Coxeter complexes and graph-associahedra ${ }^{*}$

Michael Carr ${ }^{\text {a }}$, Satyan L. Devadoss ${ }^{\text {b,* }}$
${ }^{\text {a }}$ University of Michigan, Ann Arbor, MI 48109, USA
b Williams College, Williamstown, MA 01267, USA

Received 3 June 2005; received in revised form 25 August 2005; accepted 25 August 2005

Abstract

Given a graph Γ, we construct a simple, convex polytope, dubbed graph-associahedra, whose face poset is based on the connected subgraphs of Γ. This provides a natural generalization of the Stasheff associahedron and the Bott-Taubes cyclohedron. Moreover, we show that for any simplicial Coxeter system, the minimal blow-ups of its associated Coxeter complex has a tiling by graph-associahedra. The geometric and combinatorial properties of the complex as well as of the polyhedra are given. These spaces are natural generalizations of the Deligne-Knudsen-Mumford compactification of the real moduli space of curves.

© 2005 Elsevier B.V. All rights reserved.
MSC: primary 14P25; secondary 05B45, 52B11
Keywords: Coxeter complexes; Graph-associahedra; Minimal blow-ups

1. Introduction

The Deligne-Knudsen-Mumford compactification of the real moduli space of curves $\overline{\mathcal{M}}_{0}^{n}(\mathbb{R})$ appears in many areas, from operads [8,16], to combinatorics [10,13], to group theory [5,6]. One reason for this is an intrinsic tiling of $\overline{\mathcal{M}}_{0}^{n}(\mathbb{R})$ by the associahedron, the Stasheff polytope [15]. The motivation for this work comes from a remarkable fact, first noticed by Kapranov, involving Coxeter complexes: Blowing up certain faces of the Coxeter complex of type A yields a double cover of $\overline{\mathcal{M}}_{0}^{n}(\mathbb{R})$. Extending this to the Coxeter complex of affine type \widetilde{A} results in a moduli space tessellated by the cyclohedron [9], the Bott-Taubes polytope associated to knot invariants [2]. Davis et al. have shown these spaces to be aspherical, where all the homotopy properties are completely encapsulated in their fundamental groups [5]. This paper looks at analogues of $\overline{\mathcal{M}}_{0}^{n}(\mathbb{R})$ for all simplicial Coxeter groups W, which we denote as $\mathcal{C}(W) \#$.

Section 2 begins with the study of graph-associahedra. For any graph Γ, we construct a simple, convex polytope whose face poset is based on the connected subgraphs of Γ (Theorem 2.6). This provides a natural generalization of the associahedron and the cyclohedron. Some combinatorial properties of this polytope are also explored (Theorem 2.9).

[^0]Section 3 provides the background of Coxeter complexes and proves that graph-associahedra tile $\mathcal{C}(W) \#$ (Theorem 3.7). A gluing map of these polytopes is also provided (Theorem 3.8). Section 4 finishes by looking at the geometry of $\mathcal{C}(W)_{\#}$. In particular, we show that each blown-up cell of $\mathcal{C}(W)_{\#}$ resolves into a product of lowerdimensional blown-up Coxeter complexes (Theorem 4.2).

2. Constructing graph-associahedra

2.1. The motivating example will be the associahedron.

Definition 2.1. Let $\mathfrak{A}(n)$ be the poset of bracketings of a path with n nodes, ordered such that $a<a^{\prime}$ if a is obtained from a^{\prime} by adding new brackets. The associahedron K_{n} is a convex polytope of dimension $n-2$ whose face poset is isomorphic to $\mathfrak{A}(n)$.

The associahedron K_{n} was originally defined by Stasheff for use in homotopy theory in connection with associativity properties of H-spaces [15, Section 2]. The construction of the polytope K_{n} is given by Lee [14] and Haiman (unpublished). The vertices of K_{n} are enumerated by the Catalan numbers. Fig. 1(a) shows the 2-dimensional K_{4} as the pentagon. Each edge of K_{4} has one set of brackets, whereas each vertex has two. Note that Fig. 7(a) shows $\mathcal{C}\left(A_{3}\right)$ \# tiled by $24 K_{4}$ pentagons. We give an alternate definition of K_{n} with respect to tubings.

Definition 2.2. Let Γ be a graph. A tube is a proper nonempty set of nodes of Γ whose induced graph is a proper, connected subgraph of Γ. There are three ways that two tubes t_{1} and t_{2} may interact on the graph.
(1) Tubes are nested if $t_{1} \subset t_{2}$.
(2) Tubes intersect if $t_{1} \cap t_{2} \neq \emptyset$ and $t_{1} \not \subset t_{2}$ and $t_{2} \not \subset t_{1}$.
(3) Tubes are adjacent if $t_{1} \cap t_{2}=\emptyset$ and $t_{1} \cup t_{2}$ is a tube in Γ.

Tubes are compatible if they do not intersect and they are not adjacent. A tubing T of Γ is a set of tubes of Γ such that every pair of tubes in T is compatible. A k-tubing is a tubing with k tubes.

Lemma 2.3. Let Γ be a path with $n-1$ nodes. The face poset of K_{n} is isomorphic to the poset of all valid tubings of Γ, ordered such that tubings $T \prec T^{\prime}$ if T is obtained from T^{\prime} by adding tubes.

Fig. 1(b) shows the faces of associahedron K_{4} labeled with tubings. The proof of the lemma is based on a trivial bijection between bracketings and tubings on paths.
2.2. For a graph Γ with n nodes, let Δ_{Γ} be the $n-1$ simplex in which each facet (codimension 1 face) corresponds to a particular node. Each proper subset of nodes of Γ corresponds to a unique face of Δ_{Γ}, defined by the intersection of the faces associated to those nodes. The empty set corresponds to the face which is the entire polytope Δ_{Γ}.

Definition 2.4. For a given graph Γ, truncate faces of Δ_{Γ} which correspond to 1-tubings in increasing order of dimension. The resulting polytope $\mathcal{P} \Gamma$ is the graph-associahedron.

Fig. 1. Associahedron K_{4} labeled with (a) bracketings and (b) tubings.

Fig. 2. Iterated truncations of the 3-simplex based on an underlying graph.

This definition is well-defined: Theorem 2.6 below guarantees that truncating any ordering of faces of the same dimension produces the same poset/polytope. Note also that $\mathcal{P} \Gamma$ is a simple, convex polytope.

Example 2.5. Fig. 2 shows a 3-simplex tetrahedron truncated according to a graph. The facets of $\mathcal{P}\left(\wp^{\circ}\right)$ are labeled with 1-tubings. One can verify that the edges correspond to all possible 2-tubings and the vertices to 3-tubings.

Theorem 2.6. $\mathcal{P} \Gamma$ is a simple, convex polytope whose face poset is isomorphic to set of valid tubings of Γ, ordered such that $T \prec T^{\prime}$ if T is obtained from T^{\prime} by adding tubes.

The proof of this theorem is given at the end of the section. Note that simplicity and convexity of $\mathcal{P} \Gamma$ follows from its construction. Stasheff and Schnider [16, Appendix B] proved the following motivating examples. They follow immediately from Theorem 2.6.

Corollary 2.7. When Γ is a path with $n-1$ nodes, $\mathcal{P} \Gamma$ is the associahedron K_{n}. When Γ is a cycle with $n-1$ nodes, $\mathcal{P} \Gamma$ is the cyclohedron W_{n}.
2.3. For a given tube t and a graph Γ, let Γ_{t} denote the induced subgraph on the graph Γ. By abuse of notation, we sometimes refer to Γ_{t} as a tube.

