.64 (1669.18) 0.834 (0.582)

Mofn 84.76 (24.71) 69.41 (17.92) 19276.07 (6522.23) 31542.38 (10030.43) 0.183 (0.081)

Pima 27.48 (3.58) 13.28 (7.67) 358.82 (20.32) 1767.86 (280.48) 0.336 (0.101)

Shuttle 242.61 (47.86) 243.69 (39.19) 10977.94 (820.25) 40287.55 (4037.44) 0.386 (0.143)

Tic-Tac-Toe 64.82 (20.88) 41.15 (10.73) 7111.94 (746.97) 11472.25 (1937.70) 0.144 (0.049)

Vehicle 977.40 (261.28) 923.64 (211.46) 29935.43 (3521.87) 85936.72 (11026.17) 1.145 (0.471)

Voting 428.39 (113.26) 380.87 (94.11) 4245.16 (730.24) 11049.81 (2739.72) 0.220 (0.006)

Average 11443.88 (2152.96) 7855.17 (1757.32) 109192.40 (6039.44) 178298.02 (12017.10) 1.206 (0.496)

Excluding Letter 11442.51 (2116.41) 7751.54 (1677.11) 78321.41 (5187.97) 140086.70 (11536.21) 0.425 (0.158)

use discriminative scores and have run-times of the same orders, which are longer than those of the classifiers that use

generative scores or TAN (Table 12). While RMCV (NBC) may train O(K · n2) BNCs within each HC step, BNC-MDL may train

O(n2) BNCs. Yet, each RMCV classifier uses only (K − 1)/K of the instances for training, whereas BNC-MDL needs them all.

Note however that both scores are evaluated using the same number of instances (N). Table 12 also shows that although

BNC-2P defines a smaller neighborhood than BNC-MDL, BNC-2P run-time is longer than that of BNC-MDL. This is because

BNC-2P lacks a regularization term in the CLL score that can penalize complex graphs.

The generative score-based BNCs in Table 12, MDL and K2, have similar run-times depending on the initial structure. This

is reasonable, as they all use the same HC search together with a decomposable score. Decomposition gives the generative

models a clear advantage over the discriminative models with respect to run-time. The optimized version of RMCV (second

column of Table 12) was implemented according to the speed-up presented above. This speed-up contributed to run-time

reduction of approximately n. Avoidance of changes not affecting the Markov blanket of the class variable and further

improvements to the implementation added another reduction in the run-time in an order of magnitude, as reflected in



268 R. Kelner, B. Lerner / International Journal of Approximate Reasoning 53 (2012) 248–272

Table 13

Mean (std) of run-times (in seconds) for RMCV and non-BN classifiers. Bayesian network initial structures and SVM kernel types appear in heading brackets.

Note that two averages are presented: with and without the Letter dataset (see text).

Dataset RMCV (NBC) optimized CT NN SVM (linear) SVM (polynomial) SVM (Gaussian)

Australian 63.01 (13.36) 0.133 (0.0065) 78.81 (15.14) 0.0362 (0.0087) 0.0213 (0.0074) 0.0200 (0.0072)

Breast 25.86 (7.74) 0.054 (0.0485) 12.70 (2.83) 0.0025 (0.0057) 0.0040 (0.0069) 0.0040 (0.0069)

Chess 41152 (7548) 0.282 (0.0141) 4523.96 (3316.11) 0.2508 (0.1181) 0.8164 (0.3556) 0.4824 (0.0113)

Cleve 9.63 (3.37) 0.058 (0.0041) 16.10 (3.82) 0.0093 (0.0077) 0.0075 (0.0085) 0.0044 (0.0071)

Corral 1.09 (0.20) 0.018 (0.0024) 2.88 (0.74) 0.0016 (0.0047) 0.0013 (0.0044) 0.0012 (0.0043)

Crx 70.54 (23.14) 0.128 (0.0070) 62.18 (6.66) 0.0165 (0.0048) 0.0156 (0.0045) 0.0202 (0.0072)

Diabetes 18.96 (6.04) 0.143 (0.0060) 28.73 (11.33) 0.0175 (0.0051) 0.0179 (0.0054) 0.0375 (0.0317)

