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The cerebellum is important for the integration of sensory perception and motor control, but its structure has
mostly been studied in mammals. Here, we describe the cell types and neural tracts of the adult zebrafish
cerebellum using molecular markers and transgenic lines. Cerebellar neurons are categorized to two major
groups: GABAergic and glutamatergic neurons. The Purkinje cells, which are GABAergic neurons, express
parvalbumin?, carbonic anhydrase 8, and aldolase C like (zebrin II). The glutamatergic neurons are vglutl ™
granule cells and vglut2"s" cells, which receive Purkinje cell inputs; some vglut2"" cells are eurydendroid

Iéz{:&rﬁj’m cells, which are equivalent to the mammalian deep cerebellar nuclei. We found olig2 ™ neurons in the adult
Hindbrain cerebellum and ascertained that at least some of them are eurydendroid cells. We identified markers for
Purkinje cells climbing and mossy afferent fibers, efferent fibers, and parallel fibers from granule cells. Furthermore, we
Granule cells found that the cerebellum-like structures in the optic tectum and antero-dorsal hindbrain show similar

Eurydendroid cells
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Parallel fibers
Neural circuits
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Zebrafish

Parvalbumin7 and Vglutl expression profiles as the cerebellum. The differentiation of GABAergic and
glutamatergic neurons begins 3 days post-fertilization (dpf), and layers are first detectable 5 dpf. Using anti-
Parvalbumin?7 and Vglut1 antibodies to label Purkinje cells and granule cell axons, respectively, we screened
for mutations affecting cerebellar neuronal development and the formation of neural tracts. Our data provide
a platform for future studies of zebrafish cerebellar development.

© 2009 Elsevier Inc. All rights reserved.

Introduction neurons), and include Purkinje cells and interneurons such as the

Golgi and stellate cells. The cerebellar neurons receive excitatory input
from neurons in the pre-cerebellar nuclei, outside the cerebellum, and
these afferent axons are classified into two groups, mossy fibers and
climbing fibers (Fig. 1A). The climbing fibers originate from neurons in
the inferior olive nucleus (10) in the posterior hindbrain and innervate
Purkinje cell dendrites. The mossy fibers originate from neurons in the
pre-cerebellar nuclei (excluding 10), and they synapse onto the same
granule cell dendrites that are in contact with the axons of Golgi cells
to form the cerebellar glomeruli.

Information from the mossy fibers is conveyed to the dendrites of
Purkinje cells by the axons of granule cells, called parallel fibers, and
the information from the climbing and mossy fibers is integrated by

The cerebellum functions in the control of smooth and skillful
movements. It is also implicated in a variety of cognitive and
emotional functions (Ito, 2008; Rodriguez et al., 2005). The cerebel-
lum integrates sensory and predictive inputs, which include proprio-
ception and information associated with motor commands, to elicit
precise motor control and higher cognitive/emotional functions (Bell,
2002; Bell et al., 2008; Ito, 2002a,b, 2006). These complex tasks rely
on the well-organized structure of the cerebellum and neural circuits.

There are several different types of neurons in the bony fish
(teleost) cerebellum (Fig. 1A). They can be categorized into two
groups based on their functions as excitatory or inhibitory neurons

(Altman and Bayer, 1997; Butler and Hodos, 1996). The excitatory
neurons use glutamate as their major neurotransmitter (glutamater-
gic neurons). They include granule cells, eurydendroid cells, and
unipolar brush cells (UBC). The inhibitory neurons utilize gamma-
aminobutyric acid (GABA) and/or glycine (GABAergic/glycinergic
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the Purkinje cells. The neural activity of the climbing fibers suppresses
synaptic transmission from the axons of granule cells by a mechanism
called long-term depression (LTD), which is important for motor
learning (Ito, 2002a,b, 2006). Purkinje cells send their axons to either
adjacent Purkinje cells or eurydendroid cells (Alonso et al., 1992;
Meek et al., 1992), while the eurydendroid cells send efferent axons to
other regions of the brain (Ikenaga et al., 2005; Murakami and Morita,
1987). These neurons and neural fibers are arranged in a three-layer
structure in the cerebellum, from superficial to deep: the molecular
layer (ML), Purkinje cell layer (PCL or ganglionic layer), and granule
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Fig. 1. Cerebellar neurons and circuits. (A) Schematic presentation of zebrafish cerebellar
neurons and circuits. (B) Zebrin Il immunohistochemistry of a sagittal section of adult
cerebellum. DAB staining. Anterior is to the left. CC, crista cerebellaris; CCe, corpus
cerebelli; GCL, granule cell layer; LCa, lobus caudalis cerebelli; ML, molecular layer;
MON, medial octavolateralis nucleus; PCL, Purkinje cell layer; TeO, tectum opticum; TeV,
tectal ventricle; Va, valvula cerebelli; Vam, medial division of valvula cerebelli; Val,
lateral division of the valvula cerebelli. Scale bars: 500 pm (B).

cell layer (GCL). In the ML, the dendrites of Purkinje cells receive
inputs from the climbing fibers and granule cell axons, and from
stellate interneurons. There are synaptic interactions among mossy
fibers, granule cells, and interneurons in the cerebellar glomeruli of
the GCL.

The teleost cerebellum is composed of three major parts: the
valvula cerebelli (Va), the corpus cerebelli (CCe), and the vestibulo-
lateral lobe which consists of the eminentia granularis (EG) and the
lobus caudalis cerebelli (LCa) (Miyamura and Nakayasu, 2001;
Wullimann et al.,, 1996) (Fig. 1B). The Va and CCe display the same
three-layer structure, whereas the vestibulolateral lobe (EG and LCa)
only contains the GCL. In addition, the crista cerebellaris (CC) and
medial octavolateralis nucleus (MON) in the dorsal hindbrain of
teleosts are proposed to function as part of the cerebellum
(“cerebellum-like structures”), because parallel fibers of granule
cells are located in the EG and run along the CC, contacting the
dendrites of the crest cells whose cell bodies are in the MON [EG-CC-
MON circuitry] (Bell et al., 2008; Mikami et al., 2004; Volkmann et al.,
2008). Similarly, type I neurons, which are also known as pyriform
cells, in the optic tectum (Meek and Schellart, 1978) extend their
dendrites superficially to receive inputs from the parallel fibers from
the torus longitudinalis (TL) in the stratum marginale (SM) [TL-SM-
Type 1 neuron circuitry] (Bell et al., 2008; Mikami et al., 2004;
Volkmann et al., 2008).

There are a few differences between the teleost and mammalian
cerebellum. The mammalian cerebellum lacks eurydendroid cells and,
in its place, the deep cerebellar nuclei (DCN) play a functionally

homologous role, as they receive the axons of Purkinje cells and send
efferent axons. The DCN are located ventrally, far from the Purkinje
cells, whereas eurydendroid cells are located in the vicinity of the PCL.
Although the mammalian DCN and teleost eurydendroid cells are both
projection neurons that send axons outside the cerebellum, it is not
known if they use the same molecular machineries for their function
and development. All of the granule cells lie underneath the PCL in the
mammalian cerebellum. In the teleost cerebellum, the granule cells in
the Va and CCe are underneath the PCL, whereas the granule cells in
the EG and LCa are located superficially and send their axons to the CC
(Folgueira et al., 2006; Montgomery, 1981; Puzdrowski, 1989;
Volkmann et al.,, 2008). Although these granule cells may function
differently from those in the GCL of the Va and CCe, it is not known if
they use the same genes for their growth and differentiation or if they
use the same molecular machineries for the formation of parallel
fibers.

The zebrafish cerebellum forms in the anterior hindbrain during
the embryonic and larval periods. The glutamatergic neurons are
derived from progenitors located at the upper rhombic lip (URL) and
express the proneural gene atoh1 (Math1 in mice) (Alder et al., 1996;
Ben-Arie et al.,, 1997). atoh1-expressing URL progenitors generate the
granule cells and the DCN in mice (Machold and Fishell, 2005; Wang
et al, 2005; Wilson and Wingate, 2006; Wingate, 2005). The
glutamatergic neurons in the zebrafish cerebellum show a similar
developmental process (Koster and Fraser, 2001; Volkmann et al.,
2008), although it hasn't been thoroughly characterized in detail. In
the mouse, the GABAergic neurons are derived from progenitors in the
ventricular zone (VZ) that express the proneural gene ptfla (Hoshino,
2006; Hoshino et al., 2005). ptfia is also expressed in the zebrafish
cerebellum (Lin et al., 2004; Zecchin et al., 2004), but its precise
expression domain and role have not been reported. In addition,
neurons expressing the proneural gene olig2 are located in the vicinity
of the PCL in the zebrafish cerebellum and extend long neurites, like
the eurydendroid cells (McFarland et al, 2008). The origin and
functions of these olig2 " neurons, however, remain to be elucidated.

Genetic and molecular studies, including mutant screening in
zebrafish, have revealed genes that are involved in the initial process
of cerebellum development, that are related to patterning of the
hindbrain and formation of the midbrain-hindbrain boundary (Brand
et al, 1996; Schier et al., 1996). These genes include pax2a (no
isthmus) (Brand et al., 1996), islet3 (Kikuchi et al., 1997), fgf8
(acerebellar) (Reifers et al., 1998), pou2 (spiel ohne grenzen) (Belting
etal, 2001), and wnts (Buckles et al., 2004). Little is known, however,
about what genes control the specification and neurite formation of
individual cerebellar neurons in zebrafish. This is partly due to a lack
of anatomical information about and molecular markers for the
zebrafish cerebellum.

Here, we investigated the anatomy of the zebrafish cerebellum
using molecular markers and transgenic lines. We describe the
individual cell types and neural tracts within and connected to the
cerebellum. We found that the differentiation of the cerebellar
neurons begins at 3 days post fertilization (dpf), and we detected a
simple layered structure as early as 5 dpf. Using antibodies that
recognize the Purkinje and granule cell axons, we screened zebrafish
cerebellar mutants and isolated lines that displayed defects in the
development of cerebellar neurons and their neurites. These data
provide anatomical information about the zebrafish cerebellum for
comparative and developmental analyses, and are a source for genetic
studies of cerebellar development.

Materials and methods
Zebrafish wild-type, transgenic lines and staging

Wild-type zebrafish (Danio rerio) with the Oregon AB genetic
background were used. Transgenic lines Tg(olig2:EGFP)vu12 (Shin
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et al., 2003), Tg(ptfla:eGFP)jhl (Pisharath et al., 2007), and Tg
(pou4f1-hsp70l:EGFP)rw0110b (Aizawa et al., 2005) were previously
described. The Tg(vglut2a:EGFP) line was constructed using the BAC
DKEY-145P24 by a previously described method (Kimura et al., 2006).
The details for generating this line will be described elsewhere.
Zebrafish were reared as described (Westerfield, 1995). For immuno-
histochemistry and whole-mount in situ hybridization, embryos and
larvae were treated with 0.005% phenylthiourea from 12 h post-
fertilization to prevent pigmentation. Developmental stages were
determined according to the Zebrafish Information Network (ZFIN:
http://zfin.org/). Adult fish in this report characterize fish 90 days or
older; juvenile fish are between 30 and 89 days old; larvae are
between 3 and 29 days old.

