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a b s t r a c t

The solution of the augmented Lagrangian related system (A + r BTB) u = f is a key
ingredient of many iterative algorithms for the solution of saddle-point problems in
constrained optimization with quasi-Newton methods. However, such problems are ill-
conditioned when the penalty parameter ε = 1/r > 0 tends to zero, whereas the error
vanishes asO(ε). We present a new fastmethod based on a splitting penalty scheme to solve
such problems with a judicious prediction–correction method. We prove that, due to the
adapted right-hand side, the solution of the correction step only requires the approximation
of operators independent of ε, when ε is taken sufficiently small. Hence, the proposed
method is as cheaper as ε tends to zero. We apply the two-step scheme to efficiently solve
the saddle-point problem with a penalty method. Indeed, that fully justifies the interest
of the vector penalty-projection methods recently proposed by Angot et al. (2008) [19] to
solve the unsteady incompressible Navier–Stokes equations, forwhichwe give the stability
result and some quasi-optimal error estimates. Moreover, the numerical experiments
confirm both the theoretical analysis and the efficiency of the proposed method which
produces a fast splitting solution to augmented Lagrangian or penalty problems, possibly
used as a suitable preconditioner to the fully coupled system.

© 2011 Elsevier Ltd. All rights reserved.

1. The prediction–correction method for augmented Lagrangian problems

By using the ordinary Lagrangian, a nonconvex optimization problem often has a duality gap and the value of the dual
problem is strictly less than the value of the primal problem. A common strategy for bridging this gap is to augment
the ordinary Lagrangian with a penalty term; see [1,2]. Besides, Bertsekas [1] observes that such a result also applies to
inequality constrained problems, since an inequality can be made equivalent to an equality. Then, by using quasi-Newton
schemes, Daniel, Fletcher-Reeves or Polak-Ribiére formulations of conjugate gradient algorithm, the solution to a linear
equality constrained problemwith the augmented Lagrangian proves to be a fundamental ingredient of locally quadratically
convergent methods for optimization problems with both equality or inequality constraints even in the nonconvex case;
see also [3,4,2] and barrier or interior point methods in [5].

We now focus on the augmented Lagrangian problem for a linear equality constraint. Let us address the solution to the
linear equality constrained problem in the quadratic convex case for sake of simplicity. Let A be an n×n symmetric positive
definite matrix and b ∈ Rn defining the strictly convex functional F(x) = xTAx− 2bT x. Let B be anm× nmatrix and d ∈ Rm

∗ Corresponding author. Tel.: +33 0 491113638; fax: +33 0 491113552.
E-mail address: angot@cmi.univ-mrs.fr (P. Angot).
URL: http://www.latp.univ-mrs.fr/∼angot (P. Angot).

0893-9659/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2011.08.015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82538622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.aml.2011.08.015
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
mailto:angot@cmi.univ-mrs.fr
http://www.latp.univ-mrs.fr/~angot
http://www.latp.univ-mrs.fr/~angot
http://www.latp.univ-mrs.fr/~angot
http://www.latp.univ-mrs.fr/~angot
http://www.latp.univ-mrs.fr/~angot
http://www.latp.univ-mrs.fr/~angot
http://dx.doi.org/10.1016/j.aml.2011.08.015


246 P. Angot et al. / Applied Mathematics Letters 25 (2012) 245–251

a vector in Im(B), the range of B, which define the closed convex subset of constraint K = {x ∈ Rn
;G(x) := Bx − d = 0}.

