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Abstract-In observational cohort mortality studies with prolonged periods of exposure 
to the agent under study, it is not uncommon for risk factors for death to be determinants 
of subsequent exposure. For instance, in occupational mortality studies date of ter- 
mination of employment is both a determinant of future exposure (since terminated 
individuals receive no further exposure) and an independent risk factor for death (since 
disabled individuals tend to leave empioyment). When current risk factor status de- 
termines subsequent exposure and is determined by previous exposure, standard anal- 
yses that estimate age-specific mortality rates as a function of cumulative exposure may 
underestimate the true effect of exposure on mortality whether or not one adjusts for 
the risk factor in the analysis. This observation raises the question, which if any pop- 
ulation parameters can be given a causal interpretation in observational mortality 
studies? 

In answer, we offer a graphical approach to the identification and computation of 
causal parameters in mortality studies with sustained exposure periods. This approach 
is shown to be equivalent to an approach in which the observational study is identified 
with a hypothetical double-blind randomized trial in which data on each subject’s as- 
signed treatment protocol has been erased from the data tile. Causal inferences can 
then be made by comparing mortality as a function of treatment protocol, since, in a 
double-blind randomized trial missing data on treatment protocol, the association of 
mortality with treatment protocol can still be estimated. 

We reanalyze the mortality experience of a cohort of arsenic-exposed copper smelter 
workers with our method and compare our results with those obtained using standard 
methods. We find an adverse effect of arsenic exposure on all-cause and lung cancer 
mortality which standard methods fail to detect. - 
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1. INTRODUCTION 

The analysis of occupational cohort mortality studies has traditionally been plagued by 
the bias resulting from improper comparisons of working populations with the general 
population. For example, the age-specific mortality rate for arterioslerotic cardiovascular 
disease (ASCVD) in an unexposed working population is usually only 60-90% of the rate 
in the general population. Thus, the general population cannot serve as an appropriate 
control group when interest is in detecting relative risks in the range 1.5-2.0. Since present 
day exposures are, in general, lower than exposures experienced in the past, and since 
most substances associated with the large increases in relative risk may have already been 
discovered, occupational epidemiology has become increasingly concerned with detecting 
relative risks less than 2.0. 

Recognizing that the general U.S. population is not an adequate control group, oc- 
cupational epidemiologists have increasingly relied upon comparisons, within a single 
cohort, among workers who differ in levels of exposure. Unfortunately, if workers at 
increased risk terminate employment early, standard intracohort methods of analysis that 
estimate mortality as a function of cumulative exposure can underestimate the true effect 
of exposure on mortality, whether or not one adjusts for time of termination of employ- 
ment[l-31. Thus, even in intracohort analyses, increases in the relative risk in the range 
1 S-2.0 due to occupational exposures can be masked by the early termination of workers 
with poor prognosis (which we refer ro us the healthy worker survivor effect). In this 
monograph we present a set of statistical methods specifically designed to control bias 
due to the healthy worker survivor effect. 

Although Gilbert recognized that, for chronic disabling illnesses such as XSCVD, bias 
due to the healthy worker survivor effect could not be controlled by standard methods, 
she conjectured that, for diseases for which the interval between clinical manifestation 
and death is brief, such as lung cancer, any bias due to the healthy worker survivor effect 
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could be abolished by estimating the association of mortality with cumulative exposure 
lagged some ten years (that is, for an individual at risk at age t, any exposure received 
after age t - 10 is ignored for the purposes of analysis). 

In this monograph we test Gilbert’s conjecture by reanalyzing data from a large mor- 
tality study of copper smelter workers exposed to arsenic, and show it may be incorrect. 
To stimulate the interest of the reader, we briefly summarize the results of our reanalysis. 
These results are described in detail in Sets. 1 IE and 12B. Among the subcohort of smelter 
workers hired prior to 1935, the lung cancer mortality rate was 3.54 times that of the 
general U.S. population. In addition, in this subcohort, mortality from lung cancer in- 
creased both with increasing cumulative exposure and with increasing cumulative es- 
posure lagged lo-15 years. In the 1920s industrial hygiene controls were introduced and 
exposures to arsenic reduced. As a consequence, for cohort members hired after 193i. 
the lung cancer rate was only 1.4 times that of the general U.S. population. Presumably, 
this residual elevation in risk was either (a) at least partly related to the ongoing. although 
diminished, arsenic exposures in the smelter or (b) entirely due to the greater degree of 
cigarette smoking among cohort members than among the general U.S. population. 

An intracohort analysis reported in Sec. 1 lE, restricted to cohort members hired after 
1935, showed no association between lung cancer mortality and cumulative exposure to 
arsenic, even when cumulative exposure was lagged fifteen years (xy = 2.2). 

In contrast, -when we reanalyzed the lung cancer mortality data of cohort members 
hired after 1935 using our statistical method, we found a marked association between lung 
cancer mortality and arsenic exposure (xy = 18). We conjecture that there exists an 
adverse effect of arsenic on lung cancer mortality and that the absence of an association 
between cumulative exposure lagged fifteen years and lung cancer mortality is at least 
partly a consequence of the fact that smokers leave employment at a greater rate than 
nonsmokers. If so, smokers will tend to have low cumulative exposures even when lagged 
15 years. Since information on cigarette smoking was not obtained from cohort members, 
any difference in cigarette smoking rates between individuals with high- and low-lagged 
cumulative exposures could not be adjusted for (nor can our conjecture be directly tested 
from this data, although, in Sec. II, we present circumstantial evidence for it). In contrast 
to Gilbert’s proposed method, the analytic method introduced in this paper remains un- 
biased when cigarette smoking is a determinant of employment status. 

Since the post-1935 exposure levels found in the copper smelter are typical of the lovver 
levels of exposure to adverse agents that are the rule in American industry today, it may 
prove to be generally important to analyze occupational cohort mortality data with the 
proposed method. In fact, our method may be necessary to control bias in any epide- 
miologic study in which risk factors are determinants of future exposure. We now proceed 
to a general outline of the monograph. 

In cohort mortality studies in which individuals are exposed to the agent under study 
for sustained periods of time, independent risk factors for death commonly determine 
later exposure history. For example, in occupational cohorts, we observe that unexposed 
individuals who terminate employment at any age (say, 40) prior to age 65 have higher 
subsequent age-specific mortality rates than unexposed individuals who continue to work 
past that age (at least, in part, because of the healthy worker survivor effect). It follows 
that termination status is both a determinant of future exposure (since terminated indi- 
viduals receive no more exposure) and an independent risk factor for death. As pointed 
out by Gilbert[ I] and Robins[Z, 31, if risk factors for death are determinants of subsequent 
exposure, the association of observed exposure history with mortality may fail to reflect 
a causal association. If, in addition, past exposure history is a determinant of subsequent 
risk factor status, the association of observed exposure history with mortality may be 
noncausal whether or not one adjusts for the risk factor. 
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The above results raise the question as to which, if any, population parameters can be 
given causal interpretations in observational studies with sustained exposure periods. This 
paper will answer that question. 

In Set . 2 we claim that an answer is offered by identifying an observational cohort 
study with a hypothetical double-blind randomized trial in which data on each subject’s 
assigned treatment protocol has been erased from the data file. Understanding of causal 
inference in randomized clinical trials is well developed. Thus, we can apply our under- 
standing of causal inference in randomized studies to observational studies. 

In Sec. 3 we develop a formal theory of causal inference for observational studies with 
sustained exposure periods that does not rely on identifying the observational study with 
a hypothetical randomized trial. Our development in Sec. 3 relies heavily on graphical 
methods. Graphs, which we sha!! call causally interpreted structured tree graphs, are 
used to represent those population parameters with causal interpretations. 

In Sec. 4 we provide the mathematical formalization of our theory. 
In Sec. 5 we apply the approach developed in Sets. 3 and 4 to the estimation of the 

causal effect of arsenic exposure on total mortality in a cohort of copper smelter workers. 
We report a small adverse effect of arsenic exposure on survival. In contrast, a standard 
analysis, which does not control for the healthy worker survivor effect, finds no rela- 
tionship between mortality and cumulative exposure. 

Because our estimate of the causal effect of arsenic on mortality was obtained by fitting 
statistical models, it may be significantly biased if the models are incorrect (i.e. misspec- 
ified). To partly compensate for this, we develop in Sec. 6 a completely nonparametric 
test of the null hypothesis of no arsenic effect. For many occupational exposures, the 
central first question is whether exposure has any effect on mortality whatsoever. For- 
tunately we can often test thus null hypothesis without making any modelling assumptions. 
Our nonparametric test, in contrast to the standard analysis, suggests a statistically sig- 
nificant adverse effect of arsenic exposure on survival. 

In Sec. 7, we show that the approaches to causal inference in observational studies of 
Sets. 2 and 3 are, in a certain well-defined sense, isomorphic. 

In Sec. 8, we formally define the conditions under which the association of mortality 
with observed exposure history would be causal. In studies in which exposure and co- 
variate status are measured only at start of follow-up, a covariate is defined to be a con- 
founder only if the covariate is an independent risk factor for disease and is associated 
with exposure. We discuss how to generalize this definition of confounding to studies in 
which both the exposures and covariates are time dependent. 

In cohort mortality studies, nested case control designs are frequently used to save 
computing and/or data acquisition costs. In Sec. 9 we show that such designs have pre- 
viously unrecognized limitations when risk factors for death determine subsequent ex- 
posure. We show that one may be unable to test, using case-control data, the null hy- 
pothesis of no direct exposure effect controlling for cigarette smoking history when the 
healthy worker survivor effect is present. 

If the healthy worker survivor effect is very weak or nonexistent, standard methods 
that estimate mortality as a function of observed exposure history will be nearly unbiased 
(and thus, the more complex methods outlined in this paper would not have to be em- 
ployed). Thus, our first concern is to determine whether the healthy worker survivor 
effect is indeed operating. In Sec. 10, we discuss two common errors that can lead an 
investigator to believe that the healthy worker survivor effect is present when it is not. 

Gilbert[l] claimed that, even when the healthy worker survivor effect was operative, 
if (1) the exposure of interest had a biological latent period of ten years from exposure 
to death and (2) the healthy worker survivor effect was operative for less than 10 years 
after an individual terminated work, then the association of mortality with observed ex- 



Causal inference in mortality studies 1399 

posure history lagged 10 years would be causal. Since Gilbert’s is the method most com- 
monly used to attempt control of the healthy worker survivor effect, it is important to 
rigorously determine the conditions under which her approach is valid. and to develop 
empirical tests of whether these conditions hold. These issues are taken up in Sec. 11. 

In Sec. 12, we consider the applicability of our methods to competing risks. We also 
consider their extension to mortality studies other than occupational studies and to out- 
comes other than mortality. 

Finally Appendices A-G follow Sec. 12. These Appendices contain further generali- 
zations and proofs of some theorems and lemmas. 

2. OBSERVATIONAL STUDIES AS RANDOMIZED TRIALS MISSING DATA ON 
TREATMENT PROTOCOL 

A. Association of observed exposure history with mortality may be noncausal 

Suppose Fig. 2.1 (where for now we ignore the symbols GH and G,M) represents the 
outcome of an occupational mortality study in which at time of hire, tl, 100 individuals 
begin a high-exposure job. 200 of them leave work at tz. Of those continuing at high 
exposure 60 die at t3. 100 of those who left work also die. The bottom part of the graph 
is interpreted similarly. A possible state of nature consistent with this data is that neither 
exposure level nor employment status per se has an effect on any individual’s outcome. 
Rather, high exposure is simply an irritant causing unhealthy individuals, many of whom 
are to die anyway, to leave work (i.e. the healthy worker survivor effect is operative). 
Suppose the difference between high- and moderate-exposure concentrations was less 
than the difference between moderate- and zero-exposure concentrations, so that the 
cumulative exposure at end of follow-up will be greater in individuals vvho remained at 
moderate exposure throughout the study than in individuals who received high exposure 
until tz and received no exposure while off work thereafter. The study is analyzed in 
Table 1. 