In situ hybridization

The detection of vglutl, vglut2a, and vglut2b was described
previously (Higashijima et al., 2004a,b). The cDNAs of gadl, gad2
(Higashijima et al., 2004a,b), pvalb7 (NM_205574), lhxla (lim1)
(Toyama et al., 1995), aldocl (NM_001029952), ca8 (NM_001017571),
barhl1.1, barhl1.2 (Colombo et al., 2006), eomesa (Bruce et al., 2003),
calbidin2 (Rohrschneider et al., 2007), fabp7a (blbp) (Adolf et al.,
2006), glasta (slcla3a, NM_212640), glastb (slc1a3b, XM_679025),
glastc (slc1a3c, NM_001109703), mbp (Brosamle and Halpern, 2002),
olig2 (Park et al., 2002), and alcam (NM_131000) were obtained by
reverse-transcriptase-PCR from zebrafish embryos, larvae, and adult
brains and were used to generate riboprobes. The detailed information
about these probes is available on request.

For the in situ hybridization of sections, the brains were removed
from adult zebrafish and fixed overnight at 4 °C in 4% paraformalde-
hyde (PFA) in phosphate-buffered saline (PBS). The specimens were
immersed in 30% sucrose solution overnight at 4 °C, frozen in OCT
compound (Sakura Finetechnical), and sectioned at 12-14 um with a
cryostat. The frozen sections were washed three times with Tris-
buffered saline (TBS) for 10 min, treated with 0.2 M HCI for 10 min,
and washed three times with TBS. They were subsequently treated
with 0.1 M Tris-HCI (pH 8.0) containing acetic anhydride for 10 min
and washed three times with TBS. They were incubated in hybridiza-
tion buffer (50% formamide, 5x standard saline citrate [SSC], 50 pg/ml
heparin, 0.1% Tween20, 5 mg/ml torula RNA) for more than 1 h and
hybridized with a digoxigenin-UTP- or FITC-UTP-labeled riboprobe at
65 °C overnight. The specimens were rinsed with TBS and washed
with 50% formamide 2x SSC at 65 °C, 50% formamide 1x SSC, and 20%
formamide 0.5x SSC for 30 min each. They were then rinsed with TBS,
incubated with blocking solution (1x Roche blocking reagent, 5%
heat-inactivated fetal bovine serum, TBS) for 30 min, and incubated
with 1/2000 diluted alkaline phosphatase (AP)-conjugated anti-
digoxigenin, 1/500 diluted horseradish peroxidase (HRP)-conjugated
anti-digoxigenin or anti-FITC antibodies (Roche) in the blocking
buffer at room temperature (RT) for 30-60 min. After three washes
with TBST (TBS containing 0.1% Tween20), the signals were examined.
Whole-mount in situ hybridization was performed principally as
described previously (Jowett and Yan, 1996).

For the single-color observation of section and whole-mount in
situ hybridization, NBT/BCIP (Roche) was used as the substrate for AP.
For two-color fluorescence in situ hybridization, tyramide signal
amplification (TSA) kits with Alexa Fluor 488 tryamide and Alexa
Fluor 555 tyramide (Molecular Probes, Invitrogen) were used to
visualize the fluorescent signals. The first HRP reaction in the TSA
procedure was terminated by incubating the sample in 0.1 M Glycine-
HCI (pH 2.2) at RT for 1 h and washing three times with TBST, followed
by staining with the second HRP-conjugated antibody and TSA reagent
(Horikawa et al., 2006). The NBT/BCIP signals were acquired using
an AxioPlan-2 microscope and AxioCam CCD camera (Zeiss). The
fluorescence images were obtained as described below (under
“Immunohistochemistry”).

Generation of monoclonal and polyclonal antibodies

To raise monoclonal antibodies against parvalbumin7 (Pvalb?7,
NP_991137), carbonic anhydrase 8 (Ca8, NP_001017571), and Fabp7a
(Blbp: NP_571680), glutathione S-transferase (GST) fusion proteins
containing amino acids (aa) 1-109 of Pvalb7, aa 1-147 of Ca8, and aa
1-132 of Fabp7a (Blbp) were generated in E. coli BL21DE3. The GST
fusion proteins were purified by Glutathione Sepharose 4B (GE
Healthcare) and used for immunization. Balb/c mice were immu-
nized four or five times with about 50 pg of the proteins. Spleen cells
of the immunized mice were fused with the mouse myeloma line
Ag8.563, and hybridomas were obtained by conventional HAT
selection. Supernatants of growth-positive cells were subjected to
enzyme-linked immunosorbent assays (ELISAs) to identify hybri-
doma clones producing specific antibodies. Polyclonal antibodies
against Vglutl, Vglut2a, and Gadl were generated by immunizing
rabbits with the synthetic peptides CVGTNSYLYGGEGERELT,
CDGVEEGGYGYRQGGNYS, and SAGDMDPNTANLRQPATC (the under-
lined C was added to link the peptides covalently with keyhole limpet
hemocyanin), respectively. The anti-Vglut1 and anti-Gad1 antibodies
were purified using peptide affinity columns that were generated by a
SulfoLink Kit (Pierce).

Immunohistochemistry

For immunostaining, anti-zebrin II (1/200, hybridoma super-
natant) (Lannoo et al., 1991a,b), anti-Pvalb7 (1/1000, mouse ascites),
anti-Ca8 (1/100, mouse hybridoma supernatant), anti-Fabp7a/Blbp
(1/1000, mouse ascites), anti-Sox10 (1/500) (Park et al., 2005, 2007),
anti-Mbp (1/50) (Lyons et al., 2005), anti-BrdU (1/1000, BD
Bioscience), zn5 (1/200) (Trevarrow et al., 1990), anti-HuC/D (1/
500, mouse, Molecular Probes, Invitrogen), anti-Vglutl (1/1000,
purified antibody), anti-Vglut2a (1/2000, rabbit serum), anti-Gad1
(1/2000, purified antibody), anti-GAD1/2 (1/100, mouse ascites,
Biomol), anti-calretinin (1/1000, rabbit, Swant) and anti-GFP (1/1000
mouse or rabbit, Nacalai) antibodies were used.

For whole-mount immunostaining, zebrafish larvae were fixed at
4°Cin 4% PFA in PBST (PBS, 0.1% Triton X-100) for 3 h. The fixed larvae
were washed with PBST, and incubated in acetone at —30 °C for
15 min. Larvae or cryosections were washed once with PBST and twice
with PBS-DT (PBS, 1% BSA, 1% DMSO, 1% Triton X-100), and incubated
in 5% goat serum (Vector), PBS-DT at RT for 1 h. The samples were
incubated with the primary antibody solution at 4 °C overnight. After
four washes with PBST, the samples were incubated with secondary
antibodies (1/1000 dilution, Alexa Fluor 488 and/or Alexa Fluor 555
goat anti-mouse and/or goat anti-rabbit IgG (H+L), Molecular
Probes, Invitrogen). For two-color staining with two mouse mono-
clonal antibodies (Fig. 2N), a Zenon antibody labeling kit (Molecular
Probes, Invitrogen) was used. The Vectastain Elite ABC kit (Vector)
was also used for immunostaining with the HRP substrate diamino-
benzidine (DAB, Figs. 1B, 3], 3K, 5I). When the samples were stained
with a riboprobe and antibody, in situ hybridization (NBT/BCIP or TSA
staining) was performed first, followed by immunostaining (DAB or
fluorescence).

The fluorescence images and DAB signals were obtained with a
LSM5 Pascal laser scanning inverted microscope and AxioPlan-2
microscope, respectively. The fluorescence images were constructed
from Z-stack sections by a 3D projection program associated with the
microscope. Figures were constructed using Adobe Photoshop. Alexa
Fluor 488 and 555 signals were colored green and magenta, respec-
tively, for the figures.

Morpholino oligonucleotides

The antisense morpholino oligonucleotides (MOs) were generated
by Gene Tools (LLC, Corvallis, OR, USA). The sequences of vglutIMO,
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Fig. 2. GABAergic neurons. (A-F) Expression of gad1 (A), gad2 (B), carbonic anhydrase 8 (ca8, C), lhx1a (lim1, D), aldolase c-like (aldocl, E), and parvalbumin7 (pvalb7, F) in the adult
cerebellum. In situ hybridization of sagittal sections. Anterior is to the left. (G, H) Comparison of pvalb7 (green) and gad1 (magenta) expression. (H) High-magnification view of the
box in G. Note that all the pvalb7™ cells are gad1™ (white), but there are gad1™ pvalb7~ cells (magenta) in the GCL and ML. (I, ]) Fluorescence immunohistochemistry of adult
cerebellum with an anti-parvalbumin7 antibody (Pvalb7). Low (I) and high (J) magnification views. The position of the PCL is indicated by an arrowhead (I). Axons of Purkinje cells
are indicated by arrows (J). Pvalb7" axons reach and surround Pvalb7~ cells (indicated by arrows), which correspond to eurydendroid cells (J). (K-N) Anti-carbonic anhydrase 8
(Ca8, K), zebrin I (L) and anti-parvalbumin?7 (Pvalb7, M) antibody staining. Zebrin Il (green) and Pvalb7 (magenta) staining completely overlap (N). The abbreviations are described

in Fig. 1. Scale bars: 500 um (F, G, I) and 50 um (H, J, N).

vglut2aMO, and gad1IMO were 5'-CAGCACTGATACTGACCACTATGAC-3/,
5’-GCTCCCTCGGAGTCTCCATGTCCAA-3’, and 5'-AAGGTGCAGAAGAC-
GCCATCAGTCC-3/, respectively. The MOs were dissolved in and diluted
with water and injected into the yolk of one-cell-stage embryos.

BrdU incorporation

Adult zebrafish were kept in 1% BrdU (5’-bromo-2’deoxyuridine,
Wako) solution for 1 h in the dark. The brains were removed and fixed
in 4% PFA in PBS. The cryosections were treated with 2 N HCI for
30 min at room temperature, washed twice with PBS, 0.1% Tween20,
neutralized twice with 0.1 M Na,B,0- and washed twice with PBS,
0.1% Tween20. Immunostaining was carried out as described above.