Flare 886.89 (182.15) 0.180 (0.0071) 240.24 (46.22) 0.0293 (0.0061) 0.1002 (0.0446) 0.0880 (0.0088)

Glass 10.49 (3.11) 0.029 (0.0025) 30.30 (21.49) 0.0018 (0.0050) 0.0019 (0.0051) 0.0031 (0.0063)

Glass2 2.08 (0.56) 0.018 (0.0017) 5.14 (1.54) 0.0006 (0.0031) 0.0006 (0.0031) 0.0012 (0.0043)

Hayes 0.61 (0.23) 0.022 (0.0019) 17.79 (5.35) 0.0012 (0.0042) 0.0015 (0.0047) 0.0019 (0.0053)

Heart 13.58 (4.89) 0.065 (0.0085) 10.98 (2.56) 0.0022 (0.0055) 0.0022 (0.0055) 0.0040 (0.0069)

Hepatitis 13.87 (2.72) 0.026 (0.0038) 6.64 (3.20) 0.0003 (0.0023) 0.0006 (0.0030) 0.0006 (0.0031)

Iris 0.65 (0.11) 0.012 (0.0013) 10.80 (2.99) 0.0003 (0.0023) 0.0013 (0.0044) 0.0003 (0.0023)

Letter 1601337 (142266) 6.238 (1.0785) 5126.70 (408.53) 15.624 (7.9495) 53.072 (25.049) 30.442 (11.972)

Lymphography 71.61 (16.52) 0.057 (0.0488) 87.32 (22.38) 0.0035 (0.0073) 0.0012 (0.0043) 0.0050 (0.0107)

Mofn 238.27 (153.79) 0.087 (0.0013) 11.63 (1.72) 0.0090 (0.0077) 0.0371 (0.0076) 0.1176 (0.0084)

Pima 13.05 (3.43) 0.169 (0.0186) 39.29 (5.07) 0.0137 (0.0051) 0.0166 (0.0039) 0.0281 (0.0063)

Shuttle 3643.50 (874.28) 0.094 (0.0087) 542.81 (81.49) 0.2477 (0.1146) 0.2602 (0.0531) 0.3383 (0.0271)

Tic-Tac-Toe 219.32 (50.79) 0.125 (0.0098) 56.64 (4.40) 0.1030 (0.0126) 0.0502 (0.0067) 0.0999 (0.0164)

Vehicle 1506.07 (286.77) 0.256 (0.0120) 183.35 (35.04) 0.0468 (0.0113) 0.0582 (0.0084) 0.0639 (0.0048)

Voting 36.46 (8.02) 0.026 (0.0031) 5.13 (2.45) 0.0053 (0.0074) 0.0024 (0.0057) 0.0031 (0.0063)

Average 74969.74 (6884.30) 0.374 (0.0589) 504.55 (181.87) 0.7465 (0.3772) 2.4768 (1.1637) 1.4440 (0.5529)

Excluding Letter 2285.60 (437.56) 0.094 (0.0104) 284.45 (171.07) 0.0381 (0.0166) 0.0675 (0.0263) 0.0631 (0.0092)

Table 12 (third column). Overall, the results indicate that the optimized RMCV competes well with all BNCs expect TAN, but

TAN is a restricted BNC yielding accuracy that is inferior to that of RMCV (Table 8(a)).

It is very encouraging to see that RMCV can challenge NN (Table 13) (at least when considering run-times excluding the

Letter dataset). Yet, RMCV loses to CT and SVM. Note, however, that the SVM implementation uses the C++ based LIBSVM

package [30], rendering the comparison with the other MATLAB (interpreter based) implementations unfair.

Note that Tables 11–13 present two averages: with and without the Letter dataset. The Letter dataset, having 26 classes,

16 features, and 20,000 instances, poses difficulties to all classifiers and especially to the BNCs that compute a discriminative

score (BNC-MDL, BNC-2P, and RMCV/RMHO). The run-time was affected not only from passing over the large number of

instances, but also from keeping several very large matrices in memory, leading to inefficient and thus time-consuming use

of memory. This significantly affected the optimized version of RMCV, which is more sensitive to memory-intensive tasks

than its unoptimized counterpart and the other BNCs, as is reflected in Table 12. However, we also note that the average

run-time of all classifiers in Table 13, except the neural network, is increased by about an order or two of magnitude when

taking into consideration the Letter dataset.