In Table 1, the observed exposure histories are in order of increasing levels of cu- 
mulative exposure. Suppose an investigator hypothesized that the effect of exposure, if 
any, would depend only on lifetime cumulative exposure. Such an investigator would 

i. 200 eH 
D:60 

ti:1ro 

GH 400 eH 400 

5 3 t3 

Fig. 2.1. A cohort study. (GH: high PEH, GM: moderate PEH, L: terminated at r2, D: died. t-,+-j: high observed 
exposure concentration, eM: moderate observed exposure concentration, eo: zero observed exposure 
concentration). 
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Table 1. Analysis of the cohort study of Fig. 2.1 

HOEP MOEP LOEP GH GM 

D 60 160 loo 160 160 
Total 200 400 200 400 400 

.3 .4 .s 

HOEP: the OEP with highest cumulative exposure (that of 
individuals remaining on GN). 

MOEP: the OEP with moderate cumulative exposure (that of 
individuals remaining on G.w). 

LOEP: the OEP with the lowest cumulative exposure (that 
of individuals leaving GN at rz). 

falsely conclude that higher levels of cumulative exposure were protective. Although we 
might hope the association of mortality with observed exposure history controlling for 
termination status is causal, we see from Table 1 that there remains an apparent protective 
effect of high cumulative exposure compared to moderate cumulative exposure in the 
stratum of individuals who never left work. 

In a randomized trial, each individual is randomly assigned at start of follow-up to a 
treatment protocol which gives their planned (i.e. projected) exposure history (PEH) from 
start to end of follow-up. Because individuals may deviate from their assigned treatment, 
their observed exposure history may differ from their PEH. If date of termination of 
protocol is a predictor of mortality, the association of mortality with treatment protocol 
(i.e. PEH), and not with observed exposure history (i.e. OEH), is a valid causal com- 
parison. This is the basis of the well-known “intention to treat principle” for the analysis 
of randomized studies in which survival-treatment protocol associations are reported as 
the causal parameters. To see that the OEH-mortality association may be noncausal in 
a randomized trial, suppose we had described Fig. 2.1 as a randomized trial in which 
individuals had been assigned either to a PEH of high exposure throughout the trial (GH) 
or to a PEH of medium exposure through the trial (GIM). Date of leaving employment 
then becomes date of leaving treatment protocol. In Table 1 we see that the association 
of mortality with treatment protocol correctly shows no treatment effect. Unfortunately, 
in an observational study, no subjects have a PEH, since no investigator assigned them 
to a treatment protocol. In the next subsection we develop a method of circumventing 
this difficulty. 

B. Identifying an observational study as a randomized study with data on treatment 
protocol missing 

In Sec. 2C, we will show that in a double-blind randomized trial with data on treatment 
protocol missing, if data on date of death, observed exposure history and date of leaving 
treatment protocol are available, mortality as a function of (the missing) treatment protocol 
can still be estimated. If we could identify an observational study with such a randomized 
trial, we could draw valid causal inferences by comparing mortality as a function of treat- 
ment protocol. In an observational study, data on observed exposure history and date of 
death are available. Thus it only remains necessary to identify some measured variable 
with time of termination of protocol. Now, in a double-blind randomized trial, termination 
of protocol is the first event which may be both a risk factor for death and a determinant 
of subsequent exposure (since, prior to termination of protocol, subsequent exposures 
had been determined by a flip of the coin at time of randomization, and not by any risk 
factors for death). In an observational study, an investigator must subjectively decide 
which variable will represent the “hypothetical” date of leaving protocol. Suppose we 
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are willing to assume that. conditional on past exposure, exposure (i.e. job) assignment 
while at work is unrelated to unmeasured risk factors for death. It then follows from the 
definition of the healthy worker survivor effect that date of termination of employment 
should be identified as date of termination of protocol, as it is the first event that both 
determines future exposure. and is a risk factor for death. We would thus have identified 
our observational mortality study with a randomized trial with data on treatment protocol 
missing. (In the mining industry, workers in ill health are selectively transferred to surface 
jobs. In that case, it follows from the above argument that we would identify date of 
termination of protocol as the earliest of date of termination of employment and date of 
transfer to a surface job.) 

Technical note. The above argument only holds if no individual ever leaves and later 
returns to work (as would happen if there are individuals on layoff or on disability leave). 
If individuals leave and later return to work it is unclear how to define date of termination 
of employment. As we discuss in Sec. 10, it is inappropriate to define date of termination 
of employment as date of last employment, since death itself can determine date of last 
employment for individuals on lay [off. Rather, if one believes that exposure is received 
essentially at random at work, conditional on past employment and exposure history, we 
could view the observational cohort study as a randomized trial in which individuals leave 
and return to protocol repeatedly. When individuals are at work we consider them to be 
on protocol, and when out of work to be off protocol. To avoid this added complexity in 
our early discussions, we suppose that no individual returns to work after he leaves. In 
Sec. 7 we return to the general case. 

C. Estimating mortality-PEH associations in a double-blind randomized trial \t,ith data 
on PEH missing 

This section is somewhat technical. In a randomized trial missing data on treatment 
assignment we let g(t) be a subject’s unknown planned exposure concentration at time f 
and e(t) a subject’s observed exposure concentration. Define G(t) = {g(u); 11 s t} to be 
the PEH up to t and E(r) = {e(u); II < t} is the OEH up to t. Let L and D be variables 
that record the time the individual left treatment protocol and died, respectively. Let G 
be an entire PEH defined until end of follow-up. Let G = 0 be the G with planned exposures 
being identically zero throughout. 

We suppose throughout the remainder of this subsection that: 
2C. I. Treatments differ only through exposure. 
2C.2. An individual who leaves protocol does so forever (so that L is well defined). 
2C.3. Treatment protocols do not depend on time-dependent covariates measured after 

time of randomization, t2 (that is, treatment protocols such as the following are not al- 
lowed: continue on a high exposure until tl ; if the subject’s white count measured at f:! 
is greater than 1000, continue on high exposure; if less than 1000, cease further exposure). 
Note that 2C.l and 2C.3 are necessary if a treatment protocol is to be uniquely charac- 
terized by a single planned exposure history. We drop these restrictions in Sec. 4. 

Suppose (as is true in a double-blind randomized trial) that no individual’s time of 
termination of protocol or death is influenced by any planned future exposure that has 
not or will not be experienced. If so, the following nonidentifiable temporal assumptions 
would hold for each individual i. 

YL(~ 1 E(f), G, i) = y~.(t 1 E(t), i)) for all G with G(r) = E(t) (2.1) 

YD(~ 1 E(tz), L = t2, G, i) = y~(t 1 E(tl), L = tz, i) for all G with G(tz) = E(t2) (2.2) 

YD(~ 1 E(t), L > t, G, i) = y~(t 1 E(t), L > t, i) for all G with G(t) = E(r) (2.3) 
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where, e.g. yL(t 1 E(t), i) is the incidence of termination of protocol for individual i at 
time t conditional on being alive and on protocol at t and on having observed exposure 
history E(t), and y~(t 1 E(t,), L = t?, i) is the incidence of death at time t conditional on 
OEH, E(rz), up to time of termination t:. 

Note E(t) must by definition equal G(r) for all t s L since the individual is still on 
protocol. The noidentifiable temporal assumptions are not empirically testable from data 
on G, E(t), L, and D (thus, the name “nonidentifiable”). Nonetheless, if in Eqs. (2. I)- 
(2.3), we do not condition on i, the resulting population relationships are empirically 
testable. We call Eqs. (2.1)-(2.3) without conditioning on i the identifiable temporal ns- 
susmptions. The truth of the nonidentifiable temporal assumptions in a randomized trial 
implies the truth of the identifiable temporal assumptions (see Lemma Bl in Appendix 
B). It is easy to find examples to show that the converse is not true. 

In a randomized trial with a sustained treatment period it is often supposed, for indi- 
viduals on protocol, that the exposure received at time t conditional on past exposure up 
to t is not influenced by unmeasured risk factors. In fact, this is in general true only if 
treatment protocol was assigned at random and the nonidentifiable temporal assumptions 
hold. More precisely, 

L13fh.f~ 2. I. p(G 1 i) = p(G) and E qs. (2.1) and (2.3) imply 

lim p(E(t + At) 1 E(t), L > t +- At, D > t + At, i) 
At-0 

= p(E(t + At)) E(t), L > (t + At), D > t + At) (2.4) 

for any random person i in the population on protocol at t + At (irrespective of his risk 
factors). (We assume changes in exposure are discontinuous.) 

Proof. Obviously, Eq. (2.4) is true if it is true when G replaces E(t + Aft) wherever 
E(t + At) occurs in Eq. (2.4). But Eq. (2.4) with G substituted is true by the argument 
given in Lemma Bl in Appendix B. It is easy to show by example that the randomization 
plus the identifiable temporal assumptions do not imply Eq. (2.4). 

We prove the following theorem: 

THEOREM. If the identifiable temporal assumptions hold, the probability of surviving 
a given number of years as a function of PEH can be consistently estimated in a randomized 
trial without data on PEH if data on death, OEH and date of termination of protocol are 
available (provided, of course, that the joint distribution of the observed data can be 
consistently estimated). 

Proof. An individual assigned to a particular PEH G can survive to a time of in any 
of the following mutually exclusive ways: survive on protocol till tf or for any t2 < tf 
survive on protocol till TV, terminate protocol at t2, and then survive to tf. In symbols, 
with rI as start of follow-up, 

S(tf 1 G) = p(D > tf I G) = PU. ’ tf 1 G) + J]:‘P(D 

> tf 1 L = tz, G)YL(~z 1 G)p(L > tr ( G) dt,. (2.5) 
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P(D > ff 1 L = t2, G) = exp _ 
[i 

II’ Ydf 1 L = 22, E(t2), G) df 
1 

= exp - U ,I’ ydf 1 L = tz, E(td) dt 1 . (2.6) 

p(L > t2 1 G) = exp lyo(l 1 L ' t, E(r), G) + yL(t 1 E(f), G)] dt 1 
= exp - 

[J- 
f:’ [Yo(t / L > t, E(t)) + y~(t 1 E(t))] dt 1 , (2.7) 

and 

YL.(~ 1 G) = y~.(t 1 ,5(t)), (2.8) 

where E(t) = G(t) if t s L (since the individual is still on protocol) and Eqs. (2.1)-(2.3), 
without conditioning on i, justify dropping G in (2.6)-(2.8). Substituting Eqs. (2.6)~(2.8) 
into Eq. (2.5) proves the theorem. In fact by Theorem Bl (see Appendix B) even if data 
on G was available it would be ignored in the analysis since it is not part of the sufficient 
statistic. 

If no individual leaves protocol, i.e. E(t) = G(t) for all t, it follows from Eqs. (2.5)- 
(2.7) that for any G 

(2.9) 

Using (2.9), causal parameters of such a randomized trial can be defined in terms of 
OEH. If all treatment assignments that ever diverge from one another do so at time of 
randomization, p(D > t j G) can be estimated without data on G without performing the 
integrals in Eqs. (2.5)-(2.7). To see this, let e(t,) be the initial exposure of some individual 
following randomization (we assume no one terminates protocol prior to receiving their 
first exposure). Only one PEH G, say G,(,,,, will have initial exposure e(t,) and we can 
estimate p(D > f I G ecr,j) simply by recording the death times of individuals who received 
e(ti) without regard to data on exposure history past the initial exposure or on date of 
termination of protocol. 

D. Alternative designed randomized trials 

An observational study is not the only type of study with a sustained exposure period 
in which individuals do not have treatment protocols assigned at start of follow-up. 