Definition 2.8. Given a graph Γ and a tube t, construct a new graph Γ_{t}^{*} called the reconnected complement: If V is the set of nodes of Γ, then $V-t$ is the set of nodes of Γ_{t}^{*}. There is an edge between nodes a and b in Γ_{t}^{*} if either $\{a, b\}$ or $\{a, b\} \cup t$ is connected in Γ.

Fig. 3 illustrates some examples of 1-tubings on graphs along with their reconnected complements.
Theorem 2.9. The facets of $\mathcal{P} \Gamma$ correspond to the set of 1-tubings on Γ. In particular, the facet associated to a 1-tubing $\{t\}$ is combinatorially equivalent to $\mathcal{P} \Gamma_{t} \times \mathcal{P} \Gamma_{t}^{*}$.

Proof. We know from Theorem 2.6 that a facet of $\mathcal{P} \Gamma$ is given by a 1 -tubing $\{t\}$. The faces contained in this facet are the tubings T of Γ that contain t. Now if $t_{i} \subset t$ is a tube of Γ_{t} then it is also a tube of Γ. Consider the map
$\rho:\left\{\right.$ tubes of $\left.\Gamma_{t}^{*}\right\} \rightarrow\{$ tubes of Γ containing $t\}$

Fig. 3. Examples of 1-tubings and their reconnected complements.

Fig. 4. The Schlegel diagrams of a 4-polytope along with its four types of facets.
where

$$
\rho\left(t^{\prime}\right)= \begin{cases}t^{\prime} \cup t & \text { if } t^{\prime} \cup t \text { is connected in } \Gamma, \\ t^{\prime} & \text { otherwise. }\end{cases}
$$

Note that ρ is a bijection and it preserves the validity of tubings. That is, two tubes t_{1} and t_{2} are compatible in Γ_{t}^{*} if and only if $\rho\left(t_{1}\right)$ and $\rho\left(t_{2}\right)$ are compatible. Define the natural map

$$
\widehat{\rho}:\left\{\text { tubings on } \Gamma_{t}^{*}\right\} \times\left\{\text { tubings on } \Gamma_{t}\right\} \rightarrow\{\text { tubings on } \Gamma\}
$$

where

$$
\widehat{\rho}\left(T_{i} \times T_{j}\right)=\{t\} \cup \bigcup_{t_{i} \in T_{i}}\left\{\rho\left(t_{i}\right)\right\} \cup \bigcup_{t_{j} \in T_{j}}\left\{t_{j}\right\} .
$$

It is straightforward to show that this is an isomorphism of posets.
Example 2.10. Fig. 4 shows the Schlegel diagram of the 4 -dimensional polytope $\mathcal{P}(\mathcal{X})$. It is obtained from the 4 simplex by first truncating four vertices, each of which become a 3-dimensional facet, as depicted in Fig. 4(d) along with its 1-tubing. Then six edges are truncated, becoming facets of type Fig. 4(c); note that Theorem 2.9 shows the structure of the facet to be the product of the associahedron K_{4} of Fig. 1(b) and an interval. Finally four 2 -faces of the original 4 -simplex are truncated to result in the polytope of Fig. 4(b); this is the product of the cyclohedron W_{3} (hexagon) and an interval. Four of the original five facets of the 4 -simplex have become the polyhedron of Fig. 4(d), whereas the fifth (external) facet is the 3-dimensional permutohedron, as shown in Fig. 4(a).
2.4. The remaining section is devoted to the proof of Theorem 2.6, which follows directly from Lemmas 2.14 and 2.15 below. First we must define a poset operation analogous to truncation.

We define an initial partial ordering \prec_{0} on tubes by saying that $t_{i} \prec_{0} t_{j}$ if and only if $t_{i} \subset t_{j}$. We also define a partial ordering on a set of tubings \mathfrak{T} induced by any partial ordering of tubes of Γ : Given tubings $T_{I}, T_{J} \in \mathfrak{T}$, then $T_{I} \prec T_{J}$ if and only if for all $t_{j} \in T_{J}$, there exists t_{i} such that $t_{j} \prec t_{i} \in T_{I}$. We write this partially ordered set of tubings as ($\mathfrak{T}, \prec)$. Note that Δ_{Γ} is isomorphic to $\left(\mathfrak{T}_{0}, \prec_{0}\right)$: The set of nonnested tubings of Γ with order induced by \prec_{0}.

Definition 2.11. Given a poset of tubings (\mathfrak{T}, \prec), we can produce a set $\left(\mathfrak{T}^{\prime}, \prec^{\prime}\right)$ by promoting the tube t_{*}. Let

$$
\mathfrak{T}_{*}=\left\{T \cup\left\{t_{*}\right\} \mid T \in \mathfrak{T} \text { and } T \cup\left\{t_{*}\right\} \text { is a valid tubing of } \Gamma\right\}
$$

and let $\mathfrak{T}^{\prime}=\mathfrak{T} \cup \mathfrak{T}_{*}$. Let \prec^{\prime} be defined so that t_{*} is incomparable to any other tube, and for any tubes t_{a}, t_{b} not equal to t_{*}, let $t_{a} \prec^{\prime} t_{b}$ if and only if $t_{a} \prec t_{b}$ (see Fig. 5).

Fig. 5. A sketch of the poset lattice before and after promotion of tube $\{t\}$. Regions shaded with like colors are isomorphic as posets.

Let $\left\{t_{i}\right\}$ be the set of tubes in Γ for $i \in\{1, \ldots, k\}$ ordered in decreasing size. Notice these correspond to the faces of Δ_{Γ} in increasing order of dimension. Let $\left(\mathfrak{T}_{i}, \prec_{i}\right)$ be the resulting set after consecutively promoting the tubes t_{1}, \ldots, t_{i} in $\left(\mathfrak{T}_{0}, \prec_{0}\right)$. The following two lemmas explicitly define the tubings and the ordering of ($\left.\mathfrak{T}_{i}, \prec_{i}\right)$. Both are trivial inductions from the definition of promotion.

Lemma 2.12. \mathfrak{T}_{i} is the set of all valid tubings of the form $T_{0} \bigcup_{j=1}^{m}\left\{t_{q_{j}}\right\}$ where $T_{0} \in \mathfrak{T}_{0}$ and $\left\{q_{j}\right\} \subseteq\{1, \ldots, i\}$.
Lemma 2.13. If a or b is less than or equal to i, then $t_{a} \prec_{i} t_{b}$ if and only if $a=b$. If both a and b are greater than i, then $t_{a} \prec_{i} t_{b}$ if and only if $t_{a} \prec_{0} t_{b}$.

As a special case we can state the following:
Lemma 2.14. $\left(\mathfrak{T}_{k}, \prec_{k}\right)$ is isomorphic as a poset to the set of tubings of Γ, ordered such that $T \prec T^{\prime}$ if and only if T can be obtained by adding tubes to T^{\prime}.

Proof. Applying Lemma 2.12 to the case $i=k$ shows \mathfrak{T}_{k} is the set of all tubings of Γ. Lemma 2.13 shows that $T \prec_{k} T^{\prime}$ if and only if $T \supset T^{\prime}$.

The only step that remains is to show the equivalence of promotion to truncation when performed in this order. The following lemma accomplishes this.

Lemma 2.15. Let f_{i} be a face of Δ_{Γ} corresponding to the tube t_{i}. Let \mathcal{P}_{i} be the polytope created by consecutively truncating faces f_{1}, \ldots, f_{i} of \triangle_{Γ}. Then $\left(\mathfrak{T}_{k}, \prec_{k}\right) \cong P_{k}$.

