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Abstract

Let V = {1, 2, . . . , n}. A mapping p : V → Rr , where p1, . . . , pn are not contained in a proper hyper-plane is called an
r-configuration. Let G= (V , E) be a simple connected graph on n vertices. Then an r-configuration p together with graph G, where
adjacent vertices of G are constrained to stay the same distance apart, is called a bar-and-joint framework (or a framework) in Rr ,
and is denoted by G(p). In this paper we introduce the notion of dimensional rigidity of frameworks, and we study the problem of
determining whether or not a given G(p) is dimensionally rigid. A given framework G(p) in Rr is said to be dimensionally rigid
iff there does not exist a framework G(q) in Rs for s �r + 1, such that ‖qi − qj‖2 = ‖pi − pj‖2 for all (i, j) ∈ E. We present
necessary and sufficient conditions for G(p) to be dimensionally rigid, and we formulate the problem of checking the validity of
these conditions as a semidefinite programming (SDP) problem. The case where the points p1, . . . , pn of the given r-configuration
are in general position, is also investigated.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let V = {1, 2, . . . , n} be a finite set. A mapping p : V → Rr , where p1, . . . , pn are not contained in a proper
hyper-plane is called a configuration in Rr (or an r-configuration). Let G = (V , E) be a simple connected graph on
n vertices, i.e., G has no loops or multiple edges. Then an r-configuration p together with graph G, where adjacent
vertices of G are constrained to stay the same distance apart, is called a bar-and-joint framework (or a framework) in
Rr , and is denoted by G(p). Let G(p) be a given framework. Then each edge (i, j) of G can be viewed as a rigid
bar of length equal to ‖pi − pj‖, where ‖.‖ denotes the Euclidean norm; and each node of G can be viewed as a
joint. Furthermore, edges of G can freely rotate around their end nodes, and we assume that two edges may cross each
other at a point other than a node. An example of two frameworks in R2 is given Fig. 1, where the nodes (joints) are
represented by little circles, while the edges (bars) are represented by straight lines.

∗ Corresponding author.
E-mail address: alfakih@uwindsor.ca.

1 Research supported by the Natural Sciences and Engineering Council of Canada and MITACS.

0166-218X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2006.11.011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82538818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
mailto:alfakih@uwindsor.ca


A.Y. Alfakih / Discrete Applied Mathematics 155 (2007) 1244–1253 1245

  

1 2

34

     

 

1

2 3

4

5
a b

Fig. 1. An example of two frameworks inR2. Framework G1(p) in (a), where Ē1 = {(2, 4)}, is rigid and dimensionally flexible; while framework
G2(q) in (b), where Ē2 = {(1, 5), (2, 5), (4, 5)}, is flexible and dimensionally rigid.

Two frameworks G(p) inRr and G(q) inRs are said to be equivalent2 if and only if ‖qi − qj‖2 = ‖pi − pj‖2 for
all (i, j) ∈ E. Let p be an r-configuration. We will find it convenient to represent the points p1, . . . , pn in the form of
an n × r matrix

P =
⎡
⎢⎣

p1T

...

pnT

⎤
⎥⎦ ,

and we will use the terms “framework G(p)” and “framework G(P )” interchangeably.
For each framework G(P ) inRr , the n × n matrix D = (dij ) = ‖pi − pj‖2 is called the Euclidean distance matrix

(EDM) defined by P . Two r-configurations P and P ′ are said to be congruent iff P and P ′ define the same EDM. Thus,
configurations obtained from each other by applying a rigid motion, such as a translation or a rotation, are congruent. In
this paper, we do not distinguish between congruent configurations. Hence, without loss of generality, we will assume
that the origin is the centroid of the points p1, . . . , pn. i.e., P Te = 0, where e is the vector of all ones in Rn.

Two of the most studied problems concerning bar-and-joint frameworks are those of rigidity and generic rigidity.
Given a framework G(P ) inRr , the rigidity problem asks whether G(P ) is rigid or flexible [1,4,5,10,11,13,16]. G(P )

inRr is said to be flexible, if there exists a differentiable function �(t) : t ∈ [0, 1] → Rn×r such that �(0)=P , G(�(t))
is equivalent to G(P ), and �(t) is not congruent to P for all t , 0 < t �1. A framework G(P ) is said to be rigid iff it is
not flexible.

