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Abstract

Let L be a non-negative self-adjoint operator acting on L2(X) where X is a space of homogeneous
type. Assume that L generates a holomorphic semigroup e−tL whose kernels pt (x, y) have Gaussian upper
bounds but there is no assumption on the regularity in variables x and y. In this article, we study weighted
Lp-norm inequalities for spectral multipliers of L. We show that sharp weighted Hörmander-type spectral
multiplier theorems follow from Gaussian heat kernel bounds and appropriate L2 estimates of the kernels
of the spectral multipliers. These results are applicable to spectral multipliers for large classes of operators
including Laplace operators acting on Lie groups of polynomial growth or irregular non-doubling domains
of Euclidean spaces, elliptic operators on compact manifolds and Schrödinger operators with non-negative
potentials.
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1. Introduction

Suppose that L is a non-negative self-adjoint operator acting on L2(X). Let E(λ) be the spec-
tral resolution of L. By the spectral theorem, for any bounded Borel function F : [0,∞) → C,
one can define the operator

F(L) =
∞∫

0

F(λ)dE(λ), (1.1)

which is bounded on L2(X). A natural problem considered in the spectral multipliers theory
is to give sufficient conditions on F and L which imply the boundedness of F(L) on various
functional spaces defined on X. This topic has attracted a lot of attention and has been studied
extensively by many authors: for example, for sub-Laplacian on nilpotent groups in [5,12], for
sub-Laplacian on Lie groups of polynomial growth in [1], for Schrödinger operator on Euclidean
space Rn in [17], for sub-Laplacian on Heisenberg groups in [26] and many others. For more
information about the background of this topic, the reader is referred to [1,2,4,5,10,12,14,15,23]
and the references therein. We also refer the reader to [37] and the references therein for examples
of potential applications of the spectral multiplier results.

We wish to point out [14], which is closely related to this paper. In [14], a sharp spectral
multiplier for a non-negative self-adjoint operator L was obtained under the assumption of the
kernel pt (x, y) of the analytic semigroup e−tL having a Gaussian upper bound. As there was no
assumption on smoothness of the space variables of pt(x, y), the singular integral F(L) does not
satisfy the standard kernel regularity condition of a so-called Calderón–Zygmund operator, thus
standard techniques of Calderón–Zygmund theory are not applicable. The lacking of smoothness
of the kernel was indeed the main obstacle in [14] and it was overcome by shrewd exploitation of
the analyticity of the kernel pt(x, y) in variable t , together with a so-called Plancherel estimate,
see Remark 2 after Corollary 3.4.

We will now recall some of main features of the spectral multipliers theory. An interesting
example of a spectral multiplier result comes from the paper [1] where Alexopoulos considers
the operators acting on Lie groups of polynomial growth. He proved that if L is a group invariant
Laplacian and n is the maximum of the local and global dimension of the group then F(L)
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is bounded on Lp(Rn) for all 1 < p < ∞ if the function F is differentiable s times where
s = [n

2 ] + 1 and satisfies ∣∣λkF (k)(λ)
∣∣ � C

for some constant C and k = 0,1, . . . , s, see also Section 6.1 and Proposition 6.2 below. The
philosophy is that we need function F to possess just more than n/2 derivatives (with suitable
bounds) for F(L) to be bounded on all Lp spaces, 1 < p < ∞.

When s is an even number the above condition can be written in the following way

sup
t>0

‖ηδtF‖W∞
s

< ∞, (1.2)

where δtF (λ) = F(tλ), ‖F‖W
p
s

= ‖(I − d2/dx2)s/2F‖Lp and η is an auxiliary non-zero cut-
off function such that η ∈ C∞

c (R+). We note that condition (1.2) is actually independent of
the choice of η. It is well known that condition (1.2) can be generalized with positive numbers
s > 0 and it is sufficient to take real value s > n/2, see [2,14]. It is an interesting question when
condition (1.2) can be replaced by the following weaker condition

sup
t>0

‖ηδtF‖W 2
s

< ∞ (1.3)

for some s > n/2. Already for the standard Laplace operator on the Euclidean space Rn, the
classical Fourier multiplier result of Hörmander [18] applied to radial functions says that the
weaker W 2

s condition for any s > n/2 is enough to guarantee Lp boundedness of F(�) for
all 1 < p < ∞, see also [5] for further discussion. Actually, replacing the W∞

s norm in con-
dition (1.2) by the W 2

s norm in condition (1.3) is essentially the same problem which one
encounters in sharp Bochner–Riesz summability analysis, see [6,14,30,33,34]. Discussion of
possibility of replacing condition (1.2) by (1.3) is one of the main themes of [14].

The aim of this paper is to extend the study of sharp spectral multipliers in [14] to the setting of
weighted Lp spaces. It turns out that for a function F having more than n/2 suitable derivatives,
the range of p that we can obtain for F(L) to be bounded depends also on the weight w. Most
of the results of [14] follow from Theorems 3.1, 3.2 and 3.3 which are the main results of this
paper; see Remark 1 after Corollary 3.4. We use the techniques developed in [14] to estimate the
kernels of spectral multipliers. The new contribution of this paper is a development of an original
technique to deal with singular integral nature of the considered spectral multipliers to obtain
generalization of unweighted results described in [14] to weighted Lp spaces.

This paper is organized as follows. In Section 2, we recall basic properties of spaces of ho-
mogeneous type, the class of Muckenhoupt weights and a sufficient condition for boundedness
of weighted singular integrals from [3]. We state the main results on weighted spectral multi-
pliers, Theorems 3.1 and 3.3 in Section 3. Section 4 is devoted to the proofs of these theorems.
In Section 5, we use complex interpolation to obtain boundedness for spectral multipliers on
weighed Lp spaces. In Section 6, we give applications of our results to various operators in dif-
ferent settings, including Laplace operators on homogeneous groups and on irregular domains of
Euclidean spaces, elliptic pseudo-differential operators on compact manifolds, Schrödinger op-
erators with positive potentials and holomorphic functional calculi of non-negative self-adjoint
operators.
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2. Singular integrals and weights

Let (X,d,μ) be a space endowed with a distance d and a non-negative Borel measure μ on X.
Set B(x, r) = {y ∈ X: d(x, y) < r} and V (x, r) = μ(B(x, r)). We shall often just use B instead
of B(x, r). Recall that (X,d,μ) satisfies the doubling volume property provided that there exists
a constant C > 0 such that

V (x,2r) � CV (x, r) ∀r > 0, x ∈ X, (2.1)

more precisely if there exist n,Cn > 0 such that

V (x, r)

V (x, s)
� Cn

(
r

s

)n

, ∀r � s > 0, x ∈ X. (2.2)

The parameter n is a measure of the doubling dimension of the space. It also follows from the
doubling condition that there exist C and D, 0 � D � n so that

V (y, r) � C

(
1 + d(x, y)

r

)D

V (x, r) ∀r > 0, x, y ∈ X (2.3)

uniformly for all x, y ∈ X and r > 0. Indeed, property (2.3) with D = n is a direct consequence
of the triangle inequality for the metric d and (2.2). In many cases like the Euclidean space Rn

or Lie groups of polynomial growth, D can be chosen to be 0.
Muckenhoupt weights. Next we review the definitions of Muckenhoupt classes of weights.

We use the notation ∮
E

h = 1

V (E)

∫
E

h(x)dμ(x)

and we often forget the measure and variable of the integrand in writing integrals.
In what follows for any number or symbol s with value in [1,∞] by s′ we denote it’s conju-

gate, that is 1
s

+ 1
s′ = 1.

A weight w is a non-negative locally integrable function. We say that w ∈ Ap , 1 < p < ∞, if
there exists a constant C such that for every ball B ⊂ X,

(∮
B

w

)(∮
B

w1−p′
)p−1

� C.

For p = 1, we say that w ∈ A1 if there is a constant C such Mw � Cw a.e. where M denotes
the uncentered maximal operator over balls in X, that is

Mw(x) = sup
B
x

∮
w.
B
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The reverse Hölder classes are defined in the following way: w ∈ RHq , 1 < q < ∞, if there is
a constant C such that for every ball B ⊂ X,

(∮
B

wq

)1/q

� C

(∮
B

w

)
.