Proof. For consistency, we refer to Δ_{Γ} by \mathcal{P}_{0}. Since \mathcal{P}_{0} is convex, so is \mathcal{P}_{i}. Thus we may define these polytopes as intersections of halfspaces. Denote the hyperplane that defines the halfspace H_{a}^{+}by H_{a}. If X is the halfspace set for a polytope \mathcal{P} then there is a natural poset map

$$
\Psi: \mathcal{P} \rightarrow \Omega(X)^{o p}: f \mapsto X_{f}
$$

where $\Omega(X)^{o p}$ is the set of subsets of X ordered under reverse inclusion and X_{f} is the subset such that $f=\mathcal{P} \cap$ $\bigcap_{a \in X_{f}} H_{a}$. Note that Ψ is an injection with its image as all the sets X^{\prime} such that $\mathcal{P} \cap \bigcap_{a \in X^{\prime}} H_{a}$ in nonempty. By truncating \mathcal{P} at f_{*}, a new halfspace H_{*}^{+}is added with the following properties:
(1) A vertex of \mathcal{P} is in H_{*}^{+}if and only if it is not in f_{*}.
(2) No vertices of \mathcal{P} are in H_{*}.

This produces the truncated polytope $\mathcal{P}_{*}=H_{*}^{+} \cap \bigcap_{a \in X} H_{a}^{+}$. Let \mathcal{P}_{0} be defined by $\bigcap_{a \in X_{0}} H_{a}^{+}$where X_{0} is the set of indices for the defining halfspaces. Let H_{i}^{+}be the halfspace with which we intersect \mathcal{P}_{i-1} to truncate f_{i}. The halfspace set for \mathcal{P}_{i} is

$$
X_{i}=X_{i-1} \cup\{i\}=X_{0} \cup\{1, \ldots, i\}
$$

We define the map $\Psi_{i}: \mathcal{P}_{i} \rightarrow \Omega\left(X_{i}\right)^{o p}$ which takes a face of \mathcal{P}_{i} to the set of hyperplanes that contain it.
We now produce an order preserving injection Φ_{i} from \mathfrak{T}_{i} to $\Omega\left(X_{i}\right)^{o p}$. Let ϕ_{0} be the map from tubes of Γ to $\Omega\left(X_{0}\right)$ that takes a tube t_{i} to $\Psi_{0}\left(f_{i}\right)$. Define

$$
\phi_{i}\left(t_{j}\right)= \begin{cases}\{j\} & \text { if } j \leqslant i \\ \phi_{0}\left(t_{j}\right) & \text { if } j>i\end{cases}
$$

This allows us to define a new map

$$
\Phi_{i}: \mathfrak{T}_{i} \rightarrow \Omega\left(X_{i}\right)^{o p}: T_{J} \mapsto \bigcup_{t_{j} \in T_{J}} \phi_{i}\left(t_{j}\right)
$$

It follows from the definition that this is an order preserving injection. An induction argument shows that $\Phi_{i}\left(\mathfrak{T}_{i}\right)=$ $\Psi_{i}\left(\mathcal{P}_{i}\right)$. Since Ψ_{i} and Φ_{i} are order preserving and injective, we have that $\Psi_{i}^{-1} \circ \Phi_{i}: \mathfrak{T}_{i} \rightarrow \mathcal{P}_{i}$ is an isomorphism of posets.

3. Tiling Coxeter complexes

3.1. We begin with some standard facts and definitions about Coxeter systems. Most of the background used here can be found in Bourbaki [3] and Brown [4].

Definition 3.1. Given a finite set S, a Coxeter group W is given by the presentation

$$
W=\left\langle s_{i} \in S \mid s_{i}^{2}=1,\left(s_{i} s_{j}\right)^{m_{i j}}=1\right\rangle
$$

where $m_{i j}=m_{j i}$ and $2 \leqslant m_{i j} \leqslant \infty$.
Associated to any Coxeter system (W, S) is its Coxeter graph Γ_{W} : Each node represents an element of S, where two nodes s_{i}, s_{j} determine an edge if and only if $m_{i j} \geqslant 3$. A Coxeter group is irreducible if its Coxeter graph is connected and it is locally finite if either W is finite or each proper subset of S generates a finite group. A Coxeter group is simplicial if it is irreducible and locally finite. The classification of simplicial Coxeter groups and their Coxeter graphs are well-known [3, Chapter 6]. Unless stated otherwise, the Coxeter groups discussed below are assumed to be simplicial.

Every simplicial Coxeter group has a realization as a group generated by reflections acting faithfully on a variety [4, Chapter 3]. The geometry of the variety is either spherical, Euclidean, or hyperbolic, depending on the group. Every conjugate of a generator s_{i} acts on the variety as a reflection in some hyperplane, dividing the variety into simplicial chambers. This variety, along with its cellulation is the Coxeter complex corresponding to W, denoted $\mathcal{C} W$. The hyperplanes associated to the generators s_{i} of W all border a single chamber, called the fundamental chamber of $\mathcal{C} W$. The W-action on the chambers of $\mathcal{C} W$ is transitive, and thus we may associate an element of W to each chamber; generally, the identity is associated to the fundamental chamber.

Notation. For a spherical Coxeter complex $\mathcal{C} W$, we define the projective Coxeter complex $\mathbb{P} \mathcal{C}(W)$ to be $\mathcal{C} W$ with antipodal points on the sphere identified. These complexes arise naturally in blow-ups, as shown in Theorem 4.2.

Example 3.2. The Coxeter group of type A_{n} has n generators, and $m_{i j}=3$ if $i=j \pm 1$ and 2 otherwise. Thus A_{n} is isomorphic to the symmetric group \mathbb{S}_{n+1} and acts on the intersection of the unit sphere in \mathbb{R}^{n+1} with the hyperplane $x_{1}+x_{2}+\cdots+x_{n+1}=0$. Each s_{i} is the reflection in the plane $x_{i}=x_{i+1}$. Fig. 6(a) shows the Coxeter complex $\mathcal{C} A_{3}$, a 2 -sphere cut into 24 triangles.

The B_{n} Coxeter group has n generators with the same $m_{i j}$ as A_{n} except that $m_{12}=4$. The group B_{n} is the symmetry group of the n-cube, and acts on the unit sphere in \mathbb{R}^{n}. Each generator s_{i} is a reflection in the hyperplane $x_{i-1}=x_{i}$, except s_{1} which is the reflection in $x_{1}=0$. Fig. $6(\mathrm{~b})$ shows the Coxeter complex $\mathcal{C} B_{3}$, the 2 -sphere tiled by simplices.

Fig. 6. Coxeter complexes $\mathcal{C} A_{3}, \mathcal{C} B_{3}$, and $\mathcal{C} \widetilde{A}_{2}$.
The \widetilde{A}_{n} Coxeter group has $n+1$ generators, with $m_{i j}=3$ if $i=j \pm 1$, and $m_{(1)(n+1)}=3$. Every other $m_{i j}$ equals two. The group \widetilde{A}_{n} acts on the hyperplane defined by $x_{1}+x_{2}+\cdots+x_{n+1}=0$ in \mathbb{R}^{n+1}. Each s_{i} is the reflection in $x_{i}=x_{i+1}$, except s_{n+1} which is the reflection in $x_{n+1}=x_{1}+1$. Fig. 6(c) shows the Coxeter complex $\mathcal{C} \widetilde{A}_{2}$, the plane with the corresponding hyperplanes.
3.2. The collection of hyperplanes $\left\{x_{i}=0 \mid i=1, \ldots, n\right\}$ of \mathbb{R}^{n} generates the coordinate arrangement. A crossing of hyperplanes is normal if it is locally isomorphic to a coordinate arrangement. A construction which transforms any crossing into a normal crossing involves the algebro-geometric concept of a blow-up; see Section 4.1 for a definition.

