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The two-body S-matrix for an interaction with exponential decay at infinity
is defined in a time-independent way and its unitarity is proved directly by local
distortion techniques. Complete sets of incoming and outgoing states, or delicate
resolvent estimates are not needed for the proof.

1. INTRODUCTION

In this paper we define in a time-independent manner the scattering
“matrix” S(E), E > 0, for the reduced 2-body Hamiltonian H = H, + O,
where H, is the free Hamiltonian and Q is an interaction of the form
e Ue v, p >0, where U: H;(R®) — H_,(R®) is a compact self-adjoint
operator. Using local distortion—analytic techniques, we establish: (1) the
unitarity of S(E), E not a positive eigenvalue for H, as an operator on L),
where 2 is the unit sphere of directions in momentum space (Theorem 6.4);
(2) the meromorphic continuation of S(E) as a function of E'/2 to the strip
{zeC|[Imz| < u, 2 # 0} (See remark preceding Proposition 5.1); (3) the
compactness of S(z%) — 1 for z a point of analyticity for S(z?%) (Section 5);
and (4) the absolute continuity of the continuous spectrum of H (Corol-
lary 4.7). The unitarity result (1) is the main result of the paper, whereas
(2), (3), and (4) are auxiliary results arising naturally in the course of the
derivation of the Main Theorem.
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Of course the above results are well known at least for Yukawa-type and
bounded, Hélder-continuous, exponentially decaying multiplicative poten-
tials (see, e.g., [8, 14, 21, 22] and the references given there). Although our
results are more general, allowing interactions with r ~*+*-type local singulari-
ties as well as first-order terms, the emphasis here is on methods rather than
results. Our main purpose is to develop the new and in principle very simple
technique of local distortions for proving unitarity of the S-matrix via a direct
proof of the “generalized optical theorem” ([8, p. 191, Eq. (7.67)] and our
theorem). Complete sets of incoming and outgoing (generalized) eigenfunc-
tions or delicate resolvent estimates are not needed for the proof. Most
importantly, the method is developed with the many body problem in mind,
and there seems to be a reasonable chance of extending this technique at
least to the three body problem. In particular, we establish the meromorphic
continuation of 7'(z) = Q -+ OR(z*)Q to the strip described above. We also
see that the extended T'(2) are locally “‘distortable.” Thus, the Faddeev
T, -operators [6, 3.11] can be distorted, and we expect that similar local
distortion arguments plus distorted Faddeev equations will lead to a local
distortion-analytic proof of the 3-body generalized optical theorem [9,
Egs. (3.10)~(3.12)] and thus, a proof of the unitary of the 3-body S-operator.

Our approach is strictly time-independent, and we make no attempt in
this paper to connect our S-matrix with the S-matrix obtained in the time-
dependent approach via wave-operators. However, our definition of the
S-matrix is in terms of the “on the energy shell” T-matrix and our definition
of the latter is essentially [8, Eq. (7.41)] (but with the center of mass factored
out) which is derived in [8] from the time dependent approach. We should
point out that we work in spherical coordinates (%, w) in momentum space,
whereas (£ = k%, w) are used (at least implicitly) as coordinates in [8]. Thus,
several formulas in this paper will have slightly different factors than the
corresponding formulas in [8].

Although local distortion-analytic techniques have been in the literature
for some time, they do not seem to have been used to prove the unitarity of
S(E). Nuttall [10} used local distortion techniques to meromorphically
continue the 7-matrix T(E) as a function of E. (We thank Lawrence Thomas
for pointing out this reference to us.) Thomas [19] used local distortion
techniques to prove the absolute continuity of the continuous spectrum for H.
His conditions on Q are different and allow the treatment of longer range
potentials. Dilation analytic techniques [1, 4, 16, 20] are essentially global
distortion analytic techniques. They cover longer range interactions, but it
is not clear that they can be used to obtain simple proofs of unitarity.
(Lovelace essentially gives a formal unitarity proof when Q) is a Yukawa
potential using dilation analytic arguments, see [7, pp. 443-444]. However
it is not clear that his argument can be easily made mathematically rigorous.)
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There are reasons to expect that at least as far as the spectral results are
concerned, and presumably also for the scattering problem, the method can
be modified to include longer range interactions. Naturally, the analytic
continuations in 2% would no longer be two-sheeted.

The paper is organized as follows: Section 2 contains several definitions
and introduces various locally distorted Hilbert space. Section 3 derives the
local distortion analytic properties of the interaction Q. Section 4 discusses
the Hamiltonian H and its distorted resolvents. Section § introduces the
various T-operators and the S-matrix associated with H. Section 6 contains
the distortion analytic proof of the unitarity of S(E).

2. DrerFINITIONS AND NOTATIONS

Let £ be the unit sphere in R3. Points in £2 are denoted by w and the usual
usual measure on by dw. LY£) is the complex Hilbert space of square-
integrable functions on £ with the inner product

(f,8)o = fn 7 () g(w) do.

The corresponding norm is denoted by || ||, .
Let p > 0 be a constant, which is fixed throughout this paper.
For0 <a<b< o welet

R,, ={zeC|a <Rez <b |Imz| < u}

WesetR = Ry ,and R, = {2eC||Im 2| < p}. Finally, R,* = R, — {0}.
We denote by (%, the space of L?(£2)-valued measurable functions on
(0, ) U Ry, , which are analytic in R,, . For 2, € R,, we denote by (%2 the
space of L%({2)-valued measurable functions on (0,00) U R,,, which are
analytic in R,, except for at most a pole at 2, . Thus, 7,, C 04,2 for 2y € R,; .

We let O = Uy, and X = O, . Also, (%, is the space of L¥(Q)-valued
analytic functions on R, .

A positive distortion I'y:y:, is defined for 0 < a’ < b << o0, € 2> 0 as an
oriented path of the form Iy =L ul,uly,ul,Uly, where
I'N=0,a),I,={keClhe=d +it,0<t e}, [, ={keClk =1ie+t,
a <t} y={keClh=0b0+i(e—1),0 <t <e}, [, =[b, o).

A negative distortion I'y+y . is defined in a similar way for0 < a’ <b' < o0,
e << 0. A (positive or negative) distortion is R,,-admissible ifa << a’ < b’ < b
and | e | < g, see Fig. 1(a, b).
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Frc. 1. (a) R,-admissible positive distortion, (b) R ;-admissible negative distortion.

We shall also need the following types of positive and negative distortion,
called I

ubc.el €y T

;1* —c] a b
R RN T »>

E!*

@ bl

FiGure 3

In what follows, all proofs are carried out using distortions of the Iy, -type,
but it is clear that they are all valid for distortions of the I, abe,e e, ~tYPE-

Suppose that [y’ . and Iy~ -, are Ry ,-admissible distortions and 2y Ry, -
Leta << a, < min(a’, ") < max(b’, b") < by < b. Then we say that I';-,- . and
Ly . are Ry-homotopic relative to 2z, if 2y¢ 1y U Lynr o~ and
Ty (0, ap) Y (b, 0)} and Ty-pr ~A{(0, @) U (b, 0)} are homotopic in
R, \{2,}, see Fig. 2.

Lo—l
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FIcure 2
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Note that Iy and Iy~~~ are always homotopic in R, . Finally, if
I =T, is a distortion, then I' = I'y, _. .

Let I' be an R ;-admissible distortion and let p € (7, . Then @ denotes
the restriction of g to I'. For any I', ¢ determines ¢ by analytic continuation,
and we shall identify ¢ with any ¢, for example when we write ¢ € (7, N #r
(see the following definition). If I"” is another R,,-admissible distortion, the
analytic continuation map is defined for ¢ € %y, by (¢r)r = ¢ . Similarly,
if z,eR,,, and I' and I" are R -admissible distortions homotopic with
respect t0 Z,, we have the restriction maps ¢ and ¢ and the analytic
continuation map(p) defined for ¢ € 2.2 .

