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The two-body S-matrix for an interaction with exponential decay at infinity 
is defined in a time-independent way and its unitarity is proved directly by local 
distortion techniques. Complete sets of incoming and outgoing states, or delicate 
resolvent estimates are not needed for the proof. 

1. INTRODUCTION 

In this paper we define in a time-independent manner the scattering 
“matrix” S(E), E > 0, for the reduced 2-body Hamiltonian H = Ho + Q, 
where Ho is the free Hamiltonian and Q is an interaction of the form 
e-PUe-F p > 0, where U: HI(W) -+ H&X3) is a compact self-adjoint 
operator. ‘Using local distortion-analytic techniques, we establish: (1) the 
unitarity of S(E), E not a positive eigenvalue for H, as an operator onL2(lR), 
where Sz is the unit sphere of directions in momentum space (Theorem 6.4); 
(2) the meromorphic continuation of S(E) as a function of lW2 to the strip 
(z EC 1 ( Im z ( < p, z # O> (See remark preceding Proposition 5.1); (3) the 
compactness of S(z2) - 1 for z a point of analyticity for S(z2) (Section 5); 
and (4) the absolute continuity of the continuous spectrum of H (Corol- 
lary 4.7). The unitarity result (1) is the main result of the paper, whereas 
(2), (3), and (4) are auxiliary results arising naturally in the course of the 
derivation of the Main Theorem. 
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Of course the above results are well known at least for Yukawa-type and 
bounded, HGlder-continuous, exponentially decaying multiplicative poten- 
tials (see, e.g., [S, 14, 21, 221 and the references given there). Although our 
results are more general, allowing interactions with r-+-type local singulari- 
ties as well as first-order terms, the emphasis here is on methods rather than 
results. Our main purpose is to develop the new and in principle very simple 
technique of local distortions for proving unitarity of the S-matrix via a direct 
proof of the “generalized optical theorem” ([8, p. 191, Eq. (7.6711 and our 
theorem). Complete sets of incoming and outgoing (generalized) eigenfunc- 
tions or delicate resolvent estimates are not needed for the proof. Most 
importantly, the method is developed with the many body problem in mind, 
and there seems to be a reasonable chance of extending this technique at 
least to the three body problem. In particular, we establish the meromorphic 
continuation of T(z) E Q + QR(z~)Q to the strip described above. \\‘e also 

see that the extended T(z) are locally “distortable.” Thus, the Faddeev 
T,-operators [6, 3.111 can be distorted, and we expect that similar local 
distortion arguments plus distorted Faddeev equations will lead to a Local 
distortion-analytic proof of the 3-body generalized optical theorem [9, 
Eqs. (3.10)-(3.12)] and thus, a proof of the unitary of the 3-hod!. S-operator. 

Our approach is strictly time-independent, and we make no attempt in 
this paper to connect our S-matrix with the S-matris obtained in the time- 
dependent approach via wave-operators. However, our definition of the 
S-matrix is in terms of the “on the energy shell” T-matrix and our deJinition 
of the latter is essentially [8, Eq. (7.41)] (but with the center of mass factored 
out) which is derived in [8] from the time dependent approach. [Ve should 
point out that we work in spherical coordinates (K, w) in momentum space. 
whereas (E = R”, W) are used (at least implicitly) as coordinates in [8]. Thus, 
several formulas in this paper will have slightly different factors than the 
corresponding formulas in [8]. 

Although local distortion-analytic techniques have been in the literature 
for some time, they do not seem to have been used to prove the unitarity of 
S(E). Nuttall [lo] used local distortion techniques to meromorphically 
continue the T-matrix U(E) as a function of E. (We thank Lawrence Thomas 
for pointing out this reference to us.) Thomas [19] used local distortion 
techniques to prove the absolute continuity of the continuous spectrum for H. 
His conditions on Q are different and allow the treatment of longer range 
potentials. Dilation analytic techniques [l, 4, 16, 201 are essentially ,olobaZ 
distortion analytic techniques. They cover longer range interactions, but it 
is not clear that they can be used to obtain simple proofs of unitarity. 
(Lovelace essentially gives a formal unitarity proof when Q is a Tukawa 
potential using dilation analytic arguments, see [7, pp. 443-4441. However 
it is not clear that his argument can be easily made mathematically rigorous.) 
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There are reasons to expect that at least as far as the spectral results are 
concerned, and presumably also for the scattering problem, the method can 
be modified to include longer range interactions. Naturally, the analytic 
continuations in za would no longer be two-sheeted. 

The paper is organized as follows: Section 2 contains several definitions 
and introduces various locally distorted Hilbert space. Section 3 derives the 
local distortion analytic properties of the interaction Q. Section 4 discusses 
the Hamiltonian H and its distorted resolvents. Section 5 introduces the 
various T-operators and the S-matrix associated with H. Section’6 contains 
the distortion analytic proof of the unitarity of S(E). 

2. DEFINITIONS AND NOTATIONS 

Let Sz be the unit sphere in [w3. Points in GJ are denoted by w and the usual 
usual measure on 52 by dw. L*(G) is the complex Hilbert space of square- 
integrable functions on D with the inner product 

The corresponding norm is denoted by 11 . IJo. 
Let p > 0 be a constant, which is fixed throughout this paper. 
For 0 < a < b < co we let 

R o,b ={xEC(a<Rez <b,IImzj <CL). 

We set R = R,,, and R, = {z EC 1 1 Im x / < ~1. Finally, R,” = R, - (0). 
We denote by Ma, the space of L2(fi)-valued measurable functions on 
(0, ~0) u Rrcb , which are analytic in R,, . For z0 E R,, we denote by 02 the 
space of L2(J2)-valued measurable functions on (0,co) u R,, , which are 
analytic in R,, except for at most a pole at z0 . Thus, &,, C fli: for z,, E Rab . 

We let C!! = Cl?,,, and Q”” = GZ,“m . Also, & is the space of L2(SZ)-valued 
analytic functions on R, . 

A positive distortion rajbrE is defined for 0 < a’ < b’ < a, c > 0 as an 
oriented path of the form L’aebr,E = I’, u I’, u r, u r, u L’, , where 
r~=(o,a’],r,={kECIlz=a’+it,o<t~F},r3={kEc(~=i~+t, 
d c t < b’j, r, = {k EC 1 k = b’ + i(, - t), 0 G t < Cl, r, = [b’, m). 

A negative distortion ra,b,.r is defined in a similar way for 0 < a’ < b’ < 03, 
E < 0. A (positive or negative) distortion is R,,-admissible if u < a’ < b’ < b 
and ( E / < CL, see Fig. l(a, b). 
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FIG. 1. (a) &-admissible positive distortion, (b) &-admissible negative distortion. 

1iT:e shall also need the following types of positive and negative distortion, 
called L,,,,l <. . ’ 2 

(a) Ibl 
FIGURE 3 

In what follows, all proofs are carried out using distortions of the mh,,-type, 
but it is clear that they are all valid for distortions of the I’abc,E1s2-type. 

Suppose that ra,b,,t and r,*,,-, are RR,,-admissible distortions and z, E Rnb . 
Let a < a, < min(a’, a”) < max(b’, b”) < 6, < b. Then we say that I’a,h,,E and 
r a-b”.< are R,,-homotopic relative to ,a, if a,, $ rararSS, u ra-a-,rv and 
r a,b,,C,\((O, a,) u (b, , co)) and r,-b-,,*\{(O, a,) u (b, , m)} are homotopic in 
Rnb’,,{qJ, see Fig. 2. 
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Note that ra,b,,E, and ra*b*,sn are always homotopic in Rab . Finally, if 
r = raa.c is a distortion, then r = rab,+ . 