A general collection of blow-ups is usually noncommutative in nature; in other words, the order in which spaces are blown-up is important. For a given arrangement, De Concini and Procesi [7, Section 3] establish the existence (and uniqueness) of a minimal building set, a collection of subspaces for which blow-ups commute for a given dimension, and for which every crossing in the resulting space is normal. We denote the minimal building set of an arrangement \mathcal{A} by $\operatorname{Min}(\mathcal{A})$. Let α be an intersection of hyperplanes in an arrangement \mathcal{A}. Denote $\mathcal{H} \alpha$ to be the set of all hyperplanes that contain α. We say $\mathcal{H} \alpha$ is reducible if it is a disjoint union $\mathcal{H} \beta \sqcup \mathcal{H} \gamma$, where $\alpha=\beta \cap \gamma$ for intersections of hyperplanes β and γ.

Lemma 3.3. [7, Section 2] $\alpha \in \operatorname{Min}(\mathcal{A})$ if and only if $\mathcal{H} \alpha$ is irreducible.
If reflections in $\mathcal{H} \alpha$ generate a Coxeter group (finite reflection group), it is called the stabilizer of α and denoted W_{α}. For a Coxeter complex $\mathcal{C} W$, we denote its minimal building set by $\operatorname{Min}(\mathcal{C} W)$. The relationship between the set $\operatorname{Min}(\mathcal{C} W)$ and the group W is given by the following.

Lemma 3.4. [5, Section 3] $\alpha \in \operatorname{Min}(\mathcal{C} W)$ if and only if W_{α} is irreducible.
Definition 3.5. The minimal blow-up of $\mathcal{C} W$, denoted as $\mathcal{C}(W)_{\#}$, is obtained by blowing-up along elements of $\operatorname{Min}(\mathcal{C} W)$ in increasing order of dimension.

The construct $\mathcal{C}(W) \#$ is well-defined: Lemma 4.9 below guarantees that blowing-up any ordering of subspaces in $\operatorname{Min}(\mathcal{C} W)$ of the same dimension produces the same cellulation.

Example 3.6. Fig. 7(a) shows the blow-ups of the sphere $\mathcal{C} A_{3}$ of Fig. 6(a) at nonnormal crossings. Each blown up point has become a hexagon with antipodal identification and the resulting manifold is $\mathcal{C}\left(A_{3}\right)$ \#. Fig. 8 shows the local structure at a blow-up, where each crossing is now normal. The minimal blow-up of the projective Coxeter complex of type A_{3} is shown in Fig. 7(b), with the four points blown up in $\mathbb{R} \mathbb{P}^{2}$. Fig. 7(c) shows the minimal blow-up of $\mathcal{C} \widetilde{A}_{2}$ of Fig. 6(c).
3.3. Given the construction of graph-associahedra above, we turn to applying them to the chambers tiling $\mathcal{C}(W) \#$.

Theorem 3.7. Let W be a simplicial Coxeter group and Γ_{W} be its associated Coxeter graph. Then $\mathcal{P} \Gamma_{W}$ is the fundamental domain for $\mathcal{C}(W) \#$.

Fig. 7. Minimal blow-ups of (a) $\mathcal{C} A_{3}$, (b) $\mathbb{P C}\left(A_{3}\right)$ and (c) $\mathcal{C} \tilde{A}_{2}$.
Proof. It is a classic result of geometric group theory that each chamber of a simplicial Coxeter complex $\mathcal{C} W$ is a simplex. The representation of W can be chosen such that the generators correspond to the reflections through the supporting hyperplanes of a fixed chamber. In other words, a fundamental chamber of $\mathcal{C} W$ is the simplex $\Delta_{\Gamma_{W}}$ such that each facet of $\Delta_{\Gamma_{W}}$ is associated to a node of Γ_{W}.

Let f be a face of $\Delta_{\Gamma_{W}}$ and let α be the support of f, the smallest intersection of hyperplanes of $\mathcal{C} W$ containing f. As in the previous section, the face f corresponds to a subset S of the nodes of Γ_{W}. The nodes in S represent the generators of W that stabilize α. These elements generate W_{α}, and the subgraph induced by S is the Coxeter graph of W_{α}.

By Lemma 3.4, α is an element of $\operatorname{Min}(\mathcal{C} W)$ if and only if W_{α} is irreducible. But W_{α} is irreducible if and only if $\Gamma_{W_{\alpha}}$ is connected, that is, when the set of nodes of $\Gamma_{W_{\alpha}}$ is a tube of Γ_{W}. Note that blowing up α in $\mathcal{C} W$ truncates the face f of $\Delta_{\Gamma_{W}}$. Thus performing minimal blow ups of $\mathcal{C} W$ is equivalent to truncating the faces of $\Delta_{\Gamma_{W}}$ that correspond to tubes of Γ_{W}. By definition, the resulting polytope is $\mathcal{P} \Gamma_{W}$.

Remark. The maximal building set is the collection of all crossings, not just the nonnormal ones. The fundamental chambers of the maximal blow-up of $\mathcal{C} W$ will be tiled by permutohedra, obtained by iterated truncations of all faces of the simplex.

Remark. The generalized associahedra of Fomin and Zelevinsky [11] are fundamentally different than graphassociahedra. Although both are motivated from type A_{n} (the classical associahedra of Stasheff), they are distinct in all other cases. For example, the cyclohedron is the generalized associahedron of type B_{n}, whereas it is the type \widetilde{A}_{n} graph-associahedron.
3.4. The construction of the Coxeter complex $\mathcal{C} W$ implies a natural W-action. This action, restricted to the chambers is faithful and transitive, so we can identify each chamber with the group element that takes the fundamental chamber to it. The faces of the chambers of $\mathcal{C} W$ have different types (according to their associated tubings in Γ_{W}). A transformation is type preserving if it takes each face to a face of the same type. We call the W-action type preserving because each w induces a type preserving transformation of $\mathcal{C} W$.

We may use this action to define a W-action on $\mathcal{C}(W)_{\#}$. There is a hyperplane-preserving isomorphism between $\mathcal{C} W-\bigcup \operatorname{Min}(\mathcal{C} W)$ and $\mathcal{C}(W){ }_{\#}-\bigcup \operatorname{Min}(\mathcal{C} W)$. We define the W-action on $\mathcal{C}(W)$ \# to agree with the W-action on $\mathcal{C} W$ in $\mathcal{C}(W) \#-\bigcup \operatorname{Min}(\mathcal{C} W)$. We define the action on the remainder of $\mathcal{C}(W)$ \# by requiring that for all subvarieties V of $\mathcal{C}(W) \#-\bigcup \operatorname{Min}(\mathcal{C} W)$, the action of w takes the closure of V to the closure of $w V$. The W-action defined this way is type preserving, and the stabilizer of each hyperplane α is the group W_{α}.

Given $\mathcal{C}(W)_{\#}$, we may associate an element $s_{f} \in W$ to each facet f of the fundamental chamber. We call this element the reflection in that facet. If α is the hyperplane of $\mathcal{C}(W)_{\#}$ that contains f, then s_{f} is a reflection in α. This corresponds to the reflection across α in $\mathcal{C} W$, which is the longest word in W_{α} [4, Section 3]. For a face f of the fundamental chamber, define $W_{f}=\left\langle s_{f_{i}}\right\rangle$ and $s_{f}=\prod s_{f_{i}}$, where the f_{i} 's are the facets of the fundamental chamber that contain f. We denote the face corresponding to f of the chamber labeled w by $w(f)$.