Then, we recall that there exists a unique global minimizer x∗
∈ K for F on K , solution to F(x∗) = minx∈K F(x) and

(x∗, λ∗) ∈ Rn
× Rm is solution to the linear block-system of order n + m below [6]:

A BT

B 0

 
x∗

λ∗


=


b
d


. (1)

Moreover, if B is surjective, i.e. B has the maximal rank m, then λ∗ solution to (1) is unique. The fully coupled solvers of
(1) require Krylov gradient methods with suitable preconditioners; e.g. [7]. Then, the usual approximate solution to (1) with
the Uzawa augmented Lagrangian iterations, i.e. a gradient type method, see [4] or [8] for applications with finite volume
methods, reads with λ0 and 0 < ρk < 2rk given:

A + rkBTB

xk+1

= b + rkBTd − BTλk, (2)

λk+1
= λk

+ ρk(Bxk+1
− d), ∀k ∈ N. (3)

The conjugate gradient can be used as well instead of the above steepest descent; see [4]. However, a common criticism
of the augmented Lagrangian approach is that the system (2) can be ill-conditioned due to the penalty term and iterative
algorithms for solving the problem converge very slowly as the augmentation parameter rk tends to infinity. Indeed, the
convergence rate of gradient methods for solving (2) is governed by the condition number cond(Ar) = µn/µ1, the ratio
between the largest eigenvalue µn and the smallest one µ1 of the matrix Ar := A+ rBTB. For example, the error xl − x̄ of the
conjugate gradient iteration xl satisfies the energy inequality below, e.g. [9]:

E(xl+1 − x̄) ≤

√
cond(Ar) − 1

√
cond(Ar) + 1

2

E(xl − x̄), ∀l ∈ N where E(x) = xT (A + rBTB)x. (4)

It is shown in [4,2] that cond(Ar) = O(r), which is observed numerically [10], and the iterative algorithm converges
arbitrarily slowly as r tends to infinity. Thus, techniques for handling the instabilities are developed: preconditioning and/or
adjustments with a variable parameter r with criterion for deciding when to increase it; e.g. [3,11,4,2] or also [12, Chap. 4].

Here, we present a new and simple splitting solution to the augmented Lagrangian system (AL) or (2) with f = b−BTλk:

(AL)

A +

1
ε
BTB


uε = f +

1
ε
BTd, f ∈ Rn with 0 < ε =

1
r

≪ 1 (5)

with the following prediction–correction scheme (AL2) where the constraint is handled only in the correction step:

Aũ = f , (6)

(AL2)

A +

1
ε
BTB


ûε = −

1
ε
BT (Bũ − d), and uε = ũ + ûε. (7)

We observe that (6), (7) is equivalent to (5) and we prove the crucial result below due to the adapted right-hand side in
the correction step (7) which lies in the range of the operator BT or of the limit operator BTB. Indeed, (7) can be viewed as
a singular perturbation problem with well-suited data in the right-hand side. More precisely, we give in Theorem 1.1 the
asymptotic expansion of the solution ûε to (7):

ûε = −
1
ε


A +

1
ε
BTB

−1

BT (Bũ − d) (8)

when the penalty parameter ε is chosen sufficiently small. We denote by ‖.‖ the Euclidean norm.

Theorem 1.1 (Solution of the Splitting Augmented Lagrangian System). Let A be an n×n positive definite matrix and B an m×n
matrix. If the rows of B are linearly independent, rank(B) = m, then for ε small enough, 0 < ε < 1/‖S−1

‖ where S = BA−1BT

(−S being the Schur complement of A), there exists an n × m matrix E given in (12) and bounded independently on ε such that
the solution of the correction step (8) writes with ũ = A−1f :

ûε = (C + εE) (Bũ − d) = C0ũ − Cd + εE(Bũ − d) where C = −A−1BT S−1, C0 = −A−1BT S−1B. (9)

If rank(B) = p < m, there exists a surjective p × n matrix T such that BTB = T TT and the similar result holds replacing
B by T .

Proof. We first remove redundant rows from B. If the rank of B is p < m, then by the QR factorization [9], there exists an
orthogonalm×mmatrix Q such that B = QR, where the first p rows of R are linearly independent and the nextm− p rows
are completely zero. Letting T be the submatrix of R formed by the first p rows, we have: BTB = RTQ TQR = RTR = T TT .
Since BTB = T TT and the rows of T are linearly independent, there is no loss of generality in assuming that the rows of B are
linearly independent.



