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We consider gravitational collapse of a massless scalar field in asymptotically anti-de Sitter spacetime.
Following the AdS/CFT dictionary we further study correlations in the field theory side by way of the
Klein–Gordon equation of a probe scalar field in the collapsing background. We present evidence that in
a certain regime the probe scalar field behaves chaotically, thus supporting Hawking’s argument in the
black hole information paradox proposing that although the information can be retrieved in principle,
deterministic chaos impairs, in practice, the process of unitary extraction of information from a black
hole. We emphasize that quantum chaos will change this picture.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The process of black hole formation and evaporation leads to
many important conflicts in the interplay between quantum field
theory and general relativity. No-hair theorems imply that most
information about the collapsing body is lost from the outside
region. The discovery that black holes radiate with a perfectly
thermal featureless spectrum [1] leads to the question of whether
the information about the collapsing body is lost with the corre-
sponding loss of unitarity or whether this information is somehow
retrievable [2]. This conundrum is known as the black hole infor-
mation paradox; it best epitomizes the conflict between quantum
field theory and general relativity and has puzzled researchers for
about forty years (see for example [3] and more recently its artic-
ulation in the language of firewalls [4]).

The information loss paradox is assumed to be implicitly re-
solved in the context of the AdS/CFT correspondence [5] where a
gravity theory is equated to an explicitly unitary field theory. In
its strictest version, the AdS/CFT correspondence [5–8] states that
string theory in AdS5 × S5 is equivalent to N = 4 supersymmet-
ric Yang–Mills with SU(N) gauge group in four dimensions. The
implicit resolution of the black hole information paradox in the
context of the AdS/CFT [9] still leaves us with the daunting ques-
tion of how exactly the paradox gets resolved and by what means
information is retrieved from the black hole.

* Corresponding author.
E-mail addresses: aryaf@umich.edu (A. Farahi), lpandoz@umich.edu

(L.A. Pando Zayas).
http://dx.doi.org/10.1016/j.physletb.2014.05.017
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
In a recent paper [10] Hawking argued that since the gravita-
tional collapse to form an asymptotically AdS black hole will in
general be chaotic, the dual CFT on the boundary of AdS will be
turbulent, implying, therefore, that information will be effectively
lost, although there would be no loss of unitarity. This situation
is standard in deterministic chaos where even though the equa-
tions are deterministic there is a practical impossibility to reliably
predict the state of the dynamical system after a certain asymptot-
ically large time.

In this manuscript we examine Hawking’s claim presented in
[10] using the standard way the AdS/CFT connects information
between the field theory and the dual gravity. From the main
statement of the AdS/CFT correspondence which is the identifica-
tion of the field theory and gravity partition functions, it follows
that studying the Klein–Gordon (KG) equation with appropriate
boundary conditions allows to compute correlations on the field
theory side [6,7]. This powerful relation has been improved and
generalized in the conceptual framework of holographic renormal-
ization [11]. We, therefore, study the KG equation on a gravitation-
ally collapsing background and find various pieces of evidence in
favor of chaotic behavior of the scalar field. We show sensitive de-
pendence on the initial conditions practically implying that small
uncertainties are amplified exponentially fast leading to the prac-
tical impossibility of long-term prediction.

2. Gravitational collapse in asymptotically AdS4 spacetime

We consider the dynamics of a massless scalar field ϕ in
four dimensions, minimally coupled to gravity with a negative
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
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cosmological constant Λ:
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where G is Newton’s constant. We focus on spherically symmetric
configurations described by the following metric [12,13],
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where �2 = −3/Λ and dΩ2 is the metric on the unit 2-sphere. The
functions A, δ and the scalar field, ϕ , depend on (t, x). The spatial
domain is contained in the interval 0 < x < π �/2. The AdS space-
time, which is the maximally symmetric solution to the vacuum
Einstein equations with a negative cosmological constant, Λ, cor-
responds to A = 1, δ = 0 and ϕ = 0.

