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Abstract

Given a graph Γ , we construct a simple, convex polytope, dubbed graph-associahedra, whose face poset is based on the con-
nected subgraphs of Γ . This provides a natural generalization of the Stasheff associahedron and the Bott–Taubes cyclohedron.
Moreover, we show that for any simplicial Coxeter system, the minimal blow-ups of its associated Coxeter complex has a tiling
by graph-associahedra. The geometric and combinatorial properties of the complex as well as of the polyhedra are given. These
spaces are natural generalizations of the Deligne–Knudsen–Mumford compactification of the real moduli space of curves.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Deligne–Knudsen–Mumford compactification of the real moduli space of curves Mn
0(R) appears in many

areas, from operads [8,16], to combinatorics [10,13], to group theory [5,6]. One reason for this is an intrinsic tiling of
Mn

0(R) by the associahedron, the Stasheff polytope [15]. The motivation for this work comes from a remarkable fact,
first noticed by Kapranov, involving Coxeter complexes: Blowing up certain faces of the Coxeter complex of type A

yields a double cover of Mn
0(R). Extending this to the Coxeter complex of affine type Ã results in a moduli space

tessellated by the cyclohedron [9], the Bott–Taubes polytope associated to knot invariants [2]. Davis et al. have shown
these spaces to be aspherical, where all the homotopy properties are completely encapsulated in their fundamental
groups [5]. This paper looks at analogues of Mn

0(R) for all simplicial Coxeter groups W , which we denote as C(W)#.
Section 2 begins with the study of graph-associahedra. For any graph Γ , we construct a simple, convex polytope

whose face poset is based on the connected subgraphs of Γ (Theorem 2.6). This provides a natural generalization
of the associahedron and the cyclohedron. Some combinatorial properties of this polytope are also explored (Theo-
rem 2.9).
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Section 3 provides the background of Coxeter complexes and proves that graph-associahedra tile C(W)# (The-
orem 3.7). A gluing map of these polytopes is also provided (Theorem 3.8). Section 4 finishes by looking at the
geometry of C(W)#. In particular, we show that each blown-up cell of C(W)# resolves into a product of lower-
dimensional blown-up Coxeter complexes (Theorem 4.2).

2. Constructing graph-associahedra

2.1. The motivating example will be the associahedron.

Definition 2.1. Let A(n) be the poset of bracketings of a path with n nodes, ordered such that a ≺ a′ if a is obtained
from a′ by adding new brackets. The associahedron Kn is a convex polytope of dimension n − 2 whose face poset is
isomorphic to A(n).

The associahedron Kn was originally defined by Stasheff for use in homotopy theory in connection with associa-
tivity properties of H -spaces [15, Section 2]. The construction of the polytope Kn is given by Lee [14] and Haiman
(unpublished). The vertices of Kn are enumerated by the Catalan numbers. Fig. 1(a) shows the 2-dimensional K4 as
the pentagon. Each edge of K4 has one set of brackets, whereas each vertex has two. Note that Fig. 7(a) shows C(A3)#
tiled by 24 K4 pentagons. We give an alternate definition of Kn with respect to tubings.

Definition 2.2. Let Γ be a graph. A tube is a proper nonempty set of nodes of Γ whose induced graph is a proper,
connected subgraph of Γ . There are three ways that two tubes t1 and t2 may interact on the graph.

(1) Tubes are nested if t1 ⊂ t2.
(2) Tubes intersect if t1 ∩ t2 �= ∅ and t1 �⊂ t2 and t2 �⊂ t1.
(3) Tubes are adjacent if t1 ∩ t2 = ∅ and t1 ∪ t2 is a tube in Γ .

Tubes are compatible if they do not intersect and they are not adjacent. A tubing T of Γ is a set of tubes of Γ such
that every pair of tubes in T is compatible. A k-tubing is a tubing with k tubes.

Lemma 2.3. Let Γ be a path with n − 1 nodes. The face poset of Kn is isomorphic to the poset of all valid tubings
of Γ , ordered such that tubings T ≺ T ′ if T is obtained from T ′ by adding tubes.

Fig. 1(b) shows the faces of associahedron K4 labeled with tubings. The proof of the lemma is based on a trivial
bijection between bracketings and tubings on paths.

2.2. For a graph Γ with n nodes, let 
Γ be the n−1 simplex in which each facet (codimension 1 face) corresponds
to a particular node. Each proper subset of nodes of Γ corresponds to a unique face of 
Γ , defined by the intersection
of the faces associated to those nodes. The empty set corresponds to the face which is the entire polytope 
Γ .

Definition 2.4. For a given graph Γ , truncate faces of 
Γ which correspond to 1-tubings in increasing order of
dimension. The resulting polytope PΓ is the graph-associahedron.

Fig. 1. Associahedron K4 labeled with (a) bracketings and (b) tubings.
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Fig. 2. Iterated truncations of the 3-simplex based on an underlying graph.

This definition is well-defined: Theorem 2.6 below guarantees that truncating any ordering of faces of the same
dimension produces the same poset/polytope. Note also that PΓ is a simple, convex polytope.