Consider the following alternative design for a randomized trial. Each day of the trial, 
individuals who remain on protocol are given at random a new exposure level for that 
day. The probability of receiving a particular exposure level on a given day can depend 
(only) on the exposures received on previous days. If the exposure received on day 1 
does not completely determine future exposure, then no individual in the alternative ran- 
domized trial has a well-defined treatment assignment G at the time of initial randomi- 
zation. Nonetheless, individuals are truly randomized in the sense that no individual’s 
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exposure at day t while on protocol can, except for sampling variation, be associated with 
any unmeasured risk factors, conditional on past exposure history [i.e. Eq. (2.4) holds]. 
More precisely, Eq. (2.4) holds in an alternative designed trial in the limit as the time At 
between exposure assignments goes to zero. 

If, in the alternative designed trial, data on observed exposure history, date of ter- 
mination of protocol, and date of death are available, one can empirically estimate the 
incidence functions 

I- = [Yf.(f I at)), rdt I L = f2, E(h)), v&t I L > t, E(f))]. 

In an alternative designed randomized trial in which Assumptions ZC.l-2C.2 hold there 
is a unique double-blind ordinary randomized trial missing data on treatment protocol 
(i.e. a trial in which a well-defined protocol is assigned to each subject at time of initial 
randomization) for which p[Li, D;, E[min(Li, OJ] 1 i] is the same in the alternative de- 
signed trial and the double-blind ordinary randomized trial. That ordinary randomized 
trial is the trial in which 

lim plG(t + At) 1 G(t)] = p[E(t + At) 1 E(t), L > t + AC, D > t -t At]. 
At-0 

Its causal parameters can be estimated by using Eqs. (2.4)-(2.7) from the data obtained 
in the alternative designed trial. We define the causal parameters of the alternative de- 
signed trial to be the causal parameters of that ordinary randomized trial. 

E. Comparison of survival curves versus incidence differences 

Throughout this paper we shall make causal comparisons in terms of comparisons of 
survival curves rather than incidences (i.e. hazards or conditional survivals). Our choice 
reflects the fact that, even in a randomized trial where the treatment is given only once 
at start of follow-up, it is possible that each individual’s life may be shortened by treatment 
and yet the incidence in the untreated group may exceed that in the treated group at 
certain times t (since the treated and untreated survivors at time t may no longer be 
comparable, due to selective survival). 

3. GRAPHICAL APPROACH TO CAUSAL INFERENCE IN OBSERVATIONAL 
SURVIVAL STUDIES 

Suppose an investigator has performed an observational cohort study to determine the 
effect of a particular exposure on total mortality. Information on covariate status (including 
an exposure of interest) and vital status has been obtained on each study subject at S + 
1 times tl, . . . , ts+, where t, is start of follow-up. We set ourselves the following four 
tasks. 

1. To graphically represent the observed study data. We shall call such graphs mea- 
sured partially interpreted structured tree graphs (MPISTG). 

2. To determine the causal parameters of the study and to represent these parameters 
by graphs that we shall call measured causally interpreted structured tree graphs 
(MCISTG). This task requires that we develop a formal theory of causal inference for 
observational studies with sustained exposure periods. We shall see that investigators 
may disagree on the causal parameters of the study. 

3. To determine which of the causal parameters are of substantive interest, a decision 
which depends on the purpose and subject matter of the study. 
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4. To determine the subset of causal parameters that can be consistently estimated 
from the observed study data; to represent these parameters by graphs that we shall call 
fully randomized measured causally interpreted structured tree graphs (FR MCISTG); 
and to develop an algorithm to estimate the causal parameters of an FR MCISTG. We 
shall see that investigators may disagree as to which causal parameters can be consistently 
estimated even when they agree on the causal parameters of the study. 

In Sec. 4 we shall provide formal mathematical notation for these four tasks. In this 
section we shall carry them out somewhat informally. As examples, we consider two 
different observational studies. The first is a standard “point exposure study” in which 
at start of follow-up each member of the population receives either high (H) or zero (0) 
exposure. No further data is obtained until end of follow-up at time tz. At f2, data on each 
individual’s vital status is obtained. 

The second study is an occupational cohort mortality study with a sustained exposure 
period in which a cohort of workers hired at (calendar) time t, (and matched on age at 
hire) are followed for 40 years. Every six months, exposure concentration. employment 
status, and vital status are measured. Exposure concentration measured at time t, is 
labelled H for high and 0 for zero. Employment status at t, is 1 if at work and 1 if out of 
work. An individual’s measured past employment (equivalent work) and exposure history 
through t, are labelled L(t,) and E(t,), respectively. We assume that we do not record 
(measure) data on exposure concentration and employment status at times between t, and 
t r+l. Thus, an individual’s measured “employment and exposure history” is but part of 
their total employment and exposure history. Whenever we refer to an individual’s co- 
variate history (e.g. exposure and employment history), we shall be referring to their mea- 
sured covariate history. 

A. Tclsk 1: A graphical representation of the observed study data 

Figures 3.1 and 3.3 are different graphs, each of which represents the data obtained in 
the point exposure study. Figures 3.3 and 3.4 are graphs representing the data in the first 

Fig. 3.1. An MPISTG of a point exposure study. Key for Figs. 3.1-3.4: H = high exposure concentration, 0 
= unexposed, I = at work, 1 = off work, whole numbers = numbers of subjects surviving at the given time 
with a given covariate history; numbers in [ ] are standard labels (see Sec. 4A of text), fractions in ( ) are 
conditional probabilities y(.iS), y(.ij,), .S(.ij,) defined in Sec. 4B of text. Covariates on a given intemodal line 
linking nodes at times tS and r, +, refer to measurements made at rJ. Highlighted subgraphs represent generalized 
treatments as defined in the text. 
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5 t2 

Fig. 3.2. An MPISTG of a point exposure study. (See Key for Fig. 3.1.) 

18 months in the workplace study. All four graphs are exampies of stmctured tree graphs 
(STG). 

Definition 3.1. A structured tree graph has the following structure. One or more nodes 
(open circles) represent each time of observation ti, i E (1, . . . , tst ,). Successive ob- 
servations are referred to as generations. Exactly one node is present at tl. Each node 
(except that at tl> receives on its left circumference exactly one internodal line from a 
node in the previous generation. This line splits into one or more intranodal lines that 
traverse the interior of the circle and terminate at distinct points on the right circumfer- 
ence. From each of the above points on the right circumference, one or more internodal 
lines originate and extend to a node in the next generation. As in Fig. 3.1, the final node 
at ts+ I may be omitted. 

An STG that represents the measured covariate data of a particular study we define 
to be a measured partially interpreted structured tree graph (MPISTG). The MPISTG of 
Fig. 3.3 is interpreted as follows (where, for the moment, the reader should ignore the 
highlighted lines, the numbers in square brackets, and the fractions in parentheses). At 
TV, 300 individuals were at work of whom 100 received high exposure and 100 zero ex- 
posure. 75 of the 100 receiving high exposure at f, survived until r2, at which time 15 of 
the 75 remained at work at high exposure jobs, 30 remained at work at unexposed jobs, 
and 30 left work and thus were unexposed. Of the 30 who left work at 22, 15 survived to 
t3, at which point 6 returned to a high exposure job at work, 6 returned to an unexposed 
job and 3 remained off work and thus were unexposed. In summary, a particular intranodal 
line at L (and the corresponding point on the right circumference on which it terminates) 
represents a unique employment and exposure history through f,_ 1 plus survival to fs. 
The number written over the intranodal line is the number of subjects with that covariate 
and survival history. An internodal line connecting a node at f, to one at t,_ I represents 
a unique exposure and work history through t,. The number written over the left end of 
that internodal line is the number of individuals who experienced that covariate history. 
Figure 3.4 is also an MPISTG of the workplace study. Figure 3.4 differs from Fig. 3.3 
only in that, among individuals with identical work and exposure histories through t,- I, 
in Fig. 3.4 (but not in Fig. 3.3) the subset of individuals off work at t, and the subset of 
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t 4 12 t3 

Fig. 3.3. An MPISTG. (See Key for Fig. 3.1.) 

t 

individuals at work at t, are on distinct intranodal lines (and right circumference points). 
(Thus in Fig. 3.4 an intranodal line at t, represents a unique history of exposure through 
rr _ , and employment through t, .> The two MPISTGs have (1) the same number of nodes 
in each generation, (2) the same number of intemodal lines arising from corresponding 
nodes, and (3) corresponding internodal lines representing the same covariate histories. 

If two nonidentical MPISTGs have these three points in common (as do Figs. 3.3 and 
3.4) and if one of the MPISTGs (e.g. Fig. 3.4) always has at least as many intranodal lines 
per node as the other MPISTG (e.g. Fig. 3.3) we say that the first MPISTG (e.g. Fig. 3.4) 
is coarser than the latter MPISTG (e.g. Fig. 3.3) and the latter is finer than the former. 
It will become clear later when we discuss causal parameters why Fig. 3.4 should be 
considered coarser than Fig. 3.3. At the moment it may seem counterintuitive. 
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Fig. 3.4. An MPISTG. (See Key for Fig. 3 

B. Task 2A: Identifying the causal parameters of the study 

+4 

1.) 

An observational study differs from a controlled trial in that no investigator influenced 
the exposures of the study subjects. Rubin[4] has developed a theory of causal inference 
for point exposure observational studies. We shall extend his theory to include studies 
with sustained exposure periods. We shall need to define treatments. MCISTGs, and the 
causal parameters of a study. In our causal theory we shall suppose that nature (our name 
for the “actor” in an observational study) deterministically decides each individual’s 
covariate and survival status at every time. In contrast Rosenbaum and Rubin[Sl assume 
that in a point exposure study exposure status at tI is assigned stochastically by nature. 

Definition of a treatment. A particular (possibly joint) covariate level at time t, (e.g. 
at work and receiving high exposure at work) is a treatment for a particular individual 
alive at t, if (I) that individual could, at least conceptually, have either received or not 
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received that covariate level at t, and (1) had the subject received that covariate level, 
the subject’s subsequent covariate and survival history would have been vvell defined. A 
necessary condition for the existence of a treatment is that, at least conceptually, a con- 
trolled trial could have been performed in which at t, an investigator superceded nature’s 
deterministic choice of covariate level and gave the individual the covariate level under 
consideration. (We shall assume that the subsequent covariate and survival history for 
each individual when receiving a particular treatment at t, is uninfluenced by the treat- 
ments received by any other individual at any time[4].) 

EXA~~PLE. If in the study represented by Fig. 3.1 high exposure were defined as 
running up three flights of stairs, high exposure would not be a treatment for individuals 
whose legs were paralyzed. 

Definition. An MPISTG is an MCISTG if for any right circumference point (a) the 
covariate levels determining membership on the internodal lines arising from that point 
are each treatments for any individual with the covariate and survival history represented 
by the right circumference point, and (b) the subsequent covariate history for any such 
individual given one of these treatments can be represented by some path of intra- and 
internodal lines that lie on the MPISTG. 

EXNPLE. MPISTG 3.4 would not be an MCISTG if high exposure was defined as 
“running up three flights of stairs” and, e.g. at t, there were individuals at work whose 
legs were paralyzed. In this paper henceforth we shall assume that exposure refers to 
exposure to an industrial chemical and that MPISTG 3.4 is an MCISTG. Furthermcre, 
for convenience, we shall usually interpret MPISTG 3.3 to be an XlCISTG by making the 
assumption that any individual off work at t, could, conceptually, have been at work at 
either a high- or zero-exposure job. To satisfy (2) in the definition of a treatment we would 
need to carefully define what the treatment “being at work” entails for disabled workers, 
since obviously it cannot entail simply “being at work and performing one’s usual task”. 
One possibility is given in Sec. 3E. 