The endpoint q = ∞ is given by the condition: w ∈ RH∞ whenever, for any ball B ,

w(x) � C

∮
B

w, for a.e. x ∈ B.

Note that we have excluded the case q = 1 since the class RH1 consists of all weights, and that
is the way RH1 is understood in what follows.

We sum up some properties of the Ap and RHq classes in the following lemmas.

Lemma 2.1. Suppose that (X,d,μ) is a metric, measure space, which satisfies doubling con-
dition (2.1). Then the following properties hold for the weights classes Ap and RHq defined on
(X,d,μ):

(i) A1 ⊂ Ap ⊂ Aq for 1 < p � q < ∞.
(ii) RH∞ ⊂ RHq ⊂ RHp for 1 � p � q < ∞.

(iii) If w ∈ Ap , 1 < p < ∞, then there exists 1 < q < p such that w ∈ Aq .
(iv) If w ∈ RHq , 1 < q < ∞, then there exists q < p < ∞ such that w ∈ RHp .
(v) A∞ = ⋃

1�p<∞ Ap ⊆ ⋃
1<q�∞ RHq .

(vi) If 1 < p < ∞, w ∈ Ap if and only if w1−p′ ∈ Ap′ .
(vii) If 1 � q � ∞ and 1 � s < ∞, then w ∈ Aq ∩ RHs if and only if ws ∈ As(q−1)+1.

Proof. Properties (i)–(vi) are standard, see for instance, [38,16] and [11]. For (vii), see [21]. �
Note that under additional assumption on the measure μ that the function μ(B(x, r)) increases

continuously with r for each x ∈ X, it is shown that A∞ = ⋃
1�p<∞ Ap = ⋃

1<q�∞ RHq (see
Theorem 18, Chapter 1 [38]). However, we do not need this property in the sequel.

Lemma 2.2. Let 1 < p < r ′. Then w ∈ Ap ∩ RH
( r′

p
)′ if and only if w1−p′ = w

− 1
p−1 ∈ Ap′

r

.

Proof. Lemma 2.2 is a special case of [3, Lemma 4.4] (with p0 = 1 and q ′
0 = r in the notation

of [3]). �
Singular integrals on weighted spaces. The following result, see [3, Theorem 3.7] is the

main technical tool to extend unweighted Lp boundedness of spectral multipliers in [14] to
weighted Lp results.
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Theorem 2.3. Let 1 � p0 < ∞. Let T be a sublinear operator acting on Lp0(X), Let {Ar}r>0 be
a family of operators acting on Lp0(X). Assume that

(∮
B

∣∣T (I − ArB )f
∣∣p0 dμ

)1/p0

� CM
(|f |p0

) 1
p0 (x) (2.4)

and

‖T ArB f ‖L∞(B) � CM
(|Tf |p0

) 1
p0 (x) (2.5)

for all f ∈ Lp0(X), and all ball B with radius rB and all B 
 x. Then for all p0 < p < ∞ and
w ∈ Ap/p0 = Ap/p0 ∩ RH1, there exists a constant C such that

‖Tf ‖Lp(X,w) � C‖f ‖Lp(X,w). (2.6)

Proof. Theorem 2.3 is a special case of [3, Theorem 3.7] (with q0 = ∞ in the notation
of [3]). �

Given 1 � p0 < p < q0, we observe that if w is any given weight so that w,w1−p′ ∈ L1
loc(X),

then a given linear operator T is bounded on Lp(X,w) if and only if its adjoint (with respect
to dμ) T ∗ is bounded on Lp′

(w1−p′
). Therefore,

T : Lp(X,w) → Lp(X,w) for all w ∈ A p
p0

∩ RH
(

q0
p

)′ (2.7)

if and only if

T ∗ : Lp′
(X,w) → Lp′

(X,w) for all w ∈ A p′
q′
0

∩ RH
(

p′
0

p′ )′
. (2.8)

The following result is a special case of interpolation with change of measures. It was proved
in [35] and [36] when X = Rn is the Euclidean space.

Proposition 2.4. Let 1 < r � q < ∞ and let w0 and w1 be two positive weights. If T is a
bounded linear operator acting on Lr(X,w0) and Lq(X,w1), then T is bounded on Lp(X,w)

for r � p � q and w = wt
0w

1−t
1 , provided t = q−p

q−r
for r = q and 0 � t � 1 for r = q .

Note that wr ∈ Ap , r � 1, if and only if w ∈ Ap and w satisfies w ∈ RHr and w1−p′ =
w−1/(p−1) ∈ RHr for p > 1; when p = 1, we only need w ∈ RHr (see pp. 351–352 of [23]).

3. General spectral multiplier theorems on weighted spaces

Let (X,d,μ) be a space of homogeneous type. Recall that D is the power that appeared in
property (2.3) and n the dimension entering doubling volume condition (2.2).
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Unless otherwise specified in the sequel we always assume that L is a non-negative self-
adjoint operator on L2(X) and that the semigroup e−tL, generated by −L on L2(X), has the
kernel pt(x, y) which satisfies the following Gaussian upper bound

∣∣pt(x, y)
∣∣ � C

V (x, t1/m)
exp

(
−d(x, y)m/(m−1)

ct1/(m−1)

)
(GE)

for all t > 0, and x, y ∈ X, where C,c and m are positive constants and m � 2.
Such estimates are typical for elliptic or sub-elliptic differential operators of order m (see for

instance, [9,14,27,28] and [39]).
Theorems 3.1, 3.2 and 3.3 below are the main new results obtained in this paper.

Theorem 3.1. Let L be a non-negative self-adjoint operator such that the corresponding heat
kernels satisfy Gaussian bound (GE). Let s > n

2 and let r0 = max(1,
2(n+D)
2s+D

). Assume that for
any R > 0 and all Borel functions F such that suppF ⊆ [0,R],∫

X

∣∣K
F(

m√
L)

(x, y)
∣∣2

dμ(x) � C

V (y,R−1)
‖δRF‖2

Lq (3.1)

for some q ∈ [2,∞]. Then for any bounded Borel function F such that supt>0 ‖ηδtF‖W
q
s

< ∞,
the operator F(L) is bounded on Lp(X,w) for all p and w satisfying r0 < p < ∞ and w ∈ A p

r0
.

In addition,

∥∥F(L)
∥∥

Lp(X,w)→Lp(X,w)
� Cs

(
sup
t>0

‖ηδtF‖W
q
s

+ ∣∣F(0)
∣∣).

Note that Gaussian bound (GE) implies estimates (3.1) for q = ∞. This means that one can
omit condition (3.1) if the case q = ∞ is consider. We describe the details in Theorem 3.2 below.

Theorem 3.2. Let L be a non-negative self-adjoint operator such that the corresponding heat
kernels satisfy Gaussian bound (GE). Let s > n

2 and let r0 = max(1,
2(n+D)
2s+D

). Then for any
bounded Borel function F such that supt>0 ‖ηδtF‖W∞

s
< ∞, the operator F(L) is bounded on

Lp(X,w) for all p and w satisfying r0 < p < ∞ and w ∈ A p
r0

. In addition,

∥∥F(L)
∥∥

Lp(X,w)→Lp(X,w)
� Cs

(
sup
t>0

‖ηδtF‖W∞
s

+ ∣∣F(0)
∣∣).