Example 2.5. Fig. 2 shows a 3-simplex tetrahedron truncated according to a graph. The facets of P( ) are labeled
with 1-tubings. One can verify that the edges correspond to all possible 2-tubings and the vertices to 3-tubings.

Theorem 2.6. PΓ is a simple, convex polytope whose face poset is isomorphic to set of valid tubings of Γ , ordered
such that T ≺ T ′ if T is obtained from T ′ by adding tubes.

The proof of this theorem is given at the end of the section. Note that simplicity and convexity of PΓ follows from
its construction. Stasheff and Schnider [16, Appendix B] proved the following motivating examples. They follow
immediately from Theorem 2.6.

Corollary 2.7. When Γ is a path with n− 1 nodes, PΓ is the associahedron Kn. When Γ is a cycle with n− 1 nodes,
PΓ is the cyclohedron Wn.

2.3. For a given tube t and a graph Γ , let Γt denote the induced subgraph on the graph Γ . By abuse of notation,
we sometimes refer to Γt as a tube.

Definition 2.8. Given a graph Γ and a tube t , construct a new graph Γ ∗
t called the reconnected complement: If V is

the set of nodes of Γ , then V − t is the set of nodes of Γ ∗
t . There is an edge between nodes a and b in Γ ∗

t if either
{a, b} or {a, b} ∪ t is connected in Γ .

Fig. 3 illustrates some examples of 1-tubings on graphs along with their reconnected complements.

Theorem 2.9. The facets of PΓ correspond to the set of 1-tubings on Γ . In particular, the facet associated to a
1-tubing {t} is combinatorially equivalent to PΓt ×PΓ ∗

t .

Proof. We know from Theorem 2.6 that a facet of PΓ is given by a 1-tubing {t}. The faces contained in this facet are
the tubings T of Γ that contain t . Now if ti ⊂ t is a tube of Γt then it is also a tube of Γ . Consider the map

ρ : {tubes of Γ ∗
t } → {tubes of Γ containing t}

Fig. 3. Examples of 1-tubings and their reconnected complements.
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Fig. 4. The Schlegel diagrams of a 4-polytope along with its four types of facets.

where

ρ(t ′) =
{

t ′ ∪ t if t ′ ∪ t is connected in Γ ,
t ′ otherwise.

Note that ρ is a bijection and it preserves the validity of tubings. That is, two tubes t1 and t2 are compatible in Γ ∗
t if

and only if ρ(t1) and ρ(t2) are compatible. Define the natural map

ρ̂ : {tubings on Γ ∗
t } × {tubings on Γt } → {tubings on Γ }

where

ρ̂(Ti × Tj ) = {t} ∪
⋃
ti∈Ti

{
ρ(ti)

} ∪
⋃

tj ∈Tj

{tj }.

It is straightforward to show that this is an isomorphism of posets. �
Example 2.10. Fig. 4 shows the Schlegel diagram of the 4-dimensional polytope P( ). It is obtained from the 4-
simplex by first truncating four vertices, each of which become a 3-dimensional facet, as depicted in Fig. 4(d) along
with its 1-tubing. Then six edges are truncated, becoming facets of type Fig. 4(c); note that Theorem 2.9 shows the
structure of the facet to be the product of the associahedron K4 of Fig. 1(b) and an interval. Finally four 2-faces of
the original 4-simplex are truncated to result in the polytope of Fig. 4(b); this is the product of the cyclohedron W3
(hexagon) and an interval. Four of the original five facets of the 4-simplex have become the polyhedron of Fig. 4(d),
whereas the fifth (external) facet is the 3-dimensional permutohedron, as shown in Fig. 4(a).

2.4. The remaining section is devoted to the proof of Theorem 2.6, which follows directly from Lemmas 2.14 and
2.15 below. First we must define a poset operation analogous to truncation.

We define an initial partial ordering ≺0 on tubes by saying that ti ≺0 tj if and only if ti ⊂ tj . We also define a
partial ordering on a set of tubings T induced by any partial ordering of tubes of Γ : Given tubings TI , TJ ∈ T, then
TI ≺ TJ if and only if for all tj ∈ TJ , there exists ti such that tj ≺ ti ∈ TI . We write this partially ordered set of tubings
as (T,≺). Note that 
Γ is isomorphic to (T0,≺0): The set of nonnested tubings of Γ with order induced by ≺0.

Definition 2.11. Given a poset of tubings (T,≺), we can produce a set (T′,≺′) by promoting the tube t∗. Let

T∗ = {
T ∪ {t∗} | T ∈ T and T ∪ {t∗} is a valid tubing of Γ

}
and let T′ = T ∪ T∗. Let ≺′ be defined so that t∗ is incomparable to any other tube, and for any tubes ta, tb not equal
to t∗, let ta ≺′ tb if and only if ta ≺ tb (see Fig. 5).
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Fig. 5. A sketch of the poset lattice before and after promotion of tube {t}. Regions shaded with like colors are isomorphic as posets.