Task 2B. The causal parameters of an MCISTG 

Following Rubin, in the point exposure study, we define the population causal effect 
of exposure on mortality to be the difference between the proportion surviving to tz in a 
hypothetical controlled study in which the entire population received high exposure at tl 
and the proportion surviving in a study in which all had received zero exposure at rl. If 
survival status had been ascertained at multiple times (i.e. at t2, t3, . . . , ts_ ,) we would 
then have compared the proportion of the population surviving at each such time (i.e. we 
would have compared survival curves). See Sec. 8A for a further discussion. 

A natural generalization of the above definition of a causal parameter that applies 
equally to studies with sustained exposure periods is the following. 

Definition. A population causal parameter associated with a particular study popu- 
lation is the difference in the population survival curves of two different (usually hypo- 
thetical) studies, each with well-defined outcomes. To define the causal parameters of a 
study, we must determine how, on the basis of the observed study data, to characterize 
the set of hypothetical studies whose outcomes are believed to be well defined. To do 
so, we first show that each MCISTG has an associated set of generalized treatments each 
of which defines a unique (usually hypothetical) study with well-defined outcomes. A 
particular generalized treatment GA of an MCISTG A is represented by a highlighted 
subgraph of the MCISTG constructed by use of the following algorithm: 
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The Generalized Treatment Algorithm. Beginning at the left circumference of the t, 
node, highlight all intranodal lines in that node. At each point on the right circumference 
of the tI node, highlight one internodal line. At t2 highlight all intranodal lines in the nodes 
on which the highlighted internodal lines originating from the tl node terminated. From 
each point on the right circumference of a t2 node at which a highlighted intranodal line 
terminates, highlight one internodal line leading to a node in generation t3. Continue in 
this manner through generation ts+ , , 

The highlighted portions of MCISTGs 3.1-3.4 represent generalized treatments. To 
verbally characterize a particular generalized treatment, one must characterize the in- 
ternodal line that is highlighted at each right circumference point at which two or more 
intemodai lines were eligible for highlighting. For example, the generalized treatment 
shown in Fig. 3.4 can be characterized by “if at work at t,, receive high exposure” and 
that of MCISTG 3.3 can be characterized by “if alive at t,, remain at work and receive 
high exposure .” 

The controlled study associated with the highlighted subgraph of MCISTG 3.4 would 
be as follows. At t, , an investigator gives all individuals high exposure. Nature determines 
survival and employment status through t2. For individuals at work at t2 in the hypo- 
thetical study, an investigator again gives each high exposure; nature then determines 
their survival and employment status through r3. For individuals off work at tz, nature 
gives each zero exposure at tz, and then determines their survival and employment status 
through t3. For those at work at t3, an investigator gives each high exposure, etc. 

Note that the essential difference between a point exposure and sustained exposure 
study is that, in a sustained exposure study, covariates measured at times after start of 
follow-up may also be treatments. 

Definition. The population (individual) G-causal parameter comparing two generalized 
treatments G, and G2 of an MCISTG [written for a particular individual i, as S(t, Gi, Gz, 
i) while for the population parameter, the small i is dropped] is the difference between 
the population (individual) survival curve of the hypothetical study defined by generalized 
treatment G, [written as S(t ) G,) and (s(t 1 G,, i)] and the survival curve of a hypothetical 
study defined by generalized treatment Gz. We shall assume there exists a finest MCISTG 
(e.g. MCISTG 3.3 in our occupational mortality study) and that the causal parameters of 
the study are the set of G-causal parameters of the finest MCISTG and of all coarser 
MCISTGs. (Note it follows from the definition of an MCISTG that any MPISTG coarser 
than an MCISTG is itself an MCISTG.) See Sec. 4D for a more precise definition, and 
Sec. 4G for a caveat. 

C. Task 3: Determining causal parameters of substantive interest 

The causal parameters of substantive interest to an investigator depend on the purpose 
and subject matter of the study. 

EXAMPLE. Suppose Fig. 3.3 and thus Fig. 3.4 were both MCISTGs and exposure had 
no causal effect on any individual’s mortality after controlling for employment history. 
This implies that the population survival curve of any two hypothetical controlled trials 
in which each individual is constrained to remain at work throughout the trial will be the 
same (irrespective of the exposures selected by the hypothetical investigators). The G- 
causal parameter of MCISTG 3.3 comparing these two studies, we define as a population 
causal effect of exposure controlling for employment history. We also suppose the G- 
causal parameter of MCISTG 3.3 representing the causal effect of employment controlling 
for exposure history demonstrates a strong adverse effect of unemployment on mortality 
(i.e. by definition, the proportion of study subjects surviving to ts in a hypothetical study 
in which each individual receives zero exposure throughout and is off work from tz on- 



Causal infersnce in mortality studies 1111 

wards is less than in a study similar in all respects except that each individual continued 
at work). Then we say that employment history is a causal risk factor controlling for 
exposure. The adverse effect of unemployment would presumably have been mediated 
through (unmeasured) factors such as the loss of health insurance and increased financial 
and psychological stress. Suppose finally that the G-causal parameter of MCISTG 3.4 
comparing the generalized treatment of “high exposure if at work” to “zero exposure if 
at work” demonstrates an adverse overall effect of high exposure because exposure func- 
tioned as an irritant that caused more highly exposed workers to leave work at a higher 
rate than less highly exposed workers. 

An investigator whose purpose was to investigate the biological effect of exposure on 
mortality would wish to report the direct effect of exposure controlling for the intermediate 
variable, employment history. (Of course, finding that exposure had no effect on mortality 
controlling for employment history would not guarantee it had no direct biological effect 
on mortality since any biological effect may have been counterbalanced by exposure’s 
effects on other unmeasured causal risk factors such as by causing exposed individuals 
to give up smoking.) 

Suppose now that the study’s subject matter (i.e. the data) was different. For example. 
suppose 1 in Figs. 3.3 and 3.4 represents cholesterol level instead of leaving work (I 
representing elevated cholesterol level, and 7 representing low or normal cholesterol level). 
Suppose further that the investi gator conceptualized cholesterol level as a treatment be- 
cause he could imagine two drugs-one that could raise and the other that could lower 
cholesterol levels without influencing any other biochemical pathway. Such an investi- 
gator would believe that Fig. 3.3 was an MCISTG. Even so, the investigator might not 
wish to control for cholesterol level since the biological effect of exposure operates through 
its effect on the cholesterol level. In such a case we would report the G-causal parameters 
of MCISTG 3.4 in lieu of those of MCISTG 3.3 because the former represents the overall 
biological effect of exposure on mortality. (Since MCISTG 3.4 implies that individuals 
with elevated cholesterol levels never receive high exposure, it would be more accurate 
to say that the G-causal parameters of the MCISTG shown in Fig. 8.1 in Sec. (8) would 
be of substantive interest to the investigator.) 

The interest of public health officials may lie in reducing exposure-related excess mor- 
tality rather than in determinin g whether exposure has a biological effect on mortality. 
These officials would be interested in the survival curve of a hypothetical controlled trial 
in which the investigator determined just those treatments that could actually be controlled 
by public health regulation in the real world. For example, if a public health official 
believed that exposure concentration at work could be controlled by regulation, but that 
neither the rate of leaving work nor the social benefits available for unemployed individuals 
could be altered, interest might center on the reduction of mortality associated with the 
generalized treatment “zero exposure if at work” of MCISTG 3.4. 

Technically, of course, without making further assumptions, the G-causal parameters 
of an MCISTG associated with a particular observed study do not generalize to other 
study populations or to other study settings in which nature may determine outcomes 
differently. For example, if the observed study of Fig. 3.4 had been conducted in an 
identical setting except with different unemployment benefits, the survival curve might 
have been quite different. The magnitude of this difference could not be empirically pre- 
dicted from knowledge of the G-causal parameters of the observed study without further 
a priori assumptions about the causal mechanism. 

D. Task 4: Determining the causal parameters that can be consistently estimated 

Given an MCISTG, we now define a condition that allows us to compute from the 
observed study data, the survival curve of any hypothetical controlled trial defined by a 



1112 JAMES ROBINS 

generalized treatment of that MCISTG or of any MCISTG coarser than the given 
MCISTG. 

Definition 3.2. An MCISTG A is a fully randomized MCISTG (FR MCISTG) if and 
only if the subsets of the population represented by the intemodal lines arising from any 
given right circumference point have exactly the same distribution of subsequent co- 
variate and survival histories as one another in any hypothetical study defined by a gen- 
eralized treatment of MCISTG A (or another MCISTG coarser than A) whose highlighted 
subgraph passes through that right circumference point. (Informally, the subsets are com- 
parable in the sense that just before receiving their observed treatment at t,, they were 
perfectly balanced with one another on all risk factors predicting future covariate and 
survival history.) 

If an MCISTG A is an FR MCISTG, we can compute the probability of survival to 
any time t, in the hypothetical study defined by a particular G, by the following algorithm. 

G-Computation Algorithm 

1. On each intranodal line on the highlighted subgraph G, write in parentheses (as we 
have done on the highlighted graphs in Figs. 3.3 and 3.4) the conditional probability of 
being in the subset in the observed study defined by that intranodal line, given that one 
is a member of the subset defined by the node in which the line lies. On the right end of 
each internodal line on the highlighted subgraph, write in parentheses the conciitional 
probability of surviving to the next node (time) given that (in the observed study) one 
was in the subset represented by that internodal line. 

2. For each highlighted path of intra- and intemodal lines that connects a node at t, 
to the left circumference of the tl node form the product of the probabilities entered in 
step 1. (This product is the probability of surviving to ts in the hypothetical study defined 
by GI with the covariate history represented by that path of intra- and internodal lines, 
since, for an FR MCISTG, the conditional probabilities of the observed study defined in 
Step 1 are also the conditional probabilities of the hypothetical study). The sum of these 
products is the desired survival probability. 

When MCISTG 3.4 is extended to include the entire 40 year follow-up period, there 
would be 2” terms in the final sum in Step 2 of the G-computation algorithm for t8l. Thus, 
the sum could not be evaluated even with the aid of a high-speed computer. Nonetheless, 
we can accurately evaluate the sum by using a Monte Carlo algorithm (see Sec. 41). 

We can show by example that we cannot compute the survival curve of the hypothetical 
study defined by any generalized treatment of an MCISTG that is not an FR MCISTG. 
Suppose that MCISTG 3.3 was not an FR MCISTG because, among individuals with high 
exposure at work through t,- I, those off work at ts were less healthy on the average than 
those individuals still at work at t, (i.e. the healthy worker survivor effect is operating). 
Then, for the group of individuals who were off work at ts (in the observed study) we 
could not compute what their mortality would be had they remained at high exposure 
jobs (since there is no comparable group of individuals in the observed study who remained 
at work at high exposure). Thus, we could not estimate the survival curve of the entire 
population in the hypothetical study defined by the generalized treatment of MCISTG 
3.3, “if alive, receive high exposure at work”. 

In an observational study, no amount of empirical evidence can determine whether an 
MPISTG is an FR MCISTG (or for that matter whether it is an MCISTG). The assumption 
that an MPISTG is an FR MCISTG is always subjective. Note that if an MCISTG is an 
FR MCISTG we can compute exactly the value of the G-causal parameters of the MCISTG 
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(as well as those of any coarser MCISTG). We do not have to estimate these parameters. 
We know them exactly. Unfortunately, it is unlikely that nature would ever perfectly 
balance risk factors across the subsets of the population represented by the intemodal 
lines arising from a single right circumference point. As such. no investigator would believe 
that any MCISTG was exactly an FR MCISTG. Nevertheless, an investigator might be 
willing to make subjective statements such as, “Although there may be some small as- 
sociation of unmeasured risk factors with treatment at each right circumference point, I 
do not believe such associations are systematic.” We shall give the following formal 
structure to such subjective statements. 