6. Related work

In recent years, learning a BNC has been studied intensively (for up-to-date reviews see [7–10]). Some studies focus on

learning restricted DAGs, usually NBC-based (e.g., TAN), that implement classification primarily through the positioning of

the class variable as a parent of all DAG nodes, regardless of the learned structure and learning algorithm [4,39,40]. Keogh

and Pazzani [39] extend NBC to TAN by learning edges between non-class nodes that increase the classification accuracy,

instead of the conditional mutual information as in the original TAN [4]. Cheng and Greiner [40] compare NBC and TANwith

the unrestricted general BN, for which the structure is learned using node ordering and based on a spanning tree. Sierra

and Larranaga [41] search structures within a space created using a genetic algorithm allowing, in the first case, a crossover

between BNs and a mutation of a BN or that, in the second case, is restricted to structures based only on Markov blankets

(MBs) of the class variable. The selected structure, in the first case, is the onemaximizing the K2metric [2], and, in the second

case, the one that maximizes the classification error (empirical risk under the 0/1 loss). Classifiers are learned for predicting

the survival time of individuals diagnosed with malignant skin melanoma. Ling and Zhang [42] suggest learning a TAN that

maximizes AUC rather than the classification accuracy. They consecutively add to NBC edges between a SuperParent [39]

and its favorite child – each (separately) increases AUC the most – and keep adding such edges, as long as the AUC value

of the derived BNC is improved. Ling and Zhang have found that BNCs learned according to this scheme provide both high

AUC values and high classification accuracies. Recently, Pernkopf and Bilmes [10] considered the classification error as the

ideal criterion for discriminative structure learning, assuming sufficient training data. Kontkanen et al. [5], Grossman and

Domingos [6], and Guo and Greiner [7] drew a similar conclusion. However, for computational reasons, Pernkopf and Bilmes

limit the use of this measure to learning only k-tree structures. These tree-restricted structures are also required to have

edges pointing from the class node to each of the structure nodes and not vice versa (similar, e.g., to TAN). To further reduce
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computational complexity, Pernkopf and Bilmes suggest several heuristicmethods based on conditionalmutual information

and/or the classification error to order the variables (parents first) and select node parents according to this order. Results

show an advantage of discriminative structure learning over generative learning.

While TAN-based classifiers relax some of the strong conditional independency assumptions of NBC, they are still re-

stricted BNCs. Other restrictions to NBC that facilitate possible curse-of-dimensionality and improve the classifier accuracy

are imposed through mechanisms of feature selection that let only variables that increase accuracy to be connected to the

class variable (e.g., [11,43–46]). For example, in [44] a subset of the features is selected using topological orders based on

conditional independence (CI) tests of increasing orders to maximize the amount of information provided by the structure.

Some studies that concern unrestricted DAGs concentrate on developing discriminative methods for parameter learn-

ing [9,47], comparing methods of discriminative and generative parameter learning [7,16], or comparing unrestricted,

generatively-learned BNCs with restricted BNCs [48]. For example, Madden [48] finds that unrestricted BNCs learned using

likelihood-based (MDL and BDeu) scores and careful parameter learning are comparable to TAN, and thus wonders why use

unrestricted BNCs at all. He provides three reasons for that. First is the advantage of using an unrestricted BNC that models

the whole distribution, demonstrates all node connections, and isolates variables that do not contribute to classification

(as they are outside the class node MB). Second is the greater representational power of unrestricted BNCs over restricted

classifiers (such as TAN). Third is the complexity of unrestricted BNCs that frequently is less than that of BNCs that are

restricted to a fixed number of edges (e.g., between the class node and any non-class node of TAN), where some of these

edges are quite often unnecessary.