Let {ti} be the set of tubes in Γ for i ∈ {1, . . . , k} ordered in decreasing size. Notice these correspond to the faces
of 
Γ in increasing order of dimension. Let (Ti ,≺i ) be the resulting set after consecutively promoting the tubes
t1, . . . , ti in (T0,≺0). The following two lemmas explicitly define the tubings and the ordering of (Ti ,≺i ). Both are
trivial inductions from the definition of promotion.

Lemma 2.12. Ti is the set of all valid tubings of the form T0
⋃m

j=1{tqj
} where T0 ∈ T0 and {qj } ⊆ {1, . . . , i}.

Lemma 2.13. If a or b is less than or equal to i, then ta ≺i tb if and only if a = b. If both a and b are greater than i,
then ta ≺i tb if and only if ta ≺0 tb .

As a special case we can state the following:

Lemma 2.14. (Tk,≺k) is isomorphic as a poset to the set of tubings of Γ , ordered such that T ≺ T ′ if and only if T

can be obtained by adding tubes to T ′.

Proof. Applying Lemma 2.12 to the case i = k shows Tk is the set of all tubings of Γ . Lemma 2.13 shows that
T ≺k T ′ if and only if T ⊃ T ′. �

The only step that remains is to show the equivalence of promotion to truncation when performed in this order. The
following lemma accomplishes this.

Lemma 2.15. Let fi be a face of 
Γ corresponding to the tube ti . Let Pi be the polytope created by consecutively
truncating faces f1, . . . , fi of 
Γ . Then (Tk,≺k) ∼= Pk .

Proof. For consistency, we refer to 
Γ by P0. Since P0 is convex, so is Pi . Thus we may define these polytopes as
intersections of halfspaces. Denote the hyperplane that defines the halfspace H+

a by Ha . If X is the halfspace set for
a polytope P then there is a natural poset map

Ψ :P → Ω(X)op :f �→ Xf

where Ω(X)op is the set of subsets of X ordered under reverse inclusion and Xf is the subset such that f = P ∩⋂
a∈Xf

Ha . Note that Ψ is an injection with its image as all the sets X′ such that P ∩ ⋂
a∈X′ Ha in nonempty. By

truncating P at f∗, a new halfspace H+∗ is added with the following properties:

(1) A vertex of P is in H+∗ if and only if it is not in f∗.
(2) No vertices of P are in H∗.
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This produces the truncated polytope P∗ = H+∗ ∩ ⋂
a∈X H+

a . Let P0 be defined by
⋂

a∈X0
H+

a where X0 is the

set of indices for the defining halfspaces. Let H+
i be the halfspace with which we intersect Pi−1 to truncate fi . The

halfspace set for Pi is

Xi = Xi−1 ∪ {i} = X0 ∪ {1, . . . , i}.
We define the map Ψi :Pi → Ω(Xi)

op which takes a face of Pi to the set of hyperplanes that contain it.
We now produce an order preserving injection Φi from Ti to Ω(Xi)

op . Let φ0 be the map from tubes of Γ to
Ω(X0) that takes a tube ti to Ψ0(fi). Define

φi(tj ) =
{ {j} if j � i,

φ0(tj ) if j > i.

This allows us to define a new map

Φi :Ti → Ω(Xi)
op :TJ �→

⋃
tj ∈TJ

φi(tj ).

It follows from the definition that this is an order preserving injection. An induction argument shows that Φi(Ti ) =
Ψi(Pi ). Since Ψi and Φi are order preserving and injective, we have that Ψ −1

i ◦ Φi :Ti → Pi is an isomorphism of
posets. �
3. Tiling Coxeter complexes

3.1. We begin with some standard facts and definitions about Coxeter systems. Most of the background used here
can be found in Bourbaki [3] and Brown [4].

Definition 3.1. Given a finite set S, a Coxeter group W is given by the presentation

W = 〈
si ∈ S | s2

i = 1, (sisj )
mij = 1

〉
,

where mij = mji and 2 � mij � ∞.

Associated to any Coxeter system (W,S) is its Coxeter graph ΓW : Each node represents an element of S, where two
nodes si , sj determine an edge if and only if mij � 3. A Coxeter group is irreducible if its Coxeter graph is connected
and it is locally finite if either W is finite or each proper subset of S generates a finite group. A Coxeter group
is simplicial if it is irreducible and locally finite. The classification of simplicial Coxeter groups and their Coxeter
graphs are well-known [3, Chapter 6]. Unless stated otherwise, the Coxeter groups discussed below are assumed to be
simplicial.

Every simplicial Coxeter group has a realization as a group generated by reflections acting faithfully on a variety
[4, Chapter 3]. The geometry of the variety is either spherical, Euclidean, or hyperbolic, depending on the group.
Every conjugate of a generator si acts on the variety as a reflection in some hyperplane, dividing the variety into
simplicial chambers. This variety, along with its cellulation is the Coxeter complex corresponding to W , denoted CW .
The hyperplanes associated to the generators si of W all border a single chamber, called the fundamental chamber of
CW . The W -action on the chambers of CW is transitive, and thus we may associate an element of W to each chamber;
generally, the identity is associated to the fundamental chamber.