In this paper, we introduce the notion of dimensional rigidity; and we study the problem of determining whether or
not a given framework G(p) in Rr is dimensionally rigid. A given framework G(p) in Rr is said to be dimensionally
rigid if and only if there does not exist a framework G(q) inRs , equivalent to G(p), for s�r +1. A framework G(p) is
said to be dimensionally flexible if and only if it is not dimensionally rigid. Fig. 1 shows two examples of frameworks,
one is dimensionally flexible while the other is dimensionally rigid. We present necessary and sufficient conditions for
the dimensional rigidity of a given framework G(P ) in terms of Z, the Gale matrix corresponding to P ; and we show
that if G(P ) is both rigid and dimensionally rigid, then G(P ) is unique. We also formulate the problem of checking
the validity of these conditions as a semidefinite program.

We denote by Sn the space of n × n real symmetric matrices. The inner product on Sn is given by

〈A, B〉 := tr(AB),

where tr denotes the trace. Positive semidefiniteness (positive definiteness) of a symmetric matrix A is denoted by
A 	 0 (A 
 0). For a matrix A in Sn, diag(A) denotes the n-vector formed from the diagonal entries of A. We denote
by e the vector of all ones inRn; and we denote by Eij the n×n symmetric matrix with ones in the (i, j)th and (j, i)th
entries and zeros elsewhere. The n × n identity matrix will be denoted by In. Finally, “ \ ” denotes the set theoretic
difference.

2 Many authors use the term “equivalent” only for frameworks in the same Euclidean space.
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2. Preliminaries

In this section, we present some results on Euclidean distance matrices (EDMs) and Gale transform, which will be
used in the paper. In particular, given a framework G(p) inRr , we present a characterization of the set of all frameworks
G(q) that are equivalent G(p). We begin by reviewing some basic definitions and results on EDMs.

An n × n matrix D = (dij ) is said to be a EDM if and only if there exist points p1, p2, . . . , pn in some Euclidean
space such that dij = ‖pi − pj‖2 for all i, j = 1, . . . , n. The dimension of the affine subspace spanned by p1, . . . , pn

is called the embedding dimension of D.
It is well known [7,9,14] that a symmetric n × n matrix D with zero diagonal is EDM if and only if D is negative

semidefinite on the subspace

M := {x ∈ Rn : eTx = 0}.
Let V be the n × (n − 1) matrix whose columns form an orthonormal basis of M; that is, V satisfies

V Te = 0, V TV = In−1. (1)

Then the orthogonal projection on M , denoted by J , is given by J := V V T = In − eeT/n. Hence, it readily follows
that if D is a symmetric matrix with zero diagonal, then

D is EDM iff T(D) := − 1
2 JDJ 	 0. (2)

Furthermore, it is also well known that the embedding dimension of D is given by the rank of T(D).
There are many equivalent ways to represent a given r-configuration P of framework G(p). For example, an r-

configuration P can be represented by the EDM matrix D defined by P . Recall that D = (dij ) = ‖pi − pj‖2, which
is equivalent to

D = K(PP T) := diag(PP T)eT + e(diag(PP T))T − 2PP T. (3)

Let SH and SC denote the subspaces of Sn defined by

SH := {B ∈ Sn : diag(B) = 0},
SC := {B ∈ Sn : Be = 0}.

Then it can be easily verified that the linear operators T : SH → SC and K : SC → SH are mutually inverse [7].
Thus, given an EDM D with embedding dimension r , the r-configuration P generating D can be recovered as follows.
Let B = T(D). Then B 	 0, Be = 0, and rank B = r . Thus, P is obtained by factorizing B as B = PP T. Note that
P Te = 0 since Be = 0. Also, note that the factorization of B into PP T is not unique. However, if B = PP T = P ′P ′T,
then the two r-configurations P and P ′ are congruent. Thus, P and D uniquely determine each other.