P. Angot et al. / Applied Mathematics Letters 25 (2012) 245–251 247

Let us now prove the main result. By using the Woodbury formula [13,14], a generalization of the Sherman–Morrison
formula [9, Chap. 2], we can express (A + rBTB)−1 as:

A +
1
ε
BTB

−1

= A−1
− A−1BT 

εI + BA−1BT −1
BA−1, for all ε =

1
r

> 0. (10)

Since A is positive definite, A is nonsingular and A−1 also is positive definite; since rank(BT ) = rank(B) = m, we have
ker(BT ) = {0}. Thus, the Lagrange multiplier operator S = BA−1BT is nonsingular.

Now, writing (εI + S)−1
= (I + εS−1)−1S−1, we can expand this inverse matrix in the Neumann geometric series if ε is

sufficiently small, e.g. ε < 1/‖S−1
‖. Thus, with ε ≤ (1 − ξ)/‖S−1

‖ for any ξ > 0, we have:
εI + BA−1BT −1

= S−1
− εS−2

+

∞−
k=2

(−1)kεkS−k−1 for ε ≤ (1 − ξ)/‖S−1
‖, ∀ξ > 0.

Combining with (10), we get by a simple calculation the asymptotic expansion below:
A +

1
ε
BTB

−1

= A−1
− A−1BT S−1BA−1

+ εA−1BT S−2BA−1
−

∞−
k=2

(−1)kεkA−1BT S−k−1BA−1. (11)

Then, multiplying (11) by the right-hand side in (7), observing that the coefficient of the 1/ε term is zero and the coefficient
of the ε0 term is C(Bũ − d) with C = −A−1BT S−1, it yields (9) where

E = A−1BT S−2
∞−
k=0

(−1)kεkS−k
= A−1BT S−2 

I + εS−1−1
with ‖E‖ ≤ ‖A−1BT S−2

‖ξ−1 (12)

which completes the proof since: ‖(I + εS−1)−1
‖ ≤ (1 − ε‖S−1

‖)−1
≤ ξ−1. �

Hence, for ε small enough, the computational effort required to solve (7) amounts to approximate the matrices C0 or C .
Moreover, the following corollaries can be easily proved, showing that the estimate (4) is far from being optimal as far as
the right-hand side in (7) is adapted to the left-hand side operator.

Corollary 1.2 (Adapted Conditioning Property). In the solution procedure for (7), assume that some perturbations exist: either
ũ+ δũ in ũ ≠ 0 or C0 + δC0 in C0 from Theorem 1.1. Then, the perturbed solution ûε + δûε , respectively, satisfies for ε sufficiently
small, with H = EB:

‖δûε‖

‖ûε‖
≤ ‖C0 + εH‖ ‖(C0 + εH)−1

‖
‖δũ‖
‖ũ‖

or
‖δûε‖

‖ûε‖
≤ ‖C0‖ ‖(C0 + εH)−1

‖
‖δC0‖

‖C0‖
. (13)

This defines the effective condition number for the linear system (7) by conde = ‖C0‖ ‖(C0 + εH)−1
‖ for ε small enough.

Corollary 1.3 (Fast Solution for A = I ± εM or A = BBT and d = 0). Assume the framework of Theorem 1.1 with A = I the
n × n Identity matrix and d = 0. Then for all ε small enough: 0 < ε < 1/‖S−1

‖ where S = BBT , we have:

ûε = C0ũ + εC1ũ where C0 = −BT S−1B = −BT (BBT )−1B, C1 = EB = BT (BBT )−2 
I + ε(BBT )−1−1

B. (14)

Moreover, if rank(B) = p ≤ m ≤ n, the zero-order solution û = C0ũ in (14) is the solution ofminimal Euclidean norm inRn to
the linear system: Bû = −Bũ by the least-squares method, and the matrix BĎ = BT (BBT )−1 is the Moore–Penrose pseudo-inverse
of B such that C0 = −BĎB. Indeed, a singular value decomposition (SVD) or a QR factorization of B yields: C0 = −I0 where I0 is
the n × n diagonal matrix having only 1 or 0 coefficients, the zero entries in the diagonal being the n − p null eigenvalues of the
operator BTB.