Notation. For a spherical Coxeter complex CW , we define the projective Coxeter complex PC(W) to be CW with
antipodal points on the sphere identified. These complexes arise naturally in blow-ups, as shown in Theorem 4.2.

Example 3.2. The Coxeter group of type An has n generators, and mij = 3 if i = j ± 1 and 2 otherwise. Thus An is
isomorphic to the symmetric group Sn+1 and acts on the intersection of the unit sphere in R

n+1 with the hyperplane
x1 + x2 + · · · + xn+1 = 0. Each si is the reflection in the plane xi = xi+1. Fig. 6(a) shows the Coxeter complex CA3,
a 2-sphere cut into 24 triangles.

The Bn Coxeter group has n generators with the same mij as An except that m12 = 4. The group Bn is the symmetry
group of the n-cube, and acts on the unit sphere in R

n. Each generator si is a reflection in the hyperplane xi−1 = xi ,
except s1 which is the reflection in x1 = 0. Fig. 6(b) shows the Coxeter complex CB3, the 2-sphere tiled by simplices.
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Fig. 6. Coxeter complexes CA3, CB3, and CÃ2.

The Ãn Coxeter group has n + 1 generators, with mij = 3 if i = j ± 1, and m(1)(n+1) = 3. Every other mij equals
two. The group Ãn acts on the hyperplane defined by x1 + x2 + · · · + xn+1 = 0 in R

n+1. Each si is the reflection in
xi = xi+1, except sn+1 which is the reflection in xn+1 = x1 + 1. Fig. 6(c) shows the Coxeter complex CÃ2, the plane
with the corresponding hyperplanes.

3.2. The collection of hyperplanes {xi = 0 | i = 1, . . . , n} of R
n generates the coordinate arrangement. A crossing

of hyperplanes is normal if it is locally isomorphic to a coordinate arrangement. A construction which transforms any
crossing into a normal crossing involves the algebro-geometric concept of a blow-up; see Section 4.1 for a definition.

A general collection of blow-ups is usually noncommutative in nature; in other words, the order in which spaces
are blown-up is important. For a given arrangement, De Concini and Procesi [7, Section 3] establish the existence (and
uniqueness) of a minimal building set, a collection of subspaces for which blow-ups commute for a given dimension,
and for which every crossing in the resulting space is normal. We denote the minimal building set of an arrangement A
by Min(A). Let α be an intersection of hyperplanes in an arrangement A. Denote Hα to be the set of all hyperplanes
that contain α. We say Hα is reducible if it is a disjoint union Hβ � Hγ , where α = β ∩ γ for intersections of
hyperplanes β and γ .

Lemma 3.3. [7, Section 2] α ∈ Min(A) if and only if Hα is irreducible.

If reflections in Hα generate a Coxeter group (finite reflection group), it is called the stabilizer of α and de-
noted Wα . For a Coxeter complex CW , we denote its minimal building set by Min(CW). The relationship between the
set Min(CW) and the group W is given by the following.

Lemma 3.4. [5, Section 3] α ∈ Min(CW) if and only if Wα is irreducible.

Definition 3.5. The minimal blow-up of CW , denoted as C(W)#, is obtained by blowing-up along elements of
Min(CW) in increasing order of dimension.

The construct C(W)# is well-defined: Lemma 4.9 below guarantees that blowing-up any ordering of subspaces in
Min(CW) of the same dimension produces the same cellulation.

Example 3.6. Fig. 7(a) shows the blow-ups of the sphere CA3 of Fig. 6(a) at nonnormal crossings. Each blown up
point has become a hexagon with antipodal identification and the resulting manifold is C(A3)#. Fig. 8 shows the local
structure at a blow-up, where each crossing is now normal. The minimal blow-up of the projective Coxeter complex
of type A3 is shown in Fig. 7(b), with the four points blown up in RP

2. Fig. 7(c) shows the minimal blow-up of CÃ2
of Fig. 6(c).

3.3. Given the construction of graph-associahedra above, we turn to applying them to the chambers tiling C(W)#.

Theorem 3.7. Let W be a simplicial Coxeter group and ΓW be its associated Coxeter graph. Then PΓW is the
fundamental domain for C(W)#.
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Fig. 7. Minimal blow-ups of (a) CA3, (b) PC(A3) and (c) CÃ2.

Proof. It is a classic result of geometric group theory that each chamber of a simplicial Coxeter complex CW is a
simplex. The representation of W can be chosen such that the generators correspond to the reflections through the
supporting hyperplanes of a fixed chamber. In other words, a fundamental chamber of CW is the simplex 
ΓW

such
that each facet of 
ΓW

is associated to a node of ΓW .
Let f be a face of 
ΓW

and let α be the support of f , the smallest intersection of hyperplanes of CW containing f .
As in the previous section, the face f corresponds to a subset S of the nodes of ΓW . The nodes in S represent the
generators of W that stabilize α. These elements generate Wα , and the subgraph induced by S is the Coxeter graph
of Wα .