In an observational study, we shall assume that the obsened study population has been 
randomly sampled from a near infinite hypothetical superpopulation. The causal param- 
eters of interest will be those of the superpopulation. We now define an MCISTG B to 
be an FR MCISTG if Def. 3.2 holds in the superpopulation. When we subjectively believe 
that nature did not systematically give treatments to any subset of the population defined 
by a right circumference point from which two or more intemodal lines arise on the basis 
of unmeasured risk factors for future covariate and survival history, we shall assume that 
the MCISTG representing the superpopulation is an FR MCISTG. Thus, even for an FR 
MCISTG, a chance association of treatments with unmeasured risk factors may exist in 
the observed study population due to sampling variability. 

Remark. Since we are sampling from a near-infinite superpopulation, we could re- 
define an MCISTG so that each individual’s outcomes (i.e., covariate and vital status 
history) were stochastic without changin g any of our results except for the following 
technical philosophical difficulty. The controlled trial associated with a generalized treat- 
ment (e.g., if at work, receive high exposure) is of the general form-if an individual 
would be in state a (e.g., at work at low exposure) at t,, put him in state b at t, (e.g., at 
work at high exposure). Such a trial is, in principle, impossible to precisely implement 
without precognition, since if we must wait until t, to discover a has occurred, then b 
cannot occur at t,. Only a deterministic world allows (in principle) for precognition. Ob- 
viously, a stochastic model would be adequate if one does not mind being infinitesimally 
late in placing our subject in state b. 

Unless stated otherwise, we shall hereafter assume that MCISTG 3.4 is an FR MCISTG. 
We shall use the following equivalent terminologies to characterize the fact that MCISTG 
3.4 is an FR MCISTG. Conditional on past employment and exposure history, (1) 
subgroups of the observed study population receiving high exposure at work and zero 
exposure at work at t, are randomized with respect to one another at that time, (2) 
subgroups receiving high exposure at work and zero exposure at work at t, are comparable 
at t,, (3) exposure at work was received at random at t,. 

The nonparametric maximum likelihood estimator (NPMLE) of the superpopulation 
survival curve associated with a given generalized treatment of FR MCISTG 3.4 is ob- 
tained by first estimating the unknown superpopulation proportions (conditional proba- 
bilities) necessary to apply the G-computation algorithm by the corresponding sample 
proportions and then applying the algorithm with the sample proportions in place of the 
superpopulation proportions. Unfortunately, in occupational mortality studies the typical 
cohort size is approximately 10,000 members. Thus, we cannot hope to consistently es- 
timate the 2” + 279 - 2 conditional probabilities associated with the intra- and internodal 
lines of the highlighted subgraph of FR MCISTG 3.4 (when extended to t8,) without 
specifying parsimonious parametric or semiparametric (e.g. Cox) models. A worked es- 
ample is given in Sec. 5. 
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Even if we believe that exposure at work at t, is received at random conditional on 
past true exposure and covariate history, we would not necessarily believe that it is 
received at random conditional on measured past exposure and covariate history when 
the time between measurements is long. This is because individuals who receive high 
exposure at t, are likely to have received high exposure for some period between t,_ , 

and t, and those receiving zero exposure at t, are likely to have received zero exposure 
for some period between t,_ , and t,. As such, the two groups of individuals will not be 
comparable at ts if exposure has an adverse effect on mortality, since they will have 
different cumulative exposures at t,. Even when exposure has no effect on mortality, if 
high exposure preferentially makes individuals with poor prognosis terminate employ- 
ment, the same lack of comparability will arise. The only solution is to take measurements 
at short time intervals. We believe that in occupational mortality studies six months is a 
short enough period. 

Remark. In the mining industry, workers in ill health are selectively transferred to 
unexposed surface jobs. Thus, if our study was of the mining industry, the MCISTG 3.4 
would not be a FR MCISTG. 

E. Estimable causal parameters and some caveats 

Suppose one correctly believed that MPISTG 3.3 was an FR MCISTG. That is, among 
individuals with identical past work and exposure histories at ts, the groups ‘.individuals 
off work,” “ individuals at high exposure job,” and “individuals at work at zero exposure 
job” do not systematically differ on unmeasured risk factors. Then it follows from the G- 
computation algorithm that we can test the null hypothesis of no exposure effect con- 
trolling for employment history by determining whether the mortality rate at each time t 
depends on observed exposure history when controlling for work history. Suppose, in 

Fig. 3.5. An MPISTG 
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addition. that employment history has no effect on an individual’s mortality when con- 
trolling for exposure history (i.e. loss of health insurance and increased poverty associated 
with unemployment do not result in increased mortality). Then MPISTG 3.5 would be an 
FR MCISTG as well (see Theorem 8.1). It follows that a test of the null hypothesis of no 
causal effect of exposure on overall mortality (or mortality controlling for employment 
history) is obtained by determining whether the mortality rate at t depends on observed 
exposure history (even when we do not control for employment history). Thus, the stan- 
dard practice in occupational epidemiology is to implicitly assume that MCISTG 3.5 is 
an FR MCISTG. 

Suppose now that due to the fact that disabled individuals leave employment, the 
investigator correctly believes that MCISTG 3.4, but not MCISTG 3.3, is an FR MCISTG. 
Then the G-causal parameters of MCISTG 3.3 are not consistently estimable. In addition, 
the bias associated with estimating MCISTG 3.3’s G-causal parameters by the G-com- 
putation algorithm applied to the sample data cannot be empirically estimated. The in- 
vestigator can only estimate the overall effect of exposure when not controlling for em- 
ployment history from FR MCISTG 3.4. We now examine what one can say, even 
qualitatively. about the causal parameters of MCISTG 3.3 representing the direct effect 
of exposure after controlling for employment history from knowledge of the G-causal 
parameters of FR MCISTG 3.4. To do so, vve shall require the following definitions. 

We say an exposure is semimonotone deleterious (beneficial) if there is no individual 
whose survival would be enhanced (diminished) by having his exposure increased at any 
time, but there is some individual whose survival is diminished (enhanced) by increasing 
exposure. That is, “more” is no better (worse) for anyone but is worse (better) for some- 
one. Formally, 

Dejhition. Exposure is semimonotone deleterious if for all fLi, .5(t,. Gi ‘, Gi.‘, i) S 
0 (with strict inequality for some tx, i, G:.‘. G!,3) whenever G:.3, Gz.3 are characterized 
by “stay at work. receiving exposures ei(t,) and e?(t,),” respectively, such that e2(t,) < 
el(t,) for all t, where we have used the following notational convention. 

Notational convention. X numerical superscript associated with any G refers to the 
figure number of the MCISTG for which G is a generalized treatment. 

Definition. An exposure is apparently semimonotone deleterious if the above defi- 
nition holds except with 3.4 substituted for 3.3 and “stay at work” replaced by ‘if at 
work” and i dropped (i.e. this is a population definition). Corresponding definitions of 
semimonotone beneficial are constructed simply by changing the direction of the inequality 
sign between ez(t,) and ei(t,). 

When Fig. 3.4 is an FR MCISTG we can empirically determine whether exposure 
is apparently semimonotone deleterious but not whether it is truly semimonotone 
deleterious. 

It is easy to show that when exposure is apparently semimonotone deleterious and 
employment history is a causal risk factor controlling for exposure history., it is possible 
that exposure is semimonotone beneficial, semimonotone deleterious, or has no effect on 
any individual’s mortality controlling for employment history. Thus, one is in a bind if 
interested in the biological effect of exposure. The causal parameters of FR MCISTG 3.4 
can be estimated, but they have little substantive interest. One cannot consistently es- 
timate the causal parameters of MCISTG 3.3 that do have substantive interest. 

Suppose now that the investigator correctly assumes u priori (based on no empirical 
evidence if MCISTG 3.3 is not an FR MCISTG) that there is no effect of employment 
history on any individual’s mortality when controlling for exposure history. What can the 



Fig. 3.6. An FR MCISTG: H = high exposure, M = medium exposure, 0 = zero exposure. 

investigator now say concerning the probable biological effects of exposure on mortality 
from knowledge of the causal parameters of FR MCISTG 3.4? 

We will show that it is possible (but unfortunately not identifiable) that even when 
employment history is not a causal risk factor, exposure can be apparently semimonotone 
deleterious and yet be semimonotone beneficial. 

EX.WPLE: Consider a study represented by FR MCISTG 3.6. Exposure is apparently 
semimonotone deleterious, since 

S(t3 ) G- = ([HI, [HI)) = S(t, 1 G3.6 = ([HI, [iv])) = .2.5 + .8.25 

= .3 < .5.5 + .5.4 = .45 = .S[t, 1 G3.6 = ([Ml, [HI)] = S[t, ( G3.6 = ([Ml, [WI 

where ([&I], [HI) means IV at t,. H at t2. In fact, exposure appears to be deleterious with 
a biological latent period of At = 1 t2 - rI 1 = ] ts - t- ) years. We now show that there 

Table 2. A possible state of nature generating the data in FR MCISTG 3.6: Survival experience of 6 
homogeneous subgroups of study subjects when treated with various generalized treatments of a modified 

MCISTG 3.3 

Generalizedt 
treatment of 

modified 
MCISTG 3.3 

ii 

(2 
0 

M: 0 
M, H 
M, M 
H, H 
H, M 

Number of each 

type 

Group 1: Group 2 Group 3 

Subgroup Subgroup Subgroup Subgroup Subgroup Subgroup 
Al B1 A2 B2 4 B3 

0 
O§ 0 

l§ 0 0 0 
0 1 0 0 0 
1 0 1 1 1 0 
1 0 1 1 1 0 
1 0 1 1 1 1 
1 0 1 

30; 
1 1 

100 100 200 150 150 

t Group definitions as given in Sec. 3E. 
$ Represents the generalized treatments (of the modified MCISTG 3.3 defined in Sec. 3E) defined by “stay 

at work and receive the exposures at t, and f2 shown in the columns labelled ti and t:, respectively.” 
5 1 indicates survival past r,, 0 indicates death at I) 
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is a possible state of nature, consistent with the data in FR MCISTG 3.6, such that 
exposure is semimonotone beneficial. 

Suppose the underlying state of nature generating the observed apparent semideleter- 
ious exposure effect is such that each exposure group at tj consists of the following three 
distinct groups of individuals: 200 individuals who in the observed study are 1 at tl irres- 
pective of initial exposure (Group 1); 500 individuals who are 1 irrespective of initial 
exposure (Group 2); 300 individuals who are 1 only if they received high exposure at rl 
(Group 3). Furthermore, suppose each of these groups were itself a mixture of two 
subgroups (called A and B) of truly homogeneous individuals with the survival histories 
shown in Table 2 when treated with generalized treatments of a modified version of 
MCISTG 3.3 that has 4 intemodal lines labelled (0, I>, (M, I>, (H, i), (0, f) arising from 
each node. In Table 2 we can see that exposure is semi-monotone beneficial, since the 
definition is satisfied for each of the six homogeneous types of individuals. The reader 
can check that the state of nature depicted in Table 2 would generate the data in MPISTG 
3.6 provided L is not a causal risk factor. 

If there are zero exposure jobs in the workplace and L is not a causal risk factor apparent 
semimonotone deleterious exposures cannot be semi-monotone beneficial. To see this, 
in our example, suppose that all the MS were changed to OS in Fig. 3.6. Then it is easy 
to see that exposure is still apparently semi-monotone deleterious but cannot be semi- 
monotone beneficial, since we have (without any further assumptions) that s[t, 1 G3.3 = 
([H, ii, 10, i])] = .3 < ~[f, 1 ~3.3 = (to, ii, [o, ii)] = .45. 

Fortunately, if neither exposure nor employment history are independent callsal risk 
factors in MCISTG 3.3, then, as one would hope, all G-causal parameters of MCISTG 
3.4 will be 0 at all times. 