For a given distortion I" we associate several Hilbert spaces with I'. Let
o =0, 1 or —1. Then T is the Hilbert space of measurable L*({2)-valued
functions ¢ on I" such that

Lot = [ ioUBQ + 1P (hP1dR] < e,
The inner product is defined by

@orra= [ (@R $(RNa (k124 R | dk i

We let
A0 =, Vewa =V oweda =1l
for a = -1,
%1‘__:”1‘, <': '>I‘.0= <" '>[') “ '”I‘,(): H '“I”
for I £ (0, o0),
HO = o, Do = s i+ il o =11+

In the usual way, 7, can be viewed as the dual of £ by

o dor=[ (@), 4o 1R 1dk],  pedl, yerl, Q1)

Note that 5%, are just the Fourier transforms of the usual Sobolev spaces
H,,(R?). Sometimes it is convenient to identify S£,F with LA(I" x £; | & |3(1 +
1 k12 1 dR| X dw).

If I and I'" are R, -admissible distortions, and ¢re #7 N O, , then
clearly (¢r) € #L N (U, . Similarly, if I' and I" are R,-admissible
distortions homotopic with respect to z,, and ¢pe 7 N (72, then
(pr)r € L O gy
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We now define a sesqubilinear from on #7 - #,T as follows:
R RCORTONCE T SN &

We write (@, ¥)@..) = (@, ¢).

ProposITION 2.1.  The form (-, *) defines a duality between ¥, and # 7.
Proof. (-, *)r is continuous because
o d)r | <olp—alidblre-
We next construct a unitary mappin U: #7 — #7 such that
(@ )r = Up, db2p - (2:2)

Iet e >0 and '=I,VUl,ul;UTl,Ul; be the decomposition of I
used in the definition of distortion, and set

=@ @+ @+, where @ =eyr, [=1..5
We define U by
U‘Pl =1
. . —i(a — it)?
lq>2(a+lt):m¢l(a ), 0<t§€
L. (t — ie)? . B .
Upylic + 1) = TR @t — ie), a <t <b;

Ugylb - i(e — 1)) = ly(z - IIEZ t)?_ pilb —i(e — 1)), 0 <t: e

Ups = g5.

A direct calculation shows that U has the required properties. But since
#F_ is the dual of S#£1 by (2.1), it follows from (2.2) that (-, ) is a duality
between #T, and .#T.

ProposiTION 2.2. Let 0 <a <<b<< oo and let I' be an R,,-admissible
distortion. Then 7 N (U, is dense in H7L.

Proof. Let I'yy, = I'N Ry, , and let Hr,, be the Hilbert space of L3(£2)-
valued functions on I',, with inner product <f er, —J} (R)gk) ' k12d kL
Then #- can be identified with the subspace of - consisting of functions
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with support contained in Iy, and it is clearly sufficient to show that
oy pr is dense in H#7 .

The space #7 , also can be thought of as the tensor product LX(I';; | 2 |2) ®
L), where Lz(Fab, | & 1?) is the usual L2-space of scalar valued functions on
Iy, . Thus, the space of functions

S 18 @ile) | f €LATas; | ), s € LK)

i=1

is dense in ,}fpah .

Moreover, any function feL*I,;; | k|%) can be e-approximated in the
L2norm by a continuous function g. The function g in turn can be approx-
imated uniformly be a polynomial p in &, by the Stone-Weierstrass theorem.
Thus, the following space D is dense in Xpab ,

=y Ko, |peL{Q), ke Ty .

=1

ProrosITION 2.3. Let 0 < a < b < o0 and z4€ R,, . Suppose I' and I
are R ,-homotopic relative to 2, . Then

(rs¥r)r = (@p s ¥r)r (2.3)

Jor pe A N ab,zpeaf N

Proof. 'The function (p(k), #(k)), is analytic in Rg\{2,}, hence, by
Cauchy’s theorem

[, @ wna e die = [ (B, 0k a,

which is just 2.3.

For any pair ¢ , £, of Hilbert spaces, we denote by £(5#] , 5£;) the space
of bounded operators from 5, into S, and by €(5#, , ;) the subspace of all
compact operators from J#, into ;. We write L(#) = Z(H#, ) and
CH) = C(H, ).

We let R+ = (0, o) and R~ = (—o0, 0).

3. THE INTERACTION

Let u be the fixed constant introduced in Section 2. In configuration
space, let U be the maximal operator of multiplication by (8mu)-le—,



DISTORTION AND UNITARITY OF S-MATRIX 323

r = (%% + ¥y + 22)1/2, The corresponding operator I” in momentum space is
convolution by the function (&% 4 u?)~2. Thus, for suitable ¢,

(P(k/ w/) k!g

Velk, w) = J X L7 — 2fFe o Lo o

We notice that A% 4 k"2 — 2kk'w * ' + p? = (kw — k'w’)2 4+ u2 52 0 for

keR,, kK >0, w wel
and for
k>0 kFeR.,, o uowel

ProrostTioN 3.1. 1 is a bounded operator from .y into ;.

Proof. In configuration space the operator of multiplication by e=" is
bounded from H,, into H,, since

V(e ) = e (Vif — pifr=17),
and hence,

e smblig < 2(1 4+ )l gl -

Since the Fourier transform is a unitary map of H, onto #,, , it follows
that ¥ is bounded from 5#,, into J#,, .
Let I" be an R-admissible distortion and define J7: #%, — #,, by

: (Fo') R
ot 0) = | | e Ty

3 do’ dR'.

PROPOSITION 3.2. VT is a bounded operator from H'L, into H, .

Proof. Suppose I' = I'}, _ and write I" = I', U I, as in Proposition 2.2.
Then V7 = V¥y xr, + Fry xr, It is obvious from Proposition 3.1 that V'Ty Xr, is
a bounded operator from T +1to ;. Thus, it remains to consider V'yr .
It is sufficient to show that

1 k2 R3] 4 k'2|k’2 ,

Clearly

.4[b+ig(.ff (l +k2)k2(1 Ik’ IZ)]k'2‘
drde 1B+ K2 — 2Rk w - +

IQIdk'{dw dk dw < 0.
Fork=4|b+ic|,kel,

I
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and hence,

- AR KRR RE
oo TR G o g | e

< (16m)? Jﬂw M

de[ L+ K PBIK K] <,
[‘0

4lbiel k8

and the proposition is proved.
Forpe#, kel let

(P(k’, wl) k12

Iy — * r ’
Veplk, ) fofﬁ TR e Tap e e G

ProposiTION 3.3. TV is a bounded operator from ., into #", and for
pEHT, peAH,,

(Ve ¥) = (@, Vi)r. (32)
Proof. For € ., by Proposition 3.2, Ve 3£, , and

I Vo= sup (V)i = sup (¢, Vo)l <V llewr o0 11

oy e
llgll =1 il =1

Hence, V' is bounded from the sense subspace 5#,, of # into J#,, and
therefore, bounded from J# ; into #7, . Then it follows as in the proof of
Proposition 3.2, that IV is bounded from 2, onto 5, .

To prove 3.2, we apply Fubini-Tonelli’s theorem to obtain

(@ "V)r
—_— ([ PR, ') k2
= ug ok, ©) ”0 L k2 £ k2 i 2kk’)w @ + o

-1,

Changing variable from % to k, the last integral equals

do' dk'} k? dw dk

J’ J‘ (R, w) k2
o [R2 4+ k2 — 2Rk w - o + P

dk dw% Wk, ') k'? dos’ dK',

=0 Pk, w) B V rne e gt
f() fg '.J\[‘fg [R% + &2 — 2kE'w - W'+ pl)? dk dw§ YR, ) R do' dk
= (Vo, ). )

The following Lemma contains an easy but fundamental estimate.
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Lemma 3.4, Let 5,€C, and let € > 0, § > 0 be such that
D, .~={zeC|lz—2,| < C{zeC| Ima|<pu—38.