Theorem 3.8. $\mathcal{C}(W)_{\#}$ can be constructed from $|W|$ copies of $\mathcal{P} \Gamma_{W}$, labeled by the elements of W and with the face $w(f)$ identified to $w^{\prime}(f)$ whenever $w^{-1} w^{\prime} \in W_{f}$. The facet directly opposite w through $w(f)$ is $w s_{f}$.

Fig. 8. Reflections locally around $\mathcal{C}\left(A_{3}\right)$ \#.
Remark. One may be tempted to think that whenever $w(f)$ is identified with $w^{\prime}(f)$, the map between them is the restriction of the identity map between the chambers w and w^{\prime}. However, Davis et al. [6, Section 8] show that this is not the case, and compute the actual gluing maps between faces. For this reason they call the elements s_{f} "mock reflections". The gluing map may also be computed by applying the theorem above to subfaces of f.

Proof of Theorem 3.8. Since the W-action is type preserving, a chamber w contains a face f if and only if w preserves f. Recall that W_{f} is generated by reflections in facets that contain f. Thus f is contained only in chambers whose elements correspond to W_{f}. The chamber that lies directly across f from the fundamental chamber corresponds to the longest word in W_{f}. Minimal blow-ups of $\mathcal{C} W$ resolve nonnormal crossings, so W_{f} is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{d}$, where F has codimension d. Thus the longest word in W_{f} is the product of generators $s_{f_{i}}$.

For every subspace $\alpha \in \operatorname{Min}(\mathcal{C} W)$ and every $w \in W$, the subspace $w(\alpha)$ is also in $\operatorname{Min}(\mathcal{C} W)$. Thus we may extend the adjacency relation to chambers other than the fundamental chamber analogously. Since the W-action preserves containment, a face $w^{\prime}(f)$ is identified with $w(f)$ if and only if $w^{-1} w^{\prime} \in W_{f}$. Similarly, w respects reflection across F so the chamber directly across $w(f)$ from w is $w s_{f}$.

Example 3.9. Consider the Coxeter group A_{3}. Denote two facets of the fundamental chamber of $\mathcal{C} A_{3}$ by x and y, whose reflections have the property that $\left(s_{x} s_{y}\right)^{3}=1$. Note that $\mathcal{C}\left(A_{3}\right)_{\#}$ is tiled by 24 copies of the associahedron $\mathcal{P}\left(A_{3}\right)$. Let f be the facet adjacent to x and y in the fundamental chamber of $\mathcal{C}\left(A_{3}\right) \#$ and let α be the intersection of y and f, as in Fig. 8. Then $s_{f}=s_{x} s_{y} s_{x}$, and the fundamental chamber meets $s_{y} s_{x}, s_{x} s_{y} s_{x}$, and s_{y} at α. If we travel directly across α from the fundamental chamber, we arrive in $s_{\alpha}=s_{x} s_{y} s_{x} \cdot s_{y}=s_{y} s_{x}$.

4. Geometry of minimal blow-ups

4.1. One of our objectives is to describe the geometric structures of $\operatorname{Min}(\mathcal{C} W)$ before and after blow-ups. This final section proves Theorem 4.2 which describes $\mathcal{C}(W)$ \# seen from the viewpoint of $\mathcal{C} W$.

We recall elementary notions of local structures, along with fixing notation: The tangent space of a variety V at p is denoted $T_{p}(V)$. For a Coxeter complex $\mathcal{C} W$, the tangent space has a natural Euclidean geometry which it inherits from the embedding of $\mathcal{C} W$ in \mathbb{R}^{n} (with the hyperbolic simplicial Coxeter groups being viewed as acting on the hyperboloid model inside \mathbb{R}^{n}). Two nonzero subspaces of $T_{p}(V)$ are perpendicular if each vector in the first is perpendicular to each vector in the second, under the Euclidean geometry of $T_{p}(V)$. The tangent bundle of a variety V on a subvariety U is

$$
T_{U}(V)=\left\{(p, v) \mid p \in U, v \in T_{p}(V)\right\} .
$$

If $U=V$, we write $T(V)$. The normal space of U at p is

$$
N_{p}(U)=\left\{v \mid v \in T_{p}(V), v \perp T_{p}(U)\right\}
$$

and the normal bundle of U at a subvariety $W \subset U$ is

$$
N_{W}(U)=\left\{(p, v) \mid p \in U, v \in N_{p}(V)\right\} .
$$

If $W=U$, we write $N(U)$.
Definition 4.1. [12] The blow-up of a variety V along a codimension k intersection α of hyperplanes is the closure of $\{(x, f(x)) \mid x \in V\}$ in $V \times \mathbb{P}^{k-1}$. The function $f: V \rightarrow \mathbb{P}^{k-1}$ is defined by $f: p \mapsto\left[f_{1}(p): f_{2}(p): \cdots: f_{k}(p)\right]$, where the f_{i} define hyperplanes of $\mathcal{H} \alpha$ whose intersection is α.

We denote the blow-up of V along α by $V_{\# \alpha}$. There is a natural projection map

$$
\pi: V_{\# \alpha} \rightarrow V:(x, y) \mapsto x
$$

which is an isomorphism on $V-\alpha$. The hyperplanes of $V_{\# \alpha}$ are the closures $\pi^{-1}(h-\alpha)$ for each hyperplane h of V and one additional hyperplane $\pi^{-1}(\alpha)$. Thus $V-\alpha$ and $V_{\# \alpha}-\pi^{-1}(\alpha)$ are isomorphic not only as varieties but as cellulations. ${ }^{1}$ The hyperplane α of $V_{\# \alpha}$ has a natural identification with the projectified normal bundle of α in V. The intersection of a hyperplane h with α is the part of α that corresponds to $T_{\alpha}(h) \subset N(\alpha)$.
4.2. An arrangement of hyperplanes of a variety V cut V into regions. We say that the hyperplanes give a cellulation of V. Two cellulations are equivalent if there is a hyperplane-preserving isomorphism between the two varieties. Let α be an intersection of hyperplanes. We say that hyperplanes h_{i} cellulate α to mean the intersections $h_{i} \cap \alpha$ give a cellulation of α, denoted by $\mathcal{C} \alpha$. The notation $\mathcal{C} \alpha$ will always refer to the cellulation of α in the original complex, rather than its image in subsequent blow-ups. Let $\operatorname{Min}(\mathcal{C} \alpha)$ denote the minimal building set of $\mathcal{C} \alpha$, and let $\mathcal{C}(\alpha)_{\#}$ denote the blow-up of the minimal building set of α.

Theorem 4.2. Let $\mathcal{C} W$ be the Coxeter complex of a simplicial Coxeter group W and let $\alpha \in \operatorname{Min}(\mathcal{C} W)$. The blow-up of α in $\mathcal{C}(W) \#$ is equivalent to the product $\mathcal{C}(\alpha) \# \times \mathbb{P} C\left(W_{\alpha}\right) \#$.