Next, we present a third equivalent representation of an r-configuration P , which happens to be the most convenient
for our purposes. Recall that Sn−1 denote the space of symmetric matrices of order n − 1; and consider the two linear
operators KV : Sn−1 → SH and TV : SH → Sn−1 such that

KV (X) := K(V XV T), (4)

and

TV (B) := V TT(B)V = − 1
2 V TBV , (5)

where V is the n × (n − 1) matrix defined in (1). Then we have the following lemma.

Lemma 2.1 (Alfakih et al. [3]). The operatorsTV andKV are mutually inverse; and D inSH is a EDM of embedding
dimension r if and only if TV (D) 	 0 and rank TV (D) = r .
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Therefore, let D be the EDM matrix defined by the r-configuration P and let X =TV (D). Then, D and X uniquely
determine each other. Furthermore, we have the following relations:

X = − 1
2 V TDV = V TPP TV ,

D = KV (X) = K(PP T),

PP T = V XV T = T(D). (6)

Hence, P , D and X uniquely determine one another. In a slight abuse of notation, we will use the term r-configuration
to refer to X as well as to P . Thus, the terms “framework G(P )” and “framework G(X)” can be used interchangeably.

Given framework G(P1) inRr , let Ḡ = (V , Ē) denote the complement graph of G. i.e., Ḡ has the same set of nodes
V , and edge set Ē = (V × V )\E. Let m̄ be the cardinality of Ē. To avoid trivialities, assume that G is not a complete
graph, thus m̄�1. For each edge of the complement graph Ḡ define the matrix

Mij := TV (Eij ) = − 1
2 V TEijV , (7)

where Eij is the n × n matrix with ones in the (i, j)th and (j, i)th entries and zeros elsewhere. Let X1 = V TP1P
T
1 V ,

and let

� =
⎧⎨
⎩y ∈ Rm̄ : X(y) := X1 +

∑
(i,j)∈Ē

yijM
ij 	 0

⎫⎬
⎭ . (8)

Then it was shown in [1] that the set of all frameworks G(q) in Rr that are equivalent to G(P1) is given by

{G(X(y)) : y ∈ � and rank X(y) = r}; (9)

and that the set of all frameworks G(q) in Rs , equivalent to G(P1), for some s, 1�s�n − 1, is given by

{G(X(y)) : y ∈ �}. (10)

Note that � is a closed convex set that contains the origin. Furthermore, � is bounded since the graph G is connected.
Let G(P ) be a given framework in Rr . Consider the (r + 1) × n matrix

[
P T

eT

]
=

[
p1 p2 . . . pn

1 1 . . . 1

]
.

Recall that p1, . . . , pn are not contained in a proper hyper-plane inRr ; that is, the affine subspace spanned by p1, . . . , pn

has dimension r . Then r �n − 1, and the matrix
[

P T

eT

]
has full row rank. Let r̄ = n − 1 − r . If r̄ = 0, then framework

G(P ) is obviously dimensionally rigid since the points p1, . . . , pn are affinely independent. Therefore, without loss

of generality, we assume that r̄ �1. Let � be the n × r̄ matrix, whose columns form a basis for the null space of
[

P T

eT

]
.

� is called a Gale matrix corresponding to P ; and the ith row of �, considered as a vector in Rr̄ , is called a Gale
transform of pi [8]. Note that � is not unique. In fact, for any nonsingular r̄ × r̄ matrix Q, the columns of �Q span

the null space of
[

P T

eT

]
. Hence, �Q is also a Gale matrix. We will exploit this property to define a special Gale matrix

Z which is more sparse than � and more convenient for our purposes.
Let us write � in block form as

� =
[

�1
�2

]
,

where �1 is r̄ × r̄ and �2 is (r + 1) × r̄ . Since � has full column rank, we can assume without loss of generality that
�1 is nonsingular. Then Z is defined as

Z := ��−1
1 =

[
Ir̄

�2�
−1
1

]
. (11)
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Let ziT
denote the ith row of Z; i.e.,

Z :=

⎡
⎢⎢⎣

z1T

z2T

...

znT

⎤
⎥⎥⎦ .