Let e Ay, feLX(Q). Then there exists C, 5 such that

~Z04Ex0

* l (p(kl’ w’), k2 If(w)i ’ A | o [
.[) -[QJ’_Q 122 + B2 —~ 22k w - o' 4 u2i? dw do' dk' < Czo-fﬂ" @iy liflla,

for z€ D, -

Proof. Let K, . == K be such that | z/k| < /4 for ze D, .. Let

1
My, =M= sup ; ; 5Ty -
0:€ zeD_.o'e ; z2 + kIZ — zzk W w + }LZ IZ
0k K

w,w €52

We have for k. > 0, z ¢ ch,s

|22 B2 — 22k'w - o 4 p?] > (2u — 8)3,
SO

1
My e < Cr =85

Moreover, for 2z e D, ., E>Kw o el

1
GIEE+ 1 — 2K @ o + (kD

[f§16.

Hence,

i | oK', )] K?) f(w)] -
J;) -[Ofg [B + 2% — Jkzw - o + pi |2 dw dew' dk

<M [ [ lo(t, o' | xo.0k? do’ dK’ | |f(w)) des
Y0 v v
116 [ [ 19k, o))y 35 2o b - [ | f(0) deo
T o » (K, 2 i

@
t
H
Jo v Ie)

< Mi@llrilxo.xlla (4m)2)iflla + 160 @y

g xan | @ISl

where x(,.p) 18 the characteristic function of (@, b) thought of as an L%(2)-
valued function. Thus, the Lemma is proved with

Cipcs = M2 (M| 0,0 L2 + 16 H(1/E) X (0. f129)-
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ProposiTION 3.5. Forgpest,,fel¥ ), |Imz| < pu,let

(" k', o) Kf(w) -y
Fode) = [ [ | i g o e des . (39)

The function F,, [(2) is analytic for { Im z | < p.

Proof. Notice first that by Lemma 3.4, the integrand is absolutely
integrable over (0, ) X £ X 2 with respect to dk X dw X do’, s0 F, ()
is well defined for | Im z | <C p. Now we prove analyticity of F, ,(2) in any
region D, . defined in Lemma 3.4. Let C be a simple rectifiable closed
curve in D, .. Then by (3.2) and Fubini-Tonelli’s theorem we have

§ Fosmaz=["[]

Hence, by Morera’s theorem F_ /(z) is analytic in D, ., and thus, for
Imz| < p.

oK, ) K@) o
J [zz + k12 - 2zk’(u N w, + “2]2 dw dw dk ‘ dz -—O_

ProrosITION 3.6. Let I' and I” be R-admissible distortions. Then (a)
VAL C Uy (b) for ey, (Vo) =TVo, (o) (Vo) (—=z, —w) =
(Vo)2, w) for ze R, , we L2.

Proof. Letgpe s, and set

B © tp(k', w') k'2
Ga,(z, w) = J;) L) [22 + B2 _ 22w w + p,2]2

By Lemma 3.4, for f e L3()

dw' dk'.

l fg Gz, @) f(w) dev ! S Chpesllolalifla,

and hence, for fixed 2 € R, , G (2, w) e L¥(Q).

By Proposition 3.5, the function [ G, (2, w)f(w)dw = F, (z) is analytic
for | Im 2| << p for every fe L¥(Q), so G,(z, ) is an analytic L¥(Q)-valued
function in R,, . Combining this with Proposition 3.3, we obtain

(@) Vo =0G,lrell.
It follows from (2.3) that
®) (Vo) = (G)r)r = (G)r =TV

Property (c) is obvious.

PropOSITION 3.7. Let @€, N Ny and let T',I" be R,,-homotopic
distortions relative to 2, . Then

Vigr = Vipp .
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Proof. 1Tt is clear that for fixed £ > 0, w € 2, the function

b 1
]k.nu(k y W ) - [k2 + B2 k' w - w’ - #2]2

is in (7 as an L%(£2)-valued function of &' € R, and therefore,

. ok, ') do’ I ,
L, 7+ k2 —2kkw - w + @2 (Jr.olk's ) @k Do

1s analvtic on R,;\{2,}. It then follows by Cauchy’s theorem that
o L ok, w') dw’
Porlk - w) = Up [+ K —2kkw o + pl]?

- Pk, ) do’ e
- ’.rfn (B> +~ K2 —2Rkw o + 2P Vor (R, w).

We now define two additional families of operators associated with I,
which are parameterized by 2 € R,

% _ flo')do’ .
Vo() f(ky w) = fQ L e e e D A )
and (R, ') k2 do’ dk 34
e} (P /’ wl 9 w/ ’ )
OI/(z) ‘P(w = ‘[! .[? [22 Jf‘ k/g - 2zk'w i (,ul + ”2]2 N [+ (= <#_1 .

ProposiTION  3.8. V(=) € L(LY2), #,,), V(z)e L(H_,,LY2)), for
2€R,, and

GV (E) e /) = (@ Vo(2) /), (3.5)
forpe # ., fel¥ ).
Proof. The first result follows from 3.2, and (3.5) follows from (3.2) and
Fubini-Tonelli's theorem.
ProrosiTioN 3.9. V() is a holomorphic function from R, to L(L¥), A4,
and V(2) is a holomorphic function from R, to L(H  ,LY)).
Proof. By Proposition 3.5, for ¢ € #7 , fe L¥£2) the function

Fo2) = (f, oV (3)9);

is analytic in R, . This implies that the #(H#_, , L3{2))-valued function
oV (2) 1s holomorphic in R, .
In the same way it is proved that V(2) is holomorphic in R, .
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Notice that by the definition of V and ,}(z) we have

Volk, w) = (V(k) ¢(w). (3.6)
We now make our
Basic assumption on the interaction Q: There exists a self-adjoint compact
operator U from 3¢, into J#_, such that

O=1ur.
By self-adjointness of U we mean that

(Ug, §) = (p, Uy),  for o, e f,.

ExampLes. The following operators U on configuration space are compact
from H; to H_, . Conditions for compactness can be found in [3, 12, 13, 15].

I. A multiplication operator corresponding to a real-valued locally
integrable function u(r), which has at most r~2+¢-type local singularities and
goes to 0 as {7]|—> 0. In terms of O, this implies multiplication by
e 2wy~ 0 << o <2, (in particular the Yukawa potential e-27r-1),
e~utarr ger B > 1, and any locally integrable potential with compact
support and at most r~#t<-type singularities are admissible.

2. A first-order differential operator (1/i)}(b(7) -V + V - b(r)), where
b(r) = (b,(F), by(7), bs(7)), and the by(F) are real-valued locally integrable
functions that have at most r~'+<-type local singularities and go to 0 as
| 7| — co, while Vb is locally integrable, has at most 7—2*<-type local singu-
larities, and goes to O as | 7 | — 0.

This condition is satisfied, for example, by the functions r-*t¢, and any
function with compact support that is smooth, except for at most isolated
r~1+e-type singularities.

Thus, the corresponding operator U in momentum space will be a compact
self-adjoint operator from 57, to 5, .

4. Tue HAMILTONIAN AND TE I-DISTORTED RESOLVENT

We define the Hamiltonian H by its quadratic form as follows. The
sesquilinear form H is defined on J# X 5 by

Hlg, 4] = ((#% + Q)e, ¥), Q. peH,.