By Lemma 3.4, α is an element of Min(CW) if and only if Wα is irreducible. But Wα is irreducible if and only if
ΓWα is connected, that is, when the set of nodes of ΓWα is a tube of ΓW . Note that blowing up α in CW truncates the
face f of 
ΓW

. Thus performing minimal blow ups of CW is equivalent to truncating the faces of 
ΓW
that correspond

to tubes of ΓW . By definition, the resulting polytope is PΓW .

Remark. The maximal building set is the collection of all crossings, not just the nonnormal ones. The fundamental
chambers of the maximal blow-up of CW will be tiled by permutohedra, obtained by iterated truncations of all faces
of the simplex.

Remark. The generalized associahedra of Fomin and Zelevinsky [11] are fundamentally different than graph-
associahedra. Although both are motivated from type An (the classical associahedra of Stasheff), they are distinct
in all other cases. For example, the cyclohedron is the generalized associahedron of type Bn, whereas it is the type Ãn

graph-associahedron.

3.4. The construction of the Coxeter complex CW implies a natural W -action. This action, restricted to the cham-
bers is faithful and transitive, so we can identify each chamber with the group element that takes the fundamental
chamber to it. The faces of the chambers of CW have different types (according to their associated tubings in ΓW ).
A transformation is type preserving if it takes each face to a face of the same type. We call the W -action type preserv-
ing because each w induces a type preserving transformation of CW .

We may use this action to define a W -action on C(W)#. There is a hyperplane-preserving isomorphism between
CW − ⋃

Min(CW) and C(W)# − ⋃
Min(CW). We define the W -action on C(W)# to agree with the W -action on CW

in C(W)# − ⋃
Min(CW). We define the action on the remainder of C(W)# by requiring that for all subvarieties V of

C(W)# − ⋃
Min(CW), the action of w takes the closure of V to the closure of wV . The W -action defined this way is

type preserving, and the stabilizer of each hyperplane α is the group Wα .
Given C(W)#, we may associate an element sf ∈ W to each facet f of the fundamental chamber. We call this

element the reflection in that facet. If α is the hyperplane of C(W)# that contains f , then sf is a reflection in α. This
corresponds to the reflection across α in CW , which is the longest word in Wα [4, Section 3]. For a face f of the
fundamental chamber, define Wf = 〈sfi

〉 and sf = ∏
sfi

, where the fi ’s are the facets of the fundamental chamber
that contain f . We denote the face corresponding to f of the chamber labeled w by w(f ).

Theorem 3.8. C(W)# can be constructed from |W | copies of PΓW , labeled by the elements of W and with the face
w(f ) identified to w′(f ) whenever w−1w′ ∈ Wf . The facet directly opposite w through w(f ) is wsf .
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Fig. 8. Reflections locally around C(A3)#.

Remark. One may be tempted to think that whenever w(f ) is identified with w′(f ), the map between them is the
restriction of the identity map between the chambers w and w′. However, Davis et al. [6, Section 8] show that this
is not the case, and compute the actual gluing maps between faces. For this reason they call the elements sf “mock
reflections”. The gluing map may also be computed by applying the theorem above to subfaces of f .

Proof of Theorem 3.8. Since the W -action is type preserving, a chamber w contains a face f if and only if w

preserves f . Recall that Wf is generated by reflections in facets that contain f . Thus f is contained only in chambers
whose elements correspond to Wf . The chamber that lies directly across f from the fundamental chamber corresponds
to the longest word in Wf . Minimal blow-ups of CW resolve nonnormal crossings, so Wf is isomorphic to (Z/2Z)d ,
where F has codimension d . Thus the longest word in Wf is the product of generators sfi

.
For every subspace α ∈ Min(CW) and every w ∈ W , the subspace w(α) is also in Min(CW). Thus we may extend

the adjacency relation to chambers other than the fundamental chamber analogously. Since the W -action preserves
containment, a face w′(f ) is identified with w(f ) if and only if w−1w′ ∈ Wf . Similarly, w respects reflection across
F so the chamber directly across w(f ) from w is wsf . �
Example 3.9. Consider the Coxeter group A3. Denote two facets of the fundamental chamber of CA3 by x and y,
whose reflections have the property that (sxsy)

3 = 1. Note that C(A3)# is tiled by 24 copies of the associahedron
P(A3). Let f be the facet adjacent to x and y in the fundamental chamber of C(A3)# and let α be the intersection of
y and f , as in Fig. 8. Then sf = sxsysx , and the fundamental chamber meets sysx , sxsysx , and sy at α. If we travel
directly across α from the fundamental chamber, we arrive in sα = sxsysx · sy = sysx .

4. Geometry of minimal blow-ups

4.1. One of our objectives is to describe the geometric structures of Min(CW) before and after blow-ups. This
final section proves Theorem 4.2 which describes C(W)# seen from the viewpoint of CW .