Proof. Note that it was proved in Lemma 2.2 of [14], that for any Borel function F such that
suppF ⊂ [0,R],

∥∥K
F(

m√
L)

(·, y)
∥∥2

L2(X)
= ∥∥K

F(
m√

L)
(y, ·)∥∥2

L2(X)

� C

V (y,R−1)
‖F‖2

L∞ (3.2)

where F denotes the complex conjugate of F .
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This shows that estimate (3.1) always holds for q = ∞, and Theorem 3.2 follows from Theo-
rem 3.1. �

From the point of view of some applications of spectral multipliers the sharp results and the re-
quired number of derivatives are not essential for the final outcome, see for example [37]. For this
kind of applications Theorem 3.2 is the best solution because using it one does not have to con-
sider or prove condition (3.1). Nevertheless, Theorem 3.1 and condition (3.1) are of significant
interest independent of their applications. In the case of standard Laplace operator condition (3.1)
is equivalent with (1,2) restriction theorem and both Theorem 3.1 and condition (3.1) are a new
part of Bochner–Riesz analysis. Estimates (3.1) are also closely related to Strichartz and other
dissipative type estimates. For further discussion of condition (3.1), see also [14].

It is not difficult to see that condition (3.1) with some q < ∞ implies that the set of point
spectrum of the considered operator is empty because the Lq norm of characteristic function
of any singleton subset of R is zero. Hence if q < ∞ then F(

m
√

L) does not depend on the
value of F(0) because then the point spectrum is empty and the spectral projection on zero
eigenvalue E({0}) = 0. Therefore if q < ∞ then one can skip |F(0)| in the concluding estimates
of Theorem 3.1. See [14, (3.3)] for more detailed explanation.

The fact that the point spectrum of the considered operator is empty implies also that for el-
liptic operators on compact manifolds condition (3.1) cannot hold for any q < ∞. To be able
to study these operators as well, similarly as in [7,14] we introduce some variation of condi-
tion (3.1). For a Borel function F such that suppF ⊆ [−1,2] we define the norm ‖F‖N,q by the
formula

‖F‖N,q =
(

1

3N

2N∑
�=1−N

sup
λ∈[ �−1

N
, �
N

)

∣∣F(λ)
∣∣q)1/q

,

where q ∈ [1,∞) and N ∈ Z+. For q = ∞, we put ‖F‖N,∞ = ‖F‖L∞ . It is obvious that ‖F‖N,q

increases monotonically in q .
The next theorem is a variation of Theorem 3.1. This variation can be used in case of operators

with nonempty point spectrum, see also [7, Theorem 3.6] and [14, Theorem 3.2].

Theorem 3.3. Assume that μ(X) < ∞. Let L be a non-negative self-adjoint operator such
that the corresponding heat kernels satisfy Gaussian bound (GE). Let s > n

2 and let r0 =
max(1,

2(n+D)
2s+D

). Suppose that for any N ∈ Z+ and for all Borel functions F such that suppF ⊆
[−1,N + 1], ∫

X

∣∣K
F(

m√
L)

(x, y)
∣∣2

dμ(x) � C

V (y,N−1)
‖δNF‖2

N,q (3.3)

for some q � 2. Then for any bounded Borel function F such that supt>1 ‖ηδtF‖W
q
s

< ∞, the
operator F(L) is bounded on Lp(X,w) for all p and w satisfying r0 < p < ∞ and w ∈ A p

r0
. In

addition, ∥∥F(L)
∥∥

Lp(X,w)→Lp(X,w)
� Cs

(
sup
t>1

‖ηδtF‖W
q
s

+ ‖F‖L∞
)
.
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We will discuss the proofs of Theorems 3.1 and 3.3 in Section 4. These results have the
following corollary.

Corollary 3.4. Let s > n
2 and let r0 = max(1,

2(n+D)
2s+D

) and 1
r0

+ 1
r ′
0

= 1. Suppose in addition that

1 < p < r ′
0 and w ∈ Ap ∩ RH

(
r′0
p

)′
.

(a) Assume also that the operator L satisfies the assumptions of Theorem 3.1 for some 2 � q �
∞, then ∥∥F(L)

∥∥
Lp(X,w)→Lp(X,w)

� Cs

(
sup
t>0

‖ηδtF‖W
q
s

+ ∣∣F(0)
∣∣).

(b) Alternatively assume in addition that the operator L satisfies the assumptions of Theorem 3.3
for some 2 � q � ∞, then∥∥F(L)

∥∥
Lp(X,w)→Lp(X,w)

� Cs

(
sup
t>1

‖ηδtF‖W
q
s

+ ‖F‖L∞
)
.

Proof. Suppose 1 < p < r ′
0 and w ∈ Ap ∩ RH

(
r′0
p

)′
. We have that w

− 1
p−1 ∈ Ap′

r0

. Then for f ∈
L∞

c (X) (i.e. bounded with compact support),

∥∥F(L)f
∥∥

Lp(X,w)
=

∣∣∣∣ ∫
X

F(L)f (x)g(x) dμ(x)

∣∣∣∣,
where the supremum is taken over all functions g ∈ L∞

c (X) such that ‖g‖
Lp′

(X,w
− 1

p−1 )
= 1. Let

�F(L) be the operator with multiplier �F , the complex conjugate of F . Then �F satisfies the same
estimates as F , and we have

∥∥F(L)f
∥∥

Lp(X,w)
= sup

∣∣∣∣ ∫
X

f (x)�F(L)g(x) dμ(x)

∣∣∣∣
� sup‖f ‖Lp(X,w)

∥∥�F(L)g
∥∥

Lp′
(X,w

− 1
p−1 )

� C‖f ‖Lp(X,w)

since p′ > r0, and we can apply Theorems 3.1 or 3.3 to the weight w
− 1

p−1 ∈ Ap′
r0

. �
Remarks. 1) Note that Theorems 3.1 and 3.3 imply the main results obtained in [14]. Indeed the
trivial weight w = 1 is in all Ap classes, so under the assumptions of Theorems 3.1 and 3.3 the
operator F(L) is bounded on all Lp spaces 1 < p < ∞. Note that for p < 2, Lp boundedness
of F(L) follows by considering the adjoint operator F(L)∗ = �F(L). Similarly to the results
in [14] the important point of this paper is that if one can obtain (3.1) or (3.3) for some q <

∞ then one can prove stronger multiplier results than in case q = ∞. The estimates (3.1) for
q = ∞ are not necessary because estimates (3.1) with q = ∞ follow from Gaussian bound
assumption (GE), see Theorem 3.2. If one has (3.1) or (3.3) for q = 2, then this implies the
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sharp weighted Hörmander-type multiplier result. Actually, we believe that to obtain any sharp
weighted Hörmander-type multiplier theorem one has to investigate conditions of the same type
as (3.1) or (3.3), i.e. conditions which allow us to estimate the norm ‖K

F
m√

L
(·, y)‖2

L2(X,μ)
in

terms of some kind of Lq norm of the function F .
2) We call hypothesis (3.1) or (3.3) the Plancherel estimates or the Plancherel conditions. For

the standard Laplace operator on Euclidean spaces Rn, this is equivalent to (1,2) Stein–Tomas
restriction theorem (which is also the Plancherel estimate of the Fourier transform). Assumption
that q � 2 is not necessary in the proofs of Theorems 3.1 and 3.3. However we do not expect
that there are any examples where estimates (3.1) or (3.3) hold with q < 2 because this would
imply the Riesz summability for the index α < (n − 1)/2 which is false for the standard Laplace
operator.

3) If we take s > n/2 in Theorems 3.1 and 3.3, then for every w ∈ A1 ∩ RH2, the operator
F(L) maps L1(X,w) into L1,∞(X,w), that is, there is a constant C > 0, independent of f and λ,
such that

w
{
x ∈ X:

∣∣F(L)f (x)
∣∣ > λ

}
� C

λ
‖f ‖L1(X,w), λ > 0.

The proof follows from the line of Theorem 5.8 in [24], together with the proofs of Theorems 3.1
and 3.2 in [14], respectively. The details are left to the reader.

4. Proofs of Theorems 3.1 and 3.3

Recall that B = B(xB, rB) is the ball of radius rB centered at xB . Given λ > 0, we will
write λB for the ball with the same center as B and with radius rλB = λrB . We set

U0(B) = B, and Uj (B) = 2jB\2j−1B for j = 1,2, . . . . (4.1)

As a preamble to the proof of Theorem 3.1, we record a useful auxiliary result. For a proof,
see pp. 453–454, Lemma 4.3 of [14].