The same result also holds with any perturbation of Identity A = I ± εM, whatever the n × n matrix M, if 0 < ε <
min(‖M‖, 1/‖S−1

‖).
If A = BBT with m = n and B nonsingular, a similar result also holds, i.e. we get: C0 = −I .

2. The splitting penalty method for saddle-point problems

We now illustrate the splitting augmented Lagrangian method by applying the two-step scheme to solve saddle-point
problems for continuous or discrete operators with a penalty method. For sake of simplicity here, we restrict ourselves to
the Hilbertian framework although the result can be extended to reflexive Banach spaces.

2.1. The two-step penalty augmented Lagrangian method

Let V and X be two Hilbert spaces and V ′, X ′ the dual spaces with ⟨., .⟩ denoting the duality pairing. Introduce the linear
and continuous (bounded) operators A and B such that A : V → V ′, B : V → X ′ and thus BT

: X ≃ X ′′
→ V ′. For f ∈ V ′ and



248 P. Angot et al. / Applied Mathematics Letters 25 (2012) 245–251

g ∈ X ′, we consider the abstract saddle-point problem:

seek (u, p) ∈ V × X such that

Au + BTp = f ,
Bu = g. (15)

Assume that the operator A is coercive on V and that the inf–sup condition holds, i.e.

(i) ∃ α > 0, ⟨Au, u⟩V ′,V ≥ α ‖u‖2
V , ∀u ∈ V (ii) ∃ β > 0, sup

w∈V

⟨Bw, q⟩X ′,X

‖w‖V
≥ β ‖q‖X , ∀q ∈ X . (16)

Then, it is well-known that the problem (15) is well-posed with (16): there exists a unique solution (u, p) ∈ V × X which
continuously depends on the data f and g; see [15].

Let us now consider the penaltymethod, originally introduced by Courant [16] in the context of constrained optimization,
for the approximate solution of problem (15) where X and X ′ are identified using the Riesz–Fréchet representation theorem.
For all ε > 0, seek uε ∈ V and pε ∈ X such that:

(AL)


Auε + BTpε = f ,

pε =
1
ε
(Buε − g)

⇔



A +

1
ε
BTB


uε = f +

1
ε
BTg,

pε =
1
ε
(Buε − g).

(17)

The corresponding augmented Lagrangian problem can be efficiently solved by the prediction–correction scheme for the
penalty augmented Lagrangian method to get the solution of (17) with 0 < ε ≪ 1:

(AL2)


Aũ = f ,
A +

1
ε
BTB


ûε = −

1
ε
BT (Bũ − g),

uε = ũ + ûε and pε =
1
ε
(Buε − g).

(18)

For numerical applications, V and X are finite-dimensional spaces and the two-step scheme (AL2) is all the cheaper as
the penalty parameter ε tends to zero, as proved in Section 1. Moreover, (18) yields an O(ε) accurate approximation of the
saddle-point solution, as stated below where the proof, slightly different from [15], does not require the smallness of ε; see
also the case of the Stokes problem in [17].

Theorem 2.1 (Error Estimate of the Penalty Method for Saddle-Point Problems). Under the above framework, there exists c =

c(‖A‖, α, β) > 0 such that the following error estimate holds for all ε > 0:

‖uε − u‖V + ‖pε − p‖X + ‖B(uε − u)‖X ≤ c(‖A‖, α, β) (‖f ‖V ′ + ‖g‖X ) ε. (19)

Sketch of proof. Indeed, (18) and (17) are equivalent and the error equation with (15) writes:

A(uε − u) + BT (pε − p) = 0 or A(uε − u) +
1
ε
BTB(uε − u) = BTp = f − Au and pε =

1
ε
B(uε − u).