Example 4.3. There are $2\binom{n+1}{n-k}$ dimension k elements of $\operatorname{Min}\left(\mathcal{C} A_{n}\right)$. Each of these elements become $\mathcal{C}\left(A_{k+1}\right) \# \times$ $\mathbb{P C}\left(A_{n-k-1}\right)_{\#}$ in $\mathcal{C}\left(A_{n}\right)_{\#}$. Fig. $9(\mathrm{~d})$ shows the projective Coxeter complex $\mathbb{P C}\left(A_{4}\right)_{\#}$ after minimal blow-ups. This is the Deligne-Knudsen-Mumford compactification $\overline{\mathcal{M}}_{0}^{6}(\mathbb{R})$ of the real moduli space of curves with six marked points. It is the real projective sphere $\mathbb{R P}^{3}$ with five points and ten lines blown-up. Each of the five blown-up points are $\mathbb{P} \mathcal{C}\left(A_{3}\right)_{\#}$, shown in Fig. 9(b) as $\mathcal{C}\left(A_{4}\right) \#$ before projecting through the antipodal map. Each of the ten lines, each line defined by two distinct points in $\operatorname{Min}\left(\mathcal{C} A_{4}\right)$, becomes $\mathbb{P C}\left(A_{2}\right) \# \times \mathbb{P C}\left(A_{2}\right) \#$, a 2-torus depicted in Fig. 9(c). Note that there are also ten codimension 1 subspaces $\mathbb{P C}\left(A_{3}\right) \#$ pictured in Fig. 9(a), defined by three distinct points in $\operatorname{Min}\left(\mathcal{C} A_{4}\right)$.

Remark. Lemmas 4.5 and 4.6 are enough to provide the results of Theorem 4.2 for the maximal blow-up of $\mathcal{C} W$.
Remark. Extensions of these results to configuration spaces are given in [1, Section 3].
4.3. The proof of Theorem 4.2 requires two definitions and four preliminary lemmas.

Definition 4.4. Let β and γ be intersections of hyperplanes in a cellulation of V. We say that β is strongly perpendicular to γ and write $\beta \perp \gamma$ if for all p in $\beta \cap \gamma$, all three of the following subspaces span $T_{p}(V)$ and any two of them are perpendicular:
(1) $T_{p}(\beta \cap \gamma)$,
(2) $N_{p}(\beta)$, and
(3) $N_{p}(\gamma)$.

[^1]

Fig. 9. The projective Coxeter complex (d) $\mathbb{P C}\left(A_{4}\right)_{\#}$ along with components (a) $\mathbb{P C}\left(A_{3}\right)_{\#}$, (b) $\mathcal{C}\left(A_{3}\right)_{\#}$ and (c) $\mathbb{P C}\left(A_{2}\right)_{\#} \times \mathbb{P} \mathcal{C}\left(A_{2}\right)_{\#}$.

Note that this directly implies that $T_{p}(\beta)$ is the span of $T_{p}(\beta \cap \gamma) \cup N_{p}(\gamma)$. For an intersection of hyperplanes β, the normal space $N_{p}(\beta)$ is the span of the normal spaces of the elements of $\mathcal{H} \beta$ at p; if β contains γ, then $N_{p}(\gamma)$ contains $N_{p}(\beta)$. This shows immediately that if $\mathcal{H} \beta$ reduces to $\mathcal{H} \beta_{1} \sqcup \mathcal{H} \beta_{2}$, then $\beta_{1} \perp \beta_{2}$.

Lemma 4.5. For every intersection of hyperplanes β in a Coxeter complex $\mathcal{C} W$, the set $\mathcal{H} \beta$ has a unique maximal decomposition $\mathcal{H} \beta=\mathcal{H} \beta_{1} \sqcup \cdots \sqcup \mathcal{H} \beta_{k}$ where
(1) each $\mathcal{H} \beta_{i}$ is irreducible,
(2) $\beta_{i} \perp \beta_{j}$ for all $i \neq j$, and
(3) $\bigcap_{i \in S} \beta_{i}$ properly contains β for any proper subset $S \subset\{1,2, \ldots, k\}$.

Proof. If the normal spaces of two hyperplanes h_{1}, h_{2} of $\mathcal{H} \beta$ are not perpendicular, write $h_{1} \sim h_{2}$. Then \sim is a symmetric, reflexive relation on $\mathcal{H} \beta$. Let \approx be the unique smallest equivalence relation containing \sim as a subset of $\mathcal{H} \beta \times \mathcal{H} \beta$.

No two hyperplanes $h_{1} \sim h_{2}$ can be separated by any reduction of $\mathcal{H} \beta$. To prove this, suppose they could, and let $\mathcal{H} \beta$ reduce to $\mathcal{H} \beta_{1} \sqcup \mathcal{H} \beta_{2}$ with h_{1} in β_{1} and h_{2} in β_{2}. Then since W_{β} is a Coxeter group, the reflection of h_{1} across h_{2} must be in $\mathcal{H} \beta$. By hypothesis, the resulting hyperplane must contain β_{1} or β_{2}. The former implies that $\beta_{1} \subset h_{2}$ and the latter implies $\beta_{2} \subset h_{1}$, yielding a contradiction. Since \approx is the smallest transitive relation containing \sim, the hyperplanes h_{1}, h_{2} cannot be separated whenever $h_{1} \approx h_{2}$.

However, if \approx partitions $\mathcal{H} \beta$ into at least two classes, then we may separate $\mathcal{H} \beta$ into $H_{1} \sqcup H_{2}$ with each partition contained in either H_{1} or H_{2}. Clearly $\bigcap H_{1} \cap \bigcap H_{2}=\beta$. To verify that $\mathcal{H}\left(\bigcap H_{i}\right)=H_{i}$, note that no element h_{1} of H_{1} may contain $\bigcap H_{2}$. If it does, then for all p in β, we have $N_{p}\left(h_{1}\right)$ contained in $N_{p}\left(\bigcap H_{2}\right)$, and thus in the span of $\left\{N_{p}\left(h_{2}\right)\right\}$ for h_{2} in H_{2}. This violates the pairwise perpendicularity in our choice of H_{1}, H_{2}. Thus the equivalence relation \approx partitions $\mathcal{H} \beta$ into a unique maximal decomposition and therefore the $\mathcal{H} \beta_{i}$'s are irreducible. Also, no proper subset S of the β_{i} can intersect in exactly β, since then $\bigcup \mathcal{H} \beta_{i}$ for β_{i} in S would be $\mathcal{H} \beta$. But $\mathcal{H} \beta$ must reduce to $\bigcup \mathcal{H} \beta_{i}$ for $\beta_{i} \in S$ and $\bigcup \mathcal{H} \beta_{j}$ for $\beta_{j} \notin S$ by the argument above.

When $\mathcal{H} \gamma$ reduces to $\mathcal{H} \gamma_{1} \sqcup \mathcal{H} \gamma_{2}$, we have $\gamma_{1} \perp \gamma_{2}$. Furthermore, since $N_{p}\left(\gamma_{1}\right)$ is the span of the normal spaces of $\mathcal{H} \gamma_{1}$, and $\mathcal{H} \gamma_{1} \subset \mathcal{H} \gamma$, then for any $\gamma_{3} \perp \gamma$ (with nonempty intersection), it follows that $\gamma_{3} \perp \gamma_{1}$. Thus by induction, $\beta_{i} \perp \beta_{j}$ for $i \neq j$.
4.4. The following two lemmas describe the effect of a blow-up on a cellulation. The first lemma combines several facts that follow directly from the definitions of hyperplanes and blow-ups. Note that as we perform blow-ups of $\mathcal{C} W$, the set of hyperplanes that contain a given β may change. However, $\mathcal{H} \beta$ is always assumed to refer to the set of hyperplanes that contain β in $\mathcal{C} W$.