Lemma 4.1.

(a) Suppose that L satisfies (3.1) for some q ∈ [2,∞] and that R > 0, s > 0. Then for any ε > 0,
there exists a constant C = C(s, ε) such that∫

X

∣∣K
F(

m√
L)

(x, y)
∣∣2(1 + Rd(x, y)

)s
dμ(x) � C

V (y,R−1)
‖δRF‖2

W
q
s
2 +ε

(4.2)

for all Borel functions F such that suppF ⊆ [R/4,R].
(b) Suppose that L satisfies (3.3) for some q ∈ [2,∞] and that N > 8 is a natural number. Then

for any s > 0, ε > 0 and function ξ ∈ C∞
c ([−1,1]) there exists a constant C = C(s, ε, ξ)

such that ∫
X

∣∣K
F∗ξ(

m√
L)

(x, y)
∣∣2(1 + Nd(x, y)

)s
dμ(x) � C

V (y,N−1)
‖δNF‖2

W
q
s
2 +ε

(4.3)

for all Borel functions F such that suppF ⊆ [N/4,N].
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Proof of Theorem 3.1. We fix s such that s > n
2 , and thus 2(n+D)

2s+D
< 2. In this case, we take one

parameter p0 in the sequel such that p0 belongs to the interval (max{ 2(n+D)
2s+D

,1},2). Let M ∈ N

such that M > s/m, where m is the constant in (GE). We will show that for all balls B 
 x,

(∮
B

∣∣F(L)
(
I − e−rm

B L
)M

f
∣∣p0 dμ

)1/p0

� CM
(|f |p0

) 1
p0 (x) (4.4)

for all f ∈ L∞
c (X).

Let us prove (4.4). Observe that supt>0 ‖ηδtF‖W
p
s

∼ supt>0 ‖η δtG‖W
p
s

where G(λ) =
F(

m
√

λ ). For this reason, we can replace F(L) by F(
m
√

L) in the proof. Notice that F(λ) =
F(λ) − F(0) + F(0) and hence

F
( m
√

L
) = (

F(·) − F(0)
)( m

√
L

) + F(0)I.

Replacing F by F − F(0), we may assume in the sequel that F(0) = 0. Let ϕ ∈ C∞
c (0,∞) be

a non-negative function satisfying suppϕ ⊆ [ 1
4 ,1] and

∑∞
�=−∞ ϕ(2−�λ) = 1 for any λ > 0, and

let ϕ� denote the function ϕ(2−�·). Then

F(λ) =
∞∑

�=−∞
ϕ
(
2−�λ

)
F(λ) =

∞∑
�=−∞

F�(λ), ∀λ � 0. (4.5)

This decomposition implies that the sequence
∑N

�=−N F�(
m
√

L) converges strongly in L2(X) to
F(

m
√

L) (see for instance, Reed and Simon [29, Theorem VIII.5]). For every � ∈ Z, r > 0 and
λ > 0, we set

Fr,M(λ) = F(λ)
(
1 − e−(rλ)m

)M
, (4.6)

F�
r,M(λ) = F�(λ)

(
1 − e−(rλ)m

)M
. (4.7)

Given a ball B ⊂ X, we use the decomposition f = ∑∞
j=0 fj in which fj = f χUj (B), and Uj (B)

were defined in (4.1). We may write

F
( m
√

L
)(

1 − e−rm
B L

)M
f = FrB,M

( m
√

L
)
f

=
2∑

j=1

FrB,M

( m
√

L
)
fj + lim

N→∞

N∑
�=−N

∞∑
j=3

F�
rB,M

( m
√

L
)
fj , (4.8)

where the sequence converges strongly in L2(X).
From Gaussian condition (GE), we have that for any t > 0, ‖e−tLf ‖Lp(X) � C‖f ‖Lp(X).

This, in combination with Lp-boundedness of the operator F(
m
√

L) (see Theorem 3.1 [14]),
gives that for all balls B 
 x,
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(∮
B

∣∣FrB,M

( m
√

L
)
fj

∣∣p0 dμ

)1/p0

� V (B)−1/p0
∥∥FrB,M

( m
√

L
)
fj

∥∥
Lp0 (X)

� CV (B)−1/p0‖fj‖Lp0 (X)

� CM
(|f |p0

) 1
p0 (x) (4.9)

for j = 1,2.
Fix j � 3. Let p1 � 2 and 1

p0
− 1

p1
= 1

2 . By Hölder’s inequality, we have that for all balls
B 
 x,

(∮
B

∣∣F�
rB,M

( m
√

L
)
fj

∣∣p0 dμ

)1/p0

� V (B)
− 1

p1
∥∥F�

rB,M

( m
√

L
)
fj

∥∥
Lp1 (B)

� V (B)
− 1

p1
∥∥F�

rB,M

( m
√

L
)∥∥

Lp0 (Uj (B))→Lp1 (B)
‖fj‖Lp0 (X)

� C2
jn
p0 V (B)

1
2
∥∥F�

rB,M

( m
√

L
)∥∥

Lp0 (Uj (B))→Lp1 (B)
M

(|f |p0
) 1

p0 (x). (4.10)

Let 1
p0

= θ
1 + 1−θ

2 and 1
p1

= θ
2 , that is θ = 2( 1

p0
− 1

2 ). By interpolation,

∥∥F�
rB,M

( m
√

L
)∥∥

Lp0 (Uj (B))→Lp1 (B)

�
∥∥F�

rB,M

( m
√

L
)∥∥1−θ

L2(Uj (B))→L∞(B)

∥∥F�
rB,M

( m
√

L
)∥∥θ

L2(B)→L∞(Uj (B))
. (4.11)

Next we estimate ‖F�
rB,M(

m
√

L)‖L2(Uj (B))→L∞(B). For every � ∈ Z, let K
F�

rB ,M(
m√

L)
(y, z) be the

Schwartz kernel of operator F�
rB,M(

m
√

L). Then we have

∥∥F�
rB,M

( m
√

L
)∥∥2

L2(Uj (B))→L∞(B)

= sup
y∈B

∫
Uj (B)

∣∣K
F�

rB ,M(
m√

L)
(y, z)

∣∣2
dμ(z)

� C2−2sj
(
2�rB

)−2s sup
y∈B

∫
X

∣∣K
F�

rB ,M(
m√

L)
(y, z)

∣∣2(1 + 2�d(y, z)
)2s

dμ(z). (4.12)

We then apply Lemma 4.1 with F = F�
rB,M and R = 2� to obtain

∫ ∣∣K
F�

rB ,M(
m√

L)
(y, z)

∣∣2(1 + 2�d(y, z)
)2s

dμ(z) � Cs

V (y,2−�)

∥∥δ2�

(
F�

rB,M

)∥∥2
W

q
s
. (4.13)
X



1118 X.T. Duong et al. / Journal of Functional Analysis 260 (2011) 1106–1131
Now for any Sobolev space W
q
s (R), if k is an integer greater than s, then∥∥δ2�

(
F�

rB,M

)∥∥
W

q
s

= ∥∥ϕ(t)F
(
2�t

)(
1 − e−(2�rB t)m

)M∥∥
W

q
s

� C
∥∥(

1 − e−(2�rB t)m
)M∥∥

Ck([ 1
4 ,1])

∥∥δ2� [ϕ�F ]∥∥
W

q
s

� C min
{
1,

(
2�rB

)mM}∥∥δ2� [ϕ�F ]∥∥
W

q
s
. (4.14)

Note that for all y ∈ B , B ⊂ B(y,2rB) so by (2.2)

1

V (y,2−�)
� C sup

y∈B

V (y,2rB)

V (y,2−�)V (B)
� C

V (B)
max

{
1,

(
2�rB

)n}
. (4.15)

Hence by (4.14) and (4.15),∥∥F�
rB,M

( m
√

L
)∥∥

L2(Uj (B))→L∞(B)

� C

(
2−2sj

(
2�rB

)−2s
min

{
1,

(
2�rB

)2mM}
max

{
1,

(
2�rB

)n} 1

V (B)

)1/2∥∥δ2� [ϕ�F ]∥∥
W

q
s
.