Taking the duality brackets with uε − u and using B(uε − u) = εpε = ε(pε − p) + εp, we have

⟨A(uε − u), uε − u⟩V ′,V + ε‖pε − p‖2
X = −ε(p, pε − p)X ≤ ‖p‖X‖pε − p‖Xε.

From the inf–sup condition (16)(ii), we deduce that β‖p‖X ≤ ‖BTp‖V ′ ≤ ‖A‖ ‖u‖V + ‖f ‖V ′ , giving the bound on p from the
bound on u, and similarly for the bound on pε − p. Thus, we have

‖p‖X ≤ c0(‖A‖, α, β)(‖f ‖V ′ + ‖g‖X ) and β‖pε − p‖X ≤ ‖BT (pε − p)‖V ′ ≤ ‖A‖ ‖uε − u‖V .

Combining with the previous inequality and using the coercivity (16)(i), it yields the error estimates:

‖uε − u‖V ≤ c1(‖A‖, α, β)(‖f ‖V ′ + ‖g‖X )ε and then ‖pε − p‖X ≤ c2(‖A‖, α, β) (‖f ‖V ′ + ‖g‖X )ε.

We conclude the proof of (19) with ‖B(uε − u)‖X ≤ ε(‖pε − p‖X + ‖p‖X ), and the previous bounds. A refined result can be
also derived with an asymptotic expansion of (uε, pε) in powers of ε; see [15,17]. �

We now observe that Theorem 1.1 can be generalized to some continuous problems with assumptions allowing to write
the asymptotic expansion (11). It is the case in the following result.

Corollary 2.2 (Generalization of Theorem 1.1 for the Stokes Problem). Let the domain Ω ⊂ Rd (d = 2 or 3 in practice) be
an open bounded and connected set with a Lipschitz continuous boundary Γ = ∂Ω . We consider the following Stokes problem
where the viscosity µ > 0 and f ∈ H−1(Ω)d are given:

− µ1v + ∇p = f, with ∇ · v = 0 in Ω, and v|Γ = 0. (20)

Then, Theorem 1.1 holds and the solution v̂ε in (8) satisfies the asymptotic expansion given in (9), (12).
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Sketch of proof. In the case of the Stokes problem, the velocity correction v̂ε in the splitting augmented Lagrangian
problem (6), (7) satisfies a homogeneous Dirichlet boundary condition on Γ . Thus, the concerned Hilbert spaces are
V = H1

0 (Ω)d, V ′
= H−1(Ω)d and X = X ′

= L20(Ω). The operators are now A = −µ1 = µBBT , a self-adjoint coercive
operator of compact inverse, BT

= ∇ and B = −div, which is a surjective operator onto L20(Ω); see [18].
Then, the ‘‘pressure’’ operator S = BA−1BT is a coercive, self-adjoint isomorphism from L20(Ω) onto L20(Ω), see [4, Theorem

5.10], i.e. a zero-order operator. Hence, the asymptotic expansion (11) is valid and Theorem 1.1 also holds for the continuous
Stokes problem where the operator C0 = −A−1BT S−1B to calculate in (9) is only of zero-order. �

Remark 1 (Navier–Stokes Problem with Periodic Boundary Conditions). In the case of periodic boundary conditions for the
Navier–Stokes equations, the operators B and A−1 commute and we have S = I and C0 reduces to C0 = −A−1BTB. That can
be used for the numerical simulation of turbulence.