Let r be an Rab-admissible distortion and let p E &, . Then vr denotes 
the restriction of ‘p to I’. ‘For any r, vPr determines v by analytic continuation, 
and we shall identify v with any qr, for example when we write ‘p E 0&, n Zr 
(see the following definition). If r’ is another R,,-admissible distortion, the 
analytic continuation map is defined for v E C?$, by (q+)=, E qr’ . Similarly, 
if z, E R,, , and r and r’ are Rab-admissible distortions homotopic with 
respect to 2s , we have the restriction maps qor and vr’ and the analytic 
continuation map(vr)rt defined for 9 E CZIl. 

For a given distortion r we associate several Hilbert spaces with r. Let 
CL = 0, 1 or -1. Then Xar is the Hilbert space of measurable L2(Q)-valued 
functions 9) on r such that 

II v iI:., = 
i 

ii &)llT2 (1 + I k i2)” I k I2 I f% I < 00. 
r 

The inner product is defined by 

We let 

In the usual way, &‘r, can be viewed as the dual of Xar by 

Note that &‘& are just the Fourier transforms of the usual Sobolev spaces 
E&([w3). Sometimes it is convenient to identify XEr withL2(P x G2; 1 k I"( 1 + 
1 k I") I dk 1 x ho). 

If r and r’ are R,,-admissible distortions, and Fr E Xar n G&, , then 
clearly (qr)r’ E .XPf’ n O&b . Similarly, if r and r’ are R,,-admissible 
distortions homotopic with respect to z. , and vr E Stir n cY~ , then 
(vr)r, E St?:’ I? O$,O . 
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We now define a sesqubilinear from on Zf, 1.: X*r as follows: 

We write (~3 $>co.d = (~7, $1. 
PROPOSITION 2.1. The form (., .)r defines a duality between XE, and J?‘;‘. 

Proof. (., .)= is continuous because 

I(% #Jr I G !I T hr.-a II # l!l-.a * 

We nest construct a unitary mappin U: ST, ---t ?F?, such that 

Let E > 0 and r -= r, u r, u I’, u r, u I’S be the decomposition of 
used in the definition of distortion, and set 

9 = T1 7 p2 + p)3 t pi -t p5 , where Fi = CpXr, ) i = l,...) 5. 

We define 1’ bv 

c-93 = PI 9 

-i(u - it)* 
leq2(a t it) = ( a + it ,*- 94~ - it), o<t<.:E; 

n < f < b: 

[.‘,Q 1. j(, _ t)) - jcb -- f(’ -- ‘)I” , b ,- l(E I t),2 d6 - i(’ - ‘))t 0 < t -:r E; 

r 

A direct calculation shows that li has the required properties. Rut since 
Xf, is the dual of Par by (2.1), it follows from (2.2) that (.. .)r is a dualit! 
between J@‘, and .Kir. 

PROPOSITION 2.2. Let 0 < a < b < co and let r be an R,,-admissible 
distortion. Then Zr n 6&, is dense in Xr. 

Proof. Let r,, = rn R,, , and let -#km, be the Hilbert space of L?(Q)- 
valued functions on r,,, with inner product (f, g:rab -lr,,J(k)g(k) I k I2 d : k j. 
Then .frC,, can be identified with the subspace of :Nr consisting of functions 
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with support contained in r,, , and it is clearly sufficient to show that 
6& f~ s?,,& is dense in Z’rab . 

The space sraII also can be thought of as the tensor productL2(r,b; 1 R 1”) @ 
L2(sZ), where Ls(r,,; ) k Is) is the usual L2-space of scalar valued functions on 
7,,, . Thus, the space of functions 

is dense in J?‘~, . 
Moreover, any function f E L2(r,,; 1 k 1s) can be c-approximated in the 

Ls-norm by a continuous function g. The function g in turn can be approx- 
imated uniformly be a polynomial p in k, by the Stone-Weierstrass theorem. 
Thus, the following space D is dense in &rab , 

PROPOSITION 2.3. Let 0 Q a -C b < 00 and z,, E R,, . Suppose r and r’ 
are R,,-homotopic relative to x0 . Then 

h > h-b = (w 3 h,>r, (2.3) 

forp,~~,~6Q,yGEXtif10&~~. 

Proof. The function (dh), 4(k))* is analytic in R,,\{z,}, hence, by 
Cauchy’s theorem 

5, Mb W))n k2 dk = s,, 646 IbWa k2 dk, 
which is just 2.3. 

For any pair #r, s2 of Hilbert spaces, we denote by 9(&i, s2) the space 
of bounded operators from X1 into Z2 and by %‘(Zr , X’2) the subspace of all 
compact operators from Z1 into .Y& . We write 5?(X) = A?(.@, Z) and 
U(iq = %(H, SF). 

We let Rf = (0, co) and Iw- = (- 00,0). 

3. THE INTERACTION 

Let p be the fixed constant introduced in Section 2. In configuration 
space, let r be the maximal operator of multiplication by (8rrp)-le-ur, 
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r = (x2 + y* + z2)i/*. The corresponding operator p’ in momentum space is 
convolution by the function (k2 + P~)-~. Thus, for suitable q~, 

We notice that K2 + kf2 - 2kk’w . W’ + y* = (kzu - k’w’)a + p2 $; 0 for 

kER,,, k’>O, w,w’EQ, 

and for 
k >0, K’ER,, w,w’~.Q. 

PROPOSITION 3.1. V is a bounded operator from -;U;, into L%f+1 . 

Proof. In configuration space the operator of multiplication by e-pr is 
bounded from H+, into H,, since 

V(e-ur#) = ecur(Vt/ - pt+!h1.), 

and hence, 

Since the Fourier transform is a unitary map of H+, onto ;X;, , it follows 
that V is bounded from X+1 into J?+~ . 

Let r be an R-admissible distortion and define V: #fi + A‘,?,, by 

PROPOSITION 3.2. Vr is a bounded operator from 3EPf, into X+l . 

Proof. Suppose r = r&,, and write I’ = r, u r, as in Proposition 2.2. 
Then Vr = Vrxr, + Vxr, . It is obvious from Proposition 3.1 that Vrxr, is 
a bounded operator from &fl to Z+r . Thus, it remains to consider Vrxr, . 
It is sufficient to show that 

m 
I”SJ s 

(1 + k*) k2(1 + / k’ I’) I k’2 ( 
,, Q r, s) i k2 + k’2 - 2kk’w . w’ + t.~” i* 

j dk’ 1 dw’ dk dw < CD. 

Clearly 
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and hence, 

< (16n)2 ii+,, (’ ‘,f) ” dk / (1 + I k’ I”) I k’ I2 d j k’ I < 00, 
rc 

and the proposition is proved. 
For q~ E E, , k E r, let 

v(k’, w’) k’2 
rfiTv(k w, = j-o&JO [k2 + 12’2 _ 2kk’w . w* + p2]2 dw’ dk’- c3*l) 

PROPOSITION 3.3. rV is a bounded operator from X1 into .%f, and for 
9)Eq1,+%, 

(6, $1 = W? V!J)r * (3.2) 

Proof. For Z,!I E .%‘?+r , by Proposition 3.2, V# E 2-r , and 

iI v# IL = .s$, l(v#, di = ,s$ I@, ~94 d II ~ll~~+,,~+~~ Ii $ Ii-1 . 
+ fl 

I!mll+l=l ,Iv~l+l=l 

Hence, V is bounded from the sense subspace A?+~ of Z.-r into X1, and 
therefore, bounded from Er into X1. Then it follows as in the proof of 
Proposition 3.2, that rV is bounded from X1 onto Xf, . 