(4.16)

We now turn to estimate the term ‖F�
rB,M(

m
√

L)‖L2(B)→L∞(Uj (B)). The calculations symmetric
to (4.12), (4.13) and (4.14) with supy∈B replaced by supz∈Uj (B) yield,

∥∥F�
rB,M

( m
√

L
)∥∥

L2(B)→L∞(Uj (B))

� C

(
2−2sj

(
2�rB

)−2s min
{
1,

(
2�rB

)2mM}
sup

z∈Uj (B)

1

V (z,2−�)

)1/2∥∥δ2� [ϕ�F ]∥∥
W

q
s
.

Next by (2.2) and (2.3)

sup
z∈Uj (B)

1

V (z,2−�)
� C sup

z∈Uj (B)

(
V (z, rB)

V (z,2−�)
×

(
1 + d(z, xB)

rB

)D)
1

V (xB, rB)

� C
2jD

V (B)
max

{
1,

(
2�rB

)n}
.

Hence∥∥F�
rB,M

( m
√

L
)∥∥

L2(B)→L∞(Uj (B))

� C

(
2−2sj

(
2�rB

)−2s2jD min
{
1,

(
2�rB

)2mM}
max

{
1,

(
2�rB

)n} 1

V (B)

)1/2∥∥δ2� [ϕ�F ]∥∥
W

q
s
.

(4.17)

It then follows from estimates (4.16) and (4.17), in combination with (4.11) and (4.10) that
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(∮
B

∣∣F�
r,M

( m
√

L
)
fj

∣∣p0 dμ

)1/p0

� C2
−js+ jn

p0
+ jDθ

2
((

2�rB
)−s min

{
1,

(
2�rB

)mM}
max

{
1,

(
2�rB

) n
2
})

× M
(|f |p0

) 1
p0 (x) sup

�∈Z

∥∥δ2� [ϕ�F ]∥∥
W

q
s
. (4.18)

Therefore,

∞∑
j=3

∞∑
�=−∞

(∮
B

∣∣F�
r,M

( m
√

L
)
fj

∣∣p0 dμ

)1/p0

� C

∞∑
j=3

2
−js+ jn

p0
+ jDθ

2

( ∞∑
�=−∞

(
2�rB

)−s
min

{
1,

(
2�rB

)mM}
max

{
1,

(
2�rB

) n
2
})

× M
(|f |p0

) 1
p0 (x) sup

�∈Z

∥∥δ2� [ϕ�F ]∥∥
W

q
s

� C

∞∑
j=3

2
( n+D

p0
−(s+ D

2 ))j
( ∑

�: 2�rB>1

(
2�rB

)−s+ n
2 +

∑
�: 2�rB�1

(
2�rB

)mM−s
)

× M
(|f |p0

) 1
p0 (x) sup

�∈Z

∥∥δ2� [ϕ�F ]∥∥
W

q
s

� C

∞∑
j=3

2
( n+D

p0
−(s+ D

2 ))j M
(|f |p0

) 1
p0 (x) sup

�∈Z

∥∥δ2� [ϕ�F ]∥∥
W

q
s

� CM
(|f |p0

) 1
p0 (x) sup

�∈Z

∥∥δ2� [ϕ�F ]∥∥
W

q
s
. (4.19)

Here, the second inequality is obtained by using condition θ = 2( 1
p0

− 1
2 ), and the third inequality

follows from the convergence of power series with common ratio 1/2. In the last inequality we
have used the fact that p0 >

2(n+D)
2s+D

.
Combining estimates (4.9) and (4.19), we have therefore proved (4.4), and then estimate (2.4)

holds for T = F(L) and ArB = I − (I − e−rm
B L)M . Note also that estimate (2.5) always holds for

ArB = I − (I − e−rm
B L)M . Indeed note that T = F(L) and ArB = I − (I − e−rm

B L)M commutes
so it is enough to show that

‖ArB f ‖L∞(B) � CM
(|f |p0

) 1
p0 (x).

It is not difficult to see that it is enough to prove the above inequality for p0 = 1. However
ArB = I − (I − e−rm

B L)M is a finite linear combination of the terms e−jrm
B L, j = 1, . . . ,M ,

which all satisfy Gaussian bounds and the above inequality and in turn (2.5) follows from that
observation.
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It then follows from Theorem 2.3 that for all p > p0 > r0 = 2(n+D)
2s+D

, the operator F(L) is
bounded on Lp(X,w) provided that w ∈ A p

p0
. On the other hand, we note that

A p
r0

=
⋃

p0>r0

A p
p0

.

This implies for all p > r0 and all w ∈ A p
r0

, that the operator F(L) is bounded on Lp(X,w). �
Proof of Theorem 3.3. Note that the condition μ(X) < ∞ implies that X is bounded. Hence
X = B(x0, r0) for some x0 ∈ X and 0 < r0 < ∞ [24]. It follows from condition (2.3) that for
any x ∈ X, V (x0,1) � C(1 + d(x, x0))

DV (x,1) � CV (x,1). This shows that for any x, y ∈ X,
|Ke−L(x, y)| � CV (x0,1)−1. As a consequence,

max
{∥∥e−L

∥∥
L1(X)→L2(X)

,
∥∥e−L

∥∥
L2(X)→L∞(X)

}
� C. (4.20)

On the other hand, for any bounded Borel function F such that suppF ⊆ [0,16], the operator
F(

m
√

L)e2L is bounded on L2(X). This, together with (4.20), yields∥∥F
( m
√

L
)∥∥

L1(X)→L∞(X)
= ∥∥e−L

(
F

( m
√

L
)
e2L

)
e−L

∥∥
L1(X)→L∞(X)

�
∥∥e−L

∥∥
L1(X)→L2(X)

∥∥F
( m
√

L
)
e2L

∥∥
L2(X)→L2(X)

∥∥e−L
∥∥

L2(X)→L∞(X)

� C‖F‖L∞ < ∞.

This implies that the kernel K
F(

m√
L)

(x, y) of the operator F(
m
√

L) satisfies

sup
y∈X

∣∣K
F(

m√
L)

(x, y)
∣∣ � C < ∞.

Hence, for any x ∈ X,

∣∣F ( m
√

L
)
f (x)

∣∣ =
∣∣∣∣ ∫
X

K
F(

m√
L)

(x, y)f (y) dμ(y)

∣∣∣∣
� C

∫
X

∣∣f (y)
∣∣dμ(y)

� CM(f )(x),

and for any 1 < p < ∞ and w ∈ Ap ,∥∥F
( m
√

L
)
f

∥∥
Lp(X,w)

� C
∥∥M(f )

∥∥
Lp(X,w)

� C‖f ‖Lp(X,w).

Therefore, in order to prove Theorem 3.3, we can assume that suppF ⊂ [8,∞]. Following
the proof of Theorem 3.1, we set F�(λ) = ϕ(2−�λ)F (λ), and

F̃ =
∞∑

�=3

F� ∗ ξ,

where ξ is a function defined in (b) of Lemma 4.1.
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By repeating the proof of Theorem 3.1 and using (4.3) in place of (4.2) we can prove that the
operator F̃ (

m
√

L) is bounded on Lp(X,w) for all p and w satisfying (i) and (ii) in Theorem 3.3.
To prove Theorem 3.3, it follows by Theorem 2.3 again that it suffices to show that for all balls
B 
 x,

(∮
B

∣∣(F ( m
√

L
) − F̃

( m
√

L
))(

I − e−rm
B L

)M
f

∣∣p0 dμ

)1/p0

� CM
(|f |p0

) 1
p0 (x) (4.21)

for all f ∈ L∞
c (X).