Retrograde labeling of eurydendroid cell axons and cerebellovestibular
tracts

The retrograde labeling was carried out essentially as described
previously (Ikenaga et al., 2005). Adult zebrafish were anesthetized in
100 mg/1 ethyl m-aminobenzoate methanesulfonate (Nacalai). The
cranium was removed by forceps and the optic tectum and CCe were
exposed. 5-10 pl of 10% solution of dextran, tetramethylrhodamine
and biotin (10,000 MW, lysine fixable, Molecular Probes, Invitrogen)
was injected into the region underneath the optic tectum (the
pretectal region, for detection of eurydendroid cell axons) or into the
antero-lateral hindbrain (vestibular region including descending
octaval nucleus-DON, for detection of cerebellovestibular tracts)
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Fig. 3. Glutamatergic neurons. (A, B) Expression of vglut1 (slc17a7) in the adult cerebellum. In situ hybridization of a sagittal section. Low (A) and high (B) magnification views.
Anterior is to the left. vglut1 expression is detected in the torus longitudinalis (TL) of the TeO and the GCL of the Va, CCe, and LCa. The vglut1* region between TeO and GCL (indicated
by arrowhead) belongs to the GCL (Suppl. Fig. 1). (C, D, E) Expression of vglut2a (slc17a6). Sagittal sections at the levels (a medial, b mediolateral, c lateral.) shown in (C) were stained
with a vglut2a (slc17a6) riboprobe. Low (D-a) and high (E-a, E-b, E-c) magnification views. vglut2a™®" cells were scarcely observed in the medial region (D-a), but many were
detected in more lateral regions (E-b, E-c). Expression of vglut2a (slc17a6) in the inferior olive nucleus is marked by an arrow (D-a). (F-I) Differential expression of barhl1.2 (F),
barhl1.1 (G), eomesodermin a (eomesa, H), and calbindin2 (calb2, 1). (J, K) vglut2a"®" eurydendroid cells. Co-staining with a vglut2a riboprobe (purple, NBT/BCIP staining) and
anti-Pvalb7 antibody (brown, DAB staining). (K) High-magnification view of the box in J. Note that vglut2a"#" cells (arrowheads) receive inputs from the Pvalb7* axons of Purkinje
cells (arrows). The abbreviations are described in Fig. 1. Scale bars: 500 um (A, B, C, ]) and 100 pm (K). The magnification of D and E-I are the same as in A and B, respectively.

with a Hamilton syringe driven by a micromanipulator (Narishige).
The exposed brain regions were re-covered with the removed
cranium. After 48 h of survival, the brain was removed and fixed in
4% PFA in PBST. The cryosections were stained with antibodies and
1 pg/ml of avidin, NeutrAvidin, Rhodamine Red-X conjugate (Mole-
cular Probes, Invitrogen).

Immunoblotting

The brain (olfactory bulb, forebrain, midbrain, and hindbrain) was
removed from an adult fish and homogenized with a hand pestle
(Toyobo) in 500 pl of lysis buffer (50 mM Tris-HCI pH 7.4, 150 mM
NaCl, 5 mM EDTA, 1% NP40) on ice. The lysate was cleared by
centrifugation, and 1 pl of the lysate per lane was separated on a

5-20% SDS polyacrylamide gel (SuperSep, Wako) and transferred to
a PVDF membrane (Immobilon, Millipore). The protein was
detected with rabbit anti-sera and an HRP-conjugated goat anti-
rabbit IgG (H+L) antibody (Zymed). The signals were visualized
using a chemiluminescence system (Western Lightning; Perkin Elmer
Life Science).

Mutant screening

Zebrafish mutants were generated as described previously
(Driever et al., 1996; Haffter et al., 1996). The F1 generation was
made by crossing ethyl nitrosourea (ENU)-treated AB male fish and
non-treated female fish. The F2 family was established by crossing F1
male and female fish. F3 larvae obtained by crossing pairs of F2
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animals were reared until 5 dpf. After fixation, the larvae were stained
with an anti-Pvalb7 antibody (mouse monoclonal, to screen 256
mutated genomes), or anti-Pvalb7 and anti-Vglut1 (rabbit polyclonal)
antibodies (to screen 520 mutated genomes), the signals of which
were visualized with fluorescent secondary antibodies. The stained
embryos were observed with a Leica MZ16F dissection fluorescence
microscope. Families of larvae that showed an abnormal expression of
Pvalb7 and/or Vglut1 were subjected to further analyses.

Results
Molecular markers for GABAergic neurons

To determine the individual cell types in the adult zebrafish
cerebellum, we first examined the expression of orthologs of genes
known to be expressed in GABAergic and glutamatergic neurons of the
mammalian cerebellum (Figs. 2, 3, and Table 1). In teleost fish, as in
mammals, GABAergic neurons express glutamic acid decarboxylase
Gad1 (Gad67) and Gad2 (Gad65) (Castro et al., 2006; Higashijima et
al., 2004a; Martin et al., 1998; Martyniuk et al., 2007; Meek et al.,
2008), which convert glutamate into GABA in a single-step reaction. In
the adult zebrafish cerebellum, gadl is expressed strongly in the
Purkinje cells (Figs. 2A, G, H), consistent with a previous report
(Martyniuk et al., 2007). gadl is also expressed weakly in non-
Purkinje GABAergic neurons in the ML and GCL (Figs. 2A, G, H, and
Table 1), which are presumably stellate and Golgi cells. gad2 is
expressed in both Purkinje cells and other GABAergic neurons in the

Table 1
Cell-specific markers of zebrafish cerebellar neurons.

Protein
localization

Cells expressing the marker

GABAergic neurons
gadi Purkinje cells, Golgi, and stellate cells T
(PC>others*'), crest cells

gad2

Purkinje cells, Golgi, and stellate cells
(PC<others*?), crest cells

parvalbumin? Purkinje cells and crest cells S,A, D
aldolase c-like (aldocl) Purkinje cells S,A,D
carbonic anhydrase 8 (ca8)  Purkinje cells S,A,D
Ihx1a (lim1) Purkinje cells
Glutamatergic neurons
vglut1(slc17a7) Granule cells (CCe, EG, and LCa) T
vglu2a(slci7a6) Eurydendroid cells, granule cells*>, T
mossy fiber neurons
vglut2b(slc17a6l) Eurydendroid cells, granule cells*>, T
mossy fiber neurons
zicl Granule cells
reelin Granule cells
pax6 Granule cells
barhl1.1 Granule cells (Va/CCe/EG<LCa) **
barhl1.2 Granule cells (Va/CCe/EG>LCa) *°
eomesa (tbr2) Granule cells (Va/CCe/EG<LCa) **
calbindin2 Granule cells (LCa)
Anti-calretinin ab Eurydendroid cells in ML*®
olig2 Eurydendroid cells in ML and GCL*”
Glia
blbp(fabp7) Bergmann glia C
glastb(slc1a3b) Bergmann glia

myelin basic protein (mbp)

Oligodendrocyte

The expression of genetic markers was determined by in situ hybridization of sagittal
sections of adult brain. The localization of proteins was determined using antibodies
established in this study, as described. T, axon terminal; S, soma; A, axons; D, dendrites;
C, cytosol. *"?Expression was stronger*' or weaker*? in Purkinje cells compared to
other GABAergic neurons in the cerebellum. **Weak expression of vglut2a and vglut2b
was detected in granule cells. **>Expression was stronger*> or weaker** in the valvula
cerebelli (Va), the corpus cerebelli (CCe), and the eminentia granularis (EG) than in the
lobus caudalis cerebelli (LCa). *®Detection of some eurydendroid cells by anti-calretinin
antibody is reported (Castro et al., 2006). *’Expression of olig2 in some eurydendroid
cells at larval stages is reported (McFarland et al., 2008).

ML and GCL, but its expression is more prominent in the non-Purkinje
GABAergic neurons (Fig. 2B).

We found that carbonic anhydrase 8 (ca8) and lhx1a (lim1) are
expressed in Purkinje cells (Figs. 2C, D), as reported for the
mammalian cerebellum (Hirota et al., 2003; Kato, 1990; Nogradi et
al., 1997; Schuller et al., 2006). lhx1a was also detected weakly in a
small number of cells in the GCL, which may include undifferentiated
Purkinje cells, and also found expressed outside the cerebellum (Fig.
2D). The anti-zebrin II antibody recognizes the parasagittal compart-
ments of Purkinje cells in mammals and most, if not all, of the Purkinje
cells in the teleost cerebellum (Gravel and Hawkes, 1990; Lannoo et
al.,, 1991a,b; Meek et al., 1992) (Figs. 1B, 2L). The zebrin II antigen is
encoded by the aldolase C gene (Ahn et al., 1994). In zebrafish, there
are two aldolase C genes, aldoc (aldolase c, fructose-bisphosphate) and
aldocl (aldolase c, fructose-bisphosphate-like; Zebrafish Information
Network, ZFIN:http://zfin.org/). We found that aldocl is expressed
specifically in Purkinje cells (Fig. 2E). Parvalbumin, a Ca™ *-binding
protein, is expressed in Purkinje cells and other GABAergic inter-
neurons in the chick, mammalian, and teleost cerebellum (Celio, 1990;
Celio and Heizmann, 1981; Crespo et al., 1999; Jande et al., 1981;
Porteros et al., 1998). There are at least nine parvalbumin genes in
zebrafish (ZFIN). We found that parvalbumin?7 (pvalb7) is expressed in
the Purkinje and crest cells, but not in the other GABAergic neurons in
the zebrafish cerebellum (Fig. 2F).

To analyze the structure of the Purkinje cells, we raised mono-
clonal antibodies against parvalbumin?7 (Pvalb7) and carbonic
anhydrase 8 (Ca8). Both the anti-Pvalb7 and anti-Ca8 antibodies
recognized the dendrites, soma, and axons of the Purkinje cells, which
are located in the ML, PCL, and GCL, respectively, just as the anti-
zebrin II and M1 antibodies do (Jaszai et al., 2003; Miyamura and
Nakayasu, 2001) (Figs. 2I, J, K). Pvalb7 and zebrin II staining
completely overlapped in the cerebellum (Figs. 2L, M, N). In the
mammalian cerebellum, parvalbumin and Ca8 are expressed in all the
Purkinje cells, but zebrin Il is only detected in a particular Purkinje cell
compartment (Brochu et al., 1990; Celio, 1990; Gravel and Hawkes,
1990; Hirota et al., 2003; Kato, 1990; Nogradi et al., 1997). In the
zebrafish cerebellum, the Pvalb7, Ca8, zebrin II (Aldocl), and M1
antigen are all expressed in all of the Purkinje cells (Miyamura and
Nakayasu, 2001). Although Pvalb7 is also expressed in the crest cells of
the MON, Ca8 and zebrin II (Aldocl) were not (Figs. 1B, 2C, E, F, I).

Characterization of glutamatergic neurons

We next examined the expression of glutamatergic neuronal
markers in the adult cerebellum (Fig. 3). Vesicular glutamate
transporters Vglutl and Vglut2 are expressed differentially in granule
cells during mammalian cerebellar development (Hisano et al., 2002;
Miyazaki et al., 2003). We found that vglut1 (slc17a7: solute carrier
family 17, member 7) is expressed only in the granule cells; whereas
vglut2a (slc17a6) and vgult2b (slc17a6l) are only weakly expressed in
the granule cells (the expression is relatively strong in the granule cells
in the LCa), but are highly expressed in a subset of glutamatergic
neurons near the PCL in the GCL (Figs. 3A, B, D and E; data not shown
for vglut2b; the expression of vglut2a and vglut2b is essentially
identical). The vglut2"€" neurons (expressing vglut2a/b at high levels)
are more abundant in the lateral region than in the medial region,
indicating a laterally biased localization of vglut2"€" neurons (Fig. 3E).
Although Vglut1 is also expressed in mossy fiber neurons in mammals
(Hisano et al., 2002), in the zebrafish vglut1™ cells were detected in
the torus longitudinalis (TL) and habenula nuclei, but not in the
pretectal regions, ventral midbrain, or hindbrain, where most of the
mossy fiber neurons are localized (Fig. 3A). In contrast, vglut2a and
vglut2b are expressed broadly in the pretectal regions, midbrain and
hindbrain, including the 10 in the ventro-medial region of the
hindbrain (Fig. 3D, data not shown for vglut2b), indicating that most,
if not all, of the pre-cerebellar glutamatergic neurons are vglut2™.
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The expression patterns of reelin, pax6, and zic1 are homogenous
in the GCL of the adult cerebellum (Table 1), as in the larval and
juvenile stages of zebrafish and in the mammalian cerebellum (Aruga
et al., 1994; Costagli et al., 2002; Foucher et al., 2006; Jaszai et al.,
2003; Mueller and Wullimann, 2005), suggesting that all granule cells
are similar as regards their expression of these markers. However, we
found that some markers are differentially expressed by the granule
cells located in the Va, CCe, EG, and LCa. The homeobox gene barh-like
1.2 (barhl1.2) is expressed more highly in the granule cells of the Va,
CCe and EG than in those of the LCa (Fig. 3F, Suppl. Fig. 2, and Table 1),
whereas the T-box gene eomesodermin homolog a (eomesa, also
known as tbr2) and barhl1.1 are expressed more highly in the LCa than
in the Va, CCe and EG, and the Ca™*-binding protein calbindin2 is
expressed only in the LCa (Figs. 3G, H, I, Suppl. Fig. 2 and Table 1).