To prove 3.2, we apply Fubini-Tonelli’s theorem to obtain 

#(k’, w’) k12 
= j-s, i?=j Midas, [k2 + k’a _ 2kktw . w’ + @]2 dw’ dk’/ k2 dw dk 

Changing variable from k to k, the last integral equals 

The-following Lemma contains an easy but fundamental estimate. 
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LEMMA 3.4. Let z0 EC, and let E > 0, 6 > 0 be such that 

D Z0.E -{(zECIIz- x0) <~~C(xEC~~lmz~ <p--S]. 

Let g, E ,X-, , f E L”(Q). Then there exists CZO,E,B such that 

x 

UI 

I dk’, 4i kz I f(w)i dw dw’ dk’ 5; CzO,r,G !’ p 1-1 /ifijn , 
.. R Q / z2 + k‘? - 2zk’w . w’ + $12 

for 2 E Dzo,, . 

Proof. Let KzO,, == K be such that 1 z/k / < lj4 for z E lIzO., . Let 

JfK+p = M = sup 
1 

ED. ,C 
0,k;K 

j 9 + K’2 - Tzkfw . w' + El2 12 - 

“,W ER 

We have for k > 0, z E DzO,E 

j x2 + k’? - 2zk’w . w’ + p* ( > (2~ - 6)6, 

SO 

&Jo,, d l (2p - 6) 6 - 

Moreover, for z E DzO,F , k > K, W, w’ ED 

1 

Hence, 

l(a/k’)2 + 1 - 2(zlk’) w . w’ -+ ($jk”)! 
c; 16. 

02 
J-II 

I dk’, w’)I k’2 If (w>l dw dw’ dk 
o a o 1 k2 + z2 - 2kzw . w’ + $12 

2: WI 9 IL II ~~.~ll+~ @W2 lib + 16 II v!!-, 11 k xtO.-) I/+* (4+‘2 It f IIn , 

where x(~,~) is the characteristic function of (a, b) thought of as an Lz(Q)- 
valued function. Thus, the Lemma is proved with 

c z,,,t,cv = (W”2 W II x(o.m IIt1 + 16 ll(W4) x(0.r) //d 
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PROPOSITION 3.5, For q E X1 , f e L2(52), 1 Im .z 1 < ,LL, let 

(3*3) 
The functionF&z) is analytic for j Im .a 1 < p. 

Proof. Notice first that by Lemma 3.4, the integrand is absolutely 
integrable over (0, co) >< Q x a with respect to dk x dw x dw’, so F,,,(z) 
is well defined for 1 Im z 1 < f~. Now we prove analyticity of F,,,(z) in any 
region D%,, defined in Lemma 3.4. Let C be a simple rectifiable closed 
curve in DZO,E. Then by (3.2) and Fubini-Tonelli’s theorem we have 

dk’, w’> k’2f (w) 1 
[z” + k’2 - 2zk’w . w’ + $I2 

dw dw’ dk’ dx = 0. 
! 

Hence, by Morera’s theorem F,,,(z) is analytic in DPO,E, and thus, for 
[Imzj <p. 

PROPOSITION 3.6. Let r and I” be R-admissible distortion. Then (a) 
‘V(sQ C amI (b) for go E& , (‘V&-s = Vq, (c) (Vq)(-z, -w) = 
(VV)(z,w)forzER,, WEQ. 

Proof. Let ‘p E .E, , and set 

By Lemma 3.4, for f E L2(sZ) 

and hence, for fixed x E R, , G,(z, w) E L2(Q). 
By Proposition 3.5, the function J G,Jx, w)j(w) dw = F,,,(z) is analytic 

for ) Im z j < p for every f E L2(sZ), so G&z, *) is an analytic L2(Q)-valued 
function in R, . Combining this with Proposition 3.3, we obtain 

(a) ‘VT = G, Ir E GYW . 

It follows from (2.3) that 

(b) V’di-, = ((G,),),~ = (%)I-, = “b 
Property (c) is obvious. 

PROPOSITION 3.7. Let y E A!?+, n GZii and let r, r’ be R,,-homotopic 
distortions relative to z0 . Then 
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Prooj. It is clear that for fixed k > 0, w E Sz, the function 

is in CY as an L2(Q)-valued function of k’ E R, and therefore, 

is analytic on ROb\{xO}. It then follows by Cauchy’s theorem that 

J,-ryr(k . w) = 1s 
p(k’, w’) dw’ 

. r R [k2 + k’? - 2kk’w . w’ + ~~7 

v(k’, w’) dw’ 
K’2 - 2kkfo . wr + # = fi’l-‘vr,(k, w). 

We now define two additional families of operators associated with 1’, 
which are parameterized by z E R,. , 

PROPOSITION 3.8. T;,(z) E 9(L’(.n>, X+1), o@) E “qjv_ 1 > Jwm for 
ZER,, and 

L,J’@) a,f> = (P), J’-&>fh (3.5) 

for ql E -c, , f EL2(Q). 

Proof. The first result follows from 3.2, and (3.5) follows from (3.2) and 
Fubini-Tonelli’s theorem. 

PROPOSITION 3.9. V,,(x) is a holomorphic functionfrom R, to -E”(L2(Q), J?+~), 

and ,,V(z) is a holomorphic function from R, to -Ep(x_, , L?(Q)). 

Proof. By Proposition 3.5, for 9 E X1 , f E L2(9) the function 

F,&) = (fl OJwd, 

is analytic in R, . This implies that the 9(X-, , L2(Q))-valued function 
,T’(z) is holomorphic in R, . 

In the same way it is proved that V&z) is holomorphic in R, . 
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Notice that by the definition of IT and eI(x) we have 

V&, w) = ,V(h) +I). (3.6) 

We now make our 
Basic assumption on the interaction Q: There exists a self-adjoint compact 

operator U from cX+, into X1 such that 

Q = l,‘UL’. 

By self-adjointness of U we mean that 

(43 99 = (P, UN? for ‘p, * E *+I . 

EXAMPLES. The following operators 0 on configuration space are compact 
from H+, to H-r . Conditions for compactness can be found in [3, 12, 13, 151. 

1. A multiplication operator corresponding to a real-valued locally 
integrable function U(F), which has at most r- 2+G-type local singularities and 
goes to 0 as Ill---f 03. In terms of Q, this implies multiplication by 
e-2U7r-m, 0 < 01 < 2, (in particular 
e-(2u+ElT) e-2, p > 1, 

the Yukawa potential e-2*rr-1), 
and any locally integrable potential with compact 

support and at most r-2+E-type singularities are admissible. 

2. A first-order differential operator (l/i)@(r) . V + V . 6(r)), where 
b(f) = (b,(f), b,(f), b&N, and the hi(f) are real-valued locally integrable 
functions that have at most r-l+F-t ype local singularities and go to 0 as 
/ F j -+ co, while V6 is locally integrable, has at most r-2+f-type local singu- 
larities, and goes to 0 as ) F ( - GO. 

This condition is satisfied, for example, by the functions y-l-ts, and any 
function with compact support that is smooth, except for at most isolated 
r-l+‘-type singularities. 

Thus, the corresponding operator U in momentum space will be a compact 
self-adjoint operator from Z+i to X.r . 