Lemma 4.6. Let β be a subvariety of V with cellulation C_{1}. Suppose the tangent spaces of the hyperplanes $\mathcal{H} \beta$ cellulate the normal bundle at each point p with cellulation C_{2}.
(1) The subvariety β of $V_{\# \beta}$ is a product $C_{1} \times \mathbb{P} C_{2}$.
(2) The tangent space $T_{p}\left(V_{\# \beta}\right)$ for $p \in \beta$ retains a local Euclidean structure. Roughly speaking, $n-1$ of the coordinate vectors are in $T_{p}(\beta)$, and the other is parallel to the 1-dimensional subspace of $N_{\pi(p)}(\beta)$ that corresponds to p.
(3) For each hyperplane h of V that meets β at a subvariety $\gamma \neq \beta$, the hyperplane h of $V_{\# \beta}$ meets β at $\gamma \times \mathbb{P} C_{2}$.
(4) For each hyperplane h of V that properly contains β, the hyperplane h of $V_{\# \beta}$ meets β at $C_{1} \times h^{\prime}$, where h^{\prime} is the image of $T_{p}(h)$ in $\mathbb{P} C_{2}$. Also $\beta \perp h$.

Lemm 4.7. Let β be a subvariety of V with cellulation C_{1}. If $\beta \perp \gamma$ in V, then $\mathcal{C} \beta$ in $V_{\# \gamma}$ is equivalent to $\left(C_{1}\right) \#(\beta \cap \gamma)$.
Proof. The normal bundle $N_{\beta \cap \gamma}(\gamma)$ is contained in $T_{\beta \cap \gamma}(\beta)$ since $\beta \perp \gamma$. Thus $N(\beta \cap \gamma)$ and $N(\gamma)$ have the same intersection with $T(\beta)$. Since blow-ups replace a variety with its projectified normal bundle, the blow-ups along γ and $\beta \cap \gamma$ produce equivalent cellulations of β.

Finally we establish the tools that will allow us to change the order in which we blow up elements of $\operatorname{Min}(\mathcal{C} W)$. The following definition and lemma give a class of orderings that produce the same cellulation as minimal blow-ups.

Definition 4.8. Given a variety V with intersections of hyperplanes β, γ, the blow-ups along β and γ commute if the cellulations $\left(V_{\# \beta}\right)_{\# \gamma}$ and $\left(V_{\# \gamma}\right)_{\# \beta}$ are equivalent, and the induced map on the hyperplanes preserves their labels.

Lemma 4.9. Let $x_{1}, x_{2}, \ldots, x_{k}$ be an ordering of the elements of $\operatorname{Min}(\mathcal{C} W)$ such that $i \leqslant j$ whenever x_{i} is contained in x_{j}. Then blowing up $\mathcal{C} W$ along the x_{i} in order gives a cellulation equivalent to $\mathcal{C}(W)$ \#. The induced map on the hyperplanes also preserves labels.

Proof. First we verify that if $\beta \perp \gamma$, then the blow-ups along β and γ commute. Since $\beta \perp \gamma$, the bundle $N_{\beta \cap \gamma}(\beta)$ is contained in $T_{\beta \cap \gamma}(\gamma)$ and $N_{\beta \cap \gamma}(\gamma)$ is contained in $T_{\beta \cap \gamma}(\beta)$. Define the maps $\pi_{\beta}: V_{\# \beta} \rightarrow V$ and $\pi_{\beta \gamma}:\left(V_{\# \beta}\right)_{\# \gamma} \rightarrow V_{\# \beta}$. Then $\pi_{\beta}^{-1}(V-\gamma)=\pi_{\beta}^{-1}(V)-\pi_{\beta}^{-1}(\gamma)$ since $N_{\beta \cap \gamma}(\beta) \subset T_{\beta \cap \gamma}(\gamma)$. Thus $\left(V_{\# \beta}\right) \# \gamma$ is the closure of $\pi_{\beta \gamma}\left(\pi_{\beta}^{-1}(V-\gamma)\right)$, which is the closure of $\pi_{\beta \gamma}^{-1}\left(\pi_{\beta}^{-1}(V-\gamma-\beta)\right)$. Similar reasoning shows that $\left(V_{\# \gamma}\right)_{\# \beta}$ is the closure of $\pi_{\gamma \beta}^{-1}\left(\pi_{\gamma}^{-1}(V-\beta-\gamma)\right)$. Since the π 's are isomorphisms on $V-\beta-\gamma$, we have a natural isomorphism between $\left(V_{\# \beta}\right)_{\# \gamma}$ and $\left(V_{\# \gamma}\right)_{\# \beta}$.

Now take β, γ to be elements of $\operatorname{Min}(\mathcal{C} W)$ such that neither contains the other. By Lemma 3.3, the arrangements $\mathcal{H} \beta$ and $\mathcal{H} \gamma$ are irreducible. Applying Lemma 4.5 shows that if $\mathcal{H}(\beta \cap \gamma)$ is reducible, then $\beta \perp \gamma$ and $\mathcal{H} \beta \sqcup \mathcal{H} \gamma$ is the unique reduction.

If $\mathcal{H}(\beta \cap \gamma)$ is irreducible, then $\beta \cap \gamma$ is in $\operatorname{Min}(\mathcal{C} W)$. After the blow-up along $\beta \cap \gamma$, the resulting spaces β and γ do not intersect by Lemma 4.6, and thus (vacuously) $\beta \perp \gamma$. If $\beta \cap \gamma$ is not in $\operatorname{Min}(\mathcal{C} W)$, then $\beta \perp \gamma$. In either case, the blow-ups along β and γ commute. Thus we may transpose any two elements that do not contain each other in the ordering of $\operatorname{Min}(\mathcal{C W})$ and get an equivalent cellulation (with matching hyperplane labels) after blowing up all of $\operatorname{Min}(\mathcal{C} W)$. Repeating this procedure proves the statement of the lemma.
4.5. We have now assembled all the lemmas needed for the proof of the theorem.

Proof of Theorem 4.2.

We begin by applying Lemma 4.9. Divide the elements of $\operatorname{Min}(\mathcal{C} W)$ into three sets:
(1) $\{\alpha\}$,
(2) $X=\{\beta: \beta \not \supset \alpha\}$, and
(3) $Y=\{\beta: \beta \subset \alpha\}$.

We reorder the elements of $\operatorname{Min}(\mathcal{C} W)$ as follows: First we blow up the elements of X, ordered by the dimension of $\beta \cap \alpha$, followed by blowing up along α. Finally blow up the elements of Y in order of dimension, as usual. Note that this is a valid application of Lemma 4.9, since if β contains γ, then $\beta \cap \alpha$ contains $\gamma \cap \alpha$.