Introducing the auxiliary variables Φ = ϕ′ and Π = A−1eδϕ̇ ,
where the overdots and primes denote derivatives with respect to
t , x, respectively, the field equations read:
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The third equation is a consequence of the definition of the
auxiliary variables, and the last is the Klein–Gordon equation
gμν∇μ(∂νϕ) = 0. Hereafter, we assume units where 4πG = 1 and
further down we will also fix � = 1.

There is a natural mass function, m(x, t), in AdS4 spacetime
given by

1 − 2m

r
+ r2

�2
= gαβ∂αr ∂βr, (4)

where the standard spherical coordinate r is related to x as r =
� tan(x/�). In our case

m(x, t) = (1 − A)
� sin( x

�
)

2 cos3( x
�
)
. (5)

This expression gives the total mass–energy inside a radius x at
the instant t . The ADM mass of the system is obtained by evaluat-
ing the mass function asymptotically, or MADM = limx→π�/2 m(x, t)
[13]. The constancy of this quantity is customarily used in simula-
tions [13,15] to test the precision of the numerics; we use it here
as well.

The fields must satisfy appropriate boundary conditions, in par-
ticular [12], near the boundary x = π/2, we have (ρ = π/2 − x):

φ(t, x) = f∞(t)ρ3 +O
(
ρ5), δ(t, x) = δ∞(t) +O

(
ρ6),

A(t, x) = 1 − 2Mρ3 +O
(
ρ6). (6)

The AdS/CFT dictionary identifies the asymptotic values of these
gravity fields with sources and expectation values for operators in
the dual field theory, for example, M above is proportional to the
regularized stress energy tensor in the dual field theory [11].
To evolve the spacetime we consider a traditional set of initial
data [12]: Φ(0, x) = 0, Π(0, x) = ε0 exp(− tan2 x/σ 2), with σ and
ε0 as free parameters. Throughout our simulations we will fix σ =
0.5 and consider several values of ε0.

To find the gravitationally collapsing background we solve for,
A, δ, Π and Φ using the boundary conditions explained [12,13].
The initial profile is evolved through time using fourth order
Runge–Kutta method until the conditions for an apparent hori-
zon are satisfied. The numerical integration is stopped at some
value of Amin but stability of the output is tested against chang-
ing the precise value of Amin (see [16] for a detailed discussion
of the methodology). In [15,16] this gravitational collapse setup
was used to gain insight into the dual process of thermalization
in field theory. In the strictly gravitational context, the interesting
results obtained in [12] suggested that AdS spacetime is unstable
towards black hole formation in the sense that any arbitrarily small
perturbation leads to the formation of an apparent horizon; a tur-
bulent mechanism for the transfer of energy among the modes was
also proposed. In [13] this turbulent mechanism was quantified by
showing that the rate of transfer follows a Kolmogorov–Zakharov
spectrum, the mechanism of wave turbulence [17] (very different
from Kolmogorov 1941) was suggested as the underlying structure.

3. Toward CFT correlators

We now consider the massless KG equation for a scalar field in
the collapsing background. Namely, we consider the field Ψ as a
probe, that is, not including its back-reaction on the background;
its equation gμν∇μ(∂νΨ ) = 0, can be written as:
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It is worth mentioning that the full AdS/CFT dictionary in the
context of arbitrary time-dependent configurations has not been
rigorously formulated yet. The natural working assumption, how-
ever, is that sources and responses in the field theory are read
from the asymptotic behavior of the field Ψ . Spontaneous symme-
try breaking is implemented through a boundary condition with
no source. A source is difficult to implement numerically because
it corresponds to a non-normalizable mode. For numerical expe-
diency and given the hyperbolic nature of the equation versus its
more generic elliptic nature in time-independent situations of the
original AdS/CFT prescription, we choose to evolve an initial pro-
file of the probe scalar field of the form: Ψ (t = 0, x) = sin3(2x),
Ψ̇ (t = 0, x) = 0. Perhaps due to the hyperbolic nature of the PDE,
we found that using the forward Euler method for integration
makes the solution unstable leading to divergencies fairly rapidly,
a better result can be achieved by switching to the backward Eu-
ler method which proved to be stable in this case. We settled
for fourth order Runge–Kutta which provides the best conver-
gence [37].