This is a well-defined bounded sesquilinear form, since 42 + Q is bounded
from 5, into #", . We can write (Qg, i) in the form

(Do ) = (B + 1)7'09, ¥).y
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where the operator (&% - 1)~1Q is compact from J#,, into J, . Then it
follows from a result of Stummel [18, Satz 9, p. 36] that for every ¢ > 0

(Op, @)l < ell@l, + Ke)if o'

This in turn implies that for some K >> 0, K; > 0,

et <Hlp ol +Klieil2 <K lell.

Then by the theory of Friedrichs (see, e.g., [15]), there corresponds to H
a unique self-adjoint operator H in 5 with domain

a2y = {pe s, | Hlp, 4] is defined for all ¢ € #7}

and defined by
Hp, ¢] = (He, ).

Moreover, &y 1s a core for H, i.e., the closure of &y in .#] is ./#] .

The operator H is the Hamiltonian of our system. We denote its resolvent
set, spectrum, essential spectrum, discrete spectrum, point spectrum,
absolutely continuous spectrum, and singular continuous spectrum by
p(H), o(H), o ,(H), o,{H), o,(H), 0,(H), and o.(H), respectively.

By the assumption on O, H can be considered as a bounded operator from
. to #_,. We denote by p(H), 6(H), 6,(H), and &4(H) the resolvent set,
spectrum, essential spectrum, and discrete spectrum of He L(H,, #,).
Thus, g(H) = {ze€C | (H — 2) e L(H.,, £}, 6(H) = C\p(H), 6,(H) is
the set of poles of (H — 2)1: . #, — #,,, and G(H) = 6(H)\G,(H).

We shall now establish the identity of various parts of the spectrum of the
self-adjoint operator H in 3 and that of He £(#.,..#_,).

ProrosITION 4.1, o,(H) = 6,(H) = [0, ), and o,(H) = 6,(H).
Proof. Suppose z €p(H), then for p e #°

i(H—2) ol <iH—2)Tply <Kiga <Kol

so zep(H) and |(H — 2) g < I(H — 2) lgwe_ ., - The self-
adjoint operator H is bounded below, so there is a K > 0 such that A € p(H)
for A < —K. Now let A be any such real number, then H — A is positive
definite, and (H — A)172 is self-adjoint with domain .#,, and range 5. By
the open mapping theorem (H — A)-1/2 is bounded from 3# onto .#"; . The
adjoint of (H — A\)1% e L(H, H#,y) is in L(H#4, ) and coincides on #
with (H — A)-1/2. Hence, (H — A)~! is bounded from 2# with the .#_;-norm
to A, , and since 5 is dense in #_ , (H — M) 'e L(H#,, #.1)
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Now consider the second resolvent equations
R(z) = Ry(2)(1 + ORy(2))7, @.n
Ry(z) = R(zX(1 — OR(z))7, (4.2)

viewed as equations in L(H#, , H#,,).

The operator OR(z) is a € (5 ,)-valued analytic function on C\R*, hence,
(1 + ORy ()™ is a meromorphic Z(# ,)-valued function on C\R* if
(1 +ORy(=)) e Z(#,) exists for some 2z But for z =2 < —K,
RNy e L(H#_,, H,,), and since Hy — A e L(H,,, H,), it follows that
(1 4 QR (M)t e L(+#,). It follows that R(z) is a meromorphic £ (3£ ,, #,,)-
valued function on C\R*, i.e., 6,(H) C R*. Similarly, H — A € £(5#,,, H# )
for A << —K, and RyX) e L(#,, #,;), hence, (1 — QRA)) e Z(H#,).
The operator QR(z2) is a €(#_;)-valued analytic function in the domain of
holomorphy of R(z)e £(H#.,, ), so (1 —OR(2))! is a meromorphic
L(H#_,)-valued function on §(H), and hence, Ry(2)is an L(H#; , #,,)-valued
meromorphic function on j(H).

It follows that G,(H) = [0, o). Since J(H)C p(H), it follows that
a,(H) C [0, o), and o,(H) C 6,(H).

Now let Ay be a pole of the meromorphic #(s#_, , 3#,4)-valued function
R(2). Then the equation (H — Ag)p = 0 has a nontrivial solution in 5, and
it is clear that ¢ belongs to the domain of the self-adjoint operator H. Hence,
54(H) C oo(H).

It remains to be proved that every A > 0 belongs to ¢(H). We prove this
indirectly, assuming there exists A > 0, Ae p(H), and hence, u € p(H) for
| — A| < e. We will show that this implies A € 5(H), in contradiction with
the above result. Let

H=["wa, H=[ ud,,

where E, is the spectral family of H. Then H; — A and A — H, are positive
definite and invertible, and

(H—=271=H, =7 O(—A— Hy)™).

It suffices to prove that (H, — A)~* and (A — H,)~? are bounded from
(1 — E))o# and E,s#, respectively, with the £ -norm into J,, . This in
turn follows if we prove that | H — A |1 = |(H =Xy | =H, — N1 P
(A — Hy)™? is bounded from 5 with the 5 ;-norm in 5, . The operator
| H — A |1/2 has domain

DI H =)= lped | [ 1p— Al dEp9) < o],

where A, << —K.
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Clearly this equals

Aoy = D(H =2 = lpe | [ (x W) d(Ep ) < o,

Thus, | H — A|71/2 is bounded from # onto J#,,. Then the adjoint is
bounded from .#; into . Since it coincides with | H — A |~1/2 on the dense
subspace H# of H#, , it follows that | H — A |~%/2 has a bounded extension as
an operator from J#_, to J#; . Thus, A € p(H), a contradiction.

In what follows we consider the resolvent R(zs?) as a function of z in the
upper half-plane. Then by Proposition 4.1, R(2?) is a meromorphic function
of z for Im z > 0 with poles on the positive imaginary axis, considered as an
P (H)-valued function or an L(H#"_, , #;)-valued function. The poles {ik,}
of R(2?) are the eigenvalues {—#4,?} of H.

We now proceed to the definition of the I'-distorted resolvent.

Let I'yy=1T (e, ' =T, or Fabc,elsz) be an R-admissible distortion
and let Cr be the connected component of C — {I"U (—I") U {0}} that
contains a + /2 in its interior. For 2 € C, let R (2?) be multiplication by
1/k? — 2* acting on 7, . Since 1 -+ k2/k2 — 2 is bounded on I, it is clear
that R)7(s%) € L(HT,, H7)). R (2% is called the I'-distorted free resolvent.
It is also clear that R(2®) is a holomorphic function from C into
FL(HT,, #",). Then by Propositions 3.2 and 3.3, the operators R /[(3)I 1 'UT T
form a holomorphic %(#7,)-valued function on C,. The operators
RSETVULT are called the I'-distorted Lippman—Schuwinger operators. By
Corollary 4.4 below, (I + R (%) VUVT) exists for some 2z,€C, and
hence, (1 + R (' VUFT)! is a meromorphic Z(#7~,)-valued function
on C [11]. The point 2, is a pole of this function is and only if the equation:

Ry Gz VUV Y = —yr,

has a solution i = 0 in AL, .

The operator RF(2%) = (1 + R (A FUIT)-t RF(2?) is called the
I-distorted resolvent. Note that RT(2?) is a L(H#°",, #’];)-valued meromorphic
function on C with the same poles as (1 + R, ()T I'UIT)L

Lemma 4.2, Let 2y€Cr, and let I'y, and T',.,. be distortions that are
R-homotopic relative to z,. Let ¢ < min(a, a') << max(b, b') < d and let
peHT, N (LS. Suppose that i is a solution of

(I + R (=) VUV W = or . (4.3)
Then p € # 7T, N (L2 and

(1 + Ry (2" VUV Worr = g . (4.4)

400/54/2-3
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In particular, if . is a solution of
(1 + R (Y VUVT Yy = 0, (4.5)
then re HT, N\ QLS and
(1 + RE (2" VUV W = 0. (4.6)

Proof. 1t follows from Proposition 3.6(a), that "VUV e #T, N (.
Since R,[(2,?) creates at most a pole at z, and maps #", to H#T, , it follows
that RF (22 VUV iy € #T, O 0. Thus, g = g — R (22 VUV e
AT,

We can then apply the analytic continuation map to (4.1) to obtain, using
Proposition 3.6(b),

b+ RS (2)) VUV e = gre.
By Proposition 3.7, Vi = V4, and thus (4.4).