4. THE HAMILTONIAN AND TE ~-DISTORTED RESOLVBNT 

We define the Hamiltonian H by its quadratic form as follows. The 
sesquilinear form H is defined on Xi x X1 by 

H[cpv $1 = W + Qh $4, % 4 E Kl . 
This is a well-defined bounded sesquilinear form, since k2 + Q is bounded 
from &?+I into X1 . We can write (09, I/) in the form 

(8~9 $1 = W + I)-‘8~ $)+I 7 
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where the operator (A2 + I)-‘0 is compact from -X,, into tikl . Then it 
follows from a result of Stummel [18, Satz 9, p. 361 that for every E 3;- 0 

This in turn implies that for some K 31 0, Kr > 0, 

3 I/ pl i!‘$l < H[v, PI i- K Ii P 1,’ < Kl il TJ ii?1 . 

Then by the theory of Friedrichs (see, e.g., [15]), there corresponds to H 
a unique self-adjoint operator H in X with domain 

Qi = (9’ E X+, 1 H[F, $1 is defined for all 4 E 3) 

and defined bq’ 

Moreover, PH is a core for H, i.e., the closure of L&:H in ,*I is & . 
The operator H is the Hamiltonian of our system. We denote its resolvent 

set, spectrum, essential spectrum, discrete spectrum, point spectrum, 
absolutely continuous spectrum, and singular continuous spectrum b> 

p(H), u(H), c,(H), Q(H), u,(H), u&O and a,,(H), respecti~+. 
Bv the assumption on $2, H can be considered as a bounded operator from 

XL1 to -K, . \Ve denote by p(H), 6(H), CT,(H), and Gd(H) the resolvent set, 
spectrum, essential spectrum, and discrete spectrum of HE LP(Y+l , Xl). 
Thus, p”(Zi) = {a EC ) (H ~- z)-’ E 6p(Zl , .Y?+~>, a(H) == C\p(H), GJH) is 
the set of poles of (H - 2)-l: At, - Z+l , and 6,(H) = c?(H)jG,(H). 

We shall now establish the identity of various parts of the spectrum of the 
self-adjoint operator H in Z and that of HE Y(.YL’;, , <W-J. 

PROPOSITION 4.1. u,(U) = S,(H) = [0, co), and ~,~(a) = cd(H). 

Proof. Suppose z Ed”, then for F E X 

ii(H - x)-Xv /I < ii(H - z)-$ jltl < K I; q~ ~ -1 < K jl v j/, 

so z E p(H) and ll(H - 4-l //zw) < !I(H - +” IIY(~~~..F+,) . The self- 
adjoint operator H is bounded below, so there is a K > 0 such that X E p(H) 
for A < -K. Now let h be any such real number, then H - X is positive 
definite, and (H - h)lj2 is self-adjoint with domain .ri”,r and range 2’. Bq 
the open mapping theorem (H - A)-‘/? is bounded from Y onto K+, The 
adjoint of (H - X)-l/” E 2(X, T+,) . IS in -Lp(,K, , &?) and coincides on 2. 
with (H - )o-l~~. Hence, (H - X)-l is bounded from 2 with the K,-norm 
to XL, ( and since X is dense in -XI, , (N - A)-’ E =Y’(-WI., , Xy_J. 
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Now consider the second resolvent equations 

W) = &M(l + Quw, 

R,(z) = R(z)(l - QR(z))-‘, 

viewed as equations in 9(X, , &?+i). 

(4.1) 

(4.2) 

The operator Q&(z) is a %(X-,)-valued analytic function on C\R+, hence, 
(1 + Q&(z))-l is a meromorphic 9(X,)-valued function on C\W+ if 
(1 + Q&(z))-l E 5?(A6Yl) exists for some z. But for z = X < -K, 
R(h) E 9(X-, , #+i), and since I&, - h E 2(X+, , Xi), it follows that 
(1 + QRo(X))-1 E 9(X,). It follows that R(z) is a meromorphic 9(X1, X+r)- 
valued function on C\R+, i.e., G@) C R+. Similarly, H - h E 9(X+,, Ki) 
for h < -K, and R,(h) E .Ep(xLi , Z+J, hence, (1 - QR(X))-l E 9(X,). 
The operator &R(z) is a 9+&)-valued analytic function in the domain of 
holomorphy of R(z) E dp(3E”_, , X+r), so (1 - QR(z))-l is a meromorphic 
9(.X??-,)-valued function on p”(H), and hence, R,(z) is an 9(&?-r , Z+i)-valued 
meromorphic function on p(H). 

It follows that 6+(H) = [0, co). Since p(H) C p(H), it follows that 
u,(H) C [0, co), and u#Z) C G&Y). 

Now let A, be a pole of the meromorphic 9(X, , 2+,)-valued function 
R(z). Then the equation (H - A& = 0 has a nontrivial solution in Z+r and 
it is clear that q belongs to the domain of the self-adjoint operator H. Hence, 
&(H) C cd(H). 

It remains to be proved that every h > 0 belongs to o(H). We prove this 
indirectly, assuming there exists h > 0, X E p(H), and hence, t.~ E p(H) for 
1 TV - h \ < E. We will show that this implies h Ed”, in contradiction with 
the above result. Let 

where EA is the spectral family of H. Then HI - h and h - H2 are positive 
definite and invertible, and 

(H - X)-l = (HI - X)-l @(-(A - H&l). 

It suffices to prove that (HI - X)-l and (A - H.&l are bounded from 
(1 - EJX and E,&‘, respectively, with the &?-r-norm into .z@‘?+.~ . This in 
turn follows if we prove that \ H - h 1-1 = I(H - X)-l 1 = (HI - A)-l @ 
(A - H&l is bounded from A? with the &‘-r-norm in #+, . The operator 
1 H - X )1/2 has domain 

9(1 H - h [1:2) = 1~ ES= 1 Irn ( /.L - h / d(Eup, cp) < LYJ! , 
b 

where A, < -K. 
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Clearly this equals 

Thus, 1 H - X j-lj2 is bounded from Z onto X+r . Then the adjoint is 
bounded from X1 into 9. Since it coincides with / H - h l--l:* on the dense 
subspace H of X1, it follows that [ H - h l-Ii2 has a bounded estension as 
an operator from X1 to Hi, . Thus, X Ed”, a contradiction. 

In what follows we consider the resolvent R(z2) as a function of z in the 
upper half-plane. Then by Proposition 4.1, R(9) is a meromorphic function 
of z for Im z > 0 with poles on the positive imaginary axis, considered as an 
9(X)-valued function or an J.?(J??, , X+,)-valued function. The poles {ikJ 
of R(9) are the eigenvalues {-K,2) of H. 

We now proceed to the definition of the r-distorted resolvent. 
Let r,, = r (i.e., r = rabsr or rahe,rlrl) be an R-admissible distortion 

and let Cr be the connected component of C - {Tu (--r) u (0)) that 
contains a + b/2 in its interior. For .z EC, , let R,,r(z2) be multiplication by 
I /Kz - z2 acting on .%f, . Since I + k2/k2 - 9 is bounded on r, it is clear 
that R0r(zz) E Y(Zf, , .#&). Ror(z2) IS called the r-distorted free resolvent. 
It is also clear that Ror(z2) is a holomorphic function from Cr into 
9(Hf,, X:$,). Then by Propositions 3.2 and 3.3, the operators R,r(z’)rl -1.‘1’ 
form a holomorphic V(Z:i)-valued function on Cr. The operators 
R,,r rI’L.‘l-r are called the r-distorted Lippman-Schwinger operators. By 
Corollary 4.4 below, (1 + ROr(xz)rTWVr)-l exists for some z0 E C, , and 
hence, (1 + R,,r(~z)rVUT,‘r)-l is a meromorphic 9(&S,)-valued function 
on C, [l I]. The point x0 is a pole of this function is and only if the equation: 

has a solution (clr f 0 in Zf, . 
The operator Rr(.z2) G (1 + ROr(z2)rl~‘C~C’TT)-1 Rr,(z’) is called the 

r-distorted resolvent. Note that Rr(.zz) is a 9(X<r, XC&valued meromorphic 
function on C, with the same poles as (1 + R,r(~2)rl’UF’)-1. 