Studies that are more relevant to our research are in discriminative (supervised) structure learning of the unrestricted

BNC,where the class variable is in the focus of the criterion for learning the structure. Kontkanen et al. [5] – one of the pioneer

studies in thefield – demonstrates experimentally the advantage of supervised learningmethods over unsupervised learning

methods in learningaBNC.Theauthorsmakeadistinctionbetween the logarithmic loss function, commonlyused in structure

learning, and the 0/1 loss function that is more appropriate for optimizing a BNC. They also suggest using CV to estimate

the criterion employed during learning and point to the connection between CV and an approximation of the factorization

of the supervised (marginal) likelihood. Bilmes [49] introduces the explaining away residual discriminative measure for

learning a dynamic BN for speech recognition. Grossman andDomingos [6] start from the empty structure, use an HC search,

and learn a BNC using a CLL-based criterion that is either penalized using the MDL principle or balanced by a restriction

of no more than two parents for a node (Table 4). Pernkopf and Bilmes [16] empirically compare both discriminative and

generative parameter learning on both discriminatively and generatively structured BNCs. They found that discriminative

structure learning of NBC, TAN, and the Bayesian multinet by optimizing the classification error produces the most accurate

classifiers on almost half of the 25 datasets they examined.

Guo and Greiner [7] suggest different criteria for structure learning of unresticted BNCs and experimentally compare

them for different complexities of the class variable MB. Using mainly synthetic data, Guo and Greiner compare (see Table 4

for a reference) likelihood-based criteria, such as MDL and a variant of the K2 metric called BDeu [12], class-conditional

likelihood-based criteria, such as CLL and CMDL, a bias-variance (BV) criterion that is the expected mean-square-error of

the classifier, and the classification error (CE). Although CE was found to be one of the best discriminative learning criteria,

the authors recommend using BV for discriminative structure learning due to its superior performance. We note that no

search algorithm is proposed to accompany CE and thereby to turn it into a structure learning concept/algorithm. Second,

the CE score is evaluated in some synthetic scenarios (e.g., after modifying the true graph) that may represent a naive search

procedure but not a real scenario or a real structure-learning task. Third, no classifier based on the CE score is either evaluated

in real classification problems (but only on synthetic networks ormodifications of the ALARMnetwork) or compared to other

BNandnon-BNclassifiers. Finally, the correspondence betweenCE and the true classification accuracy (error) – and therefore

the contribution of CE to finding accurate BNCs – is not checked.

Pernkopf [18] comparesmethods of learning restricted or unrestricted BNCs to the k-nearest neighbor classifier following

a preliminary feature selection. He found that both paradigms are comparable. One of Pernkopf’s suggested methods – the

selective unrestricted BN using classical floating search (CFS-SUN) – is the algorithm most similar to our (independently-

developed) RMCV algorithm. CFS-SUN starts from the empty initial graph, and iteratively includes and excludes candidate

variables to be connected to the structure based on a feature selection stage, as long as the BNC accuracy increases. Instead

of focusing on a classification-based criterion for searching for a structure in a space of augmented DAGs (usually augmented

NBC) or in the space of unrestrictedDAGs, Acid et al. [8] focus on searching a structure in the space of partially directed acyclic

graphs, even using the standard generative criteria (e.g., BDeu). The results in [8] demonstrate that attempts to improve the

BNC accuracy should not necessarily concentrate only on finding discriminative scores, but should also exploremore focused

search spaces for the classifier using dedicated search procedures.

Other BNCs that have been investigated recently include multi-dimensional BNCs (MBCs) and Bayesian multinets. An

MBC structure is partitioned to a class sub-graph (having a node representing each class), variable sub-graph, and a bridge

(between class nodes and variables) sub-graph [50]. Borchani et al. [51] suggest an algorithm for learning each of the

sub-graphs based on a wrapper greedy forward selection approach. A Bayesian multinet classifier is composed of a set of

local BNs. Each local network represents a different class using a different set of independences [52]. By computing the joint

probabilities of the local networks and the a priori probability of the class variable, and byusing Bayes’ theorem, classification

of a test instance is made to the class that maximizes the class posterior probability. Learning a local network is based on
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maximization of the network log-likelihood [4,53], minimization of the corresponding Kullback–Leibler (KL) divergence

[54], maximization of the network (class) posterior probability [49], or maximization of the classification error [55].