LemMA 4.3. Let 3y€ Cr and suppose T'y, . and T',.,. . are distortions that
are R-homotopic relative to z,. Then (a) RI (%) exists if and only if R7'(242)
does, and (b) for @, € H, N\ Ol g, with ¢, d as in Lemma 4.2,

(or» Rz Wor)r = (or » RE (2P Wor)r - (4.7)
Proof. (a) Suppose RI'(z,) does not exist. Then
(1 + R (=) VUV = 0,
has a nontrivial solution ., and by Lemma 4.2, ¢ € (% and
(1 + RE (2" VUV W = 0.

Here 3~ is nontrivial, since otherwise by analytic continuation , would
be 0, and hence, R7"(2,?) does not exist.

(b) Assume now, that R7(z?), and hence, by (2), R"(2,?) exist. Then
(1 + Rz VUV = R (2ePpr,
has a solution & in #7,, and by Lemma 4.2, $, € (.3 and
(1 + Ry (=) VUV W = Ry (37r -

Note that #r == RF(2,®}fr and & = R(2,®}ir~ . Then applying Proposi-
tion 2.2 we have

(‘P[' ’ Rr(zoz)‘/‘r)r = (‘Pr ’ ﬂr)r = (‘Pr’ ’ 19r’) == (‘P[” ’ RF,(202)¢'1")F' .
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1>
function RT(2%) can only occur on (a,b) or in the interior of the rectangle
{I'e U [a, b]}.

COROLLARY 4.4. The poles of the meromorphic L(H7',, H]))-valued

Proof. If I'" = (0, c0), RT'(22) has no nonreal poles. If 3, belongs to the
exterior of the rectangle {I", U [a, b]}, then I" and I"" are R-homotopic with
respect to 24, and by Lemma 4.3, 2, cannot be a pole of RI(2?), since this
would imply that z, was a pole of R(2?).

DEFINITION. A point 2, such that Im z, <C 0 is called a resolvent resonance
if either of the following holds,

(a) Rezy > 0, RF(2?%) has a pole at 2, for some negative distortion [
(Fig. 4a).

(b) Rez, < 0, Rf(2?) has a pole at —g, for some positive distortion I’
(Fig. 4b).

i - '
> — g“!_,.___, -
Y 24 “l
2, f
|
|
@) [
-z,
L
>
1
2
[}
Ficure 4

Remark. The function 2* maps R, in a one-to-one way onto a parabolic
subset of the two-sheeted Riemann surface of 2'/2. The upper half-plane
corresponds to the first (physical) sheet and the lower half-plane to the
second sheet, hence, the definition of resonances.

A virtual pole is a point 2, on the negative imaginary axis such that zy(—z,)

is a pole of RI(z%) for some negative (positive) distortion I =
(Fig. 4).

abe V€ €y
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In agreement with the above definitions, a discrete eigenvalue of H is a
point 2, on the positive imaginary axis such that R(z%) has a pole at z,, i.e.,
such that 2,2 is an eigenvalue of H in the usual sense.

We denote by G the set of points z € R.,? such that z is not a discrete
eigenvalue, a resonance or a virtual pole of H.

It follows from Lemma 4.3, that a resonance 2, is a pole of RI'(2?) for all
distortions I" that are not homotopic to (0, co) relative to z, (if Re 2, > 0) or
—2z, (if Re z, < 0).

Remark. 1If z, is a resonance, then any nontrivial solution i € #%; of
(1 + RS (2 VUVTWr =0

is called a resonance state corresponding to 2,. Note that i € (7% (resp. (7 %0)
and z, (—2,) is a simple pole of ¢y .

Livma 4.5. Let 0 <c<d< oo and let o, e NU,. Then
the function (p, R(2*)$) has a meromorphic continuation to the region
{2eC!Im g > 0} U R,y VU {—R.4}, with poles occurring at most at discrete
eigenvalues, resonances and virtual poles of H.

Proof. By the compactness of Ry(z)VUV on #,;, Imz > 0, the
function R(2?) = (1 4+ Ry(2¥)VUV) 1Ry (2?) is a meromorphic Z(#,)-
valued function for Im z > 0 with poles at the discrete eigenvalues of H.
Hence, (¢, R(2%)$) is meromorphic in the same region.

We define the meromorphic continuation %, ,(2) of (¢, R(22)$) as follows.
Let 2z be a point in R,; with Im 2 <C 0, which is not a resonance, and let I',
be a negative R ;-admissible distortion which is not R;-homotopic to
(0, c0) with respect to 2. Set

Fo.ul3) = (@r, , Rr"(z2)‘/’rt)rZ .

By Lemma 4.3 this does not depend on I', and
Z,.4(2) = (p, R(z2)), for Imz > 0.

A fixed negative R,,~-admissible distortion I' = I,y . is a I', for every 2
in the interior of the rectangle bounded by I"and [¢, d’] and on (¢, d"). The
function R(3%) is a meromorphic L(#7,,#7%,) valued function in
{z|Imz >0} U R,y with poles at the resonancesin {2 [ Im 2z <0} N R,y ..
Hence, #, ,(2) is meromorphic in the same region. Since {z | Im 2 < 0} N\ R4
is the union of all such regions, we have obtained the meromorphic continua-
tion of (¢, R(22)$) into {z|Imz << 0} " R,;. Similarly, we define the
meromorphic continuation into {z|Imz < 0} N{~—R_}, using positive
distortions not homotopic to (0, o) with respect to —z; .
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Lemma 4.6. A4 point 2,€ Rt is a resonance if and only if it is a positive
eigenvalue of H, and in that case 2, is a simple pole of R (2?) for 0 < a <
5 < b < .

Proof. Let 2, > 0, and let Ry, . be such that 0 < a < 2, < b < o0 and
R, 'z, does not contain any resonances. Let I"be an R, .-admissible negative
distortion, and let @, e N Uy, s0 epeHp Ny, $brefrnN U, .
Denote by P, the projection on the eigenspace of H corresponding to z , s0
that P, = 0 if and only if 2 is an eigenvalue of H. Then for 0 << § << =2,

Po= lim  (c—=)R(s),
5<arg(z—;(:,)<n—5
and hence,
((P) P:‘)l!i) = LL“; (z - zO)(‘Pr R(Z)g[‘)

ALATE (2—20 )< —8
By Lemma 4.3, for Im2 >0

(¢, R(2*W) = (pp . RN(2PWr)-
Thus,

(@ P.g) = lim (5 — zo)er, RI(="Wr)-

8<Arg(2—zy)<r~6

By Proposition 2.2, # N 0y, is dense in 3¢ and # N (U, is dense in 7.

If P, == 0, there exists gy, € H# N, ,(such that (g, P. i) + 0,
30 (pp , RT(2%)r) has a simple pole at 2, and 2, is a resonance.

Conversely, if 2, is a resonance, there exist gp, §ip € # N (7, such that
(pp, RE(2%)) has a pole at z,, so (g, onz//) # 0, and 2, is an eigenvalue.
We have also show that z is a simple pole of RI(2?).

If 5, < 0, the proof is similar, using positive distortions.