Note that z1, z2, . . . , zr̄ , the Gale transforms of p1, p2, . . . , pr̄ , respectively, are simply the unit vectors in Rr̄ .
The following lemma enables us to express the necessary and sufficient conditions for the dimensional rigidity of a

given framework G(P ) in terms of Z, the Gale matrix corresponding to P .

Lemma 2.2 (Alfakih [2]). Let G(P ) be a given framework in Rr , and let Z be the Gale matrix corresponding to P .
Further, let U and W be the matrices whose columns form orthonormal bases of the null space and the range space of
X = V TPP TV , respectively. Then,

1. V U = ZQ for some nonsingular matrix Q, i.e., V U is a Gale matrix.
2. V W = PQ′ for some nonsingular matrix Q′.

Proof. Statement 1 holds since XU=0 iff P TV U=0, and since eTV U=0. Moreover, since ZTV W=Q−TUTV TV W=
0 and since eTV W = 0, statement 2 also holds. �

The following Farkas-type lemma is a special case of a known result (see [17, p. 171]). A proof is given for
completeness.

Lemma 2.3. Let G(P ) be a framework in Rr , and let Mij , for (i, j) ∈ Ē, be the matrices defined in (7). Let U be
the(n−1)× r̄ matrix whose columns form an orthonormal basis for the null space of X=V TPP TV . Then the following
two statements are equivalent.

1. There does not exist an r̄ × r̄ positive definite � such that 〈�, UTMijU〉 = 0 for all (i, j) ∈ Ē.
2. There exists a nonzero ŷ ∈ R|Ē| such that

∑
(i,j)∈Ē ŷijU

TMijU is a nonzero r̄ × r̄ positive semidefinite matrix.

Proof. Assume statement 1 holds, and let

L = {B ∈ Sr̄ : 〈B, UTMijU〉 = 0 for all (i, j) ∈ Ē}.
Let Pr̄ denote the cone of r̄ × r̄ positive semidefinite matrices. Then L∩ interior of Pr̄ =∅. By the separation theorem
[12, p. 96], there exists a nonzero Y ∈ Sr̄ such that 〈Y, B〉 = 0 for all B ∈ L and 〈Y, C〉�0 for all C in the interior of

Pr̄ . i.e., for all C 
 0. Therefore, Y 	 0 and Y = ∑
(i,j)∈Ē ŷijU

TMijU for some nonzero ŷ ∈ R|Ē|. Hence, statement
2 holds.

Now assume that statement 1 does not hold. If statement 2 holds, let Y = ∑
(i,j)∈Ē ŷijU

TMijU . Then, on one hand

〈�, Y 〉 > 0 since � 
 0 and Y 	 0, Y = 0. On the other hand 〈�, Y 〉 = ∑
(i,j)∈Ē ŷij 〈�, UTMijU〉 = 0, hence we

have a contradiction. Thus, statement 2 cannot hold and the result follows. �

3. Main results

In this section we present the main results of the paper.

Theorem 3.1. Let G(P1) be a given framework inRr for some r �n − 2, and let r̄ be the nullity of X1 = V TP1P
T
1 V .

Further, let Mij ’s be the matrices defined in (7); and let U and W be the matrices whose columns form orthonormal
bases for the null space and the range space of X1, respectively. If the following condition holds:

∃ r̄ × r̄ matrix � 
 0 : 〈�, UTMijU〉 = 0 ∀(i, j) ∈ Ē, (12)
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then G(P1) is dimensionally rigid. Otherwise, if (12) does not hold, then G(P1) is dimensionally flexible iff

null space of UTM(ŷ)U ⊆ null space of WTM(ŷ)U , (13)

for some nonzero ŷ ∈ Rm̄ such that UTM(ŷ)U is nonzero positive semidefinite, where M(ŷ) = ∑
(i,j)∈Ē ŷijM

ij .