Let us prove (4.21). For every � � 3 and r > 0, we set H�
r,M(λ) = (F �(λ) − F� ∗ ξ(λ))(1 −

e−(rλ)m)M , λ > 0. (Note that suppH�
rB,M ⊆ [0,2� + 1].) Now for a given ball B ⊂ X, we put

f = ∑∞
j=0 fj , where fj = f χUj (B), and Uj(B) were defined in (4.1). We may write

(
F

( m
√

L
) − F̃

( m
√

L
))(

I − e−rm
B L

)M
f =

2∑
j=1

(
F

( m
√

L
) − F̃

( m
√

L
))(

I − e−rm
B L

)M
fj

+ lim
N→∞

N∑
�=3

∞∑
j=3

H�
rB,M

( m
√

L
)
fj . (4.22)

A similar argument as in the proof of Theorem 3.1 gives the desired estimates for j = 1,2.
Next, fix j � 3. For every � � 3, let K

H�
rB ,M(

m√
L)

(y, z) be the Schwartz kernel of operator

H�
rB,M(

m
√

L). Let 1
p0

− 1
p1

= 1
2 , and denote by 1

p0
= θ

1 + 1−θ
2 and 1

p1
= θ

2 , that is θ = 2( 1
p0

− 1
2 ).

Following (4.10) and (4.11), we use Hölder’s inequality and interpolation again to obtain that for
all balls B 
 x,

(∮
B

∣∣H�
rB,M

( m
√

L
)
fj

∣∣p0 dμ

)1/p0

� C2
jn
p0 V (B)

1
2 M

(|f |p0
) 1

p0 (x)
∥∥H�

rB,M

( m
√

L
)∥∥1−θ

L2(Uj (B))→L∞(B)

× ∥∥H�
rB,M

( m
√

L
)∥∥θ

L2(B)→L∞(Uj (B))
. (4.23)

The Hölder inequality, together with condition that X is bounded give

∥∥H�
rB,M

( m
√

L
)∥∥2

L2(Uj (B))→L∞(B)

= sup
y∈B

∫
Uj (B)

∣∣K
H�

rB ,M(
m√

L)
(y, z)

∣∣2
dμ(z)

� C
(
2j rB

)−2s sup
y∈B

∫ ∣∣K
H�

rB ,M(
m√

L)
(y, z)

∣∣2
d(y, z)2s dμ(z)
X
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� CX

(
2j rB

)−2s sup
y∈B

∫
X

∣∣K
H�

rB ,M(
m√

L)
(y, z)

∣∣2
dμ(z)

� sup
y∈B

CX

V (y,2−�)

(
2j rB

)−2s∥∥δ2�

(
H�

rB,M

)∥∥2
2�,q

, (4.24)

where the last inequality follows from the fact that suppH�
rB,M ⊆ [0,2� + 1], and then from (3.3)

with N = 2�, we have that∫
X

∣∣K
H�

rB ,M(
m√

L)
(y, z)

∣∣2
dμ(z) � C

V (y,2−�)

∥∥δ2�

(
H�

rB,M

)∥∥2
2�,q

.

From the expression H�
rB,M(λ) = (F �(λ) − F� ∗ ξ(λ))(1 − e−(rBλ)m)M , one obtains

∥∥δ2�

(
H�

rB,M

)∥∥
2�,q

= ∥∥δ2�

[
F�(λ) − F� ∗ ξ(λ)

](
1 − e−(2�rBλ)m

)M∥∥
2�,q

� C min
{
1,

(
2�rB

)mM}∥∥δ2�

[
F�(λ) − F� ∗ ξ(λ)

]∥∥
2�,q

. (4.25)

Everything then boils down to estimating ‖ · ‖2�,q norm of δ2� [F�(λ)−F� ∗ ξ(λ) ]. We make the
following claim. For its proof, we refer to p. 26, claim (3.29) of [7] or p. 459, Proposition 4.6
of [14].

Proposition 4.2. Suppose that ξ ∈ C∞
c is a function such that supp ξ ⊂ [−1,1], ξ � 0, ξ̂ (0) = 1,

ξ̂ (κ)(0) = 0 for all 1 � κ � [s] + 2 and set ξN(t) = Nξ(Nt). Assume also that suppG ⊂ [0,1].
Then

‖G − G ∗ ξN‖N,q � CN−s‖G‖W
q
s

for all s > 1/q .

By Proposition 4.2∥∥δ2�

[
F�(λ) − F� ∗ ξ(λ)

]∥∥
2�,q

= ∥∥δ2� [ϕ�F ] − ξ2� ∗ δ2� [ϕ�F ]∥∥2�,q
� C2−�s

∥∥δ2� [ϕ�F ]∥∥
W

q
s
,

and thus ∥∥δ2�

(
H�

rB,M

)∥∥
2�,q

� C2−�s min
{
1,

(
2�rB

)mM}∥∥δ2� [ϕ�F ]∥∥
W

q
s
. (4.26)

Substituting (4.26) back into (4.24), we then use the doubling property (2.2) to obtain∥∥H�
rB,M

( m
√

L
)∥∥2

L2(Uj (B))→L∞(B)

� C

V (B)
2−2sj

(
2�rB

)−2s min
{
1,

(
2�rB

)2mM}
max

{
1,

(
2�rB

)n}∥∥δ2� [ϕ�F ]∥∥2
W

q
s
,

which is exactly the same estimate as in (4.16).
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Following the proof of Theorem 3.1, an argument as above shows the same estimate (4.17)
for the term ‖H�

rB,M(
m
√

L)‖L2(B)→L∞(Uj (B)). The rest of the proof of (4.21) is just a repetition
of the proof of Theorem 3.1, so we skip it. Hence, we complete the proof of Theorem 3.3 when
X has a finite measure, i.e., μ(X) < ∞. �
5. Two interpolation results

In this section we continue to assume that L is a non-negative self-adjoint operator on L2(X),
which has a kernel pt(x, y) satisfying a Gaussian upper bound (GE). Using interpolation, other
conditions on the weight can be found which guarantee that F(L) is a bounded operator. We first
prove the following result.

Theorem 5.1. Let s > n
2 and let r0 = max{ 2(n+D)

2s+D
,1}. Suppose that the operator L satisfies

condition (3.1) with some q ∈ [2,∞]. If 1 < p < ∞ and wr0 ∈ Ap , then for any bounded Borel
function F such that supt>0 ‖ηδtF‖W

q
s

< ∞, the operator F(L) is bounded on Lp(X,w). More-
over, ∥∥F(L)

∥∥
Lp(X,w)→Lp(X,w)

� Cs

(
sup
t>0

‖ηδtF‖W
q
s

+ ∣∣F(0)
∣∣).

Proof. We will derive Theorem 5.1 from Theorem 3.1 by using Proposition 2.4 and the char-
acterization of Ap functions that if w ∈ Ap , then there are A1 weights u and v such that
w = uv1−p [22].

Following the proof of Theorem 2 of [23], we fix p, 1 < p < ∞, and w so that wr0 ∈ Ap

where r0 = 2(n+D)
2s+D

. We have that wr0 = uv1−p , u,v ∈ A1, or w = ur−1
0 v

1−p
r0 . Next, write this as

w = ur−1
0 v

1−p
r0 = (

uαvβ
)t(

uγ vδ
)1−t = wt

0w
1−t
1 ,

in which

αt + γ (1 − t) = r−1
0 , (5.1)

βt + δ(1 − t) = r−1
0 (1 − p). (5.2)

Then in order to use Proposition 2.4 for weights which satisfy Theorem 3.1, we require

w
− 1

r−1
0 ∈ A r′

r0

, 1 < r < min
{
r ′

0,p
}
, (5.3)

w1 ∈ A q
r0

, q > max{r0,p}, (5.4)

t = q − p

q − r
. (5.5)

Recall that u ∈ A1 (similarly v ∈ A1) implies∮
u � Cu(x) for almost all x ∈ B.
B
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Therefore, if α > 0 and β < 0, letting s = r ′
r0

, we have

(∮
B

w
− 1

r−1
0

)(∮
B

w
1

(r−1)(s−1)

0

)s−1

�
(∮

B

u− α
r−1 v− β

r−1

)(∮
B

u
α

(r−1)(s−1) v
β

(r−1)(s−1)

)s−1

�
(∮

B

u

)− α
r−1

(∮
B

v− β
r−1

)(∮
B

v

) β
r−1

(∫
B

u
α

(r−1)(s−1)

)s−1

� C,

if

α = (r − 1)

(
r ′

r0
− 1

)
= r

r0
− r + 1 and β = −(r − 1);

this is w
− 1

r−1
0 ∈ A r′

r0

for these values of α and β . Similarly, we can show w1 ∈ A q
r0

if γ = 1

and δ = −(
q
r0

− 1). Using these values of α and γ , we have (5.1) if t = 1
r.