We recall elementary notions of local structures, along with fixing notation: The tangent space of a variety V at p is
denoted Tp(V ). For a Coxeter complex CW , the tangent space has a natural Euclidean geometry which it inherits from
the embedding of CW in R

n (with the hyperbolic simplicial Coxeter groups being viewed as acting on the hyperboloid
model inside R

n). Two nonzero subspaces of Tp(V ) are perpendicular if each vector in the first is perpendicular to
each vector in the second, under the Euclidean geometry of Tp(V ). The tangent bundle of a variety V on a subvariety
U is

TU(V ) = {
(p, v) | p ∈ U, v ∈ Tp(V )

}
.

If U = V , we write T(V ). The normal space of U at p is

Np(U) = {
v | v ∈ Tp(V ), v ⊥ Tp(U)

}
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and the normal bundle of U at a subvariety W ⊂ U is

NW(U) = {
(p, v) | p ∈ U, v ∈ Np(V )

}
.

If W = U , we write N(U).

Definition 4.1. [12] The blow-up of a variety V along a codimension k intersection α of hyperplanes is the closure of
{(x, f (x)) | x ∈ V } in V × P

k−1. The function f :V → P
k−1 is defined by f :p �→ [f1(p) :f2(p) : · · · :fk(p)], where

the fi define hyperplanes of Hα whose intersection is α.

We denote the blow-up of V along α by V#α . There is a natural projection map

π :V#α → V : (x, y) �→ x

which is an isomorphism on V − α. The hyperplanes of V#α are the closures π−1(h − α) for each hyperplane h of
V and one additional hyperplane π−1(α). Thus V − α and V#α − π−1(α) are isomorphic not only as varieties but as
cellulations.1 The hyperplane α of V#α has a natural identification with the projectified normal bundle of α in V . The
intersection of a hyperplane h with α is the part of α that corresponds to Tα(h) ⊂ N(α).

4.2. An arrangement of hyperplanes of a variety V cut V into regions. We say that the hyperplanes give a cellula-
tion of V . Two cellulations are equivalent if there is a hyperplane-preserving isomorphism between the two varieties.
Let α be an intersection of hyperplanes. We say that hyperplanes hi cellulate α to mean the intersections hi ∩ α give
a cellulation of α, denoted by Cα. The notation Cα will always refer to the cellulation of α in the original complex,
rather than its image in subsequent blow-ups. Let Min(Cα) denote the minimal building set of Cα, and let C(α)#
denote the blow-up of the minimal building set of α.

Theorem 4.2. Let CW be the Coxeter complex of a simplicial Coxeter group W and let α ∈ Min(CW). The blow-up
of α in C(W)# is equivalent to the product C(α)# × PC(Wα)#.

Example 4.3. There are 2
(
n+1
n−k

)
dimension k elements of Min(CAn). Each of these elements become C(Ak+1)# ×

PC(An−k−1)# in C(An)#. Fig. 9(d) shows the projective Coxeter complex PC(A4)# after minimal blow-ups. This is
the Deligne–Knudsen–Mumford compactification M6

0(R) of the real moduli space of curves with six marked points.
It is the real projective sphere RP

3 with five points and ten lines blown-up. Each of the five blown-up points are
PC(A3)#, shown in Fig. 9(b) as C(A4)# before projecting through the antipodal map. Each of the ten lines, each
line defined by two distinct points in Min(CA4), becomes PC(A2)# × PC(A2)#, a 2-torus depicted in Fig. 9(c). Note
that there are also ten codimension 1 subspaces PC(A3)# pictured in Fig. 9(a), defined by three distinct points in
Min(CA4).

Remark. Lemmas 4.5 and 4.6 are enough to provide the results of Theorem 4.2 for the maximal blow-up of CW .

Remark. Extensions of these results to configuration spaces are given in [1, Section 3].

4.3. The proof of Theorem 4.2 requires two definitions and four preliminary lemmas.

Definition 4.4. Let β and γ be intersections of hyperplanes in a cellulation of V . We say that β is strongly perpendic-
ular to γ and write β ⊥ γ if for all p in β ∩ γ , all three of the following subspaces span Tp(V ) and any two of them
are perpendicular:

(1) Tp(β ∩ γ ),
(2) Np(β), and
(3) Np(γ ).

1 We give each hyperplane h of V#α the same name as its projection π(h).
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Fig. 9. The projective Coxeter complex (d) PC(A4)# along with components (a) PC(A3)#, (b) C(A3)# and (c) PC(A2)# × PC(A2)#.

Note that this directly implies that Tp(β) is the span of Tp(β ∩ γ ) ∪ Np(γ ). For an intersection of hyperplanes β ,
the normal space Np(β) is the span of the normal spaces of the elements of Hβ at p; if β contains γ , then Np(γ )

contains Np(β). This shows immediately that if Hβ reduces to Hβ1 �Hβ2, then β1 ⊥ β2.

Lemma 4.5. For every intersection of hyperplanes β in a Coxeter complex CW , the set Hβ has a unique maximal
decomposition Hβ = Hβ1 � · · · �Hβk where

(1) each Hβi is irreducible,
(2) βi ⊥ βj for all i �= j , and
(3)

⋂
i∈S βi properly contains β for any proper subset S ⊂ {1,2, . . . , k}.