Eurydendroid cells, which receive inputs from Purkinje cell axons,
are localized near the PCL in the teleost cerebellum (Folgueira et al.,
2006; lkenaga et al., 2005; Porteros et al., 1998). The vglut2"s"
neurons were detected in the vicinity of the pvalb7* Purkinje cells,
suggesting that some of the vglut2"€" neurons are eurydendroid cells.
To address this possibility, we stained sections of the adult cerebellum
with a vglut2a riboprobe and/or an anti-Pvalb7 antibody. Most of the
vglut2"&" neurons are surrounded by Pvalb7* Purkinje cell axons in

glastb(sIc1a3b)

the GCL, but do not express Pvalb7 (Figs. 2], 3], and 3K), indicating that
they are eurydendroid cells.

Characterization of the glia

Although the Bergmann glia are relatively well characterized in
mammals, little is known about them in the teleost cerebellum. Since
BLBP (brain lipid-binding protein, or Fabp7: fatty acid binding protein
7) is expressed in Bergmann glial cells (Arnold et al., 1994; Feng and
Heintz, 1995; Rousselot et al., 1997), we examined the expression of
blbp (fabp7a) (Adolf et al., 2006; Rohrschneider et al., 2007) in the
adult zebrafish cerebellum (Figs. 4A, B, and C). We found that blbp
(fabp7a) is expressed strongly in the medial region near the PCL, but
it is relatively weak in the lateral regions of Va and, anterior and
posterior CCe (Figs. 4A, B, and C). We raised a monoclonal antibody
against Blbp (Fabp7) that could recognize its expression in the
hindbrain at the embryonic stage (data not shown). In the adult
cerebellum, the anti-Blbp (Fabp7) antibody recognized cells with a
palisade morphology, which is a characteristic feature of Bergmann
glia (Castejon, 1990; de Blas, 1984; Meek and Nieuwenhuys, 1991),
and the signal is strong in the ML of the Va and the antero-medial
CCe (Figs. 4D, E, and F), suggesting that the Bergmann glia are

Fig. 4. Bergmann glia, and oligodendrocytes, and olig2 ™ cells. (A-C) Expression of blbp (fabp7a). Sagittal sections of the medial (A, B) and lateral (C) regions of the adult cerebellum.
Low (A, C) and high (B) magnification views. (D-F) Immunostaining of Blbp (Fabp7a). Sagittal sections of the medial (D, E) and lateral (F) regions of the cerebellum. Low (D, F) and
high (E) magnification views. The palisade structure of the Bergmann glial cells is indicated by arrows. Note that blbp is expressed strongly in the medial region, but it is relatively
weak in the lateral regions of Va and, anterior and posterior CCe. Blbp was detected in the Va and dorsal CCe (both medial and lateral regions). (G) Expression of glastb (slc1a3b) and
blbp (fabp7a) in adult cerebellum. Note that most of fabp7a-expressing Bergmann glial cells express glastb (indicated by white arrows). (H, I) Expression of myelin basic protein
(mbp). Low (H) and high (I) magnification views. The abbreviations are described in Fig. 1. Scale bars: 200 um (C, E, F, H, I) and 100 um (G).
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distributed unevenly among the regions of the adult cerebellum.
Although GFAP (glial fibrillary acidic protein) is a known marker for
Bergmann glia in mammals (de Blas, 1984; de Blas and Cherwinski,
1985), gfap expression was not detected in the Bergmann glia in
the zebrafish adult cerebellum (data not shown). In the mature
cerebellum of mammals, Bergmann glia processes ensheath
synapses on Purkinje cell dendritic spines; Bergmann glia express

the astrocyte-specific glutamate transporter GLAST and function as
glutamate scavengers (Bellamy, 2006). We found three zebrafish
glast (solute carrier family 1, member 3 [slc1a3]) genes from the
database: glasta (slcla3a), glastb (slcia3b) and glastc (slcla3c).
Expression of glastb (slcla3b) was detected in Blbp™ Bergmann
glial cells (Fig. 4G), consistent with the role of Bergmann glia as
glutamate scavengers.

> 5
c)[igE:EGF‘P .
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Fig. 5. 0lig2 ™ cells. (A) Expression of olig2 in the adult cerebellum. A sagittal section. (B, C) Co-staining of a Tg(olig2:EGFP) brain with anti-Pvalb7 (magenta) and anti-EGFP (green)
antibodies. Low (B) and high (C) magnification views. Note that the EGFP signals never overlap with Pvalb7. The ventricular zone (VZ) is indicated by a dotted line (B). (D-F)
Co-staining of the Tg(olig2:EGFP) brain with anti-EGFP antibodies (green), and anti-Sox10 (D), anti-HuC/D (E), or anti-Mbp (F, magenta). Sagittal sections and in the posterior CCe
(D), and anterior CCe (E) and GCL (F). Note that olig2:EGFP™ cells that have a small size were stained with anti-Sox10 antibody (arrowheads in D); those having a large cell size
were stained with anti-HuC/D antibody (arrowheads in E). olig2:EGFP* cellular processes do not overlap with Mbp™ oligodendrocytic processes, but rather are adjacent to them
(arrowheads in F). (G) BrdU incorporation. Adult Tg(olig2:EGFP) fish were labeled with bromodeoxyuridine (BrdU) for 1 h, and the proliferating cells were analyzed by
immunostaining with anti-BrdU (magenta) and anti-EGFP antibodies (green). A sagittal section. The VZ is indicated a dotted line. Note that some of olig2:EGFP™ cells incorporated
BrdU (arrowheads). (H) Co-staining of the Tg(olig2:EGFP) brain with a gad1/gad2 riboprobe (magenta) and anti-EGFP antibody (green). olig2:EGFP signals do not overlap with
gad1/2 expression. (I) Co-staining of the Tg(olig2:EGFP) cerebellum with a vglut2a riboprobe (purple, NBT/BCIP staining) and anti-EGFP antibodies (brown, DAB staining). Note
that some of the olig2:EGFP™ cells express vglut2a. (J) Co-staining of the Tg(olig2:EGFP) cerebellum with anti-Pvalb7 (magenta) and anti-EGFP (green) antibodies. Note that some
of olig2:EGFP™ somata (arrows) receive synaptic inputs from Pvalb7 " axons of Purkinje cells. The olig2:EGFP~ eurydendroid cells are marked by asterisks. (K, L) Retrograde
labeling of eurydendroid cells. The neural tracer was injected into the pretectal region (asterisk, K) of the Tg(olig2:EGFP) adult fish and the brain was stained with the fluorescent
avidin (magenta) and anti-EGFP antibodies. (L) High-magnification view of the box in K. Note that an olig2:EGFP* cell (arrowhead) incorporated the neural tracer. The
abbreviations are described in Fig. 1. Scale bars: 200 pm (A, B, K), 50 pm (D, E, G, I), and 20 um (C, F, H, ], L).
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We further examined the expression of myelin basic protein (mbp),
a marker for oligodendrocytes (Brosamle and Halpern, 2002). The
mbp transcripts are localized to the GCL and followed the shape of
afferent or efferent tracts (Figs. 4H and I).

Characterization of olig2 ™ neurons

olig2™ neurons were recently reported to be localized to the
vicinity of the PCL and to have long axons similar to those of
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eurydendroid cells in zebrafish (McFarland et al., 2008). We detected
olig2 transcripts in the GCL and marginally in the ML of the adult
cerebellum (Fig. 5A). Using the Tg(olig2:EGFP) line (McFarland et al.,
2008; Shin et al., 2003), we further examined the origin and
characteristics of the olig2™ neurons in the adult cerebellum. The
EGFP* cells in the Tg(olig2:EGFP) fish did not react with an anti-
Pvalb7 antibody, but are located near the PCL (Figs. 5B and C). As
reported for larval stages (McFarland et al., 2008), the olig2:EGFP™
cells were not stained with the anti-calretinin antibody in the adult

Fig. 6. Climbing fibers. (A) Schematic presentation of climbing fibers. (B, C) Detection of EGFP in the inferior olive nucleus in the Tg(ptfla:eGFP) line at 4 dpf (B) and in the adult (C).
Lateral view (B) and sagittal section (C), with anterior to the left. EGFP signals were detected directly with laser scanning microscopy or (B) by immunostaining with an anti-EGFP
antibody (C). (D) Expression of pou4f1 (brn3a) in the inferior olive nucleus of the adult hindbrain. In situ hybridization of a sagittal section. (E) Staining of a Tg(pou4f1-hsp70l:EGFP)
adult brain with the anti-EGFP antibody. EGFP signals were detected in neurons of the inferior olive nucleus (10, arrowhead) and in their axons (indicated by an arrow). (F-H)
Co-staining of the Tg(pou4f1-hsp70l:EGFP) brain with anti-Pvalb7 (magenta) and anti-EGFP (green) antibodies. Sagittal sections at the lateral (F) and mediolateral levels (G, H). Low
(F), middle (G), and high (H) magnification views. The pou4f1-hsp70l:EGFP™" climbing fibers were detected as bundles in the GCL (arrow, F), reached the PCL and ML (arrows, G, H),
and synapsed on the soma (marked by arrowhead) and proximal dendrites of Purkinje cells. (I-L) Detection of pou4f1:EGFP* climbing fibers at larval stages 5 dpf (I) and 7 dpf (J-L).
Immunostaining with anti-EGFP antibody (green, I); co-staining with anti-EGFP (green ], L) and zebrin Il antibodies (magenta, K, L). Note that pou4f1:EGFP* climbing fibers from the
inferior olive nucleus (10, arrowhead) were detected at 5 dpf (arrows, I); they innervated to the region containing zebrin II* Purkinje cell (arrows) at 7 dpf. Lateral views with
anterior to the left. Low (I) and high-magnification views (J-L). The abbreviations are described in Fig. 1. Scale bars: 200 um (B-E), 100 um (I), 50 um (L, F, G), and 20 um (H).
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cerebellum (Suppl. Fig. 3), which recognizes some eurydendroid cells
(Castro et al., 2006; Diaz-Regueira and Anadon, 2000; Meek et al.,
2008). These olig2:EGFP™ cells extend long neurites to the ML and
GCL (Figs. 5B and C), as described for larval stages (McFarland et al.,
2008).

olig2 is known to be expressed in oligodendrocytes and their
progenitors in the spinal cord (Park et al., 2007; Zhou et al., 2000). We
further examined the olig2:EGFP™ cells using oligodendrocyte and
neuronal markers. A small number of 0lig2:EGFP* cells in the GCL and
near Purkinje cells have a small cell size and are positive for the
oligodendrocyte marker Sox10 (Fig. 5D). However, the majority of
olig2:EGFP™ cells have a large cell size, and stain with the anti-HuC/D
antibody (a marker for postmitotic neurons) but not with the anti-
Sox10 antibody (Figs. 5D and E). The data suggest that, although olig2:
EGFP* cells include oligodendrocytes, the majority of them are
eurydendroid cells. Consistent with this, most of the olig2:EGFP™*
cellular processes do not overlap with the Mbp™ oligodendrocytic
processes, rather they are adjacent to them (Fig. 5F), suggesting that
the olig2:EGFP™" eurydendriod cell axons are surrounded by oligo-
dendrocytic processes.