The above caveats notwithstanding, in this paper (unless stated otherwise) we shall 
implicitly assume that (1) the effect of employment history on mortality controlling for 
exposure history is negligible, (2) MCISTG 3.4 is an FR MCISTG, and (3) if the G-causal 
parameters of FR MCISTG 3.4 show deleterious (beneficial) overall effect of exposure 
on the population, then the true individual effects of exposure are monotone deleterious 
(beneficial). Finally for the sake of convenience of exposition and without loss of generality 
we shall usually assume that the MPISTG 3.3 is always an MCISTG by. for example, 
defining for a disabled individual the “treatment of high exposure at work” as follows. 
(1) The individual is brought to work (in a hospital bed if necessary). (2) The disabled 
individual is exposed to high levels of the air contaminant (we are assuming the exposure 
of interest is an air contaminant). (3) His salary and medical benefits continue as if he 
were actively employed. (4) He receives the standard level of medical care commensurate 
with his salary and benefits. We shall suppose that (l)-(4) are sufficient to give each 
disabled individual a well-defined outcome under the treatment of high exposure at work. 
There is no loss of generality in making the above definition of the treatment “high ex- 
posure at work” since because MCISTG 3.3 will not in general be an FR MCISTG we 
shall not be able to estimate the G-causal parameters of MCISTG 3.3. As such the in- 
ferences that we actually draw from the data will be unaffected by how we define “high 
exposure at work” for disabled individuals. See Sec. 8A.3 for a related discussion. 

F. Contrast of our approach with a Bayesian approach 

In this paper, we shall formally require the data analyst to make empirically untestable 
assumptions concerning the randomness of nature’s treatment assignments. Such as- 
sumptions define the finest FR MCISTG (which, in our case, shall usually be FR MCISTG 
3.4). (One could do a sensitivity analysis by analyzing the data under various assumptions 
as to the finest FR MCISTG.) The data analyst is to formally report “estimates” of the 
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G-causal parameters of that FR MCISTG even though the analyst’s real interest may lie 
in the G-causal parameters of a finer MCISTG (e.g. MCISTG 3.3) that is not an FR 
MCISTG. This approach is formal, and is not meant to preclude informal criticism. For 
example, even if the analyst treats MCISTG 3.4 as an FR MCISTG in his formal analysis, 
he may still subjectively believe that MCISTG 3.4 is not quite fully randomized. In such 
a case, it is perfectly sensible to informally discuss one’s belief about the direction and 
magnitude of the bias of the estimator of the G-causal parameters of MCISTG 3.4 based 
on the G-computation algorithm. Furthermore, it makes sense to informally discuss one’s 
beliefs about the magnitude of the nonidentifiable G-causal parameters of interest (i.e. 
those of MCISTG 3.3). Pratt and Schlaifler[6] make a similar point. 

In contrast, a Bayesian interested in the causal parameters of MCISTG 3.3 would not 
be unduly concerned that nature had not given treatments at random. Rather, the Bayesian 
would simply use the observational data to update his beliefs about the parameters of 
interest, recognizing that these parameters could not be consistently estimated. Philo- 
sophically, we find the strict Bayesian view quite appealing. But it is impractical to im- 
plement due to problems with prior specification and computational intractability. Thus, 
we have proposed our less philosophically appealing but more reasonable approach to 
causal inference in observational studies. 

G. Empirical versus actual healthy rvorker survi\~or effect 

Definition. The “empirical healthy worker survivor effect” is operative at t, if and 
only if among any set of individuals alive at t, in the observed study with identical exposure 
and employment histories through t,_, , the probability of survival to any time t(t > tS) 
is greater in the group “at work at t,” than in the group “off work at t,” when all are 
treated, starting at t,, with the generalized treatment *‘if at work receive zero exposure’*. 

Definition. Employment history is a population risk factor for death controlling for 
exposure history if and only if the incidence of death at some time t differs among two 
groups with the same exposure histories but different employment histories. 

Remark. Under the assumption that MPISTG 3.4 is an FR MCISTG one can empir- 
ically test whether the “empirical healthy worker survivor effect” is operative using the 
G computation algorithm beginning at t, rather than at tl. If employment history is not 
an independent population risk factor then the empirical healthy worker survivor effect 
cannot be operating. 

Definition. We define a group of workers A to be less healthy than a group of workers 
B, both alive at t,, for a particular exposure history subsequent to t,, say {e,(td; tk > 
t3}, if and only if the probability of survival through any t(t > t,) for group A is less than 
that for group B in a hypothetical study defined by the generalized treatment of MCISTG 
3.3 ‘*if alive at tx receive ei ( tk) at work. ” 

Remark. When MPISTG 3.3 is not an FR MCISTG and an “empirical healthy worker 
survivor effect” exists, we cannot empirically determine whether the observed effect is 
due to the group off work being less healthy than the group on work for the exposure 
history of “no subsequent exposure” (i.e., whether the healthy worker survivor effect is 
operative), whether it is due to an effect of the unemployed state per se (mediated, for 
example, by loss of health insurance), or whether it is due to both. 

CLAIM. Given that (1) MPISTG 3.4 (but not MPISTG 3.3) is an FR MCISTG and (2) 
there is no effect of employment history on an individual’s mortality controlling for ex- 
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posure, we can empirically test whether, among workers with identical work and exposure 
histories through t, _ ,, those off work at rz are less healthy than those on work at t, only 
for the exposure history of “no subsequent exposure .” 

Proof. We can only estimate the subsequent survival of the groups “on work at t,” 
and “off work at t,” (defined above) for generalized treatments of FR MCISTG 3.4. 
Consider, for example, the generalized treatment “if at work receive high exposure be- 
ginning at t,.” Then the group “on work at t,” will receive higher exposure at rs than the 
group “off work at t,.” Thus we cannot compare the survival of the two groups when 
given the same exposure history unless we treat them beginning at t, with “if at work. 
receive zero exposure.” 

4. A FORMAL THEORY OF CAUSAL INFERENCE 

A. Structured tree graphs 

An STG (see Def. 3. I) is said to be standardly labelled if (I) within each node, intranodal 
lines are numbered consecutively from I; and (2) when two or more internodal lines 
originate from the same point on a right circumference, they are numbered consecutively 
beginning with 1, and otherwise, internodal lines are labelled with a 0. The standard 
numerical label of a particular intranodal or internodal line is read off the graph by re- 
cording the numbers in order on the unique path from the left circumference of TV to the 
intranodal or internodal line of interest. Thus, a given intranodal line at t, (and the point 
on the right circumference on which it terminates) can be identified as i,j,idz . . . 
i, - lj, - I i, where we reserve the i symbol to represent labels of intranodal lines (and the 
associated point on the right circumference) andj to represent those of internodal lines 
(and the associated point on the left circumference of a node in the next generation). The 
internoda! lines arising from .i, can be identified as .i5js (where we abbreviate the sequence 
i,j, . . . i,j, by .i,j, when the meaning is clear). The node on which .isj, terminates is 
*&j,(t,,,). In the above i, E (1, . . . , N}; j,(i,) E {I, . . . , Nj,} if N;, > 1 andj,(i,) = 
0 if Ni, = 1; i,(.i,_ ,j,- ,) E (1, . . . , N.is_,jr_l}, j,(.i,) E {I, . . . , iV.i,} if N.i, > 1 and 
j,(.i,) = 0 if N+, = 1; where, for example, N.is_,j,_, is the number of intranodal lines 
arising from the node in generation rs on which the internodal line *i,- Jj- I terminates: 
andj,(.i,) is the number associated with the particular internodal line .i,j,. 

EXAMPLE. The lower halves of STG 3.1-3.4 have their standard labels within square 
brackets. 

We define a partial ordering among STG. 

Definition 4.1. Coarseness. We define an STG B to be at least as coarse as STG A. 
and A at least as fine as B, if and only if B can be produced from A by the following 
algorithm. For each .i, in graph A, the set of internodal lines are divided into KC-i,) mutually 
exclusive subsets. Each such subset is assigned a separate point on the right circumference 
of its node (and thus a separate intranodal line). Note that any graph produced by this 
process from A is an STG with the same number of nodes and internodal lines per node 
as A. If K(.i,) is greater than 1 for some *i,, we say that the STG B is coarser than A (A 
is finer than B). Formally, we can identify any partition of the internodal lines arising 
from an (.i,) with a particular mutually exclusive and exhaustive partition: 
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Au.(,) n Ak,(.i,, = 0 if k Z k’, U~AX_(.~,) = (1, . . . , N.;,}, k E (1, . . . , K). 

Definition 4.2. A generalized treatment of an STG. A subgraph of an STG A is a 
generalized treatment if it can be formed by the generalized treatment algorithm described 
under Task 2B of Sec. 3. A particular generalized treatment “GA’) can be (minimally) 
specified, using the standard labelling, by the set { j,(*i,), j, f 0) of highlighted internodal 
lines excluding those highlighted lines standardly labelled 0. Let “GA” be the set of all 
,,GA -79 The quotes around “G” are used to stress that this use of generalizeed treatment 
has no causal interpretation. 

B. Partially interpreted structured tree graphs 

Consider an observational cohort survival study in which covariate and vital status 
data on each individual is collected at S + 1 times tl, . . . , tStl. Time may represent 
chronological age, time on test, calendar date, etc. The study population of size m is 
assumed to have been randomly sampled without replacement from a large superpopu- 
lation of size M and sampling was possibly conditional on time-dependent covariates 
Z(t,_) = [Z,(t,_). . . ZK(fl - )] where Z(ti _) = {z(p); p c tl _}, z(k) is the actual value 
of a covariate measured at time t.i_ and tl _ is a time infinitesimally less than tl . Suppose 
that for any possibly time-dependent covariate Z(t), the potentially available data are of 
the form Z(t,+,) = [Z(t,-), z(t,), z(tz), . . . , z(tsA ,)I. By letting At = (ts - tsml) --* 0 
we can approximate continuous time. For notational convenience we assume At does not 
depend on s and denote Z(t, _) as Z(t,). We consider only the discrete time case both to 
keep the mathematics simple and to allow graphical representations. In Sec. 6C, we allow 
for left censoring. Until Sec. 12, right censoring and competing risks are absent. 

Definition 4.3. An STG is a partially interpreted structured tree graph (PISTG) of a 
given study if the covariate and survival history of the superpopulation can be represented 
as follows. Each internodal line *ij, represents a distinct covariate and survival history 
defined by being alive at t, with a particular value of the vector Z(t,). [.isjs] is the subset 
of the population with history eij,. A subject has covariate and survival history ai, if and 
only if he has any of the N.i, histories *iJ*. Thus, [ei,] is the union of the [.i,j,]. *i,j,(t,+ 1) 
represents the history “alive at t,+ , with covariate history represented by .i5jFjS.” The 
union of the N sets [ail] is the entire superpopulation. The union of all sets [.i,] is the 
entire population alive at t,. p(*iJjj,) is the proportion of the superpopulation with history 
.iJs. We will usually assume p(*iJ, 1 .i,) > 0 if p(.is) > 0. 

In general, we will encounter a single study whose outcomes were observed and want 
to use it to predict outcomes in a number of other hypothetical studies in whose outcomes 
we are interested. A PISTG that represents the data in the study that was actually observed 
is called an observed PISTG (OPISTG). An OPISTG is an MPISTG if data on the co- 
variates necessary to determine the covariate histories .isj, of each sampled subject were 
recorded for data analysis. An MPISTG is detailed as the data if whenever two individuals 
differ on Z(t,) they are associated with different internodal lines. 

A partial interpretation of an STG A induces a natural partial interpretation on any 
STG B coarser than A. 

For any PISTG A define 

v(*L 1 A) = p(*L 1 .i,- ,js-. ~(f~>, A) (4.1) 
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v(.LjS 1 A) = p(.iJ, I .i,, A) (4.2) 

S(.iJ, 1 A) = p(D > t,,, 1 D > f,, .i,j,, A) (4.3) 

y&t,+, / .i,j,, A) = 1 - S(.iJ, 1 A). (4.4) 

EXAMPLE. In Fig. 3.4, the fractions written over the highlighted intranodal lines are 
y(.iS), the fractions written over the left end of each highlighted intemodal line are y(.iJs), 
and the fractions written over the right end of each highlighted internodal line are S(.i,j,) 
(ignoring sampling variability). 