2.2. Vector penalty-projection methods (VPPr,ε) for unsteady incompressible Navier–Stokes problems

We use below the usual functional setting for the unsteady Navier–Stokes equations; see [17,15,18]. Let the domain
Ω ⊂ Rd (d = 2 or 3 in practice) be an open bounded and connected set with a Lipschitz continuous boundary Γ = ∂Ω .
For T > 0, we consider the following unsteady Navier–Stokes problem governing incompressible flows at a given Reynolds
number Re where Dirichlet boundary conditions for the velocity v|Γ = vD on Γ , f and an initial data v(t = 0) = v0 are
given:

∂tv + (v · ∇)v −
1
Re

1v + ∇p = f with ∇ · v = 0 in Ω × (0, T ). (21)

The following family of vector penalty-projection methods recently proposed in [19] is indeed designed on the basis of
the previous two-step augmented Lagrangian method with r = r0 + 1/ε, yielding a correction step for the velocity vector
at each time step. We also refer to [20,21,10] for the interest of the augmented term to drastically reduce the splitting error.
We describe hereafter the two-step vector penalty-projection (VPPr,ε) methods with an augmentation parameter r0 ≥ 0
and a penalty parameter 0 < ε ≤ 1. For ṽ0, v0, v̂0 = v0 − ṽ0 ∈ L2(Ω)d and p0 ∈ L20(Ω) given, they read as belowwith usual
notations for the semi-discrete setting in time, δt > 0 being the time step. For all n ∈ N such that (n + 1)δt ≤ T , find vn+1

and pn+1 satisfying vn+1
|Γ = vD, with ṽn+1

|Γ = vD and v̂n+1
|Γ = 0, such that:

ṽn+1
− ṽn

δt
+ (vn · ∇)ṽn+1

−
1
Re

1ṽn+1
− r0∇


∇ · ṽn+1

+ ∇pn = fn+1 in Ω, (22)

v̂n+1
− v̂n

δt
+ (vn · ∇)v̂n+1

−
1
Re

1v̂n+1
−

1
ε
∇


∇ · v̂n+1

=
1
ε
∇


∇ · ṽn+1 in Ω, (23)

vn+1
= ṽn+1

+ v̂n+1, and pn+1
= pn − r0∇ · ṽn+1

−
1
ε
∇ · vn+1 in Ω. (24)

Let us notice that in the (VPPr,ε) method (22)–(24), the operator A in (17) also includes the discrete time derivative and
the linearized convection term in addition to the diffusion term. A slightly modified version of the present (VPPr,ε) scheme
giving similar results was early presented in [19], as well as preliminary theoretical and numerical results. The complete
analysis of the (VPPr,ε) methods is carried out in [22], but the present study fully justifies the interest of such methods. We
conclude by giving below the stability result of the (VPPr,ε)method for the Navier–Stokes equations and some quasi-optimal
error estimates for smooth solutions of the Stokes problem; see [22] for the details.

Theorem 2.3 (Stability of (VPPr,ε) for Navier–Stokes Problem with vD = 0). For f ∈ L2(0, T ;H−1(Ω)d), v0 ∈ L2(Ω)d and
p0 ∈ L20(Ω), there exists C = C


Ω, T , Re, ‖f‖L2(0,T ;H−1), ‖v0‖0, ‖p0‖0


> 0 such that, for all r0 ≥ 0, 0 < ε ≤ 1 and

0 < δt ≤ T , the solution (vn, pn) of the (VPPr,ε) method (22)–(24) satisfies: for all n ∈ N with (n + 1)δt ≤ T ,

(i) ‖vn+1
‖
2
0 + εδt‖pn+1

‖
2
0 +

1
Re

n−
k=0

δt‖∇vk+1
‖
2
0 +

n−
k=0


‖vk+1

− vk‖2
0 +

εδt
3

‖pk+1
− pk‖2

0


≤ C

(ii)
n−

k=0

δt‖∇ · vk+1
‖
2
0 ≤ Cε and

n−
k=0

δt‖π k+1
‖

4
3
0 ≤ C with π k+1

=
√

δtpk+1 for d = 2.