In addition, we detected EGFP™ cells with protrusions that extend
dorsally into the VZ (Fig. 5B), suggesting that the olig2® neurons
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originated in the VZ. Some of olig2:EGFP™ cells in the VZ could
incorporate BrdU (Fig. 5G), indicating that they are proliferating cells.
Although inhibitory neurons (GABAergic and glycinergic) are gener-
ated from ptfla® neuronal progenitors in the VZ (Hoshino, 2006;
Hoshino et al., 2005), the olig2” (EGFP") neurons do not express
gadl, gad2, glytl, or glyt2 (Fig. 5H, data not shown for glyt1/2).
Moreover, we found that at least some of the olig2* (EGFP™") neurons
express vglut2a (Fig. 51) and receive inputs from Purkinje cell axons
(Fig. 5]), suggesting that at least a portion of the olig2" neurons
function as eurydendroid cells. To address this issue, we carried out
retrograde labeling of the eurydendroid cells by injecting a neural
tracer (dextran, teteramethylrhodamine and biotin) into the pretectal
region (Fig. 5K), where many eurydendroid cells send their axons
(Ikenaga et al., 2005). We found that some of the retrogradely labeled
cells were olig2:EGFP™ (Fig. 5L), confirming that at least a number of
olig2™* neurons are eurydendroid cells. The cell-specific markers for
zebrafish cerebellum are summarized in Table 1.

Characterization of afferent and efferent tracts

The cerebellum receives inputs from two different types of afferent
fibers (Figs. 6A and 7A). The climbing fibers are axons from the 10 (Fig.

inferior olive precerebellar nuclei

nucleus (10) other than 10

Fig. 7. Mossy fibers and efferent fibers from eurydendroid cells. (A) Schematic presentation of mossy fibers and efferent fibers. (B, C) Co-staining of a Tg(vglut2a:EGFP) brain with zn5
(magenta) and anti-EGFP (green) antibodies. (C) High-magnification view of the box in B. The zn5* vglut2a:EGFP™ mossy fibers are indicated by an arrow. (D, E) Expression of alcam
(zn5). (E) High-magnification view of the box in D. The alcam-expressing cells (marked by an arrow) are located in the vicinity of the trochlear nerve (IV, marked by an arrowhead).
(F, G) Co-staining of the Tg(vglut2a:EGFP) brain with anti-calretinin (magenta) and anti-EGFP (green) antibodies. (G) High-magnification view of the box in F. The anti-calretinin
antibody stained the soma (arrowheads) and efferent axons (arrow) of eurydendroid cells (vglut2a:EGFP™). (H, I) Co-staining of a Tg(pou4f1-hsp70l:EGFP) brain with anti-calretinin
(magenta) and anti-EGFP (green) antibodies. All of the pou4f1-hsp70l:EGFP* axons were stained with the anti-calretinin antibody (arrowheads, climbing fibers). Calretinin-
immunoreactive pou4f1-hsp701:EGFP™ tracts (arrows) are the axons of eurydendroid cells. F/G and H/I show mediolateral and lateral sections, respectively. The abbreviations are

described in Fig. 1. Scale bars: 200 pm (B, D, E, F, H, ]), 50 um (G), and 20 pum (C, I).
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Table 2
Neural tracts.

Tract Origin Synaptic terminal Markers

Afferent fibers

Climbing fibers Inferior olive nucleus Soma and proximal dendrites of PC pou4f1-hsp70l:EGFP*, CR-irt, vglut2a:EGFP™
Mossy fibers*! Dorsal tegmental nuclei Cerebellar glomeruli zn57", vglut2a:EGFP™

Mossy fibers*? Pre-cerebellar nuclei Cerebellar glomeruli zn5~, CR-ir~, olig2:EGFP ™, vglut2a:EGFP*
Efferent fibers

Axons of eurydendroid cells Eurydendroid cells
Axons of unconventional eurydendroid cells olig2 " eurydendroid cells
Cerebellovestibular tracts PC

Inner circuits

Granule cells' axons (parallel fibers) Granule cells
Interneurons' axons GI

Golgi axons Golgi cells

?
?
Vestibular nuclei

Dendrites of PC and GI
Dendrites of PC
Cerebellar glomeruli

pou4f1-hsp701:EGFP ™, CR-irt, vglut2a:EGFP™
olig2:EGFP*, CR-ir~, vglut2a:EGFP*3
Pvalb7™, zebrin I

Vglut1™
Gad1* in ML
Gad1™ in GCL

CR-ir, anti-calretinin antibody-immunoreactive; GCL, granule cell layer; GI, GABAergic interneurons (stellate cells); ML, molecular layer; PC, Purkinje cells. **Mossy fibers from the
dorsal tegmental nuclei were identified by zn5 staining*!, but there was no specific marker found for the pre-cerebellar neurons of other mossy fibers*2. *>Some of the olig2*

neurons were vglut2a"e"

6A). Tracing experiments in other teleost species have demonstrated
a connection between the CCe and the IO that corresponds to the
climbing fibers (Folgueira et al., 2006; Wullimann and Northcutt,
1988, 1989). In mammals, the 10 neurons are reported to be derived
from Ptf1a-expressing neuronal progenitors in the hindbrain (Yamada
et al, 2007) and to express the homeobox gene Pou4fl (Brn3a)
(Fedtsova and Turner, 1995). Using Tg(ptfla:eGFP) (Godinho et al.,
2007; Pisharath et al., 2007) and Tg(pou4f1-hsp70l:EGFP) fish (Aizawa
et al., 2005), we examined the localization and morphology of the 10
neurons in zebrafish larvae and adult fish (Fig. 6). EGFP™ cells in the
Tg(ptfla:eGFP) line were detected in the 10, which is located in the
ventro-medial region of the posterior hindbrain, at 4 dpf (Fig. 6B), and
the EGFP expression continued into adulthood (Fig. 6C), suggesting a
conserved role for Ptfla in the development of the IO. Just as pou4f1

zebrin Il

glutamatergic neurons, and the localization of their axonal terminal was not identified.

(brn3a) is expressed in the 10 of adult fish (Fig. 6D), EGFP™ (pou4f1-
hsp70l:EGFP™) cells in the Tg(pou4f1-hsp70L:EGFP) adult fish were
also detected in the 10, and they extended their axons anteriorly
(Fig. 6E). The co-staining of serial sections with the anti-Pvalb7
antibody revealed that the pou4f1-hsp70l:EGFP* fibers form thick
bundles in the GCL (Fig. 6F), and innervate the soma and proximal
dendrites of Purkinje cells (Figs. 6G, H), which are characteristic
features of climbing fibers. We detected pouf41-hsp70l:EGFP*
climbing fibers that innervate the cerebellum from 5 dpf (Figs. 6], ],
K, L). This is consistent with the recent report that shows detection of
the climbing fibers 5 dpf with the hoxb4a-YFP enhancer trap line
(Punnamoottil et al., 2008).

vglut2a/b are expressed in both climbing and mossy fiber neurons
outside the cerebellum, and in eurydendroid cells within it (Figs. 3D

Fig. 8. Cerebellovestibular tracts. (A, B) Immunostaining of 7 dpf larval brains with zebrin II. Lateral (A) and ventral (B) views with anterior to the left. (C) Immunostaining of a 30 dpf
juvenile fish brain with anti-Pvalb7 antibody. Lateral view with anterior to the left. Cerebellovestibular tracts are indicated by arrowhead. (D, E) Retrograde labeling of
cerebellovestibular tracts. A biotin-conjugated neural tracer was injected to the vestibular region (asterisk, D), which includes the descending octaval nucleus, of adult fish. A sagittal
section was stained with zebrin II (green) and fluorescently labeled avidin (magenta). (E) High-magnification view of the box in (D). Note that a retrogradely labeled cell is a zebrin
11" Purkinje cell. The abbreviations are described in Fig. 1. Scale bars: 500 um (D), 100 um (A-C) and 50 pm (E).



Y.-K. Bae et al. / Developmental Biology 330 (2009) 406-426 417

and E). We raised Tg(vglut2a:EGFP) transgenic fish and examined
them with an anti-Vglut2a antibody, to detect the axons and axonal
terminals of vglut2™ glutamatergic neurons. The EGFP' (vglut2a:
EGFP™) axons were detected as bundles in the GCL of the Tg(vglut2a:
EGFP) adult cerebellum. We found that some of the vglut2a:EGFP™
axons are co-stained with zn5 (Figs. 7B and C) or anti-calretinin (Figs.
7F and G) antibodies. The zn5 antibody recognizes Alcam (activated
leukocyte cell adhesion molecule, also known as DM-GRASP) (Kanki
et al,, 1994). The alcam-expressing cells are located in the dorsal

tegmental nucleus (Figs. 7D and E), and they extend vglut2a:EGFP™/
zn5" axons to the GCL (Fig. 7B), indicating that these axons are mossy
fibers. The anti-calretinin antibody recognizes eurydendroid cells, the
10 neurons, the pretectal nuclei (mossy fiber neurons), and their
neurites (Castro etal.,2006; Diaz-Regueira and Anadon, 2000; Meek et
al,, 2008) (Suppl. Fig. 3). It reacted with the vglut2a:EGFP™ somata and
axons (eurydendroid cells, Fig. 6G) and with pou4f1-hsp701:EGFP™
axons (climbing fibers, Figs. 7H and I). Thus, the vglut2a:EGFP™ fibers
can be classified into five different neurons and neuronal tracts: (1)