LEMMA 4.2. Let z,, E C, , and let r,, and r,:.,,. be distortions that are 
R-homotopic relative to x,, . Let c < min(a, a’) < max(b, b’) < d and let 
~~.P~ln~~~. Suppose that IJ~ is a solution of 

(1 + Ror(~02)r?‘L’l’r)#r =I vr. (4.3) 

Then $r E 3yS, n 67:: and 

(1 + Rf’(xo’)” l’UVr’)#r, = qr’ . (4.4) 

409!5412-3 
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In particular, ;f #r is a solution of 

(I + R,+#-VUvq~, = 0, 

then qbr E Xc1 n C??fi and 

(4.5) 

(1 + R;‘(q)yr vUvr’)&, = 0. (4.6) 

Proof. It follows from Proposition 3.6(a), that rVUVr~r~ XT1 n GZ. 
Since H,r(~,,2) creates at most a pole at z,, and maps &‘f, to XfI , it follows 
that R,,r(z,,2)rVUVr#, E ZTL n ~72”~. Thus, & = vDr - R,,r(z~)rVUVr#, E 
2q1 n 67:; . 

We can then apply the analytic continuation map to (4.1) to obtain, using 
Proposition 3.6(b), 

$r* + g’(.Z,2)r’ VUVr$br = qlrS . 

By Proposition 3.7, Vr#r = Vr’#,, , and thus (4.4). 

LEMMA 4.3. Let z0 E Cr and suppose rabSE and rA,b.,s are distortions that 
are R-homotopic relative to x,, . Then (a) Rr(zz) exists ;f and on& f Rr’(zz) 
does, and (b) for q, $ G AY1 n G& , with c, d as in Lemma 4.2, 

(W 7 Rrh2)cC/r)r = (VT’ 9 Rr’b2)$r,)r* - (4.7) 

Proof. (a) Suppose Rr(z,,“) does not exist. Then 

(1 + R,r(zo2)‘VLJVr)#r = 0, 

has a nontrivial solution Ibr , and by Lemma 4.2, #r E @ri and 

(1 + R,r’(zJr’ VUVr’)&-. = 0. 

Here $r, is nontrivial, since otherwise by analytic continuation #c would 
be 0, and hence, Rr’(z,,z) does not exist. 

(b) Assume now, that Rr(.z,,“), and hence, by (a), Rr’(zo2) exist. Then 

(1 + Ror(Z,2)rVUVr)8r = Ro’(~~“)#r, 

has a solution r!Ir in Yf, , and by Lemma 4.2, fir E CXzi and 

(1 + R;‘(zo”)” VUVr’)+ = R;‘($)$,, . 

Note that 8, == Rr(z,*)#, and 8,, = Rr’(zo2)+r* . Then applying Proposi- 
tion 2.2 we have 
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COROLLARP 4.4. The poles of the meromorphic 9(#f, , %f,)-valued 
function Rr(z2) can ody occur on (a, b) or in the interior of the rectangle 

fr, u [a, 0 

Proof. If r’ = (0, co), S’(9) has no nonreal poles. If za belongs to the 
exterior of the rectangle {r, u [a, b]}, then I’ and r’ are R-homotopic with 
respect to zof and by Lemma 4.3, .a,, cannot be a pole of Rr(.zs), since this 
would imply that a, was a pole of R(s*). 

DEFINITION. A point a,, such that Im .a0 < 0 is called a resolz>ent resonance 
if either of the following holds, 

(a) Rea,, > 0, Rr(z2) has a pole at .q, for some negative distortion r 
(Fig. 4a). 

(b) Re za < 0, Rr(S) has a pole at - a,, for some positive distortion r 
(Fig. 4b). 

FIGURE 4 

Remark. The function .z2 maps R,,* in a one-to-one way onto a parabolic 
subset of the two-sheeted Riemann surface of .zV. The upper half-plane 
corresponds to the first (physical) sheet and the lower half-plane to the 
second sheet, hence, the definition of resonances. 

,4 virtualpole is a point a,, on the negative imaginary axis such that q,(-zs) 
is a pole of Rr(z2) for some negative (positive) distortion r = Kohl. E E ‘12 
(Fig. 4). 



334 BABBITT AND BALSLEV 

In agreement with the above definitions, a discrete eigenvalue of H is a 
point aa on the positive imaginary axis such that R(9) has a pole at zO, i.e., 
such that .z,,” is an eigenvalue of H in the usual sense. 

We denote by G the set of points z E R,O, such that x is not a discrete 
eigenvalue, a resonance or a virtual pole of H. 

It follows from Lemma 4.3, that a resonance a, is a pole of Rr(z2) for all 
distortions r that are not homotopic to (0, co) relative to a0 (if Re x0 > 0) or 
-x0 (if Re z. < 0). 

Remark. If z. is a resonance, then any nontrivial solution $r E Zfr of 

(1 + Ror(Z~)rVUl’r)#r = 0 

is called a resonance state corresponding to za. Note that #r E Gpl”o (resp. crl-*o) 
and z. (-zo) is a simple pole of (clr . 

LEMMA 4.5. Let 0 < c < d < co and let (p, z,b E A!‘?, n OZC, . Then 
the function (q~, R(S)$) h as a meromorphic continuation to the region 
(x EC I Im z > 0} u R,, u (-Red}, with poles occurring at most at discrete 
eigenvalues, resonances and virtual poles of H. 

Proof. By the compactness of R,(z2)VUV on X?+r, Im z > 0, the 
function R(9) = (1 + Ro(z2)VUV)-1R0(z2) is a meromorphic .5~?(&+~)- 
valued function for Im a > 0 with poles at the discrete eigenvalues of H. 

Hence, (v, Rk2)1Fr) is meromorphic in the same region. 
We define the meromorphic continuation F@,Jz) of (v, R(z*)#) as follows. 

Let x be a point in R,, with Im z < 0, which is not a resonance, and let r, 
be a negative R,,- admissible distortion which is not R,,-homotopic to 
(0, 00) with respect to z. Set 

By Lemma 4.3 this does not depend on r, and 

%.&> = (‘9, Nz2hb for Im z > 0. 

A fixed negative R,,-admissible distortion r = rC,d,,E is a r, for every x 
in the interior of the rectangle bounded by r and [c’, d’] and on (c’, d’). The 
function Rr(z2) is a meromorphic 2’(.%<r, %$J valued function in 
(x 1 Im z > 0) u Re,d,Vc with poles at the resonances in {z 1 Im z < 0} n Re*d,,c. 
Hence, &,Jz) is meromorphic in the same region. Since {z 1 Im z < 0) n Red 
is the union of all such regions, we have obtained the meromorphic continua- 
tion of (cp, R(z2)+) into {a j Im z < 0} n Red. Similarly, we define the 
meromorphic continuation into {a j Im z < 0) n (-Rrd}, using positive 
distortions not homotopic to (0, c;o) with respect to -z. . 



DISTORTION AND UNITARITY OF L%U.~TRIX 335 

LEMMA 4.6. A point z, E Ri- is a resonance if and only if it is a positive 
ezgenvalue of H, and in that case z,, is a simple pole of Rc&z”) for 0 < a < 
-,<b< x. 

Proof. Let a,, > 0, and let RGa,, be such that 0 < a < z,, < b < co and 
R Ub,E!q, does not contain any resonances. Let r be an R,,,,-admissible negative 
distortion, and let v, 4 E A‘ n G&, , so yr E ,X, n l&,, , t,hr E .;lu;. n &,, . 
Denote b? PzO the projection on the eigenspace of H corresponding to z,, , so 
that P, 0 ;-; 0 if and only if z, is an eigenvalue of H. Then for 0 < 6 < 7r/2, 

and hence, 

By Lemma 4.3, for Im z > 0 

By Proposition 2.2, A? n e/,, is dense in SF and Xr n flub is dense in Zr. 
If Pz, =: 0, there exists q, , $,, E 2 n @,,,, , (such that (q+, , PzO , CL,) ~& 0, 

so (vr , Rr(z2)#,) has a simple pole at a,, , and z, is a resonance. 
Conversely, if z, is a resonance, there exist vr, z,!I~ E A$ n G!“,, such that 

(qy , Rr(z2)#,) has a pole at x0 , so (9, P,,#) # 0, and z0 is an eigenvalue. 
We have also show that z, is a simple pole of Rr(z2). 