Theorem 2.4 (Error Estimates of (VPPr,ε) for the Stokes Problem). Assume the solution (v, p) of the Stokes–Dirichlet problem
smooth enough in time and space, well-prepared initial conditions and sufficiently small parameters such that: 4r0(Re + ε) ≤ 1
and 4c(Ω)

√
Re r0ε ≤

√
δt, c(Ω) being the Poincaré constant. Then, there exists C = C(Ω, T , Re, f, v0, e0, q0) > 0 such that

the velocity error en = vn − v(tn) and the pressure error qn = pn − p(tn) of the (VPPr,ε) method (22)–(24) satisfy: for all n ∈ N
with (n + 1)δt ≤ T ,
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Fig. 1. Left: (VPPr,ε) velocity divergence versus penalty ε for the Green–Taylor vortex at Re = 100, t = 10 − h = 1/512, r0 = 1, ‖res‖2 ≤ 10−10 . Right:
number of ILU(0)-BiCGStab2 iterations versus η = ε/δt for natural convection at Ra = 105 with t = 2δt, δt = 1, h = 1/256, ‖res‖2 ≤ 10−6 .

(i) ‖en+1
‖
2
0 + εδt‖qn+1

‖
2
0 +

n−
k=0

δt
Re

‖∇ek+1
‖
2
0 ≤ C


δt2 + ε2δt

3
2


,

n−
k=0

δt‖qk+1
‖
2
0 ≤ C


δt2 + ε2δt


(ii)

n−
k=0

δt‖∇ · vk+1
‖
2
0 =

n−
k=0

δt‖∇ · ek+1
‖
2
0 ≤ C (δt + ε) εδt2, and ‖∇en+1

‖
2
0 ≤ CRe2


δt + ε2 .

With compactness arguments from Aubin–Lions–Simon, see e.g. [18], Theorem 2.3 allows us to prove the convergence of
the (VPPr,ε) solution of (22)–(24) toNavier–Stokes solutions of (21), when ε = δt tends to zero,without additional regularity
assumption; see [22] for the details.

3. Numerical experiments

The (VPPr,ε) method is implemented with a Navier–Stokes finite volumes solver on the staggered uniformMAC mesh of
size h issued from previous works; see [8]. The first test case is the unsteady Green–Taylor vortex such that themean steady
velocity field is of order 1 at Re = 100. The scheme is O(δt) accurate in time for the velocity and pressure with r0 ≥ 10−4,
whereas it is O(h2) in space; see [19,22] for additional results. We observe in Fig. 1 (left) that the L2-norm of the velocity
divergence vanishes like O(εδt), as expected from Theorems 2.1 and 2.4 for ε ≤ δt .

The second benchmark problem is the Rayleigh–Bénard thermal convection inside a square differentially heated vertical
cavity at Ra = 105, the vertical walls being isothermal and the horizontal walls insulating. Here, we study the convergence
properties of the velocity correction step (23) for this sharp test case. Again, we get the convergence of the velocity
divergence asO(εδt), whatever the viscosity term included in the penalty-correction step and also for a viscosity coefficient
µ = 0; see [19]. We can reach the machine precision of 10−15 for double precision floating point computations. Besides,
the solution of the penalty-correction step (23) proves to be all the cheaper as η = ε/δt tends to zero, as expected from
Theorem 1.1 and Corollary 1.2. Indeed, we dropped both the diffusion and convection terms in the correction step (23), i.e.
we get A = 1/δtI as in Corollary 1.3with the discrete operators in space B = −Divh, BT

= Gradh such that rank(B) = m < n.
Then,weobserve in Fig. 1 (right) that, forη = ε/δt ≤ 10−4, only one iteration of the ILU(0)-BiCGStab2preconditionedKrylov
solver, is sufficient to get an accurate approximation of the operator C0 = −I0 in Corollary 1.3, and that independently on
the mesh size h.

Hence, the key feature of the proposed splitting scheme is that the solution to the linear system associated with the
vector projection step can be very fast and cheap because of the adapted form of the right-hand side. Indeed, we really take
advantage of that feature to design the new fast vector penalty-projection method (VPPε) in [23,24].
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