A . control 3dpf

,&3& & vglut2a MO

Fig. 9. Presynaptic terminals of mossy and climbing fibers. (A) Immunoblotting of brain lysates with an anti-Vglut2a antibody. Rabbit anti-Vglut2a (lane 1) and pre-immune sera
(lane 2) were used to detect Vglut2a (asterisk). Several bands other than 64-kD Vglut2a were detected in lane 1, but they are likely non-specific as they were also detected in lane 2.
(B, C) Immunostaining of Vglut2a. Larva at 3 dpf that received 4 pg of antisense vglut2a MO (C) and control larva (B) stained with anti-Vglut2a (green) and anti-HuC/D (magenta)
antibodies. Dorsal views of the hindbrain regions. Anti-Vglut2a but not anti-HuC/D staining was abolished in the vglut2a morphant hindbrain. (D-F) Co-staining of a Tg(vglut2a:
EGFP) brain with anti-Vglut2a and anti-EGFP antibodies. EGFP (green, D), Vglut2a (magenta, E) and merged images (F) are shown. Sagittal section. Note that Vglut2a™ dots are
detected in the distal tips (presynaptic terminals) of vglut2a:EGFP™ axons (mossy fibers) in the GCL. (G, H) Co-staining with anti-Vglut2a (magenta) and anti-Pvalb7 (green)
antibodies. Low (G) and high (H) magnification views. Vglut2a™ synaptic boutons were detected on the soma (arrowheads) of Purkinje cells (asterisks) or abutting the proximal
dendrites of Purkinje cells (arrow). (I) Co-staining of a Tg(pou4f1-hsp70l:EGFP) brain with anti-Vglut2a (magenta) and anti-EGFP (green) antibodies. Vglut2a™ dots were also
pou4f1:EGFP™ in the ML (arrowheads), indicating they were presynaptic terminals of climbing fibers. The position of the PCL is indicated by a dotted line. (J) Immunoblotting of brain
lysates with anti-Gad1 antibodies. Rabbit anti-Gad1 generated in this study (lane 1), control sera (pre-immune sera, lane 2), and commercially available anti-human GAD1/2 (lane 3)
were used to detect zebrafish Gad1 (asterisk). (K, L) Co-staining of the Tg(vglut2a:EGFP) brain with anti-Gad1(magenta) and anti-EGFP (green) antibodies. Low (K) and high (L, in
GCL) magnification views. Vglut2a* and Gad1* dots were adjacent in the GCL and indicated the cerebellar glomeruli. The abbreviations are as described in Fig. 1. Scale bars: 100 um
(G, F G, I, K),50 pm (L), and 20 um (H).
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zn5" mossy fibers from the dorsal tegmental nuclei; (2) calretinin-
immunoreactive (CR-ir™) and pou4f1-hsp70l:EGFP* climbing fibers;
(3) CR-ir" and pou4f1-hsp70l:EGFP~ eurydendroid cell axons; (4)
olig2:EGFP™ (CR-ir~) eurydendroid cell axons; and (5) other marker-
negative mossy fibers (Table 2).

In addition, we labeled the cerebellovestibular tracts (Fig. 8):
direct efferent fibers from the Purkinje cells to the neurons of the
vestribular nuclei, which are also found in mammals (Altman and
Bayer, 1997). Both anti-Pvalb7 and anti-zebrin II stainings revealed
extracerebellar projections from the Purkinje cells, which are located
in the lateral part of the CCe, at larval and juvenile stages (Figs. 8A, B,
C). Following the application of a neural tracer to the vestibular region
(Fig. 8D), including the DON of the adult brain, we detected the tracer
in zebrin I Purkinje cells (Fig. 8E), confirming the presence of the
cerebellovestibular tracts.

Synaptic terminals of climbing and mossy fibers

The anti-Vglut2a antibody recognized the 64-kD Vglut2a protein
(Fig. 9A) and specifically stained the Vglut2a™ neurons in the
embryonic hindbrain (Higashijima et al., 2004a), since the injection
of antisense MOs against vglut2a abrogated the anti-Vglut2a staining
(Figs. 9B and C). Vglut2a™® dots are detected in the distal tips of
vglut2a:EGFP" axons in the GCL (Figs. 9D, E, and F), suggesting that
they correspond to the presynaptic terminals of the vglut2™
glutamatergic neurons. Vglut2a™ dots were also detected on the
soma of Purkinje neurons or abutting the proximal dendrites of
Purkinje cells (Figs. 9G and H), and some of these Vglut2a™ dots are
also pou4f1-hsp701:EGFP* (Fig. 9I), indicating that some of the
Vglut2a™ dots mark the presynaptic terminals of the climbing fibers in
the ML.

The mossy fibers terminate on the dendrites of granule cells
where the axons of GABAergic Golgi cells contact the dendrites of
granule cells to form the cerebellar glomeruli. We raised an anti-
zebrafish Gad1 antibody that recognized the 65-kD Gad1 protein in
zebrafish brain lysates (Fig. 9]) and stained the presynaptic terminals
of GABAergic neurons in the ML and GCL (Fig. 9K), as did an anti-
human/mouse GAD1/2 antibody (data not shown). The Vglut2a™
and Gad1™ dots are adjacent to each other in the GCL, where they
form clusters (Fig. 9L), suggesting that the clusters are cerebellar
glomeruli in which the axons of the vglut2™ mossy fibers and gad1™
Golgi cells meet with the dendrites of granule cells (Castejon et al.,
2000).

Neural connections within the cerebellum

To examine the axons (parallel fibers) of granule cells (Fig. 10A),
we raised antibodies against Vglutl. Although vglutl is expressed
specifically in the granule cells in the GCL (Fig. 3A), Vglut1 was not
detected in the GCL but in the ML (Fig. 10C), confirming that Vglut1 is
located in the presynaptic terminals of granule cells (Boulland et al.,
2004). Vglut1™ dots abut both the proximal and distal regions of the
Pvalb7™" dendrites of Purkinje cells (Figs. 10D and E). Similarly, we also
detected Gad1™ dots close to the Pvalb7" dendrites of Purkinje cells
(Figs. 10F and G), indicating that they mark the presynaptic terminals
of GABAergic interneurons, including stellate cells. Gad1™* dots were
also detected on the soma of Purkinje cells (Fig. 10G). These may be
the presynaptic terminals of Purkinje cells, as Purkinje cells send their
axons to other neighboring Purkinje cells (Bell et al., 2008; Butler and
Hodos, 1996).

Cerebellum-like structures
We further examined the expression of Pvalb7 and Vglut1 in the

cerebellum-like structures in the optic tectum and anterior
hindbrain: TL-SM-Type I neuron circuitry and EG-CC-MON circuitry
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Fig. 10. Presynaptic terminals of granule neurons (parallel fibers) and GABAergic
interneurons. (A) Schematic presentation. (B) Immunoblotting of brain lysates with the
anti-Vglut1l antibody. (C-E) Co-staining with anti-Pvalb7 (green) and anti-Vglutl
(magenta) antibodies. (C-E) Sagittal sections with anterior to the left; low (C), medium
(D), and high (E) magnification views. (D, E) Corpus cerebelli (CCe). Vglut1™ dots
(presynaptic boutons of parallel fibers) abutted the dendrites but not the soma
(asterisk) of Purkinje cells in the ML. (F, G) Co-staining with anti-Pvalb7 (green) and
anti-Gad1 (magenta) antibodies. Gad1* dots (presynaptic boutons of GABAergic
interneurons) abut the dendrites and somata (asterisks) of Purkinje cells. The
abbreviations are as described in Fig. 1. Scale bars: 200 pm (C), 100 um (F) and 20 pm
(D, E, G).

(Fig. 11). Pvalb7 was detected in the soma, dendrites, and axon of
the Purkinje-like cells of these structures: type I neurons in the TeO
(Fig. 11A) and crest cells in the MON (Fig. 11D). These Pvalb7*
dendrites co-localize with the Vglut1™ presynaptic terminals in the
stratum marginale (SM, Figs. 11B and C) of the TeO and CC (Figs. 11E
and F), indicating that Pvalb7 and Vglut1 are also utilized in these
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Fig. 11. Cerebellum-like structures. Co-staining of anti-Pvalb7 (green) and anti-Vglut1 (magenta) antibodies in the cerebellum-like structures in the optic tectum and antero-dorsal
hindbrain: the TL-SM-type I neuron (A-C) and EG-CC-MON circuitries (D-F). Sagittal sections with dorsal to the top. Pvalb7 (A, D) and Vglut1 (B, E) signals and merged images (C, F)
are shown. In the TL-SM-type I neuron circuitry, Pvalb7 is expressed in type I neurons in the stratum fibrosum et griseum superficiale (SFGS) of the torus longitudinalis (TL) and their
dendrites in the stratum marginale (SM, J), and Vglut1 was detected in the SM. Note that morphology of type I neurons is different from Purkinje cells in the cerebellum: type I
neurons have one long primary dendrite that branches far from the soma. A primary dendrite of some type I neurons is not observed because of the plane and width of the section (A).
In the EG-CC-MON circuitry, Pvalb7 was detected in the crest cells in the MON and their dendrites in the CC, and Vglut1 was detected in the CC. Other abbreviations are described in

Fig. 1. Scale bars: 20 pm.

cerebellum-like structures. The neural tracts are summarized in
Table 2.

Development of the cerebellum in zebrafish larvae

Using molecular markers characterized in this study, we examined
the development of Purkinje and granule cells, and their neurites, at
larval stages of the zebrafish (Fig. 12). The expression of pvalb7 and
aldocl was first detected in the medial region of the cerebellum in 3-
dpf larvae (Fig. 12A, data not shown for aldocl), indicating that the
differentiation of Purkinje cells is initiated at this stage. The expression
of gad1 and gad2 was also detected in the cerebellum from 3 dpf (data
not shown). The expression of vglut1 was initially detected at 3 dpfin
the lateral regions of the cerebellum (Fig. 12E’), which correspond to
the prospective EG (Figs. 12F and G). vglutl was also detected in the
antero-medial regions (Fig. 9E) at 3.5 dpf, which give rise to the CCe
(and possibly Va) (Fig. 12G). vglut1 expression was then observed in
the granule cells at the posterior edge, at 5 dpf, which correspond to
the prospective LCa (Fig. 12F), revealing that the differentiation of
granule cells in the LCa begins later than that of granule cells in the EG
and CCe. The number of pvalb7* Purkinje cells and vglut1™ granule
cells increases continuously (Figs. 12B and F), and, at 5 dpf, vglut1™*
granule cells were detected beneath the PCL in the CCe, but were
located superficially in the lateral regions (Fig. 12L), indicating the
formation of the GCL in the EG and CCe.

Immunostaining of the larval cerebellum (Figs. 121, ], and K)
revealed that the Purkinje cells extend Pvalb7* dendrites dorsally in
the anterior CCe (Figs. 12la and Ka) and posteriorly in the posterior
CCe (Figs. 12Ib and Kb), and these dendrites co-localize with the
Vglut1™ presynaptic terminals of the parallel fibers (Figs. 12]a, Ka, ]b,
and Kb) at 5 dpf. These findings indicate that the ML forms by 5 dpf.
The Vglut1™ parallel fibers also show extensions posterior to the CCe
at 5 dpf (Figs. 12] and K). The lobular structure, consisting of the Va,
CCe, EG, and LCa, is evident from 10 dpf (Figs. 12C, D, G, and H). Thus,
cerebellar neurons begin to differentiate at around 3 dpf, and the
layered structure starts to form at around 5 dpf.

Mutations affecting the development of the cerebellum

To reveal genetic cascades that control cerebellar development, we
screened zebrafish mutants for defects in the development of Purkinje
and granule cells and in the formation of their neurites. We generated
F2 families from ENU-treated male fish, crossed the F2 animals to
obtain F3 embryos, and reared them until 5 dpf. These larvae were
stained with anti-Pvalb7 and anti-Vglut1 antibodies, which respec-
tively recognize the Purkinje cell structure and granule cell axons
(Figs. 13C, D, E). Mutations affecting the number and/or morphology
of Pvalb7* Purkinje cells and/or Vglut1™ granule cells' axons were
selected and subjected to further analyses. We screened 826 mutated
genomes, and isolated nine mutants, which were categorized into five
groups (Table 3).