Proof. Let Q = [WU ]. Then for some nonzero ŷ ∈ Rm̄, X1 +M(ŷ) 	 0 if and only if QT(X1 +M(ŷ))Q 	 0. But,

QT(X1 + M(ŷ))Q =
[
� + WTM(ŷ)W WTM(ŷ)U

UTM(ŷ)W UTM(ŷ)U

]
,

where � is the diagonal matrix of the positive eigenvalues of X1. Thus, UTM(ŷ)U 	 0 is a necessary condition for
X1 + M(ŷ) to be positive semidefinite.

Now assume that Condition (12) holds and suppose that G(P1) is dimensionally flexible. Then by (9), there exists a
nonzero ŷ ∈ Rm̄ such that X(ŷ)=X1 +M(ŷ) 	 0 and rank X(ŷ)�r +1. Since � is r ×r , this implies that UTM(ŷ)U

is a nonzero positive semidefinite matrix. But this contradicts Lemma 2.3. Thus, G(P1) is dimensionally rigid.
On the other hand, assume that Condition (12) fails to hold. Then, G(P1) is dimensionally flexible iff there exists a

nonzero ŷ such that X(ŷ)=X1 +M(ŷ) 	 0 and rank X(ŷ)�r +1. But this holds if and only if UTM(ŷ)U is nonzero
positive semidefinite, and null space of UTM(ŷ)U ⊆ null space of WTM(ŷ)U . Thus, the result follows. �

Corollary 3.1. Let G(P ) be a given framework in Rr for some r �n − 2. If G(P ) is both rigid and dimensionally
rigid, then G(P ) is unique.

Proof. Let matrices �, W , U and X be as in Theorem 3.1, and assume that G(P ) is both rigid and dimensionally rigid.
Now suppose that G(P ) is not unique. Then there exists a framework G(q) in Rs , which is equivalent to G(P ), for
some s, 1�s�n − 1. Therefore, there exists a nonzero ŷ in Rm̄ such that X(ŷ) = X1 + M(ŷ) 	 0. i.e.,[

� + WTM(ŷ)W WTM(ŷ)U

UTM(ŷ)W UTM(ŷ)U

]
	 0.

Thus, UTM(ŷ)U 	 0 and null space of UTM(ŷ)U ⊆ null space of WTM(ŷ)U . Now if UTM(ŷ)U is nonzero, we
have a contradiction since G(P ) is dimensionally rigid. Therefore, both matrices UTM(ŷ)U and WTM(ŷ)U must be
zero. Hence, there exists a sufficiently small � > 0 such that X(tŷ) = X1 + M(t ŷ) 	 0 and rank X(tŷ) = r for all
t ∈ [0, �], which implies that G(P ) is flexible, a contradiction. Thus, G(P ) is unique. �

A remark is in order here. A given framework G(P ) inRr may have an equivalent framework G(q) inRs for some
s = r , but not in Rr . That is, G(P ) is unique in Rr . Such a framework is often called “globally rigid” or “uniquely
rigid” [6]. The above corollary establishes a sufficient condition (which, obviously, is also necessary) for the uniqueness
of G(P ) not only in Rr , but in all Euclidean spaces. In light of Lemma 2.2, we also have the following corollary.

Corollary 3.2. Let G(P ) be a given framework inRr for some r �n − 2, and let Z be the Gale matrix corresponding
to P . Further, let r̄ be the nullity of X = V TPP TV . If the following condition holds:

∃r̄ × r̄ matrix � 
 0 : ziT
�zj = 0 ∀(i, j) ∈ Ē, (14)

then G(P ) is dimensionally rigid. Otherwise, if (14) does not hold, then G(P ) is dimensionally flexible iff

null space of ZTE(ŷ)Z ⊆ null space of P TE(ŷ)Z, (15)

for some nonzero ŷ ∈ Rm̄ such that ZTE(ŷ)Z is nonzero positive semidefinite, where E(ŷ) = ∑
(i,j)∈Ē ŷijE

ij .