We next produce a bijection ϕ between the set X^{\prime} of elements x_{i} in X that intersect α in $\left(\cdots\left((\mathcal{C} W)_{\# x_{1}}\right)_{\# x_{2}} \cdots\right)_{\# x_{i-1}}$ and the elements of $\operatorname{Min}(\mathcal{C} \alpha)$ in $\mathcal{C} W$. We show that the map $\phi: X^{\prime} \rightarrow \operatorname{Min}(\mathcal{C} \alpha): \beta \mapsto \beta \cap \alpha$ is a bijection, and that blowing up the elements of X has the same effect on the cellulation of α as blowing up the elements of $\operatorname{Min}(\mathcal{C} \alpha)$.
(1) Suppose $\beta \in X^{\prime}$ and $\beta \subset \alpha$, and thus $\mathcal{H} \alpha \subset \mathcal{H} \beta$. Since β is in $\operatorname{Min}(\mathcal{C} W)$, the group W_{β} is an irreducible spherical Coxeter group by Lemma 3.4, and the arrangement $\mathcal{H} \alpha$ is irreducible in $\mathcal{H} \beta$ by Lemma 3.3. For all spherical Coxeter groups W_{β}, the elements of $\mathcal{H} \beta$ intersect α in an irreducible arrangement. ${ }^{2}$ Therefore $\beta=\beta \cap \alpha \in$ $\operatorname{Min}(\mathcal{C} \alpha)$.
(2) Suppose $\beta \in X^{\prime}$ and $\beta \not \subset \alpha$, then $\beta \cap \alpha$ is not in $\operatorname{Min}(\mathcal{C} W)$, thus $\mathcal{H}(\beta \cap \alpha)$ reduces. Lemma 4.5 guarantees that $\beta \perp \alpha$. Thus by Lemma 4.7, blowing up β is equivalent to blowing up $\beta \cap \alpha$ in the cellulation of α.
(3) We now produce an function $\psi: \operatorname{Min}(\mathcal{C} \alpha) \rightarrow X^{\prime}$ that will be the inverse to ϕ. For $\beta \in \operatorname{Min}(\mathcal{C} \alpha)$, either $\beta \in$ $\operatorname{Min}(\mathcal{C} W)$ or $\mathcal{H} \beta$ is reducible. If $\beta \in \operatorname{Min}(\mathcal{C} W)$, then let $\psi(\beta)=\beta$. If not, then $\mathcal{H} \beta$ must reduce to $\mathcal{H} \alpha_{0} \sqcup \mathcal{H} \alpha_{1} \sqcup$ $\cdots \sqcup \mathcal{H} \alpha_{m}$. Without loss of generality, assume α contains α_{0}.
Since $N_{\beta}\left(\alpha_{i}\right)$ is contained in $T_{\beta}\left(\alpha_{0}\right)$ for $i \neq 0$, the normal spaces of the elements of $\mathcal{H} \beta-\mathcal{H} \alpha_{0}$ are the same in α as they are in $\mathcal{C} W$. Thus in α, we know that $\alpha_{i} \perp \alpha_{j}$ for $i, j \neq 0, i \neq j$. Furthermore, the normal space $N_{p}\left(\alpha_{0}\right)$ in α is a subset of $N_{p}\left(\alpha_{0}\right)$ in V. Thus if $N_{p}\left(\alpha_{0}\right)$ in α is nonzero, it is perpendicular to each $N_{p}\left(\alpha_{i}\right)$ in α. Thus the set of hyperplanes of α induced by $\mathcal{H} \beta-\mathcal{H} \alpha$ reduces to the disjoint union induced by $\left(\mathcal{H} \alpha_{0}-\mathcal{H} \alpha\right) \sqcup \mathcal{H} \alpha_{1} \sqcup \cdots \sqcup \mathcal{H} \alpha_{m}$. To satisfy the hypothesis that $\beta \in \operatorname{Min}(\mathcal{C} \alpha)$, it is necessary that $\alpha_{0}=\alpha$ and $m=1$. Thus we define $\psi(\beta)=\alpha_{1}$. It is straightforward to check that ψ is the inverse of ϕ, so ϕ is a bijection.
(4) By our choice of ordering, the elements of X^{\prime} are blown up in the same order as elements of $\operatorname{Min}(\mathcal{C} \alpha)$ under minimal blow-ups. Furthermore, the subvariety α has equivalent cellulations in the blow-up along $\phi(\beta)$ and in the blow-up along β. This follows trivially if $\beta \in \alpha$, and from Lemma 4.7 if not.

Thus, after blowing up all the elements of X in $\mathcal{C} W$, the cellulation of α is equivalent to $\mathcal{C}(\alpha)_{\#}$. By Lemma 4.6 , the result after blowing up α is equivalent to $\mathcal{C}(\alpha)_{\#} \times \mathbb{P C}\left(W_{\alpha}\right)$. Furthermore, for each element $y \in Y$, we have

$$
y \perp \alpha \quad \text { and } \quad y \cap \alpha=\mathcal{C}(\alpha)_{\#} \times y^{\prime},
$$

where y^{\prime} is the image of y in $\mathbb{P C}\left(W_{\alpha}\right)$. Since the elements of Y are ordered by dimension, they are also ordered by their dimension in $\mathcal{C} W_{\alpha}$. Lemma 4.7 guarantees that blowing up the elements of Y produces a cellulation of α equivalent to $\mathcal{C}(\alpha)_{\#} \times \mathbb{P} \mathcal{C}\left(W_{\alpha}\right)_{\#}$.

Acknowledgements

We thank Mike Davis, Rick Scott and Jim Stasheff for advice and clarifications. We also thank Zan Armstrong, Eric Engler, Ananda Leininger and Michael Manapat for numerous discussions.

[^2]
References

[1] S. Armstrong, M. Carr, S. Devadoss, E. Engler, A. Leininger, M. Manapat, Point configurations and Coxeter operads, Preprint, 2004.
[2] R. Bott, C. Taubes, On the self-linking of knots, J. Math. Phys. 35 (1994) 5247-5287.
[3] N. Bourbaki, Lie Groups and Lie Algebras. Chapters 4-6, Springer, Berlin, 2002.
[4] K.S. Brown, Buildings, Springer, New York, 1989.
[5] M. Davis, T. Januszkiewicz, R. Scott, Nonpositive curvature of blowups, Selecta Math. 4 (1998) 491-547.
[6] M. Davis, T. Januszkiewicz, R. Scott, Fundamental groups of minimal blow-ups, Adv. Math. 177 (2003) 115-179.
[7] C. De Concini, C. Procesi, Wonderful models of subspace arrangements, Selecta Math. 1 (1995) 459-494.
[8] S. Devadoss, Tessellations of moduli spaces and the mosaic operad, Contemp. Math. 239 (1999) 91-114.
[9] S. Devadoss, A space of cyclohedra, Discrete Comput. Geom. 29 (2003) 61-75.
[10] S. Devadoss, Combinatorial equivalence of real moduli spaces, Notices Amer. Math. Soc. 51 (2004) 620-628.
[11] S. Fomin, A. Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. 158 (2003) 977-1018.
[12] R. Hartshorne, Algebraic Geometry, Springer, New York, 1977.
[13] M.M. Kapranov, The permutoassociahedron, MacLane's coherence theorem, and asymptotic zones for the $K Z$ equation, J. Pure Appl. Algebra 85 (1993) 119-142.
[14] C. Lee, The associahedron and triangulations of the n-gon, European J. Combin. 10 (1989) 551-560.
[15] J.D. Stasheff, Homotopy associativity of H-spaces, Trans. Amer. Math. Soc. 108 (1963) 275-292.
[16] J.D. Stasheff, From operads to "physically" inspired theories, Contemp. Math. 202 (1997) 53-81 (Appendix B coauthored with S. Shnider).

[^0]: * Authors were partially supported by NSF Grants DMS-9820570 and CARGO DMS-0310354.
 * Corresponding author.

 E-mail addresses: mpcarr@umich.edu (M. Carr), satyan.devadoss@williams.edu (S.L. Devadoss).

[^1]: 1 We give each hyperplane h of $V_{\# \alpha}$ the same name as its projection $\pi(h)$.

[^2]: 2 This can be checked by hand for the simpler cases, and a detailed decomposition of types A_{n}, B_{n} and D_{n} is given in [1, Section 5]. For the larger complexes (E_{6}, E_{7}, E_{8}), we can exploit the appearance of A_{n} as a subgroup.