CoroLLARY 4.7. The singular conmtinuous spectrum of H is empty, the
absolutely continuous spectrum is [0, c0) and the point spectrum accumulates at
most at 0.

Proof. By Proposition 4.1, o, (H) = [0, o©).

It follows from Lemma 4.5, as in [, 4], that the spectral family of H has no
singular continuous spectrum on any interval [e, K] C (0, co). Moreover, by
Lemma 4.6, the positive eigenvalues have no accumulation point in any
interval [e, K] C (0, o0). This implies, that o, (H) = [0, o0}, and that the
point spectrum accumulates at most at 0.
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Remark. Under rather weak conditions on Q positive eigenvalues are
ruled out. If for example Q is a radial, multiplicative, dilation—-analytic poten-
tial, this is known (cf. {17]). Thus, for the potentials r‘"e‘“'ﬁ, a>0,82>1,
it holds. We conjecture, that this holds generally under our assumptions.

The next Lemma will be useful in defining the analytic continuations of
the various T-operators discussed in the next section.

LemMa 4.8. The L(H_,, H. )-valued meromorphic function W(2) =
VR(z®)V in {z|Im 2 > O} has a meromorphic continuation W(z) to R.° that
is analytic in G.

Proof. For z € G, 2 not on the negative imaginary axis, let I' = I', be as
defined in the proof of Lemma 4.5. For z on the negative imaginary axis let
T'; be a distortion of the type Iy c ¢, - Then we define W(z) by

W(z) = VIR0

Then W(2) is a bounded operator from J#_; to #,; . For z'not on negative
imaginary axis, this definition is independent of I', , since the matrix elements
(@, VF:RT=(22)F: V) = (D:Ve, RF(22) =), @, s € #, , are independent of
I, be Proposition 3.6 and the argument of Lemma 4.5. For z on the negative
imaginary axis, the same argument shows the independence of I', within the
class of positive distortions as well for I, within the class of negative distor-
tions. The following proof will then show that distortions I’ abese e lead to the
same operator for €, , ¢, > 0 and ¢ , ¢, < 0. In order to prove the Lemma
it is now sufficient to show that for ¢, € #; , the function

Foul?) = (¢, VR@)WVY) = (Vo, R(z)V),

has a meromorphic continuation to R,% analytic in G. By Proposition 3.6,
the functions Vo and Vi) are analytic in R, , so by Lemma 4.5, &, ,(2) has
a meromorphic continuation to R U (—R) with the above restriction on the
poles. Using contours of the type gy, ., We obtain by the argument of the
proof of Lemma 4.5 meromorphic continuations &7 (2) and F (2) of
Z..4(2) across R* and R~ to the regions R .N\R- and R O\R*, respectively.
It remains to be shown that for z on the negative imaginary axis, 2 not a
virtual pole,

F o.ilB) = F5u(2)-

Let 2, = —it,, t, > 0 be such a point and let I' = T, abe.erey be a negative
distortion not homotopic to R* with respect to 2,. Then & ,(2;) and
F ,.4(2) given by

F I,dl(zﬂ) = ((Ve)r, Rr(zoz)( Vidr)r,
F5ulz0) = (Vo)r, Rz )V)r)r -



DISTORTION AND UNITARITY OF .S-MATRIX 337

Writing

xr" = (1L + TVUVTR (") (V)r,
and

xr~ = (1 + TVUVTRS (2)(F)r,
we have

xew = (Fh)e — FVUVTRI )y, (“8)
and

xr~ = (Vi)r — TVUVTRT o(z3)xr. (4.9)

By Proposition 3.6 (a) and (b), the functions y,~ and yp~ are in R, , and
setting xr~ = (x,)r, we have by Proposition 3.6(c),

xr(zo, w) = xr'(—2%y, —w). (4.10)
Then
PR (20%) xr*(k, w)
" o
- Jr ZEYE kak’w PR Xl};'(:’:,) E i Z d’ K
_ " K et (Kho) 1

Tl TR TR —2kFw o + i K -z, E 2

Xl‘(zoyw) ©'
) [B2 + 22 — 2kzgw - ' -+ p? ]2

+ Ry J

T k’® xr (k w ) .
= J, [T F? — 9k o T A% —ap 2ok

— mizy | - xr' (=%, @)
000 [+ 22 - 2kzgw - @ - ]2

dw'

XI‘VL("O ’ ,)

—_ TTZZ‘O“Q [k; -f—Z 2 __ 2k20w cw' +:“‘]

do’.

By (4.10), the last two terms cancel, so
VIR (50%) xe~(k @) = PTRE(s?) xr(k, w).
Then, by analytic continuation of Eq. (4.8) to I" we have
xe™ + TVUVTR (@) xe™ = (V.

Thus, x,~ is solution of the same Eq. (4.9) as yp~, and hence, yp = xr7, i€
the function y,* and yp~ are analvtic continuations of each other.
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Let x be the analytic function on R, such that y, = y and yp = yr~.
Then we have

F Z,w(zo) = ({(Vo)r, Rop(zoz) Xrr»
F7ulz0) = (Vo) , R (2) xrr -

Now, by a similar residue calculation,

F ou(z0) = (Veo, Ro(zoz) x) + miz(Vo(—2p), x(20))e (4.11)
and
Foi(20) = (Vo, Ry(z") x) + mizg(Ve(2,), X(—20))a - 4.12)

By Proposition 3.6(c), Ve(—=z,) and x(z,) are reflections in the origin of
(Vpz,) and y{—z,), respectively; hence, the two last terms in (4.11) and
(4.12) are equal, so

F gu(Za) = F g 4(%)-
We now derive the adjoint properties of the distorted resolvents.

ProposiTION 4.9. If —Z, is a pole of RI(2?), then z, is a pole of R'(2?).
If I is an R-admissible distortion and 2 is neither a pole of RT(2?) nor an element
of PU {0} U {—T}, then for pe #7T,, b e #T,, we have

(or» RNz Wr)r = (REEer, ¥r)r - (4.13)

Proof. Assume that —Z, is a pole of RT(2?); we shall prove that 2, is a pole
of RF(2?). Since —Z, is a pole of R, there exists Pp€ #L,, or # 0, such that

(1 + RSHVUVD)er, )y = 0,
for all i € H#T, . But it is clear that
(RN, dr)r = Op» R (2 Wr)r»

for all 37 e #°T, , and thus, by Proposition 3.3 and self-adjointness of U we
have

(er, (1 + TVUVTR (z"))r)r = 0,

for all Y€ #T,. Thus, 1 + TVUVTR(35%) is not onto T, because
(*, *)r is a duality. But

1+ TVUVTRI(22) = (B — 22)(1 + R (2 VUVT Rf(2s2),  (4.14)
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and Ry(z,?) is an isomorphism from H#T, to #7L,, whereas k2 — 2% is an
isomorphism from #7, to H#T,. Thus, 1 + R (2,2’ VUIT is not onto
AT, . which means that z, is a pole of RI(z2).

Thus, if 2, is not a pole of R'(2?), then —Z, is not a pole of R(22), and
moreover, by (4.14), 1 + TVUVTRI(2,?) is an isomorphism of #7T, to #7,
and

Re(z?) = R (z)(1 -+ TV UV TR (5 )

Note also that for cppeaffl, preHr,,

(1 = TVUVTRS (2o, ¥o)r = (or, (1 + R 22y VUVTWr)r
and thus, for ppe #7L, , fre #T,
(1 + TVUTTRS (22 "or » ¥r)r = (o, (1 + R (2 VUFTY r)r .
Finally, for gpe #7T,, dre #7,,

(er» RN(2eWr)r = (pr, (1 + R (2 VUFT) R (26°)r)
= (R ()1 + TVUVTR (2*)) Yer , ¥r)r = (RUZPer , dr)r -

5. VArRIOUS T-OPERATORS AND THE S-MATRIX

Let O be as above. There are several T-operators that are used in scattering
theory. They are essentially all the “same operator,” but defined on different
spaces. We will also introduce distorted 7-operators that bear the same
relation to the corresponding usual T-operators as the distorted operators
T, TV y(2), etc. to V, Vi(2) etc. The basic T-operator is

T(z) = O — OR(z2Q = VUV — VUFR(z2) FUI”
= VUV — VUW(2) UV, Imz> 0.