C. Causally interpreted structured tree graphs (CISTG) 

In Sec. 4 only we use primes to indicate outcomes determined by nature. 

Definition 4.4. A PISTG is a CISTG if each individual in the superpopulation in any 
set [.i:] has associated a deterministic set HT(.i:) = {(D(t,,), Z(t,,), J(t,,)); II E (s + 1, 

S} defined as follows: If t,, , s S, 
i.;;jsi’:+ I}, { “j 

(D(t,- I), I(ts+ 11, J(ts+ 11) = ({D.i;j,)T 
+I, .i: + , j: + ,}). where in all three sets j, takes on each of the values (1, . . . , 

iv.,;). D.i;j, = 1 if, when in *i:jj,, the individual would die in the interval (tS, t,_ I] and 
D.i>j, = 0 if the individual would survive past ts+,. .i;j,ii+, and .i:j,i:_,j:+, are the 
subsets in which nature would deterministically place the individual at tsil if at t, the 
individual had been in .iijj, in a hypothetical study (rather than in .ilj:). [We suppose that 
nature determines these sets even if the individual died in (t,, t,+ ,I. This latter assumption 
is used to extend our results to competing risks in Sec. 12. Until Sec. 12 (with the exception 
of Sec. 8B), all our results will hold without this assumption.] If alive at t,+ , an individual 
would then be in subset *iljj:ii+,j:_, in the actual study. 

where in all three sets j, takes on each of the values of (1, . . . , N.i;) and j,, I takes on 
each of the values (1, . . . , N.i>jsi;_,); .i3:i:+,j,+,i:A2 and .iJjj,i:+ ,jrt ,i:;zjS+z are sub- 
sets in which nature would place the individual at t,+z if the individual had been in * 
iijS:+,j,+~ at ts+~. D.iijj,i;+,jS+, = 1 if D.i;i, = 1 or the individual would die in the interval 
(ts+,, ts+21 when in .iij,i:+,j,+,; and D.i;j,i;+,j,+, = 0 if D.i;j, = 0 and the individual 
would survive past ts + 1 when in .ilj,i: + , j, + I . We continue in this fashion incrementing 
by one until tsck = ts. 

If a PISTG is an CISTG, the covariate and death history for any individual are uniquely 
determined through rs+, when a hypothetical investigator specifies the treatments, j,(.i,), 
for any subset of the times t, through ts and allows nature to select the treatment at all 
other times. OPISTGs and MPISTGs that are CISTGs, we call OCISTGs and MCISTGs. 

LEMMA. If PISTG A is an CISTG, then PISTG B coarser than A is an CISTG. 

Proof. This follows immediately from the existence of the sets J(tU) defined above. 

D. The causal parameters oj‘a CISTG 

Definition. The generalized treatments of a CISTG. A general treatment “G;” of the 
STG of a CISTG A defines a unique hypothetical study Gp in which: (1) Each individual 
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with a particular history i, is treated with unique treatment .i,j, on the highlighted graph 
“G,:“. (2) If alive with history .j, at tz, the subject receives the highlighted .i& of 
“G;\ “1 etc. From the definition of a CISTG. each subject has a unique well-defined 
covariate and survival history in such a study. We describe this study by saying that each 
subject was treated with generalized treatment G: (where \ve drop the quotes surrounding 
“G? ” when referring to the hypothetical study defined by G?). Throughout this paper, 
when no ambiguity is likely to arise, we shall. in a slight abuse of notation, refer to the 
subgraph of the PISTG represented by “G?” as G?. 

We need to describe some notation. Given a CISTG A, S(t ( G?) is the survival curve 
of the hypothetical study defined by G;‘. For a particular .i, and .i,j,, v(.iJ, 1 G?) = 
y(*i,jt 1 Gf) is the conditional probability of having covariate history .i,j? given one has 
covariate history .ie in the hypothetical study defined by G;‘, where .iJf is the covariate 
history represented by the internodal line “.r3jg ’ ‘* in PISTG A (when PISTG A is standardly 
labelled). In equations that include both the study represented by A and the study rep- 
resented by a particular G’: whenever a superscript is missing from any symbol the su- 
perscript is assumed to be an A. Also, in the same spirit, S(.i,j,) = S(.i,j, 1 A). 

Definition. The set of G-causal parameters of a CISTG is the set {.S(t, G?, GP) E 
p(D > t 1 G:) - p(D > f 1 GP) = ?I(? 1 G:) - S(t j G$): G:, G< E G”}. Let KA represent 
a study in which each individual in the population is treated with a particular, possibly 
different, G$ E G’. Let K,’ be the collection of all such K”. 

Definition. The set of population causal parameters of CISTG A is the set {S(r, 
K‘:, Kf) = S(t ( K:) - .S(t 1 K;), K:, K$ E I;“}. 

LEMMA. If CISTG B is coarser than CISTG A then for all KY, Kf , S(t, KY, Kf) = 
S(t, K:, KS’) for some K;\, K? E K”. 

In general, most of the population causal parameters of an CISTG A are nonidentifiable. 
We proceed to define thz S( t, Kf , K5’) considered identifiable by a particular investigator. 

E. Fully randomized CISTG 

Given a CISTG A for individuals in .i: define H”(*i;.) = {D(t,,). Z(t,,), u E (s + 1, . . . , 
S)}. For each individual in (.i:) of a CISTG A, H(.i:) is the record of that individual’s 
subsequent deterministic covariate and survival history for each generalized treatment 
whose highlighted subgraph at t, passes through (.il). 

Suppose there exists an CISTG such that on the basis of our subjective beliefs we 
assume for each ai,, 

(4.5) 

Note that Eq. (4.5) is a weaker assumption than 

p(*iJ, I .i,, HT(.i,)) = p(.i,j, I *is>. (4.6) 

DeJinition. Given a PISTG A, an assumption is nonidentifiable if complete knowledge 
of the y(.is), y(+isjr), S(.i,j,) is not sufficient to establish whether the assumption is true 
or false. 

Definition. Any CISTG satisfying Eq. (4.5) is called a random CISTG (R CISTG). 
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Definition. An CISTG satisfying Eq. (1.6) is called a fully random CISTG (FR CISTG). 

Equations (4.5) and (4.6) are nonidentitiable. 

THEOREM. Given an FR CISTG B, any CISTG coarser than B is an FR CISTG. 

Proof. Follows immediately from the definition of an FR CISTG. An CISTG A coarser 
than an R CISTG B need not be an R CISTG. 

THEOREM 4.1. Let GB be a generalized treatment of an R CISTG B; then S(.i,j, / GB) 
= S(.i$, 1 B), y(.is 1 GB) = y(.i,. 1 B). 

Proof. See Appendix C. 

Definition. An OCISTG (MCISTG) that is an FR CISTG is called an FR OCISTG 
(FR MCISTG). 

Definition. Given a generalized treatment “G,” of the STG of a PISTG, define 

S(fk+, / “G,“) = p(D > tk+[ 1 “G,“) 

c y(.ik)S(.iti=jx) ... 1 11 (4.7) 

where for any ‘is, the choice of .isj, is uniquely determined by “G,“. Note the PISTG 
need not be a CISTG. 

Definition. s(t, “GI, ” “Gz”) = ,.T(t 1 “G1”) - s(t 1 “(&“) 

Corollary 4.1. Let Gi be a generalized treatment of an R CISTG; then p(D > tk I G,) 
= p(D > tk 1 “G,“). 

Proof. Using Theorem 4.1, it follows that the right side of Eq. (4.7) is simply a sum 
over all possible ways of surviving to tk_, , when a population is treated with Gi . s(t I “G,“) 
is nothing but the G-computation algorithm of Sec. 3 written in a compact and compu- 
tationally efficient form. Note that p(D > tk I “G;“‘) is not a survival probability unless 
PISTG A is an R CISTG. Rather, it is, by definition, the population parameter of Eq. 
(4.7). This notational device will be used throughout this paper. Its utility will be obvious. 
We now give other examples of this notation. 

Definition. Given a PISTG and .i,_, on “G”, p(.i, I “G”) = y(.i,) and 
p(.i,j,i,_ I 1 “G”) = y(.is+ I ) S(*i,j,)p(.i, ) “G”). From this recursive definition we can 
see that p(.is 1 “G”) is the product of the intranodal probabilities y(.ik) and conditional 
survival probabilities S(.idk) of the sequence of intra- and internodal lines connecting the 
left circumference of tI to .i,. 

Definition. p[.i,j,(t,, ,) I “G”] is the product of the intrandal probabilities y(.ik) and 
conditional survival probabilities S(.i,ik) [ending with S(.i,j,)] on the sequence of inter- 
and intranodal lines connecting the left circumference at t, to the node .i,j,(t,& ,I. 

Dejinition. We say +i, E ‘*GA” (alternately .i,j, E “G” “) if .i, (alternately .i,j,) lies 
on the highlighted subgraph “G” “. Using the above conventions we can rewrite p(D > 
tx_ I “G;\“) as C-ii-lir_ ,E~: p[.ik_ ,j,_ ,(tx) I “G,:“]. In fact, this form is exactly the G- 
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computation algorithm. We also define 

y&t, + At 1 "G,") = %,~,EG; vdr, + At ( .i.sj,) pt.4 ( “G,") 

p(D > rs 1 "G,") 

If the PISTG under study is an R CISTG and the ” ” are removed from the left side of 
each of the above propositions, the definitions become true probability statements about 
the study defined by G,. 

Let m* be a function that assigns to each internodal line of a PISTG A a number 
m”(-iJ3) subject to the constraint ~;~!:,,=i m”(-i,js) = I (m”(.i,j,) = 1 ifj, (ei,) = 0) 
(“GA ” can be identified with any m* such that mA(.iFjS) = 1 if *i3j, is on the highlighted 
subgraph “GA”). Let i E (I, . . , I) index the ‘*Gd” E “GA .” 

Definition. Given a PISTG A, 

s(t,_, 1 “m,“) = C bvi(mr\, tk)S 
1 

where 

k+,) “Gj”) 

where for any *i,j, the numerical value ofjs is uniquely determined by G?. Graphically 
\Vi(mA, tk) is obtained by first writing on each internodal line *isjs of STG A, the quantity 
mA(.isj,), and secondly forming the product of all the mA(.isjs) on the highlighted subgraph 
representing G? up to the time tk in question. Note that xi wf(m^, tJ = 1. 

Definition. p(.ik+ i 1 “mA “) is defined exactly like s(t,+, 1 “mAr’) except 
p(.ik+ i 1 “Gf “) replaces s(t,_, 1 “Gf”). 

LEMMA 4.2. P(D > f ( A) = S(t 1 “mA”) when mA(.iSjs) = y(.iSjS), 

Proof. Direct ca!cuiation. 

This lemma implies that the observed survival experience of the entire study population 
in an R MCISTG A can be written as a weighted average of the survivals that would be 
observed in controlled trials defined by the GA. 

LE~MMA~.~. If PISTG B is coarser than PISTG A, then, for any “GB,“S(tk_ I 1 “GBtt) 
= S(tkfl ( “MA” ) for mA(*iSjS) chosen as follows: highlight on STG A those inter- 
nodal lines whose isomorphic counterparts are on the highlighted subgraph GB of STG B. 
Each highlighted internodal line is a member of exactly one of the subsets A&.!=) that were 
used to form B from A. For each highlighted line on A choose m^(.i&) = 
C;(.ir)a*(.i,) -,~(*i~j,). (That is, in each subset AH.~,) we, as it were, give all the weight to 
the highlighted line.) 

Proof. Direct calculation. 

Corollary 4.3. If the G-causal parameters of an FR CISTG A are identically zero, 
then so are the G-[causal parameters of all coarser FR CISTG. 
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Definition. A set of causal parameters B are more basic than a set A if, whenever all 
the causal parameters in set B are zero. the causal parameters in set A must be zero but 
not vice versa. 