4. Sources of chaotic behavior

Given that Eq. (7) is linear in the field Ψ we are not going to
look for chaotic behavior as sensitivity to the initial conditions in
the evolution of Ψ , although linear chaos is certainly a possibility
[18]. We will study the response of Ψ to a slight change in the ini-
tial conditions that trigger gravitational collapse. For example, we
consider collapse of the Einstein-scalar field system governed by
Eqs. (3) with an initial Gaussian profile with amplitudes ε0 = 0.1
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Fig. 1. Phase space values for Ψ (t, xi) and Ψ̇ (t, xi) corresponding to two simulations of gravitational collapse with Gaussian profile and amplitudes ε = 0.1,0.2. The plots
correspond to, from top to bottom and left to right, xi = π/16,3π/16,5π/16,7π/16.
and ε0 = 0.2. For these two nearby backgrounds we study the
probe scalar equation Ψ . This protocol will be equivalent to asking,
in the field theory side, whether correlation functions extracted
during a thermalization process remain predictably close so as to
permit full reconstruction even after accounting for a slight uncer-
tainty in the amount of initially injected energy.

It is worth remarking, as eloquently stated in [19,20], that no
definition of the term chaos is universally accepted. Generically
to prove that a system is chaotic it is required to show that the
system exhibits sensitive dependence on initial conditions. There
are various indicators of such sensitivity and we consider three of
them in what follows.

In Fig. 1 we follow, in phase space, the evolution of the probe
scalar field, Ψ . We consider various spatial points ranging from
points behind the eventual apparent horizon for these gravitational
collapse simulations to points close to the asymptotic boundary.
Chaotic behavior is clear for all the other points, in particular for
x = 7π/16 which is the closest to the boundary (from where the
field theory data should be read). It would be interesting to fur-
ther study whether points “behind” the eventual apparent horizon
indeed evolve fundamentally differently. Graphically, Fig. 1 sug-
gests generically chaotic evolution of the scalar field Ψ . We have
performed simulations for various values of the Gaussian profile
amplitude. We have also obtained similar results for collapse trig-
gered by a sum of eigenvalues profile which point to certain uni-
versality of the results (see discussion in [13]).

Next, we turn to a study of the spatial distribution of the initial
profile Ψ (t = 0, x) as a function of time; we are interested in the
spatial distribution after certain large time T , that is, Ψ (t = T , x).
At time equal zero we consider a fairly narrow, in spatial fre-
quencies, profile sin3(2x). In Fig. 2 we plot the normalized power
spectra for the initial profile and after evolving the scalar field Ψ

for some large time, T . The crucial point is that we start with a
narrow profile, note that the power spectrum vanishes (10−5) for
large frequencies. The late time spectral analysis, close to the for-
mation of an apparent horizon, indicates a profile with many more
frequencies activated (order 10−2 in a wide range). The oscillatory
behavior of the power spectrum is inherited from the bounces in
the collapsin background. This property of the power spectrum is
generically indicative of sensitivity to initial conditions; its trade-
mark example is the Hénon–Heiles system where starting with two
frequencies a continuum of frequencies is generated.

It is worth pointing out that the power spectrum reported
in [14] and later corroborated in [21] refers to the gravitational
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Fig. 2. For a collapsing simulation with amplitude ε = 0.1 we plot the power spec-
trum at various times. We note that an initially narrow profile widens in the space
of frequencies.

Fig. 3. For two collapsing simulations with amplitudes ε = 0.2,0.21 we plot the
phase space distance in logarithmic scale as a function of time. For all points the
growth trend implies, according to our definition, a positive Lyapunov exponent.

background and should not be confused with the analysis pre-
sented here. In those papers the focus of the analysis was the
time-series of certain quantities such as the scalar Ricci scalar and
the local mass.