Proof. If the normal spaces of two hyperplanes h1, h2 of Hβ are not perpendicular, write h1 ∼ h2. Then ∼ is a
symmetric, reflexive relation on Hβ . Let ≈ be the unique smallest equivalence relation containing ∼ as a subset of
Hβ ×Hβ .

No two hyperplanes h1 ∼ h2 can be separated by any reduction of Hβ . To prove this, suppose they could, and let
Hβ reduce to Hβ1 �Hβ2 with h1 in β1 and h2 in β2. Then since Wβ is a Coxeter group, the reflection of h1 across
h2 must be in Hβ . By hypothesis, the resulting hyperplane must contain β1 or β2. The former implies that β1 ⊂ h2

and the latter implies β2 ⊂ h1, yielding a contradiction. Since ≈ is the smallest transitive relation containing ∼, the
hyperplanes h1, h2 cannot be separated whenever h1 ≈ h2.

However, if ≈ partitions Hβ into at least two classes, then we may separate Hβ into H1 � H2 with each partition
contained in either H1 or H2. Clearly

⋂
H1 ∩ ⋂

H2 = β . To verify that H(
⋂

Hi) = Hi , note that no element h1 of
H1 may contain

⋂
H2. If it does, then for all p in β , we have Np(h1) contained in Np(

⋂
H2), and thus in the span

of {Np(h2)} for h2 in H2. This violates the pairwise perpendicularity in our choice of H1,H2. Thus the equivalence
relation ≈ partitions Hβ into a unique maximal decomposition and therefore the Hβi ’s are irreducible. Also, no
proper subset S of the βi can intersect in exactly β , since then

⋃
Hβi for βi in S would be Hβ . But Hβ must reduce

to
⋃

Hβi for βi ∈ S and
⋃

Hβj for βj /∈ S by the argument above.
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When Hγ reduces to Hγ1 �Hγ2, we have γ1 ⊥ γ2. Furthermore, since Np(γ1) is the span of the normal spaces of
Hγ1, and Hγ1 ⊂ Hγ , then for any γ3 ⊥ γ (with nonempty intersection), it follows that γ3 ⊥ γ1. Thus by induction,
βi ⊥ βj for i �= j . �

4.4. The following two lemmas describe the effect of a blow-up on a cellulation. The first lemma combines several
facts that follow directly from the definitions of hyperplanes and blow-ups. Note that as we perform blow-ups of CW ,
the set of hyperplanes that contain a given β may change. However, Hβ is always assumed to refer to the set of
hyperplanes that contain β in CW .

Lemma 4.6. Let β be a subvariety of V with cellulation C1. Suppose the tangent spaces of the hyperplanes Hβ

cellulate the normal bundle at each point p with cellulation C2.

(1) The subvariety β of V#β is a product C1 × PC2.
(2) The tangent space Tp(V#β) for p ∈ β retains a local Euclidean structure. Roughly speaking, n − 1 of the coordi-

nate vectors are in Tp(β), and the other is parallel to the 1-dimensional subspace of Nπ(p)(β) that corresponds
to p.

(3) For each hyperplane h of V that meets β at a subvariety γ �= β , the hyperplane h of V#β meets β at γ × PC2.
(4) For each hyperplane h of V that properly contains β , the hyperplane h of V#β meets β at C1 ×h′, where h′ is the

image of Tp(h) in PC2. Also β ⊥ h.

Lemma 4.7. Let β be a subvariety of V with cellulation C1. If β ⊥ γ in V , then Cβ in V#γ is equivalent to (C1)#(β∩γ ).

Proof. The normal bundle Nβ∩γ (γ ) is contained in Tβ∩γ (β) since β ⊥ γ . Thus N(β ∩ γ ) and N(γ ) have the same
intersection with T(β). Since blow-ups replace a variety with its projectified normal bundle, the blow-ups along γ and
β ∩ γ produce equivalent cellulations of β . �

Finally we establish the tools that will allow us to change the order in which we blow up elements of Min(CW).
The following definition and lemma give a class of orderings that produce the same cellulation as minimal blow-ups.

Definition 4.8. Given a variety V with intersections of hyperplanes β,γ , the blow-ups along β and γ commute
if the cellulations (V#β)#γ and (V#γ )#β are equivalent, and the induced map on the hyperplanes preserves their la-
bels.

Lemma 4.9. Let x1, x2, . . . , xk be an ordering of the elements of Min(CW) such that i � j whenever xi is contained
in xj . Then blowing up CW along the xi in order gives a cellulation equivalent to C(W)#. The induced map on the
hyperplanes also preserves labels.

Proof. First we verify that if β ⊥ γ , then the blow-ups along β and γ commute. Since β ⊥ γ , the bundle
Nβ∩γ (β) is contained in Tβ∩γ (γ ) and Nβ∩γ (γ ) is contained in Tβ∩γ (β). Define the maps πβ :V#β → V and
πβγ : (V#β)#γ → V#β . Then π−1

β (V − γ ) = π−1
β (V ) − π−1

β (γ ) since Nβ∩γ (β) ⊂ Tβ∩γ (γ ). Thus (V#β)#γ is the clo-

sure of πβγ (π−1
β (V − γ )), which is the closure of π−1

βγ (π−1
β (V − γ − β)). Similar reasoning shows that (V#γ )#β is

the closure of π−1
γβ (π−1

γ (V − β − γ )). Since the π ’s are isomorphisms on V − β − γ , we have a natural isomorphism
between (V#β)#γ and (V#γ )#β .