From Section 4 we see that 7'(z) is a meromorphic € (¢, , #_;)-valued
function in the upper half-plane with poles at discrete eigenvalues of H.

Let I and I be R-admissible distortions. Then the I — I"-distorted
T-operator is defined by

ITr(2) = TVUVT — VUW(2?) UTT.

By the results of Sections 3 and 4 we see that T77'(z) is a €(#7; , H#T))-

valued meromorphic function in the upper half-plane with poles at discrete
eigenvalues of H.
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By Lemma 4.8, T(z) and TTT'(z) can be extended to meromorphic
E(AT, , #T))-valued functions on R,?, analytic in G. The continuations
T(2) and TTT(z) are given by

T(z) = VUV — VU W(zz) Uv,
and
’"T‘"'(z) =Tyuyr — FVUW(zz) urr.

The operators T'(z) and " TT"(2) are called the full and the full I' — I distorted
T-operators, respectively. They will be important in the three-body problem.
More important for two-body scattering theory are the following distorted
partial T-operators. Let ze€ R,* and let I' be an R-admissible distortion.
Then we define the I'-distorted partial T-operators IT'Ty(2) and (T7(2) by

IT|(z) = TV UV (=) — TVUW(2) UV(2), (5.1a)

oT7(2) = oV(2) UVT — ¥ (2) UW(2) UFT. (5.1b)

From Sections 3 and 4 we see that I'T(z) is a €(L¥£2), #F,)-valued func-

tion meromorphic on R.? analytic on G. (T7(2) is a €(#L, , L 2))-valued
meromorphic function on R,°, analytic on G.

We now define a family of T-operators on L}Q) that are close to the
standard T-matrix. For 2 € G we define

oTo(z) = oV (z) UVo(2) — (¥ (2) UW(z) UV (2). (5.2)

Again from Sections 3 and 4 we see that (To(2) is a F(L¥LQ))-valued
meromorphic function on R,° that is analytic on G.
Let 2 € G. The T-matrix for H is defined by

T(2) = 2To(2).
The function T(z) has the same analyticity properties as (7(z).

DeFiNITION. The S-matrix of H is the operator in F(L¥(2)), defined
for E > 0 (¥ not a positive eigenvalue) by

S(E) = 1 — miT(E2).

Remark. If z > 0, T(2) is sometimes called the “on the energy shell
T-matrix.” It also follows automatically from the properties of T(z), that
S(E) has a meromorphic continuation as an #(L%2))-valued function of E/2
to the region R.% which is analytic in G.
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ProrosiTioN 5.1.  S(E) s unitary if and only if

mi(T(EVR)* T(EV®) = miT (B T(EVR)* = (T(E'm)* — T(E'A).
Proof. 'This 1s a simple calculation.
ProprostTION 5.2.  S(E) is unitary if and only if

mE A To(EY2)* T2y = miE'2 (T(EY?) ((To(ET )%

(5.3)
= (o To(EVB)* — o To(E ™).

Proof. Obvious.

In our formulation, the main objective of this paper is to prove (5.3). We
now derive several properties of T'(2) and T(2) that follow easily from the
properties of ,17(z) and 1',(3) and W(z). We make use of the following.

Notarion. If Ae LLRD), #T), then A% e L(H#T

41, L3(8)) is defined
by

(o, Af)r = (L'gr o, fELXQ), gredl;.
Similarly, if Be £(H#.,, H,,)), then B*xe L(AH, , #.,) is defined by
), Bg) = (B, ¢),  for &, pe# .

ProprosITION 5.3. Let 2 € G and let I" be an R-admissible distortion. Then

(Ta)* = oV () UFT — oV(2) U () U, (542)
GIT@)* = TPU(@) — VU (@) UVo2), (5.4b)
(GTo2)* = V(&) UVy(&) — o () UH()* UF (). (55)

Note that if Im =z > 0, (W(2))* = (W(2))* = VR(Z®)I". Also if E > 0 is

not an eigenvalue, then
(o To(ELRN* = V(EL2) UV (EY?) — JV(EY2) U(VR(E — i0)W) UL ((E'2).
(5.6)
Proof. Using the above notation, Propositions 3.3 and 3.8 say that

OV@)* = Vo3), (V)" = V() 5

(Vryx = TF, (FVy* = 1T

and

Using this, the self-adjointness of U and the usual order-reversing proper-
ties of adjoints, the proof is immediate.
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ProrosiTiION 5.4. Let 2€ G, let I’ be an R-admissible distortion and
Fel¥$). Then Ty(2)fe N, ((T(2)feH N and

(To(2) f)r = "To(2)f, e
(GTENH)r = (T ()Y (5-8)
Moreover, for E*2? > 0, not an eigenvalue,
To(E'V) f(BMR) = (T B, (39
(T(EB)* fF(EY®) = (,To(EY2))*f. (5.10)

Proof. By (5.1a) and (5.4b) with I' = (0, o0), T¢(2)f and (,T(2))*f are
given by

T2)f = V(UV(z) — UW(z) UV(2)), (5.11)

TR = V(UVy#) — U ()* UV (7). (5.12)

Then the first assertion and (5.7) and (5.8) follow from Proposition 3.6,
and (5.9) and (5.10) follow from (3.6), (5.2), and (5.6). We now prove an
off the energy shell version of the unitarity condition (5.3).

ProPOSITION 5.5. Let 2 be such that Rez > 0, 0 < Im z < p. Then

(To(x)*[Ro(2%) — Ro(z%)] Ti(2)
= JV(Z) UVR(2?) VUV () — oV(2) UVR(Z?) VUV(2), (5.13)

o T(2)[Ro(2%) — Ry(21))(oT(2))*
= oV(2) UVT(22) VUV(2) — oV(2) UVR(Z) VUV,(2). (5.14)

Proof. Recall the first and second resolvent equations
R(z?) — R(2%) = (2* — 2°) R(2®) R(z%) = (=* — 3*) R(z%) R(2"),

and
R(z%) = Ry(22)(1 — VUVR(2?) = (1 — R(z?) VUT) R(22).

These equations are valid in #(#), and since J# is a dense subspace in
H 1, and the left- and right-hand side are in £(H#._, , ), they can be
extended by continuity to £, . We shall also use the first resolvent equation
for Ry(z?) ig L(H, , HLy)-

By the definition of T'(2) and Propositions 5. 3 and 5.4 with I" == (0, o0),
the left-hand side of (5.13) equals

JV(E) UV[L — R(2%) VUV)(Ry(2?) — R{EN[1 — VUVR(z2)] VUV ().
(5.15)
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Then applying successively the first, the second, and the first resolvent
equation, we obtain the following expression for (5.15),

(s° — #),1'(5) GV[1 — R(E?) VUV](Ry(F?) Ry(z))[1 — VUTR(z%)] I'UF(2)
= (2% — 3%),V'(2) UVR(Z®) R(z?) VUV (z) (5.16)
= J(8) UFR(z2) VUV(2) — (V(7) UVR(E?) TUF (),

which proves (5.13). A similar calculation establishes (5.14).