Next, solving (5.2)
for q , we get q = r ′(p − 1). This value of q also satisfies (5.5). Therefore, if we choose r <

min{r ′
0,p} close enough to 1 so that q = r ′(p − 1) > max{r0,p}, then (5.1)–(5.5) hold. This

proves Theorem 5.1. �
If X = Rn then Theorem 5.1 can be strengthen for the following polynomial weights. When

w(x) = |x|β , we have w ∈ Ap if −n < β < n(p − 1). Applying Theorem 3.1 and Theorem 3
of [23] to such w and using interpolation with change of measures, we have the following theo-
rem.

Theorem 5.2. Let s > n
2 . Suppose that the operator L satisfies condition (3.1) with some q ∈

[2,∞]. If 1 < p < ∞ and max{−n,−sp} < β < min{n(p − 1), sp}, then for any bounded Borel
function F such that supt>0 ‖ηδtF‖W

q
s

< ∞, the operator F(L) is bounded on Lp(Rn, |x|β). In
addition, ∥∥F(L)

∥∥
Lp(Rn,|x|β )→Lp(Rn,|x|β )

� Cs

(
sup
t>0

‖ηδtF‖W
q
s

+ ∣∣F(0)
∣∣).

In particular, if s < n and n
s

< p < (n
s
)′, we get −n < β < n(p − 1); we may also take p = n

s
and p = ( n

s
)′.

Proof. The proof of Theorem 5.2 can be obtained by making minor modifications with the proof
of Theorem 3 in [23] and using Theorem 3.1. We give a brief argument of this proof for com-
pleteness and convenience of the reader.

Notice that −n � −sp if n/s � p, and n(p − 1) � sp if p � (n/s)′. Therefore, for s < n the
conclusion of Theorem 5.2 can be divided into three cases:
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1 < p <
n

s
and − sp < β < n(p − 1), (5.6)

n

s
� p �

(
n

s

)′
and − n < β < n(p − 1), (5.7)

(
n

s

)′
< p < ∞ and − n < β < sp. (5.8)

Since (5.8) is the dual of (5.6), we need only to concern ourselves with (5.6) and (5.7).
Because |x|β ∈ Ap if and only if −n < β < n(p − 1), it follows from Theorem 3.1 that for

s < n, F(L) is bounded on Lp(Rn, |x|β) if

n

s
� p < ∞ and − n < β < ps − n, (5.9)

1 < p �
(

n

s

)′
and − n + p(n − s) < β < n(p − 1). (5.10)

However, combining (5.9) and (5.10), we have (5.7) and are left with only proving (5.6).
Let q = n/s and r < n/s; then also r < (n/s)′. By (5.10) and (5.7), F(L) is bounded on

Lp(Rn, |x|β0) and Lp(Rn, |x|β1) for −n + r(n − s) < β0 < n(r − 1) and −n < β1 < n(q − 1).
Using Proposition 2.4, if r < p < q we see that F(L) is bounded on Lp(Rn, |x|β) for

β = β0

(
q − p

q − r

)
+ β1

(
p − r

q − r

)
.

Thus β satisfies

{−n + r(n − s)
}(q − p

q − r

)
− n

(
p − r

q − r

)
< β < n(r − 1)

(
q − p

q − r

)
+ n(q − 1)

(
p − r

q − r

)
.

Simplifying and using the fact that q = n/s, we get

n2(r − 1)

n − sr
+ psr(s − n)

n − sr
< β < n(p − 1). (5.11)

But, as r → 1, the left-hand side of (5.11) tends to −sp. So, taking r sufficiently close to 1 allows
us to choose any β satisfying −sp < β < n(p − 1).

When s = n, the restriction in Theorem 5.2 is −n < β < n(p − 1) for 1 < p < ∞. But, when
s = n in Theorem 3.1, we require w ∈ Ap , and |x|β ∈ Ap if −n < β < n(p − 1). This completes
the proof of Theorem 5.2. �

Note that in the case of Fourier spectral multipliers Theorem 5.2 is best possible, except for
endpoint equalities for β see [23, pp. 360–361].
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6. Applications

6.1. Homogeneous groups

Let G be a Lie group of polynomial growth and let X1, . . . ,Xk be a system of left-invariant
vector fields on G satisfying the Hörmander condition. We define the Laplace operator L acting
on L2(G) by the formula

L = −
k∑

i=1

X2
i . (6.1)

If B(x, r) is the ball defined by the distance associated with system X1, . . . ,Xk (see e.g. Chap-
ter III.4 [39]), then there exist natural numbers n0, n∞ � 0 such that V (x, r) ∼ rn0 for r � 1
and V (x, r) ∼ rn∞ for r > 1 (see e.g. Chapter III.2 [39]). Note that this implies that doubling
condition (2.2) holds with the doubling dimension n = max{n0, n∞}. Note also that one can take
D = 0 in the estimates (2.3). We call G a homogeneous group if there exists a family of dilations
on G. A family of dilations on a Lie group G is a one-parameter group (δ̃t )t>0 (δ̃t ◦ δ̃t = δ̃ts ) of
automorphisms of G determined by

δ̃t Yj = tnj Yj , (6.2)

where Y1, . . . , Y� is a linear basis of Lie algebra of G and nj � 1 for 1 � j � � (see [15]). We
say that an operator L defined by (6.1) is homogeneous if δ̃tXi = tXi for 1 � i � k and the
system X1, . . . ,Xk satisfies the Hörmander condition. Then for the sub-Riemannian geometry
corresponding to the system X1, . . . ,Xk one has n0 = n∞ = ∑�

j=1 nj (see [15]). Hence the
doubling dimension is equal to n = n0 = n∞.

Spectral multiplier theorems for the homogeneous Laplace operators acting on homogeneous
groups were investigated by Hulanicki and Stein [20], Folland and Stein [15, Theorem 6.25], and
De Michele and Mauceri [10]. See also [5] and [25]. We have the following weighted spectral
multiplier result.

Proposition 6.1. Let L be the homogeneous sub-Laplacian defined by the formula (6.1) acting
on a homogeneous group G. Then Theorem 3.1 holds for spectral multipliers F(L) with q = 2,
D = 0 and the doubling dimension given by n = n0 = n∞.

Proof. It is well known that the heat kernel corresponding to the operator L satisfies Gaussian
bound (GE). It is also not difficult to check that for some constant C > 0

∥∥F(
√

L)
∥∥2

2→∞ = C

∞∫
0

∣∣F(t)
∣∣2

tn−1 dt.

See for example Eq. (7.1) of [14] or [5, Proposition 10]. It follows from the above equality that the
operator L satisfies estimate (3.1) with q = 2. Hence Theorem 3.1 holds for spectral multipliers
F(L) with q = 2, D = 0 and n = n0 = n∞. �
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This result can be extended to “quasi-homogeneous” operators acting on homogeneous
groups, see [31] and [14].

In the setting of general Lie groups of polynomial growth, spectral multipliers were investi-
gated by Alexopoulos. The following weighted spectral multiplier result extends Alexopoulos’s
unweighted result in [1].

Proposition 6.2. Let L be a group invariant operator acting on a Lie group G of polynomial
growth defined by (6.1). Then Theorem 3.2 holds for spectral multipliers F(L) with the doubling
dimension n = max{n0, n∞} and D = 0.