7. Conclusions and discussion

We have proposed several scores that minimize risk based on the 0/1 loss function for learning BNCs; the RMCV score

uses cross validation, whereas the RMHO score uses holdout. Evaluation using a holdout of 1/K of the data provides an

inferior estimation of the generalization error relative to the K-fold (CV) estimation for small K values [56]. Thus, we are not

surprised to find that RMCV generalizes better than RMHO and achieves greater classification accuracies, though RMHO cuts

the run-time. RMHO-f improves accuracy estimation compared with RMHO, and RMHO-ar improves run-time compared

with RMHO-f. Both variants are inferior to RMCV, with respect to accuracy, and comparable to RMCV, with respect to run-

time, after the optimization of the implementation.

The RMCV classifier outperformed many other BNCs. The advantage of RMCV, when initialized using NBC, over NBC, can

be explained by the fact that the RMCV algorithm starts from NBC and tries to modify it as long as its accuracy is improved.

BNCs learned using the MDL or K2 scores exhibited inferior results to an RMCV-based BNC, since a structure achieving a

better value of these scores is not necessarily a more accurate classifier. Even the classification-oriented scores, CMDL and

CLL, were not as accurate as the RMCV score in predicting themost accurate classifier. Our experiments also showed that the

generalization ability of these scores is limited when only a small number of instances is available. This is in contrast to the

RMCV score, which generalized very well, even when the dataset was small. RMCV is also advantageous to BNC-MDL/2P in

terms of classification accuracy, but in terms of run-time and complexity the three are roughly the same (although BNC-2P

defines a smaller neighborhood).

Amethod to improve the run-time of BNC-2P by roughly two orders ofmagnitude [57] can be applied (at least partially) to

RMCV. One can further improve RMCV run-time by reducing the searched neighborhood to the class variableMB, as changes

that do not affect MB have no effect on the RMCV score (and classification accuracy) when learning with fully observed data.

If, however, the data is incomplete as it may happen in real-world applications, the suggested improvement is inappropriate.

Alternatively, we can search the space of partially directed acyclic graphs, which is smaller than that of DAGs [8].

Accuracies of the RMCV classifier and non-BN classifiers, such as CT, NN, and SVM, were roughly the same. This is

encouraging, since the last three are state of the art classifiers and BN is not a priori considered an accurate classifier. While

the run-time of training an RMCV classifier is longer than those of the non-BN classifiers, RMCV naturally provides in the

Markov blanket of the class variable a simple mechanism of feature selection for finding the variables that explain the class

variable the best. In addition, the learned BN structure can provide qualitative information about dependence, conditional

independence, and causality relations in the domain for the benefit of the human user, beyond what the other non-BN

models can provide. Whether or not all relations exhibited in a BN learned using a classification-oriented score are justified

may be a subject of future research, as there is a reason to believe that the BN structure should exhibit correctness, at least in

the vicinity of the class node (i.e., its MB). Other directions of future research aremodifications of the RMCV score to account

for classification errors using different losses or using discriminative parameter learning, and the use of more advanced

search methods.

8. Summary

Likelihood-based (unsupervised) scores, such as MDL and K2, and structure learning algorithms that model the relations

between variables without giving precedence to the class variable, often produce BNCs that are less accurate than optimal.

Other algorithms that do consider the class variable attempt to estimate the class-conditional likelihood (supervised) score,

for which exact computation is infeasible. Moreover, this attempt does not necessarily comply with expert predictions that

are available in supervised learning.

In this work, a score called RMCV and an algorithm based on this score were suggested for learning accurate unrestricted

BNCs. The score is based on risk minimization of the 0/1 loss function using cross validation, and thus is classification-

oriented. Discriminative scores for learning a BNC, including the classification accuracy, increase the computational cost

of learning, and thus the implementation of RMCV structure and parameter learning has been optimized. Our empirical

evaluation using twenty-two classification problems usually demonstrated superiority of the proposed score and algorithm,

with respect to accuracy and run-time, over other scores and algorithms. Thus, we believe that RMCV is a viable tool for

learning accurate unrestricted BNCs and worthy of a place among other state of the art machine-learning classification

algorithms.
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