6. UNITARITY OF THE .S-MATRIX

Throughout this section, £ will be a positive number that is not an eigen-
value in the usual sense. It is the purpose of this section to prove unitarity
of S(E) by establishing (5.3). This is obtained from (5.13) and (5.14) through
a limiting process.

PRrOPOSITION 6.1. Suppose E > 0 is not an eigenvalue of H in the usual
sense and f € L¥(R2). Then

lsig)l[0 V(E — ie}2 UVR(E + i) VUV(E + i) *
— oV(E — 12 UVR(E — ie) VUV(E +ie)* 2] f  (6.1)
= (ToEVA)* — oTo(EYA)) f
1€i£51[01/'(E + W2 UVR(E + ie) VUV(E — ie)'?
— oV (E + i) P UVRE — ie) VUI'(E — (e} 2 f (6.2)
= [(To(EE)* — oTo(EY®)1 S,
where the limits are in the L3($2)-norm.

Proof. Since the operator-valued functions oV(z), ¥'o(2) and W(z) are
analytic and hence continuous at ¢ = E/2 in their respective operator-norms,
we have

lirg oF(E — 12 UVR(E +ie) VUVY(E -1 i)t 2 f
== 133)1 ob(E — ie)2 UW(E +ie) UV(E = ie) 2 f
== T (E2) UW(E) UVE'®) f = [—oToE'2) + I (E' )L f
Similarly,
]Eiir'al oV (E — 12 UFVR(E — ie) VUV(E + 1)t f
= [—(To(E2)* + oVEVA]S,

and (6.1) follows. In exactly the same manner we prove (6.2).
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ProOPOSITION 6.2. Let f, g € LX), then
Hm(f, (TE + ie)2)* [Ry(E + ie) — Ry(E — ie)] To(E + ie)2 g)q
== miEV,To(EY2) f, oTo(EY?) £)a
Hm(f, o T(E + 1e)!/2 [Ry(E + ie) — Ry(E — ie)] (4T(E + ie)' )" g)a
= wtBVRA( T (EY2)* £, o To(EYV2)* 2)g .

(6.3)

(6.4)

Proof. Let 8,a,b >0 be such that a* < E < b%, and such that
R,y sV {—R,s; does not contain any resonances or positive eigenvalues.
Let €, > 0 be such that (E 4 te)?/2€ Ry, 5 for 0 <{ e << ¢. Let I', be a
positive R-admissible distortion such that I', "R, s = @, and thus,
' N R, ; = . Note that, letting I'_ =T"_;

(a) because T=T(2) is analytic in R.?,

TR T GTHEDTS and (TTH)g

are continuous as functions of z from R, 5 to #7%,
(b) I is R-homotopic to (0, o0) relative to (E — ie)'/* and I~ is
R-homotopic to (0, oc) relative to (E -+ 7e)t/?,

(c) because RT+(z?) is analytic as an Z(#T, H#7#)-valued function
ina neighborhood of
/
z = E'" | RF*(ZZ)”.?(#ﬂ*,Xffz ’
is bounded for z in a sufficiently small neighborhood of E'/2.
By Proposition 2.3 and the first part of Proposition 5.4 we have, using (b),

(fs TE + ie)V/2)* [Ry(E + i€) — R(E — ie)] T{E + ie)\/2 g)q
— (TE + i€} /2 f, [R(E + i€) — Ro(E — ie)] To(E -+ i€)/2 g)
= (TW(E2) f, [R(E + ic) — Ry(E — ie)] T(E?) g)

+ ((VTE + i) — Ty BV f, Ry "(E + ie) TWE"*) g)r_

+ (HTWEY®) f, Ry "(E + ie) ["Ty(E + ie"®) — " Ty(E%)] g)r_

4 ([ TYE + ie)** — T T EVH) f, Ry T-(E + i) 2 [[-ToE + ie)' ?
— Ty E ) g)r

— (" TE + i) — =T(EY O] f, Ry HE — ie) “T(E) g)r,
— (CT(EY™) f, Ry "H(E — ie) [ To(E + i)' — " T(E )] o),

= (("TWE + ie)'"® — TT(EV)} £, Ry "™HE — ie) [FT(E + ie)*
— HTWE) "1 g)r, -
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But by (2) and (c), all but the first term of the last expression go to 0 as
€ — 0. Thus, to prove (6.3) we need to establish
Lim(To(E'?) £, [Ro(E + ie) — Ry(E — ie)] Ty(E' ) g)
< mEVATYEY) £, o To(EY?) g)c (6.9)

To accomplish this we need the following

LeMMA 6.3. Suppose i, p € # 4 and that ¢ and ¢ viewed as functions from
(0, o0) into L2(82) are continuous at E*/® > Q. Then

lim(, (1.71) [Ry(E -+ ie) — Ry(E — ie)] @) = EX*(H(E), p(EX7))e -

In particular this holds if , p € #_; N (L.

Proof. First observe that our assumption implies

Lim , k((R), @(R)e = E'*(H(E'?), p(EV?))o - (6.6)

k-EL2

Next, for E, ¢ > 0, let

. _ 2e (™ kdk _ l_ 54 E
L\I(E,E)———;:J;) m—’n (2 +Arctan—6~‘).
Note that
N(e, E) —> 1 (6.7)

and

I . .. 2¢ 1

ey [Ry(E + ie) — Ry(E — ie)] = - 0;2“_‘_‘5)7??
Then

(1 2 [RUE + i) — RyE — ie] ) — EVH(E2), glE* I

B J: KO8, o) @_2_% —5 — BV, p(EM)q

= 2 [ U, ol — BV Bl G

+ (Nle, E) — 1) EVEGH(E? =), p(E'?))o -

By (6.7), the second term of the right-hand side goes to 0 as ¢ — 0.
It remains to be proved, that the first term goes to 0 as e — 0. Let § > 0,
then by (6.6), there exists 8, > 0 such that

Ck((R), p(R))o — EMP(HE'R), p(E))g| <& for [k — EVE <8, .
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‘We obtain the estimate

= [ o), 9t — BAE), B )e] Ue——’-%k?f‘
2¢ J k dk

<é— TR s
El/Zv<5 (k - E)2 + €

m

]

+ 2 e (g(E), p(BV), |

W8 oo s g

|R—EY2|55,
k2 dk
|k—El2| 38, (kz Ey
21, ,., 14 k2
< 8N(e, E) + = - _

(e, E) + - [H‘/’li e 1|k—ls;‘llgl>8 == E)2]
2¢ k2 dk
£€ e 1/2 1/2

2 B HE ), B el | o, T

Thus

k dk

imsup |22 [ (6408, (4))a — EVHE), o Ml g gzr | <

But 8 can be chosen arbitrarily small, so the Lemma follows.
We can now complete the proof of Proposition 6.2. By the first part of
Proposition 5.4, To(E*2)f and T(EY*)ge#,, so Lemma 6.3 yields

lim(Ty(E2) f, [R(E + ie) — RyE — ie)] To(E*?) g)
— miEVT,(EV?) f(EX), Ty(EY?) g (68

But by (5.9) and (5.10) of Proposition 5.4, the right-hand side equals

mi BV T(E2)f, o T(EM2)g)e -

Thus, we have established (6.5) and thereby (6.3). The proof of (6.4)
follows in exactly the same way.

THeOREM 6.4 (Unitarity of the S-matrix). Suppose E > 0 is not an
eigenvalue. Then S(E) is unitary.

Proof. By Proposition 5.2, the unitary of S(E) is equivalent to Eq. (5.3),
which is clearly equivalent to the following statement. For f, g € L3(Q),

wi B2 To(EY2) f, \Ty(EY2) ) = iV, To(EV)* f, o T(EV2)* g), ©9)
= (T B f, ) — (f, o To(EYD) )0 .

But (6.9) follows directly from Propositions 5.5, 6.1, and 6.2.
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