Group A mutants showed defects in the formation of the mid-
hindbrain boundary at 3 dpf. One mutation in group A (rk9) was
found to be allelic to pax2a (no isthmus) by complementation
analysis, validating our screening strategy. Group B and C mutants
displayed a reduced or no expression of Pvalb7 and Vglut1; group C
mutants showed severe abnormalities in the development of other
tissues, whereas group B mutants showed minimal or no discernible
phenotypes in other tissues. evanescence (eva) mutants in group B
had no apparent phenotypes before 4 dpf, but showed nearly
complete loss of Purkinje cells and granule cell axons at 5 dpf (Figs.
13H, 1, and ]); they also had small eyes (Fig. 13G). asynergy (asy)
and drunken sailor (drs) mutants in group B showed a strong
reduction or loss of granule cell axons but a mild reduction of
Purkinje cells at 5 dpf (Figs. 13M, N, and O). In these mutant larvae,
the Purkinje cells were organized into a thin line (there are no
Purkinje cells in the prospective Va), and the formation of the
Purkinje cell dendrites was strongly perturbed (Fig. 13M). In
addition, the asy and drs mutants had a slightly small head and a
dorsally curved tail (Figs. 13K and L). Group D mutants showed a
specific loss in the granule cell axons (gazami (gaz), Figs. 13P-T).
Group E mutants showed defects in neurite formation but not in the
specification of Purkinje and granule cells. In the shiomaneki (sio)
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Fig. 12. Development of the cerebellum at larval stages. (A-D) Expression of parvalbumin7 (pvalb7) at 3 dpf (A), 5 dpf (B), 10 dpf (C), and 15 dpf (D). (E-H) Expression of vglut1
(slc17a7) at 3.5 dpf (E), 5 dpf (F), 10 dpf (G), and 15 dpf (H). Dorsal views (A-C, E-G), lateral view at 3 dpf (E’), and sagittal sections (D, H). (I-K) Co-staining of 5-dpf larvae with anti-
Pvalb7 (green) and anti-Vglut1 (magenta) antibodies. Pvalb7 (I, Ia, Ib) and Vglut1 (J, Ja, Jb) signals and merged images (K, Ka, Kb) are shown. (I-K) Dorsal views with anterior to the
left. (Ia-Ka) Transverse-section images of box a in K generated by Z-stack data, with dorsal to the top. (Ib-Kb) High-magnification view of box b in K, with anterior to the left. Pvalb7*
dendrites extended to the ML dorsally (Ka) and posteriorly (Kb), and interacted with Vglut1™ presynaptic terminals of the parallel fibers at 5 dpf. (L) Co-staining 5-dpf cerebellum
with a vglut1 riboprobe (green) and anti-Pvalb7 antibody (magenta). Transverse section with dorsal to the top. The ventricular zone (VZ) is indicated by a dotted line. The vglut1™*
granule cell layer (GCL) formed beneath the Purkinje cell layer (PCL) by 5 dpf. EG, eminentia granularis; other abbreviation are described in Fig. 1. Scale bars: 500 um (G), 200 pm (F),
100 um (H), and 50 um (K, Ka, Kb, L).
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Fig. 13. Cerebellar mutants. (A-E) Wild-type, (F-]) evanescence (eva), (K-0) asynergy (asy), (P-T) gazami (gaz), and (U-Y) shiomaneki (sio) mutant larvae at 5 dpf. The embryos
and larvae were treated with phenylthiourea to prevent pigmentation. The fixed 5-dpf larvae were stained with anti-Pvalb7 and Vglut1 antibodies. Bright-field images of the
entire body (A, F, K, P, U) and the head region (B, G, L, Q, V). Lateral views with anterior to the left. Pvalb7 immunostaining (green; C, H, M, R, W), Vglutl immunostaining
(magenta; D, I, N, S, X), and merged images (E, J, O, T, Y). Dorsal views with anterior to the left. The eva and asy mutants had small eyes (indicated by arrows). Scale bars: 1 mm

(U) and 200 um (V, Y).

mutants in Group E, the granule cell Vglut1™ axons that extended to
the CC were shortened (Figs. 13X and Y). Mutants in Group D/E did
not show any apparent abnormalities in the development of other

Table 3
Cerebellar mutants.

tissues, implying that the loci of these mutants might control specific
processes for the specification or neurite formation of the granule
cells.

Genetic Loci Alleles Cerebellar Phenotypes Other phenotypes

Group A: Early patterning mutants

pax2a k9 Defects in MHB formation

Group B: Mutants affecting both Purkinje and granule cells

evanescence(eva) rk10 Loss or strong reduction of granule cells; reduction of Purkinje cells Eye degeneration

corsair(csa) rk11 Loss or strong reduction of granule cells; slight reduction of Purkinje cells

asynergy(asy) k12, rk13 Loss or strong reduction of granule cells; reduction of Purkinje cells and their dendrites Small head; dorsally curled tail
drunken sailor(drs) rk14 Loss or strong reduction of granule cells; reduction of Purkinje cells and their dendrites Small head; dorsally curled tail
zuwai(zuw) rk15 Loss or strong reduction of granule cells; reduction of Purkinje cells and their dendrites Small head

Group C: Mutants affecting Purkinje/granule cells and showing severe abnormalities in other tissues

gauri(gau) rk16
Group D: Mutants affecting granule cells only

gazami(gaz) rk17 Loss of granule cells

Group E: Mutants affecting neurite formation

shiomaneki(sio) k18 Parallel fibers to CC are short

Loss or strong reduction of granule cells; reduction of Purkinje cells in medial regions

Small head; abnormal cranial muscle

MHB, mid-hindbrain boundary.
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Discussion

Conserved and non-conserved gene expression profiles in the zebrafish
cerebellum

Using molecular markers, we described the individual cell types of
the adult zebrafish cerebellum (Figs. 2, 3, Table 1). Although there are
some structural differences between the mammalian and the
zebrafish cerebellum, the expression profile of GABAergic and
glutamatergic neurons in the zebrafish cerebellum is similar to that
reported for mammals. These similarities indicated that the mamma-
lian and zebrafish cerebellum use the same molecular machinery in
their functions and probably in their development. Thus, studies of
zebrafish cerebellum could lead to a better understanding of the
function, development, and abnormalities of the mammalian cere-
bellum. We also found, however, some differences in the gene
expression profiles between the mammalian and zebrafish cerebel-
lum. Parvalbumin is expressed not only in Purkinje cells but also in
other GABAergic interneurons in the mammalian cerebellum (Celio,
1990; Celio and Heizmann, 1981), whereas parvalbumin? is specifi-
cally expressed in Purkinje cells in the zebrafish. It is possible that
other parvalbumin gene(s) are expressed in non-Purkinje GABAergic
neurons in the zebrafish. This is unlikely, however, since an anti-
Parvalbumin antibody that is reported to recognize Purkinje cells and
other GABAergic neurons in mammals only detected Purkinje cells in
zebrafish, as did an anti-Pvalb7 antibody (data not shown), suggesting
that species-specific changes also occurred during evolution.

Zebrin II/aldolase C shows compartment-specific expression in the
mammalian cerebellum, but neither zebrin II staining nor aldocl
expression shows parasagittal compartmentalization in the zebrafish
or other teleost species (Brochu et al., 1990; Lannoo et al., 1991a,b;
Meek et al., 1992) (Fig. 2). This raises two possibilities; either (1) there
are zebrin Il-negative Purkinje cells but the zebrin II-positive and
negative Purkinje cells do not show compartmentalization, or (2)
there is no compartmentalization that is detectable by the expression
of zebrin II/aldocl expression. In zebrafish cerebellum, the anti-zebrin
I antibody stained the same population of Purkinje cells as the anti-
Pvalb7 (also anti-pan Pvalb), anti-Ca8, and M1 antibodies (Fig. 2)
(Miyamura and Nakayasu, 2001). Pvalb and Ca8 are expressed in all
the Purkinje cells of the mammalian cerebellum (Celio, 1990; Celio
and Heizmann, 1981; Hirota et al., 2003; Kato, 1990; Nogradi et al.,
1997). These data indicate that Pvalb7, Ca8, and zebrin Il-expressing
Purkinje cells are the sole Purkinje cells in the zebrafish cerebellum.
The compartmentalized expression of zebrin II in mammals is
proposed to be related to the functional compartmentalization of
Purkinje cells, because it correlates with the parasagittal expression of
other functional molecules and the compartmentalized innervations
of afferent/efferent fibers (Croci et al., 2006; Larouche and Hawkes,
2006; Voogd et al., 2003). The uniform expression of zebrin Il and the
other markers for Purkinje cells in zebrafish may reflect a greater
simplicity in their function in the fish cerebellum.

Cerebellum-like structures

The valvula cerebelli (Va), corpus cerebella (CCe), and vestibulo-
lateral lobe (EG and LCa) are major parts of the teleost cerebellum. In
addition, the EG-CC-MON circuitry in the hindbrain, and the TL-SM-
Type I neuron circuitry in the midbrain are proposed to display similar
structures and functions to the cerebellum in most teleost species, and
they, with the cerebellum, are called cerebellum-like structures (Bell,
2002; Bell et al., 2008; Mikami et al., 2004). All these structures
contain Purkinje-like cells that receive inputs from parallel fibers. We
found that pvalb7 was expressed in the Purkinje-like crest cells in the
MON that extended Pvalb7* dendrites into the CC (Figs. 2, 8), and that
the dendrites of crest cells received inputs from Vglut1™ parallel fibers
of the EG (Fig. 11). Similarly, the Pvalb7* dendrites of type I neurons

received inputs from Vglut1™ parallel fibers originating from granule-
like cells of the torus longitudinalis (TL, Fig. 11). These findings
indicate that the cerebellum-like structures, both the EG-CC-MON and
TL-SM-Type I neuron circuitries, utilize Pvalb7 and Vglut1 for their
function. gad1™ cells were also detected in the CC, as in the ML of the
Va and CCe of the cerebellum (Fig. 2), and are presumably stellate-like
GABAergic interneurons. Thus, these cerebellum-like structures use at
least some molecules used by the cerebellum to function. In contrast,
we found that ca8 and zebrin Il (aldocl) are specifically expressed in
Purkinje cells but not Purkinje-like cells (crest cells and type I
neurons). The difference in the gene expression profiles between
Purkinje and other Purkinje-like cells may reflect differences in their
developmental origins (VZ of rhombomere 1 versus that of the medial
hindbrain and midbrain) or in their function; i.e., Purkinje but not
Purkinje-like cells receive strong synaptic inputs from a single
presynaptic climbing fiber (Bell, 2002; Meek and Nieuwenhuys, 1991).