Proof. It is well known that the heat kernel corresponding to the operator L satisfies Gaussian
bound (GE) so the operator L satisfies estimate (3.1) for q = ∞, see the proof of Theorem 3.2
above and Lemma 2.2 of [14]. Hence Theorem 3.2 holds for spectral multipliers F(L). �
6.2. Compact manifolds

For a general non-negative self-adjoint elliptic operator on a compact manifold, Gaussian
bound (GE) holds by general elliptic regularity theory. Further, one has the Avakumovic̆–
Agmon–Hörmander theorem.

Theorem 6.3. Let L be a non-negative elliptic pseudo-differential operator of order m on a
compact manifold X of dimension n. Then∥∥χ[R,R+1]

(
L1/m

)∥∥2
L1(X)→L2(X)

� CRn−1, ∀R ∈ R+. (6.3)

Theorem 6.3 was proved by Hörmander [19]. This theorem has the following useful conse-
quence.

Corollary 6.4. Condition (3.3) with q = 2 holds for non-negative elliptic pseudo-differential
operators on compact manifolds.

Proof. By spectral theorem

sup
y∈X

∥∥K
F(

m√
L)

(·, y)
∥∥2

L2(X)
�

(
N∑

�=1

∥∥χ[�−1, �]F
( m
√

L
)∥∥2

L1(X)→L2(X)

)1/2

� CNn/2‖δNF‖N,2

as required. �
The importance of estimate (6.3) for multiplier theorems was noted by Sogge [33], who used

it to establish the convergence of the Riesz means up to the critical exponent (n − 1)/2 (see
also [6] and [30]).

Proposition 6.5. Suppose that L is a non-negative self-adjoint elliptic differential operator of
order m � 2 acting on a compact Riemannian manifold X of dimension n. Then the operator L
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satisfies estimate (3.3) for q = 2, and hence Theorem 3.3 holds for spectral multipliers F(L)

under the same conditions with q = 2, D = 0 and with the doubling dimension n. That is the
exponent n in (2.2) is equal to the topological dimension of the manifold X.

Proof. This result is a direct consequence of Theorem 3.3 and Corollary 6.4. �
Proposition 6.5 applied to an elliptic operator on a compact Lie group gives a stronger result

than Proposition 6.2. One can say that for elliptic operators on a compact Lie group Propo-
sition 6.1 holds. However, we do not know if the Avakumovic̆–Agmon–Hörmander condition
holds for sub-elliptic operators on a compact Lie group (see also [7]). Hence, Proposition 6.2
gives the strongest known result for sub-elliptic operators on a compact Lie group.

6.3. Laplace operators on irregular domains with Dirichlet boundary conditions

Let Ω be a connected open subset of Rn. Note that if the boundary of Ω is not smooth enough,
then Ω is not necessarily a homogeneous space because the doubling condition might not hold.

In this section we are interested in dealing with weighted norm estimates in those contexts. As
it is pointed out in [13], one can extend the singular operators defined in Ω to the space Rn. Since
there is no assumption on the regularity of the kernels in space variables, the extension of the
kernel still satisfies similar conditions. Given T , a bounded linear operator on Lp(Ω), 1 < p <

∞, the extension of T to Rn is defined as T̃ f (x) = T (f χΩ)(x)χΩ(x) for f ∈ Lp(Rn). Then,
T is bounded on Lp(Ω) if and only if T̃ is bounded on Lp(Rn). If K is the kernel of T , then
the associated kernel of T̃ is given by K̃(x, y) = K(x,y) for (x, y) ∈ Ω × Ω and K̃(x, y) = 0
otherwise. As it is observed in [13], the assumptions on the kernels do not involve their regularity
so they imply similar properties on the kernels of the extended operators.

We are going to use the notation Ap(Rn) in order to make clear that the Muckenhoupt weights
are considered in the whole space Rn. The following result gives examples of singular integral
multipliers on spaces without the doubling condition.

Proposition 6.6. Suppose that �Ω is the Laplace operator with Dirichlet boundary condition
Ω ⊂ Rn. Let s > n/2 and r0 = max(1, n/s). Then for any bounded Borel function F such that
supt>0 ‖ηδtF‖W∞

s
< ∞, the operator F(�Ω) is bounded on Lp(Ω,w) for all p and w satisfying

r0 < p < ∞ and w ∈ Ap/r0(R
n). In addition,

∥∥F(�Ω)
∥∥

Lp(Ω,w)→Lp(Ω,w)
� Cs

(
sup
t>0

‖ηδtF‖W∞
s

+ ∣∣F(0)
∣∣).

Proof. Note that

0 � Kexp(−t�Ω)(x, y) � 1

(4πt)n/2
exp

(
−|x − y|2

4t

)
(see e.g., Example 2.18 [9]). That is the heat kernels corresponding to �Ω satisfy Gaussian
bound (GE), and the operator �Ω satisfies estimate (3.1) for q = ∞. Then, Proposition 6.6

follows from estimate (3.2) and Theorem 3.2 applied to the extended operator F̃ (�Ω). Hence
the same weighted norm estimates hold for the original operator F(�Ω). �
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6.4. Schrödinger operators

In this section we discuss applications of our main results to spectral multipliers of
Schrödinger operators.

Let � be the standard Laplace operator acting on Rn. We consider the Schrödinger operator
L = −� + V where V : Rn → R, V ∈ L1

loc(R
n) and V � 0. The operator L is defined by the

quadratic form. If pt(x, y) denotes the heat kernel corresponding to L then as a consequence of
the Trotter product formula

0 � pt (x, y) � p̃t (x, y), (6.4)

where p̃t (x, y) denotes the standard Gauss heat kernel corresponding to �, see also [27, Sec-
tion 2.3].

The estimate (6.4) holds also for heat kernel pt(x, y) of Schrödinger operator with electro-
magnetic potentials, see [32, Theorem 2.3] and [14, (7.9)]. For the Schrödinger operator in this
setting, estimate (3.1) holds for q = ∞ as in the next result.

Proposition 6.7. Assume that L = −� + V where � is the standard Laplace operator acting
on Rn and V ∈ L1

loc(R
n) is a non-negative function. Then the operator L satisfies estimate (3.1)

for q = ∞, and hence Theorem 3.2 holds for spectral multipliers F(L) under the same conditions
with q = ∞, D = 0 and the doubling constant n.

We note that under suitable additional assumptions this result can be extended by a similar
proof to situation of magnetic Schrödinger operators acting on a complete Riemannian manifold
with non-negative potentials.

Proof. This result is a consequence of (6.4) and Theorem 3.2. �
6.5. Estimates on operator norms of holomorphic functional calculi

For θ > 0, we put
∑

θ = {z ∈ C − {0}: | arg z| < θ}. Let F be a bounded holomorphic func-
tion on

∑
θ . By ‖F‖θ,∞ we denote the supremum of F on

∑
θ . We are interesting in finding

sharp bounds, in terms of θ , of the norm of F(L) as the operator acting on Lp(X,w). The fol-
lowing proposition, which is a weighted version of [14, Proposition 8.1], is a consequence of
Theorem 3.2.

Proposition 6.8. Let L be an operator satisfying assumptions of Theorem 3.2. Let s > n
2 and let

r0 = max{1,
2(n+D)
2s+D

}. Then the operator F(L) is bounded on Lp(X,w) for all p and w satisfying
r0 < p < ∞ and w ∈ A p

r0
. In addition,

∥∥F(L)
∥∥

Lp(X,w)→Lp(X,w)
� Cε

θ
n
2 +ε

‖F‖θ,∞

for every ε > 0, r0 < p < ∞ and w ∈ A p .

r0
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Proof. It is easy to check, using the Cauchy formula that there exists a constant C independent
of F and θ such that

sup
λ>0

∣∣λkF (k)(λ)
∣∣ � C

θk
‖F‖θ,∞, ∀k ∈ Z+.

For any ε > 0, supt>0 ‖ηδtF‖W∞
k−ε

� C supλ>0 |λkF (k)(λ)| so by interpolation

sup
t>0

‖ηδtF‖W∞
s

� Cε

θs+ε
‖F‖θ,∞.

Applying the above inequality and Theorem 3.2 we obtain Proposition 6.8 (see also, Theo-
rem 4.10 [8]). �
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