Proof. It follows from (7) that UTMijU = − 1
2UTV TEijV U . But from Lemma 2.2, we have that V U = ZQ for

some nonsingular Q. Thus, Condition (12) is equivalent to Condition (14). Now assume that (13) holds and let u

be a nonzero vector in the null space of ZTE(ŷ)Z. As in Lemma 2.2, let V U = ZQ and V W = PQ′. Then Q−1u

belongs to the null space of UTM(ŷ)U , which implies that Q−1u also belongs to the null space of WTM(ŷ)U . i.e.,
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Fig. 2. The framework G(P ) in R2 of Example 3.1. G(P ) is dimensionally rigid, and Conditions (14) and (15) both fail to hold in this case. Note
that the points p2, p4, and p5 are collinear; i.e., P is not in general position.

Q′TP TE(ŷ)Zu = 0. Hence, u belongs to the null space of P TE(ŷ)Z since Q′ is nonsingular. Therefore, (15) holds.
Similarly we can show that (15) implies (13). Thus, Conditions (13) and (15) are equivalent and the result follows since
UTM(ŷ)U = QTZTE(ŷ)ZQ �

Note that if Condition (14) fails to hold, then Lemma 2.3 guarantees the existence of a nonzero ŷ such that ZTE(ŷ)Z

is nonzero positive semidefinite. However, Condition (15) may not hold in some degenerate cases. The following
example shows a case where Conditions (14) and (15) both fail to hold at the same time.

Example 3.1. Consider the following framework G(P ) in R2 (see Fig. 2), where Ḡ = (V = {1, 2, 3, 4, 5}, Ē =
{(1, 2), (3, 4)}); and where P and its corresponding Gale matrix Z are

P =

⎡
⎢⎢⎢⎣

−3 −5
1 2
0 −1
2 0
0 4

⎤
⎥⎥⎥⎦ , Z =

⎡
⎢⎢⎢⎣

1 0
0 1
−3 0
3/2 −1/2
1/2 −1/2

⎤
⎥⎥⎥⎦ .

Then Condition (14) does not hold since z2 + 2z4 = −z3 = 3z1. On the other hand, ZTE(ŷ)Z is nonzero positive

semidefinite implies that ŷ12 = 1 and ŷ34 = −2/3. But, null space of ZTE(ŷ)Z =
[

6
0

0
0

]
� null space of P TE(ŷ)Z =[

5
3

−3
−16/3

]
. Thus, Condition (15) also does not hold and G(P ) is dimensionally rigid.

A case where Condition (15) is known to hold whenever Condition (14) fails to hold, is presented next. Thus in this
case, Condition (14) is both sufficient and necessary for a given framework to be dimensionally rigid.

Corollary 3.3. Let G(P ) be a given framework inRn−2. Then Condition (14) is necessary and sufficient for G(P ) to
be dimensionally rigid.

Proof. Assume that Condition (14) does not hold. Then by Lemma 2.3 there exists a nonzero ŷ such that ZTE(ŷ)Z

is nonzero positive semidefinite. But in this case r̄ = 1 since P is an (n − 2)-configuration. Therefore, ZTE(ŷ)Z is a
positive number. Hence, Condition (15) trivially holds. This establishes the necessity of Condition (14) and the result
follows. �
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In what follows, we discuss the case where the r-configuration P of a given framework G(P ) is in general position.
An r-configuration P is said to be in general position iff no r + 1 of the points p1, . . . , pn are affinely dependent. For
example, a configuration P in the plane is in general position if no three of the points p1, . . . , pn lie on a straight line.
The following lemma characterizes P in general position in terms of its corresponding Gale matrix Z.

Lemma 3.1. Let G(P ) be a framework in Rr , and let Z be the n × r̄ Gale matrix corresponding to P . Then, P is in
general position if and only if every r̄ × r̄ sub-matrix of Z is nonsingular.