Now take β,γ to be elements of Min(CW) such that neither contains the other. By Lemma 3.3, the arrangements
Hβ and Hγ are irreducible. Applying Lemma 4.5 shows that if H(β ∩ γ ) is reducible, then β ⊥ γ and Hβ �Hγ is
the unique reduction.

If H(β ∩ γ ) is irreducible, then β ∩ γ is in Min(CW). After the blow-up along β ∩ γ , the resulting spaces β and γ

do not intersect by Lemma 4.6, and thus (vacuously) β ⊥ γ . If β ∩ γ is not in Min(CW), then β ⊥ γ . In either case,
the blow-ups along β and γ commute. Thus we may transpose any two elements that do not contain each other in
the ordering of Min(CW) and get an equivalent cellulation (with matching hyperplane labels) after blowing up all of
Min(CW). Repeating this procedure proves the statement of the lemma. �
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4.5. We have now assembled all the lemmas needed for the proof of the theorem.

Proof of Theorem 4.2.
We begin by applying Lemma 4.9. Divide the elements of Min(CW) into three sets:

(1) {α},
(2) X = {β: β �⊃ α}, and
(3) Y = {β: β ⊂ α}.

We reorder the elements of Min(CW) as follows: First we blow up the elements of X, ordered by the dimension of
β ∩ α, followed by blowing up along α. Finally blow up the elements of Y in order of dimension, as usual. Note that
this is a valid application of Lemma 4.9, since if β contains γ , then β ∩ α contains γ ∩ α.

We next produce a bijection φ between the set X′ of elements xi in X that intersect α in (· · · ((CW)#x1)#x2 · · ·)#xi−1

and the elements of Min(Cα) in CW . We show that the map φ :X′ → Min(Cα) :β �→ β ∩ α is a bijection, and that
blowing up the elements of X has the same effect on the cellulation of α as blowing up the elements of Min(Cα).

(1) Suppose β ∈ X′ and β ⊂ α, and thus Hα ⊂ Hβ . Since β is in Min(CW), the group Wβ is an irreducible spherical
Coxeter group by Lemma 3.4, and the arrangement Hα is irreducible in Hβ by Lemma 3.3. For all spherical
Coxeter groups Wβ , the elements of Hβ intersect α in an irreducible arrangement.2 Therefore β = β ∩ α ∈
Min(Cα).

(2) Suppose β ∈ X′ and β �⊂ α, then β ∩ α is not in Min(CW), thus H(β ∩ α) reduces. Lemma 4.5 guarantees that
β ⊥ α. Thus by Lemma 4.7, blowing up β is equivalent to blowing up β ∩ α in the cellulation of α.

(3) We now produce an function ψ : Min(Cα) → X′ that will be the inverse to φ. For β ∈ Min(Cα), either β ∈
Min(CW) or Hβ is reducible. If β ∈ Min(CW), then let ψ(β) = β . If not, then Hβ must reduce to Hα0 �Hα1 �
· · · �Hαm. Without loss of generality, assume α contains α0.
Since Nβ(αi) is contained in Tβ(α0) for i �= 0, the normal spaces of the elements of Hβ −Hα0 are the same in α

as they are in CW . Thus in α, we know that αi ⊥ αj for i, j �= 0, i �= j . Furthermore, the normal space Np(α0) in α

is a subset of Np(α0) in V . Thus if Np(α0) in α is nonzero, it is perpendicular to each Np(αi) in α. Thus the set of
hyperplanes of α induced by Hβ −Hα reduces to the disjoint union induced by (Hα0 −Hα)�Hα1 � · · · �Hαm.
To satisfy the hypothesis that β ∈ Min(Cα), it is necessary that α0 = α and m = 1. Thus we define ψ(β) = α1. It
is straightforward to check that ψ is the inverse of φ, so φ is a bijection.

(4) By our choice of ordering, the elements of X′ are blown up in the same order as elements of Min(Cα) under
minimal blow-ups. Furthermore, the subvariety α has equivalent cellulations in the blow-up along φ(β) and in
the blow-up along β . This follows trivially if β ∈ α, and from Lemma 4.7 if not.

Thus, after blowing up all the elements of X in CW , the cellulation of α is equivalent to C(α)#. By Lemma 4.6, the
result after blowing up α is equivalent to C(α)# × PC(Wα). Furthermore, for each element y ∈ Y , we have

y ⊥ α and y ∩ α = C(α)# × y′,

where y′ is the image of y in PC(Wα). Since the elements of Y are ordered by dimension, they are also ordered by their
dimension in CWα . Lemma 4.7 guarantees that blowing up the elements of Y produces a cellulation of α equivalent
to C(α)# × PC(Wα)#. �
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