If z, < 0, the proof is similar, using positive distortions. 

COROLLARY 4.7. The singular continuous spectrum of H is empt>r, the 
absolutelp continuous spectrum is [0, co) and the point spectrum accumulates at 
most at 0. 

ProoJ By Proposition 4.1, a,(H) = [0, z,). 
It follows from Lemma 4.5, as in [I, 41, that the spectral family of H has no 

singular continuous spectrum on any interval [E, K] C (0, CO). Moreover, b! 
Lemma 4.6, the positive eigenvalues have no accumulation point in an! 
interval [E, K] C (0, m). This implies, that u,,,(H) = [0, ~xJ), and that the 
point spectrum accumulates at most at 0. 
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Remark. Under rather weak conditions on Q positive eigenvalues are 
ruled out. If for example Q is a radial, multiplicative, dilation-analytic poten- 
tial, this is known (cf. [17]). Thus, for the potentials r-“e-“rB, OL > 0, /3 3 1, 
it holds. We conjecture, that this holds generally under our assumptions. 

The next Lemma will be useful in defining the analytic continuations of 
the various T-operators discussed in the next section. 

LEMMA 4.8. The .LP(xI_, , .X+,)-valued meromorphic function W(x) = 
VR(9)V in {z 1 Im z > 0} has a meromorphic continuation W(a) to R,O that 
is analytic in G. 

F’yooj. For z E G, z not on the negative imaginary axis, let r = r, be as 
defined in the proof of Lemma 4.5. For z on the negative imaginary axis let 
I‘, be a distortion of the type rabC.E1E2 . Then we define m’(z) by 

l@(z) = Vr~Rr+2)r.V. 

Then m’(z) is a bounded operator from X1 to X+, . For z.not on negative 
imaginary axis, this definition is independent of r, , since the matrix elements 
(cp, VrzRrz(z2)rzV$) = (‘~VCJJ, Rrz(zz)rzV#), q~, 4 E S& , are independent of 
r, be Proposition 3.6 and the argument of Lemma 4.5. For x on the negative 
imaginary axis, the same argument shows the independence of r, within the 
class of positive distortions as well for r, within the class of negative distor- 
tions. The following proof will then show that distortions rccbe,E,rl lead to the 
same operator for or , c2 > 0 and e1 , E* < 0. In order to prove the Lemma 
it is now sufficient to show that for p, # E X1 , the function 

has a meromorphic continuation to R,O, analytic in G. By Proposition 3.6, 
the functions VP, and VI,L are analytic in R, , so by Lemma 4.5, FO,,,(z) has 
a meromorphic continuation to R u (-R) with the above restriction on the 
poles. Using contours of the type I’abc,rlr, we obtain by the argument of the 
proof of Lemma 4.5 meromorphic continuations S,‘.Az) and X;,&(z) of 
9a,JI(z) across R+ and R- to the regions R,O\R- and R,O\R+, respectively. 
It remains to be shown that for z on the negative imaginary axis, z not a 
virtual pole, 

3;,(z) := s-;*&(z). 

Let z, = --it, , to > 0 be such a point and let r = rabc,elce be a negative 
distortion not homotopic to R+ with respect to z, . Then 90,s(zo) and 
c~~,d~o) given by 
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?Vriting 

and 

XrL = (1 + rVC’z’~R,r(Zn”))-‘( r$f+ ) 

we have 

xrr = (Z-l& - ~z-LvRo~(zn2)xr:~, (4.8) 
and 

xr- C ( zy)r - f‘z-Uz’9?~n(Zn~)x,-. (4.9) 

By Proposition 3.6 (a) and (b), the functions xr and XT- are in R, , and 
setting XT’ = (x~+)~, we have by Proposition 3.6(c), 

Then 

xr% I w) = x+(-z0 ) -co). (4.10) 

By (4.10), the last two terms cancel, so 

F=R,&“) xr-(k, w) =I T’rR,,r(zo2) xr+(k, w). 

Then, by analytic continuation of Eq. (4.8) tof we have 

Xr- + ‘Cr~J~fRof(~,“z) xr-l- = ( l-#)r. 

Thus, ,Q=- is solution of the same Eq. (4.9) as xr-, and hence, xr- =: ,yp-, i.e., 
the function xr+ and XT- are analytic continuations of each other. 
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Let x be the analytic function on R, , such that xr = x,-+ and xr = xr-. 
Then we have 

Now, by a similar residue calculation, 

-- 
By Proposition 3.6(c), Vq(--x0) and x(2,,) are reflections in the origin of -- 

(Vcpz+) and x(-za), respectively; hence, the two last terms in (4.11) and 
(4.12) are equal, so 

We now derive the adjoint properties of the distorted resolvents. 

PROPOSITION 4.9. lj -%,, is a pole of Rr(z2), then z,, is a pole of Rr(.$). 
If r is an R-admissible distortion and z,, is neither a pole of Rr(z2) nor an element 
of r u (0) u {-PI, then for ye E A?!~ , I,L E &?f, , we haoe 

(VP, Rr(z,2)1Gr)r = (W%‘)P~ 3 $r)r - (4.13) 

Proof. Assume that --%a is a pole of Rr(9); we shall prove that z0 is a pole 
of Rr(z2). Since -4 is a pole of Rr, there exists ‘pr E XT, , vr # 0, such that 

(1 + Ror(~02WJW~~ 9 #r>r = 0% 

for all lCrr E Z’f, . But it is clear that 

(R~r(s”)% 7 1Grb = (Irr,, Wt~o”)#r)r, 

r for all fl E Xwl , and thus, by Proposition 3.3 and self-adjointness of U we 
have 

(w ,(I + r~U~‘rRor(q,2)>~,), = 0, 

for all #r E.%rl. Thus, 1 + rVUVrROr(z,,2) is not onto X’f, because 
(., .)r is a duality. But 

1 + ‘VUVrR,,r(z,,2) = (k2 - zo2)(1 + ROr(x,z)rVUVr ROr(z~), (4.14) 
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and Rsr(z02) is an isomorphism from XL, to Zfr , whereas I? - ass is an 
isomorphism from %<I to Zf, . Thus, 1 f R,,r(~ss)rI:UC~r is not onto 
Xf, , which means that z,, is a pole of Rr(.zs). 

Thus, if “no is not a pole of Rr(z*), then -%a is not a pole of Rr(zs), and 
moreover, by (4.14), 1 + rJVJ~rR,r(st,*) is an isomorphism of XT, to .A@, 
and 

Rpf,2) = RoJ-(xo”)( 1 + rJ,,-UI;rR,r(Z,,“))-‘. 

Note also that for pr E ZTr, #r E Zfr , 

5. 17~~~~~~ T-OPERATORS AND THE S-MATRIX 

Let Q be as above. There are several T-operators that are used in scattering 
theory. They are essentially all the “same operator,” but defined on different 
spaces. We will also introduce distorted T-operators that bear the same 
relation to the corresponding usual T-operators as the distorted operators 
rJ-, rVs(z), etc. to I’, J-,,(a) etc. The basic T-operator is 

T(z) = Q - QR(z”)Q = J’UJ’ - J’UL-R(S) J’C’J’ 

= vuv - VlJW(Z2) C’V, Imz>O. 