Compartmentalization of granule cells

In the adult zebrafish cerebellum, the granule cells are located
underneath the Purkinje cell layer, but they were superficial in the EG
and LCa (Altman and Bayer, 1997; Butler and Hodos, 1996; Wullimann
etal.,, 1996). Parallel fibers from the EG but not from the CCe innervate
the dendrites of the crest cells in the CC (Montgomery, 1981;
Puzdrowski, 1989; Volkmann et al., 2008). The granule cells of the
CCe, EG, and LCa are reported to migrate along different paths to their
final destination (Volkmann et al., 2008). These findings suggest
differences among the functions and developmental processes of the
Va, CCe, EG, and LCa. In this study, we found two differences in
development and gene expression profiles between the granule cells
in the Va, CCe and EG, and those in the LCa. First, we found that
granule cells start to differentiate at around 3 to 3.5 dpf in the EG
and CCe (possibly Va), and that those in the LCa differentiated later
(Fig. 13). Second, we could distinguish granule cells in the Va/CCe/EG
and LCa of the adult cerebellum by the expression of certain genetic
markers (Fig. 3, Suppl. Fig. 2, and Table 1). Although the granule cells
of the Va/CCe/EG and LCa may be derived from the URL and similarly
extend parallel fibers, they may undergo slightly different develop-
mental processes. The different gene expression profiles of these two
populations probably reflect functional differences. Future studies will
shed light on the genetic programs that distinguish the development
and functions of these granule cells.

Efferent tracts: eurydendroid cells and cerebellovestibular tracts

Eurydendroid cells are a teleost-specific cell population that
receives inputs from the axons of Purkinje cells and corresponds to
the DCN of the mammalian cerebellum (Butler and Hodos, 1996;
Ikenaga et al., 2005, 2006). As previously reported (Alonso et al., 1992;
Porteros et al., 1998), we found that Pvalb7~ somata receive inputs
from the Pvalb7* axons of Purkinje cells (Fig. 2). These cells should be
eurydendroid cells in the zebrafish. We further found that some, if
not all, of these eurydendroid cells express high levels of vglut2a/b
(Fig. 3), indicating that some of the vglut2"s" cells are eurydendroid
cells. During the development of the mouse cerebellum, while both
Vglutl and Vglut2 are expressed in granule cells, Vglutl and Vglut2
show preferential expression in mature and immature granule cells,
respectively (Miyazaki et al., 2003). From the early postnatal stage to
adulthood, Vglutl is expressed in granule cells, and Vglut2 is
preferentially expressed in the DCN (Miyazaki et al., 2003). Therefore,
the expression of vglutl in the granule cells and of vglut2a/b in
eurydendroid cells of the adult cerebellum is conserved among
vertebrate species, further supporting the concept that eurydendroid
cells are equivalent to the DCN of the mammalian cerebellum.

olig2 " neurons were recently reported to be located in the vicinity
of the PCL in zebrafish and to have eurydendroid-like neurites
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(McFarland et al., 2008). We confirmed that the olig2™ neurons
have long neurites (EGFP™ neurites in the Tg(olig2:EGFP) line) that
extend to the ML and GCL of the adult cerebellum (Fig. 5). The
neurites of olig2™ neurons resemble those of eurydendroid cells,
which send their axons outside of the cerebellum and their
dendrites into the ML (Ikenaga et al., 2005, 2006). However, these
neurons did not stain with an anti-calretinin antibody (McFarland
et al., 2008) (Suppl. Fig. 3), which recognizes eurydendroid cells
(Castro et al., 2006; Diaz-Regueira and Anadon, 2000; Meek et al.,
2008) (Fig. 7), implying that the olig2™ neurons are different from
CR-ir* eurydendroid cells. We detected olig2* cells near the PCL as
well as in the deep GCL and VZ in the adult cerebellum, and also
found that some of the olig2™ cells could incorporate BrdU (Fig. 5).
Our data indicate that olig2 is expressed in both neural progenitors
(VZ), and undifferentiated (deep GCL) and differentiated neurons
(beneath the PCL), in addition to oligodendrocytes, in the adult
cerebellum. Our findings also suggest that the olig2” neurons are
derived from the VZ. As in mice, neural progenitors in the zebrafish
VZ express the proneural gene ptfia (Lin et al., 2004; Zecchin et al.,
2004), which is known to play an essential role in the development
of GABAergic neurons (Hoshino, 2006; Hoshino et al., 2005). We
found that a portion of olig2™ cells also express ptfia in the VZ of
the cerebellum (unpublished results). However, the olig2* neurons
do not express gadl, gad2, glytl, or glyt2 (McFarland et al., 2008)
(Fig. 5, data not shown for glyt1/2). Instead, we found that at least
some of the olig2™ neurons express vglut2a and receive inputs from
Purkinje cell axons, like eurydendroid cells (Fig. 5). These findings
suggest that, although the olig2™ neurons are from the VZ, they
function as eurydendroid cells.

There are both glutamatergic and GABAergic neurons in the DCN of
the mammalian cerebellum (Hoshino, 2006), whereas GABAergic
eurydendroid cells have not been identified (Ikenaga et al., 2005). In
zebrafish, axons from calretinin-immunoreactive (CR-ir"), vglut2"i&"
neurons and olig2*, CR-ir~, vglut2"®" neurons (the eurydendroid
cells) may compose the glutamatergic efferent tracts that convey
information from the Purkinje and parallel fibers to other regions of
the brain.

CR-ir~ and CR-ir* eurydendroid cells are also reported for the
mormyrid fish (Meek et al, 2008). The presence of these two
eurydendroid cells is likely a common feature among teleost species.

Most of the output information is conveyed by eurydendroid cells
from the teleost cerebellum (Butler and Hodos, 1996). Immunostain-
ing of the Purkinje cell axons with anti-Pvalb7 and anti-zebrin II, and
tracing experiments revealed that the presence of direct efferent tracts
from the Purkinje cells in the lateral region of the CCe to the vestibular
regions (Fig. 8). Although the cerebellovestibular tracts are reported in
amphibians (Gonzalez et al., 1984; Llinas et al., 1967), it has not been
well characterized in teleosts. The cerebellovestibular tracts are
involved in precise motor controls, such as the vestibulo-ocular reflex
(Ito, 20024, 2006). Our data suggest that the direct efferent tracts from
the Purkinje cells to the vestibular region are conserved among
vertebrate species.

Bergmann glia

We characterized the Bergmann glial cells by their expression of
Blbp (Fabp7a, Fig. 4). Blbp™ (also Gfap™) Bergmann glial cells are
distributed homogeneously throughout the mammalian cerebellum
(Arnold et al., 1994; de Blas, 1984; de Blas and Cherwinski, 1985; Feng
and Heintz, 1995; Rousselot et al., 1997). We found that Blbp™ cells are
localized more heavily to the antero-medial region than to the lateral
regions of the zebrafish cerebellum (Fig. 4). The Blbp " radial glial cells
are known to serve as neural precursors in the mammalian
telencephalon (Hartfuss et al., 2001; Malatesta et al., 2003, 2000;
Pinto and Gotz, 2007). It was recently reported that some of the Blbp™
Bergmann glial cells proliferate in the cerebellum of the adult rabbit

(Ponti et al., 2008). These findings suggest that the Blbp* Bergmann
glial cells may also function as neural precursors in the zebrafish adult
cerebellum. Proliferating cells are located in the anterior and medial
regions of the ML in the adult zebrafish cerebellum (Zupanc et al.,
2005), as are the Blbp™ Bergmann glial cells. Future analysis of the
proliferation status of the Bergmann glial cells will clarify this point.

Bergmann glial cells are known to function as glutamate
scavengers (Bellamy, 2006). We found that Blbp* Bergmann glial
cells express an astrocyte-specific glutamate transporter gene, glasth
(slcia3b) (Fig. 4), further demonstrating the functional conservation
of Bergmann glia between mammals and teleosts.

Conserved afferent tracts

ptfla and poudf1 (brn3a) are expressed in the 10 of zebrafish larvae
and adults (Fig. 6), as in mice (Fedtsova and Turner, 1995; Yamada et
al., 2007). The EGFP signals in the Tg(pou4fi-hsp70l:EGFP) line
enabled us to trace the climbing fibers (Fig. 6). We found that the
climbing fibers terminate on the soma or proximal dendrites of
Purkinje cells in zebrafish (Fig. 6) and that they are Vglut2a™
glutamatergic, as in other vertebrate species (Altman and Bayer,
1997; Bell, 2002, 2008; Hisano et al., 2002; Miyazaki et al., 2003).
Thus, the climbing fibers are highly conserved among vertebrate
species. In this study, we were unable to dissect the mossy fibers
except for the zn5% mossy fibers from the dorsal tegmental nuclei
(Fig. 7) and the Vglut2a™ presynaptic boutons of mossy fibers in the
cerebellar glomeruli (Fig. 9). The neurons of pre-cerebellar nuclei
other than the IO are derived from the atohl (Mathl)-expressing
neural progenitors located in the murine and avian rhombic lip (RL)
(Machold and Fishell, 2005; Wang et al., 2005; Wilson and Wingate,
2006; Wingate, 2005). Lineage tracing of the neural progenitors
expressing atoh1-family genes may clarify the origin of the alcam™
(zn5%) mossy fiber neurons and the identities of the neurons in the
other pre-cerebellar nuclei.

Genetic studies of cerebellar development

In the zebrafish, the differentiation of granule and Purkinje cells
begins around 3 dpf (Fig. 12). The vglut1™ granule cells are located
beneath the Pvalb7* Purkinje cells in the prospective CCe region, and
the Purkinje cells extend their dendrites and received inputs from the
parallel fibers of the granule cells at 5 dpf (Fig. 6). These data indicate
that a simple layer structure forms by 5 dpf, and led us to screen for
mutations affecting the development of the cerebellar neurons and
neural circuits in the first week (Fig. 13, Table 3). Previously,
morphology-based screening of mutations affecting cerebellar for-
mation identified genes involved in early neural patterning (Brand
etal., 1996; Schier et al., 1996) (group A mutants in our screening), but
did not isolate mutations affecting the development of individual
cerebellar neurons and their circuits.

Using anti-Pvalb7 and anti-Vglut1l antibodies, we were able to
isolate mutations affecting the development and maintenance of
Purkinje and granule cells, and the neural circuits involving these
neurons. Group B and C mutants (Table 3) showed a reduction or loss
of both Purkinje and granule cells but did not show abnormalities in
the formation of the midbrain-hindbrain boundary (MHB). These
mutant loci may encode molecules involved in the maintenance of
cerebellar neurons or in particular developmental processes that are
shared by both Purkinje and granule cells. They may include genes
responsible for genetic disorders of cerebellar development and
function, such as spinocerebellar ataxia (Koeppen, 2005). These genes
may also control other developmental processes, since some of the
mutants, such as eva, asy, and drs, also showed specific phenotypes in
other tissues.

The gaz mutant embryos in group D showed specific defects in the
development of granule cells, while the development of Purkinje cells
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was grossly normal, suggesting that the absence of granule cells does
not affect the differentiation of Purkinje cells. Precise analyses of the
mutants should clarify whether the formation of Purkinje cell
dendrites and presynaptic sites depends on the formation of parallel
fibers. sio in group E affected the formation of parallel fibers to the CC,
and this mutant locus may function in axogenesis or in the
determination of posterior granule cells that extend the parallel fibers
to the CC.

Further analyses of these mutants with molecular markers and
transgenic lines will reveal the roles of the mutant loci in the
development of cerebellar neurons and their neurites. In addition, the
identification of the loci will clarify which genetic cascades control
cerebellar development.

In summary, we described the anatomy of the cerebellar neurons
and neural circuits of the zebrafish cerebellum using molecular
markers. Along with our isolation of cerebellar mutants, our data
provide a platform for studying the development and functions of the
zebrafish cerebellum as a model system for vertebrate higher brain
structure.
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