Proof. Assume r̄ �r . The proof of the case where r̄ �r + 1 is similar. Let Z̄ be any r̄ × r̄ sub-matrix of Z, and without
loss of generality, assume that it is the sub-matrix defined by the rows r̄ + 1, r̄ + 2, . . . , 2r̄ . Then, Z̄ is singular if and

only if there exists a nonzero � ∈ Rr̄ such that Z̄� = 0. Clearly, Z� is in the null space of
[

P T

eT

]
. Furthermore, Z̄� = 0

if and only if the components (Z�)r̄+1 = (Z�)r̄+2 = . . . (Z�)2r̄ = 0. Now since Z� = 0, this last statement holds if
and only if the following r + 1 points p1, p2, . . . , pr̄ , p2r̄+1, . . . , pn are affinely dependent; i.e., P is not in general
position. �

Let p1, . . . , pn ∈ Rr be in general position and let z1, . . . , zn ∈ Rr̄ be the Gale transform of p1, . . . , pn, respectively.
Then in light of Lemma 3.1, zi1 , zi2 , . . . , zir̄ are linearly independent for any {i1, i2, . . . , ir̄} ⊂ {1, 2, . . . , n}. Let �(G)

denote the minimum degree of the vertices of graph G. Then we have the following result.

Theorem 3.2. Let G(P ) be a given framework in Rr for some r �n − 2, and let r̄ be the nullity of X = V TPP TV .
Assume that P is in general position. If �(G)�r , then G(P ) is dimensionally flexible.

Proof. Assume �(G)�r and let i0 be a vertex of G such that deg(i0) = �(G). Let i1, i2, . . . , ir̄ be the nodes of G

not adjacent to i0. Since p1, p2, . . . , pn are in general position, it follows from Lemma 3.1 that zi0 = 0 and that
zi1 , zi2 , . . . , zir̄ are linearly independent, hence zi1 , . . . , zir̄ form a basis in Rr̄ . Therefore, there exists x̂1, x̂2, . . . , x̂r̄ ,
not all of which are zero, such that zi0 = ∑r̄

k=1 x̂kz
ik .

Let � be an r̄ × r̄ matrix such that zi0 T
�zik =0 for all k =1, . . . , r̄ . Then,

∑r̄
k=1 x̂kz

i0 T
�zik =0 = zi0 T

�zi0 . Hence,
� is singular and thus it cannot be positive definite. On the other hand, let ŷ ∈ Rm̄ such that ŷij = x̂k if i = i0, j = ik , and

ŷij = 0 otherwise. Then ZTE(ŷ)Z = ∑r̄
k=1x̂k(z

i0zik T + zik zi0 T
) = 2zi0zi0 T

is a nonzero positive semidefinite matrix.

Furthermore, the null space of ZTE(ŷ)Z = null space of zi0 T ⊆ null space of P TE(ŷ)Z =pi0zi0 T +∑r̄
k=1 x̂kp

ik zi0 T
.

Hence by Corollary 3.2, G(P ) is dimensionally flexible. �

The following is an immediate corollary of Theorem 3.2.

Corollary 3.4. Let G(P ) be a given framework in Rn−2. Assume that G is not a complete graph, and that P is in
general position. Then P is dimensionally flexible.

Note that Theorem 3.2 and Corollary 3.4 are false if the r-configuration P is not in general position as shown by the
following example.

Example 3.2. Consider the following two frameworks G1(P1) and G2(P2) in R2 (see Fig. 3), where Ḡ1 = (V 1 =
{1, 2, 3, 4}, Ē1 = {(1, 4)}), Ḡ2 = (V 2 = {1, 2, 3, 4, 5}, Ē2 = {(1, 4), (1, 5)}), and

P1 =
⎡
⎢⎣

−1 −1/4
0 −1/4
1 −1/4
0 3/4

⎤
⎥⎦ and P2 =

⎡
⎢⎢⎢⎣

−1 −2/3
0 −2/3
1 −2/3
−1 1
1 1

⎤
⎥⎥⎥⎦ .

Both G1(P1) and G2(P2) are dimensionally rigid and both P1 and P2 are not in general position. Note that �(G2)

= 2 = r .
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1 2 3

4

G1 (P1)
1 2 3

4 5

G2 (P2)

Fig. 3. frameworks G1(P1) and G2(P2) of Example 3.2. Both frameworks are dimensionally rigid, and both P1 and P2 are not in general position.