From Section 4 we see that T(z) is a meromorphic %(&@+, , .X_,)-valued 
function in the upper half-plane with poles at discrete eigenvalues of H. 

Let r and r’ be R-admissible distortions. Then the r - P-distorted 
T-operator is defined by 

By the results of Sections 3 and 4 we see that =Tr’(z) is a %(&‘f; , XTr)- 
valued meromorphic function in the upper half-plane with poles at discrete 
eigenvalues of H. 
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By Lemma 4.8, T(z) and rTr’(z) can be extended to meromorphic 
q@:; , ST,)-valued functions on R,O, analytic in G. The continuations 
T(z) and ‘pr’(z) are given by 

and 

F(z) = PUV - Vmv(z2) UK, 

The operators T(z) and r Tr’( z ) are called the full and the full r - r’ distorted 
T-operators, respectively. They will be important in the three-body problem. 
More important for two-body scattering theory are the following distorted 
partial T-operators. Let z E R,O and let r be an R-admissible distortion. 
Then we define the r-distorted partial T-operators rTo(z) and ,Tr(z) by 

rTo(z) = f IWl’,(z) - VU@(z) W,(z), (5.la) 

oTr(z) = oV(z) UV - oV(z) U@‘(z) UP. (5Sb) 

From Sections 3 and 4 we see that rTo(z) is a V(L2(Q), &‘f,)-valued func- 
tion meromorphic on R,O, analytic on G. ,Tr(x) is a %‘(2?z1 , L2(Q))-valued 
meromorphic function on R,O, analytic on G. 

We now define a family of T-operators on L*(Q) that are close to the 
standard T-matrix. For z E G we define 

oTo(z) = oV(z) We(z) - oV(z) U@(z) L%‘,(z). (5.2) 

Again from Sections 3 and 4 we see that oTo(z) is a %7(L2(9))-valued 
meromorphic function on R,O that is analytic on G. 

Let z E G. The T-matrix for H is defined by 

U(Z) = z,T,(z). 

The function U(Z) has the same analyticity properties as ,T,(z). 

DEFINITION. The S-matrix of H is the operator in P’&“(Q)), defined 
for E > 0 (E not a positive eigenvalue) by 

S(B) = 1 - 7riu(m”). 

Remark. If z > 0, T(z) is sometimes called the “on the energy shell 
T-matrix.” It also follows automatically from the properties of B(z), that 
S(E) has a meromorphic continuation as an 9(L2(Q))-valued function of Er/s 
to the region R,O, which is analytic in G. 
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PROPOSITION 5.1. S(E) is unimu~ if and ontjl if 

&(B(E’j”))* 1T(E’i2) = viU(El/*)(U(E”‘))* = (u(E1:2))* - u(ZW). 

Proof. This is a simple calculation. 

PROPOSITIOX 5.2. S(E) is unitary if and on& if 

nE1’“(oT,,(E1, ‘))* T,(l?:“) == z&W2 ,T,,(E’ “) (,T,@“))* 

= (OTO(E1”))* - oT0(E1’2). 

Proof. Obvious. 

(5.3) 

In our formulation, the main objective of this paper is to prove (5.3). We 
now derive several properties of J(x) and T,(z) that follow easily from the 
properties of al’(z) and I’t,(z) and l@(z). We make use of the following. 

NOTATION. If -4 E L?(L”(sZ), Zf,), then d * E Y(~?fi , L’(Q)) is defined 
by 

Similarly, if BE 9(,X_, , Xii), then B* E 2’(X, , G’?+,) is defined by 

($9 Bv) = @*A 4, for 4, v E .Kr . 

PROPOSITION 5.3. Let z E G and let r be an R-admissible distortion. Then 

(rT,(z))* = ov(E) UP-r - J(z) u(bv(z))* uv, (5.4a) 

(,Tr(z))* := rWVO(z) - &Y@+))* W@), (5.4b) 

(,T&))* = J(5) W&z) - J(z) ~‘(I@))* z;V,6(z). (5.5) 

Note that if Imz > 0, (l&(z))* = (U’(z))* = I,‘R(.%*)T-. Also if E > 0 is 
not an eigenvalue, then 

(oTo(El/2))* == ,,V(F12) UL70(E1!2) - 0V(E1/2) U(l-R(E - iO)V) Crb7,,(E1;“). 

(5.6) 

Proof. Using the above notation, Propositions 3.3 and 3.8 say that 

(“T/(x))* = Y”(Z), (v&))* == “F(2), 5, 
and 

(p-r)* _ rv, (i-Q+ = I.-r, 

Csing this, the self-adjointness of U and the usual order-reversing proper- 
ties of adjoints, the proof is immediate. 



342 BABBITT AND BALSLEV 

PROPOSITION 5.4. Let z E G, let r be an R-admissible distortion and 
f E Lz(sZ). Then T,,(z)f E &??I n Ul, (,T(z))*f E XI n @ and 

(T&)f )r = rTLl(4f, (5.7) 

((,w))*f )I- = (lJ%))*f~ (5.8) 

Moreover, for E1j2 > 0, not an eigenvalue, 

To(El’“)f(El/2) = ,T,(E'qf, (5.9) 

(,T(E1~2))*f(E1/2) = (,T&W2))*f. (5.10) 

Proof. By (5.la) and (5.4b) with r = (0, oo), T,(z)f and (,,T(z))*f are 
given by 

T,(z)f = V(UV,(z) - Ulqz) UV,(z)), (5.11) 

(J(z))*f = v(wo(q - r;(bv(z))* UV&)). (5.12) 

Then the first assertion and (5.7) and (5.8) follow from Proposition 3.6, 
and (5.9) and (5.10) follow from (3.6), (5.2), and (5.6). We now prove an 
off the energy shell version of the unitarity condition (5.3). 

PROPOSITION 5.5. Let z be such that Re z > 0, 0 < Im z < p. Then 

(~oW*M~~) - &(~2>1 Tab) 

= J(z) UVT(z2) WV,(z) - J(z) UV’R(z2) VW&). (5.14) 

Proof. Recall the first and second resolvent equations 

R(z2) - R(9) = (z” - z2) R(z2) R(3) = (9 - ,s*) R(z2) R(z2), 

and 

R(z”) = R,(z2)(1 - VUk’R(z2)) = (1 - R(z”) VW) R,(z2). 

These equations are valid in p(X), and since H is a dense subspace in 
XL,, and the left- and right-hand side are in Y(&C, , c%?+~), they can be 
extended by continuity to X1 . We shall also use the first resolvent equation 
for R,(z2) ip Y(xL1 , Z+i). 

By the definition of T,(z) and Propositions 5.; and 5.4 with r == (0, co), 
the left-hand side of (5.13) equals 

oV(z) UV[l - R(.c?) VUV](R,,(z2) - R&z2))[1 - VUVR(z2)] WV,,(z). 

(5.15) 
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Then applying successively the first, the second, and the first resolvent 
equation, we obtain the following expression for (5.15), 

(9 - ,qO?-(H) W[l - R(9) VLV](R,(Z~) &(z’))[l - P’C’I X(9)] s-L?&) 

= (2 - 5-‘>()qq UVR(5”) R(S) VUV,(z) (5.16) 

== ,,l;(z) (‘L-R(S) VW,(x) - ,,V(s) UP-R(S) Wl,(x), 

which proves (5.13). A similar calculation establishes (5.14). 

6. UNITARITY OF THE S-MATRIX 

Throughout this section, E will be a positive number that is not an eigen- 
value in the usual sense. It is the purpose of this section to prove unitarity 
of S(E) by establishing (5.3). This is obtained from (5.13) and (5.14) through 
a limiting process. 