As further evidence in favor of sensitivity to the initial con-
ditions we consider the largest Lyapunov exponent. We need
to face a number of issues. First the standard definition ap-
plies to dynamical system, we are considering a PDE situa-
tion. Another problem in applying the standard definition is
that we cannot go to asymptotically large times as we are
bounded by the apparent horizon time. We would thus natu-
rally fix a point in space and consider the following quantity

λ(T ) = ln
√

(Ψε1 (x0, T ) − Ψε2(x0, T ))2 + (Ψ̇ε1 (x0, T ) − Ψ̇ε2 (x0, T ))2,
we then define the largest Lyapunov exponent as the slope of the
(λ(T ), T ) graph. With all the previous caveats mentioned, we have
explored the value of this quantity for various points x0’s and
have found it to be positive, pointing to exponential sensitivity
to the initial conditions. The results are presented in Fig. 3. Note
that we have considered two nearby amplitudes ε = 0.2,0.21. We
will present a more exhaustive discussion of this quantity else-
where.

5. Conclusions

Our work can be considered as supporting evidence in favor
of the proposal recently put forward by Hawking [10] whereby,
even within the context of the AdS/CFT correspondence it is practi-
cally impossible to reliably extract information during gravitational
collapse. We have explicitly presented results indicating that trans-
lating information from the gravitationally collapsing bulk to the
CFT involves chaotic behavior and therefore leads to practical loss
of information in the sense that initial uncertainties are exponen-
tially magnified even within a unitary process.

In this manuscript we have considered only part of the phase
space of gravitational collapse where an apparent horizon forms in
the first few approaches of the scalar field. It would be interesting
to consider a situation where an apparent horizon forms only after
a large number of oscillations of the scalar field; this will poten-
tially make the asymptotic nature of chaos more manifest but will
require higher precision. There is evidence that, in general, gravita-
tional collapse has a more complicated phase space than originally
assumed in [12]. Namely, it has been argued that there are grav-
itational configurations that are stable against collapse due to the
presence of a mass scale [22]; these claims have been supported
by numerical investigations [23]. It would be interesting to investi-
gate the effect on these configurations in the context of extracting
field theory information.

Let us now discuss the regime of validity of our calculational
framework and its potential extensions. First, we have used clas-
sical gravity in AdS to describe a field theory. This approximation
involves the large N limit in the field theory. Since we avoided
regions of strong gravitational curvatures we refer to field theories
with a strong ’t Hooft coupling. Second, we have used the KG equa-
tion as a description of an operator in the field theory; this means
that we are necessarily referring to operators with relatively small
values of the conformal dimension.

To include more general operators would require objects be-
yond a classical field. For example, operators of very large dimen-
sions are usually characterized by strings or branes on the gravity
side. Chaotic behavior or non-integrability of some classical con-
figurations of strings in the context of the AdS/CFT has been re-
cently established for several interesting string theory backgrounds
[24–31]. It is very plausible that the classical string will display
chaotic behavior in the background of gravitational collapse.

We can also scrutinize the regime of validity for the KG equa-
tion. In the framework of string theory, the KG equation for the
scalar field Ψ is itself an approximation for the corresponding
vertex operator. This would correspond to a regime analogous to
quantum chaos; in some restricted sense similar problems become
tractable (see [32,33] for work in the context of confinement). It
is expected that in the stringy treatment of the field Ψ the types
of questions that can be formulated change considerably. As op-
posed to classical chaos, quantum chaos is no longer concerned
with solutions of the classical equations of motion, their phase
space properties and sensitivity to changes in initial conditions
since such sensitivity does not exist in the quantum case, instead
quantum chaos is concerned, for example, with the statistics of the
spectrum of energy eigenvalues [34]. More importantly, as shown
in the seminal study [35] of the quantum kicked rotor, the quan-
tum behavior can be completely different from the classical one as
in dynamical localization. There are also many known cases where
taking the classical limit and the late time behavior do not com-
mute [36].
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From this point of view it seems that information loss through
deterministic chaos is a property of the classical limit of the
AdS/CFT correspondence but not of the full quantum correspon-
dence. The restoration of unitary does not go through as small
corrections to a classical picture but as a drastic reformulation of
the problem just as in the case of classical versus quantum chaos.
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