4. Checking the validity of Condition (14)

In this section we formulate the problem of checking whether Condition (14) in Corollary 3.2 holds or not, as a
semidefinite programming (SDP) problem. Given a framework G(P ) inRr , let Z be the Gale matrix corresponding to

P . Let L be the subspace of Sr̄ spanned by the matrices (zizj T + zj ziT
) for all (i, j) ∈ Ē, where Ē is the edge set

of the complement graph Ḡ. Note that these matrices need not be linearly independent. If L = Sr̄ , then we have the
following result.

Lemma 4.1. If L = Sr̄ , i.e., if the dimension of L = (r̄(r̄ + 1))/2, then G(P ) is dimensionally flexible.

Proof. IfL=Sr̄ , then there exist ŷij ’s, not all of which are zero, such that Ir̄ =∑
(i,j)∈Ē ŷij (z

izj T+zj ziT
)=ZTE(ŷ)Z.

The result follows trivially from Corollary 3.2 since the null space of ZTE(ŷ)Z = ∅. �

Now if L = Sr̄ , then let Ni for i = 1, . . . , n̄ be a basis of L⊥, the orthogonal complement of L. In the sequel, all
matrices are of order r̄ . Thus, we drop the subscript from the identity matrix Ir̄ . Consider the following SDP problem:

p∗ = max t

(P) subject to −tI + ∑n̄
i xiN

i 	 0,∑n̄
i xiN

i � I,

(16)

and its dual

d∗ = min tr Y2
(D) subject to 〈Ni, Y2〉 − 〈Ni, Y1〉 = 0, i = 1, . . . , n̄

tr Y1 = 1,

Y1 	 0, Y2 	 0.

(17)

Since there exists (t̂ , x̂), namely (−1, 0), such that −t̂ I + ∑n̄
i x̂iN

i 
 0,
∑n̄

i x̂iN
i ≺ I ; and since Y1 = I/r̄ 
 0 and

Y2 = I/r̄ 
 0 are dual feasible, Slater constraint qualification condition holds for both problems. Hence, by the SDP
strong duality theorem [17], p∗ = d∗. In addition, we have the following lemma.

Lemma 4.2. In problem (16), p∗ is finite and nonnegative. Furthermore, p∗ > 0 if and only Condition (14) in Corollary

3.2 holds, i.e., there exists a positive definite matrix � such that ziT
�zj = 0 for all (i, j) ∈ Ē.

Proof. The nonnegativeness of p∗ follows from the fact that p∗ = d∗, and the fact that tr Y2 �0 since Y2 is positive
semidefinite. The finiteness of p∗ follows from the second constraint in (16), which is added solely for this purpose.

Now it is clear from the constraint −tI + ∑
i xiN

i 	 0 that p∗ = �min(
∑

i xiN
i), where �min(B) denotes the

minimum eigenvalue of B. Thus, the result follows from the definition of Ni’s by setting � = ∑
i xiN

i . �

Semidefinite programs can be solved efficiently using interior-point methods [17]. SeDuMi by Sturm [15] is a widely
available SDP solver.
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5. Summary and concluding remarks

Given a joint-and-bar framework G(P ) in Rr , G(P ) is said to be dimensionally rigid iff there does not exist a
framework G(q) in Rs , equivalent to G(P ), for some s�r + 1. In this paper, we presented necessary and sufficient
conditions for G(P ) to be dimensionally rigid in terms of Z (Theorem 3.1, Corollary 3.2), the Gale matrix corresponding
to P . We showed that these conditions can be strengthened in the case where r =n−2 (Corollary 3.3), and in case where
P is in general position (Theorem 3.2). We also showed that if a given framework G(P ) is both rigid and dimensionally
rigid, then G(P ) is unique (Corollary 3.1). Finally, we formulated the problem of checking the validity of Condition
(14) as a SDP.

The following problem, not discussed in this paper, is of great interest. Given a framework G(p) in Rr , determine
whether or not there exists a framework G(q) inRs , equivalent to G(p), for some s�r − 1. This problem seems to be
quite difficult in general, especially if a constructive proof is desired. Finally, the following two problems are also of
interest and merit further investigation. The first problem is that of obtaining a complete characterization of the cases
where Condition (15) holds. And the second problem is that of devising a combinatorial algorithm for checking the
validity of Condition (14).
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