PROPOSITION 6.1. Suppose E > 0 is not an ei,,envalue of H in the usual 
sense and f E La(Q). Then 

$J$,I’(E - ir)1/2 UVR(E + k) P’W,,(E -t ic)l ’ 

- ,,V(E - ic)lj2 UVR(E - ic) VCrb-&E + ic)’ ‘Jf (6.1) 
z= (,,T&E’/‘))* - OTO(E’/‘)] f 

ljr$&(E -+ i,)lln WR(E + k) VC’V,(E - ic)‘,‘” 

- oV(E + i~)‘/~ ZJVR(E - ic) VU;(E - i~)‘,‘~J.f (6.2) 
== [(OT,,(E1;2))* - OTO(E1”)] f, 

where the limits are in the L2(f2)-norm. 

Proof. Since the operator-valued functions OV(z), l’,,(z) and l@(z) are 
analytic and hence continuous at z = Ella in their respective operator-norms, 
we have 

ljz olT(E -- it)I12 CTVR(E + ic) 6?1;‘bi(E -1 ir)‘.‘” f 

== hi ,,I’(E - ic)‘i” U?f’(E t k) L;VO(E + it)‘;‘f 

== ,,[v(/3/“) [[G(E) ul,-,,(E’?)f z [--,T,(E’ “) -+ ,,r;(E’~“)] f. 

Similarly, 

b-7 “r’(E - ic)l’2 UP-R(E - k) VLVJE + ic)‘~‘f 

= [ -(,,T,(E’i2)) * + ,, FO(E’:“)] f, 

and (6.1) follows. In exactly the same manner we prove (6.2). 
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PROPOSITION 6.2. Letf,g EL.~(Q), then 

lj$f, (T,(E + i+*)* [R&E + k) - R,(E - k)] T,(E + i+zg)n 

= T~E’~~(,,T,,(E~/*)~, ,T,,(E1!2)g)n (6.3) 

l)m(f, oT(E + ie)l/* [RO(E + k) - R,(E - ic)] (,T(E + ic)l!*)* & 

= mW~‘(,,TO(E’~‘)*f, J,(El”)* s)~ . (6.4) 

Proof. Let 6, a, b > 0 be such that a2 < E < b2, and such that 
R,,,, v (-Ra6J does not contain any resonances or positive eigenvalues. 
Let E,, > 0 be such that (E -& ic)l/z E Rah,G for 0 < E < Q, . Let I’+ be a 
positive R-admissible distortion such that I’, n Rab,G = .E, and thus, 
f+, n R ab.6 = Di. Note that, letting I’- = p+ ; 

(a) because r*T,(z) is analytic in R,O, 

r*To(z) h r*To(4 g, (oW4 * f and (oT%)) * ,!Y? 

are continuous as functions of z from Rab,6 to J&Q, 
(b) r+ is R-homotopic to (0, cn) relative to (E - ir)lis and r- is 

R-homotopic to (0, 00) relative to (E + i~)l/“, 

(c) because Rr*(z2) is analytic as an Z(&?f:, Zf:)-valued function 
ina neighborhood of 

z = E1’2, II Rr*~z2)ll~c~~~,~~, , 

is bounded for z in a sufficiently small neighborhood of El/*. 
By Proposition 2.3 and the first part of Proposition 5.4 we have, using (b), 

(f, T,(E + ie)1/2)* [R,(E + k) - R,(E - k)] T,(E + ie)1/2g), 

= (T,(E + i~)l/~f, [R,(E + ic) - R&E - k)] T,(E + i+*g) 

= (To(W2)f, [R,(E + k) - RO(E - ic)] To(E1@)g) 

+ ([r+TO(E + i~)l’~ - r+To(E1’2)] f, R, r-(E + in) ‘-To(E”‘) g)r- 

+ (r+TO(E*“2)f, R, r-(E + k) [r-TO(E + i~“‘~) - r-TO(E”2)] g)r- 

+ ([‘+T,(E + &)I”* - r*To(E”2)]f, R, r-(E + ir)lt2 [r-To(E + i~)l’~ 

- r-~o(E1!2)1 s>i-- 

- ([‘-T,,(E + ic)1’2 -- r-To(E)1’2)]f, R,, r+(E - in) r+To(E1i2) g)r+ 

- (r-To(E1’2)f, R, r+(E - k) [‘“T,(E + i~)“~ - r-+TO(E1’2)] g)r+ 

- ([r--To(E + ic)1’2 - r-TO(E1’2)]f, R, r+(E - ic) [‘+T,(E + k)“‘” 

- ‘+To(E)“*] g)r, . 
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But by (a) and (c), all but the first term of the last expression go to 0 as 
E - 0. Thus, to prove (6.3) we need to establish 

~rn(T,,(E’.‘“)f, [II,(E + ic) - R,(E - k)] T,,(E’ ‘)g) 

== m’E1~2(,T0(E’~‘2)f, 0T0(E”2)g), . (6.5) 

To accomplish this we need the following 

LEMMA 6.3. Suppose 4, q~ E XZ1 and that 4 and q~ riewed as functions from 
(0, r;o) into Lz(sZ) are continuous at E1jz > 0. Then 

@I$#, (I, xi) [R&E + k) - R,(E - k)] 9) I E1,“($(E1~*), q~(El!“))~ . 

In particular this holds if 4, q~ E Xl, n CY. 

Proof. First observe that our assumption implies 

kli~,2k(#(K), v(k))o = E’~‘($J(E”*), y(El!*))!? . (6.6) 
* 

Next, for E, E > 0, let 

Note that 

and 

Aye, E)s 1 

Then 

f [R,(E + k) - R,(E - k)] = ‘: F--&yFF. 

(6.7) 

(14, ; [R,,(E + k) - R,(E -- k)] F) - E’I”(#(E1.2), v(E’ ‘))a 

= 4 J‘- k(W), v(k)), (k2 --“E4”; t7 - E”‘(Wl,“), dE’~‘>)o 
n 

By (6.7), the second term of the right-hand side goes to 0 as E -+ 0. 
It remains to be proved, that the first term goes to 0 as E + 0. Let 8 Y. 0, 

then by (6.6), there exists 6, > 0 such that 

’ 4$(k), &)),> - E”“(#(E”“), q(E”“))n I < 6 for 1 k -- Eii2 < 6, . 
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We obtain the estimate 

m ww~ da2 - E’/2ME”2), dE”“))l?] Ti;” -kg2 + E2 j 
k dk 

p - E)2 + c2 

Thus 

But 6 can be chosen arbitrarily small, so the Lemma follows. 
We can now complete the proof of Proposition 6.2. By the first part of 

Proposition 5.4, To(IY2)f and To(E1/2)g E X-r , so Lemma 6.3 yields 

ttn( T,(E’I*)f, [R,(E + k) - R&E - ic)] To(W2) g) 

= niE1j2( T,,(E’/“)~(E’J’~), To(E1j2) g(E’/2))n . (6.8) 

But by (5.9) and (5.10) of Proposition 5.4, the right-hand side equals 

k ~‘2(oTo(~‘2)f, oTo(~‘2)g)Q * 

Thus, we have established (6.5) and thereby (6.3). The proof of (6.4) 
follows in exactly the same way. 

THEOREM 6.4 (Unitarity of the S-matrix). Suppose E > 0 is not an 
eigenvalue. Then S(E) is unitary. 

Proof. By Proposition 5.2, the unitary of S(E) is equivalent to Eq. (5.3), 
which is clearly equivalent to the following statement. For f, g ELM, 

w~E~~~(,T~(E~~*) f, ,To(E1j2) g)Q = tiE1/2(0TO(E1~2)* f, OTo(E1!2)* g)Q 

= (oToW2)f, g>n - (f> ,To(E9g)n . 
(6.9) 

But (6.9) follows directly from Propositions 5.5, 6.1, and 6.2. 
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