Thus, the G-causal parameters of a FR CISTG A are more basic than those of a coarser 
graph B. 

F. Causal inference in alternative designed randomized trials 

We generalize the characterization of an alternative designed randomized trial given 
in Sec. 2 as follows: (1) at each time t, subjects may be assigned treatments that include 
interventions in addition to the exposure under study; (2) the probability of being assigned 
to a particular treatment at t may depend on the subject’s past (measured) covariate history 
(including history of being off protocol). We discretize the timeline for graphical purposes, 
and assume treatments are given to individuals on protocol only at discrete times tl , t2, 
. . . with assignment probabilities at t, depending on the value of covariates measured at 
times t,, t2, up to t,. We assume that every individual on protocol at t, received their 
assigned treatment. Subjects may leave protocol and later return. 

Definition. An MPISTG as “detailed as the data” of an alternative designed random- 
ized trial is the fundamental MPISTG of the trial if: (1) any subset of the population that 
was eligible to be randomly assigned to one of K treatments at t, is represented by a right 
circumference point at t, and (2) the K treatments are given K separate internodal lines 
originating from that point. 

Definition. A PISTG is a sharp causally interpreted tree graph (SCISTG) if each 
individual in any set .i: has associated a deterministic H(.i:) as defined previously. 

We shall consider the fundamental MPISTG of an alternative designed randomized trial 
to be an SCISTG but not a CISTG, since the treatment nature would have given to a 
subject, if the investigator had not performed the trial, is unlikely to lie on the MPISTG 
of the observed trial. (For example, if not entered in the trial, no individual may obtain 
either treament A or B under study.) By the definition of an alternative designed ran- 
domized trial, Eq. (4.5) holds for the fundamental SCISTG. The only important difference 
is that coarser graphs formed from the fundamental SCISTG are not SCISTGs or CISTGs. 
Otherwise, all theorems for R CISTGs hold for R SCISTGs. 

G. Nonexistence of a finest MCISTG and FR MCISTG as detailed as the data 

LEMMA 1. If there exists an MPISTG as detailed as the data, there need not be a finest 
MCISTG as detailed as the data. 

LEMMA 2. If there exists a finest MCISTG as detailed as the data, there need not 
exist a finest FR MCISTG as detailed as the data. 

LEMW.3. If there exists a finest FR MCISTG A as detailed as the data, the comparison 
of survival curves of the generalized treatments of the finest FR MCISTG and those of 
coarser FR MCISTGs need not exhaust the causal parameters considered identifiable by 
a given investigator. 
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Remarks. Lemma 1 follows because there may be a right circumference point from 
which three internodal lines arise on an MPISTG such that the set HT(.I’l.) is not considered 
defined by the investigator. Nonetheless, the investigator might consider HT(.i:) to be 
defined for the coarser graphs based on separating individuals with the covariate history 
represented by the top most line from the bottom two or the bottom line from the superior 
two. This lack of the associative property means that a finest MCISTG as detailed as the 
data will not, in general, exist. Similarly, Eq. (4.6) [as well as (1.5)] do not have the 
associative property. Finally, Lemma 3 follows because an investigator may believe Eq. 
(4.6) holds for an MCISTG less detailed than the data but for no MCISTG as detailed as 
the data. 

Nonetheless, in practice, we shall suppose that there exists a finest FR MCISTG as 
detailed as the data and that its G-causal parameters and those of the FR MCISTGs coarser 
than it constitute the set of causal parameters one believes can be identified from the data 
without further n priori assumptions. 

H. Conditional survivals 

One may be interested in the G-causal parameters of a CISTG conditional on being a 
member of a particular subset of the population (for example, males or, as another ex- 
ample, individuals who have survived to t, with a particular employment and exposure 
history). We associate with any .i, of an STG B the subgraph B(.i,) representing the part 
of the STG B to the right of that .i,. but connected to .i,y. That is. B(.i,) includes .i, and 
all internodal lines arising from .i,, all nodes on which these terminate, all intrsnodal lines 
within these nodes, etc. If B is a PISTG, CISTG. or FR CISTG, B(.i,) can be interpreted 
to be so as well. For example, the PISTG B(.i,) represenis the covariate and survival 
history subsequent to ts for individuals in .i, in B. 

LEMMA. If B is an R CISTC then there exists Gy, G! such that 

s[t, GTC.i$), GT(‘iAl] = S(t, GB, GB) 

p(.i, / G?) ’ 

Proof. The theorem is true by direct calculation for S[t, “G?““‘,” “G?“““], S(t, 

“G? 9” “ G?“), and p(.i, / “G?‘) where G?, Gf agree for all nodes not in B(.i,) and 
GB agrees with GB(.“’ and G? agrees with GB”“’ on subgraph B(.i,). 

The lemma is false if CISTG B is not an R CISTG. Graphs B(.i,j,) and B(.i,j,(t,- I)) 
can be defined in a manner similar to B(.i,). 

I. Computational considerations 

The computational burden in computin g ,S(t, 1 “G,“) from Eq. (4.7) increases with 
increasing numbers of internodal lines originating from nodes at tk- , on the highlighted 
subgraph “G, .” The number of such internodal lines may be so large that even if we 
knew y(.iS) and S(.i,j,) for all .i, and .i,j, on ‘iGl”r we cannot compute S(t, j “G,“) even 
with the aid of a high-speed computer. In such instances we can resort to Monte Carlo 
methods. 

EXAMPLE. Suppose, in our occupational mortality study. that Fig. 3.4 is the finest FR 
MCISTG for the first li years of follow-up. The FR MCISTG for the entire 10 year follow- 
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UP period (which we will still call FR MCISTG 3.4) would have S = 81 generations. There 
are 280 internodal lines between t 80 and fgl on the highlighted subgraph representing the 
generalized treatment of this FR MCISTG. We can estimate S( ts, 1 G) for any generalized 
treatment G by sampling of the employment history paths as follows. For a given gen- 
eralized treatment G of interest we choose at random a path Lj(tso) from the ?’ possible 
employment history paths connecting tl to txl by flippin g a coin 80 times with success 
probabilities Pi, . . . , Pso chosen in such a way that P8” depends on the outcomes of the 
preceding 79 tosses Hi, . . . , H79 [where Hj = 1 (0) if tossj was a success (failure)] as 
follows: Pi = p[l(t,) = 11, PZ = p[l(tz) = 1 1 Li(tl) = HI, E(t,)l, . . . , and Pso = p[l(tao) 

= 1 1 Li(f,g) = (HI, . . . , Hx,), E(h)], where L ;( t,) is the randomly selected employment 
history through t,, I(fS) = 1 if out of work at t, and E(L) is uniquely determined by G 
and L,(t,). Note P, = y(*ix) for .i, defined by Qt,) = 1, Li(fs-i), E(t,-,). (HI, . . . , HsO) 

determine a unique path Li(ts,-,). We compute 

S[L(tso)l = ; p[D > tr+~ 1 Li(ts> = (H,, . . . , H,), E(fs), D > ts] = fi S(.ij,) 
r=l s=l 

where .isj, is defined by Li(t,) and E(t,). Then, x?ll SILi(tso)]lN converges in probability 
to p(D > f8t 1 G) as N + =, where N is the number of random paths chosen as above. 
In practice, of course, we will only have estimates of the S(.i,j,) and y(.is) with which to 
estimate S(tsl I G). 

We can sometimes lessen our computational burden by applying an algorithm that takes 
as input a PISTG and generates as output a PISTG that. if different from the input. is 
guaranteed to have fewer internodal lines between ts and fsiI. 

Stage 1 reduction algorithm. We represent the algorithm in Fig. 4.1. Figure 4. la is the 
original PISTG. 

Step 1: Merge into a single line all internodal lines originating from tl standardly labelled 
withj = 0 (i.e. merge all internodal lines for which Nil = 1). Merge the associated points 
of origin on the right circumference of tl and merge into one line all the intranodal lines 
terminating on these points. Merge into a single node all those nodes at tZ on which the 
merged internodal lines previously terminated. Step 2: Retain on the right circumference 
of this single merged node the set of distinct points (and corresponding internodal lines) 
associated with each of the separate tz nodes that were merged. Repetition: For each 
remaining node at t2 (which includes the newly constructed nodes), merge all internodal 
lines labelled withj = 0 and repeat the above steps with tZ in the role of tl and t3 in the 
role of t2. Continue through ts. Figure 4.lb shows Steps I and 2 applied to the nodes at 
fl. Figure 4. lc shows Steps 1 and 2 applied to the nodes at t3. 

Since the Stage 1 reduction algorithm does not affect any .i, for which N.j, > 1, any 
“G: ” has a natural counterpart “G?” in the Stage 1 reduced graph B generated from A. 
It is the generalized treatment whose set {.iJs,j,(.i,) # 0) represents the same covariate 
and survival histories as those in “G? “. 

LEMMA. S(t I “G: “) = S(t I “Gf”) where B is the Stage 1 reduction of A and 
‘.G?” is the Stage 1 counterpart of “G? “. 

Proof. Direct computation. 

Note in Fig. 4.1 the computational savings gained by computing s(t I ‘.G?“) in lieu of 
.S(t I “G‘i”‘). Unfortunately, with PISTG 3.4. the Stage 1 reduction algorithm does not 
reduce the graph further. 



Fig. 4.1. Graphical representation of Stage 1 reduction algorithm 

5. ESTIMATION OF THE G-CAUSAL PARAMETERS 

A. Two large sample limiting models 

Throughout this paper we will suppose that the sampling fraction nz/iM is almost zero 
so that we may consider the outcomes of the sampled individuals to be statistically in- 
dependent. Given an MPISTG, the nonparametric maximum likelihood estimators of y(.is) 
and S(*i,j,) are the corresponding sample proportions. 

LEMMA. The PL-sufficient statistic (as defined in Appendix A) for S(t ( “G” “) is 
N[.i,jf], N[*i,jf(t,+,)], ;V[.if] for *iJf, aif E “GB,” and “GB” is the counterpart of 
“GA ” in the Stage 1 reduced graph B, and N[*i$!] is the number of sampled individuals 
observed to be in *if. 

Proof. (Ref. [7]) The import of this lemma is that, in general, given a PISTG A (and 
no further identifiable a priori assumptions) no information is lost by applying the Stage 
1 reduction algorithm. Because we have made no modelling restrictions, we obtain the 
NPMLE of s(t 1 “GA “) whether we apply the G-computation algorithm to PISTG A or 
apply it to PISTG B and estimate ,S(t 1 “GB”). 

Large sample limiting model 1. Consider a sequence of studies, each represented by 
an MPISTG A,,,, and indexed by their sample size m. Let Al, be the Stage 1 reduction 
of A,,, . Under limiting model 1, we suppose that as m ---, =, m/M + 0, the total number 
of intemodal lines on the Al, remains bounded, and, provided ~,,,[*i;l’~] > 0, 
mpm(*isj$lm) + x where .isj:“- is the covariate and survival history represented by the 
internodal line .isj, (standardly labelled) of Al,,,. This limiting mode1 roughly says that 
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the number of subjects on each intemodal line of the Stage 1 reduction of the MPISTG 
A, becomes large. 

Under limiting model 1, the NPMLE of .S(t, j “G,“) computed from Eq. (4.7) upon 
replacing y(.is) and S(.i,j,) by their NPMLE will be consistent and asymptotically normal. 
In realistic cohort mortality studies, the total number of internodal lines between ts and 
fSTI on the Stage 1 reduced MPISTG (in our example , 2”) may be large compared to the 
number of study subjects. Such sample size limitations require that we model the y(.is) 
and S(.i,j,). (As an example, we shall consider the use of statistical models to estimate 
the G-causal parameters of the FR MCISTG of Fig. 3.4 in the following subsection.) 
Furthermore, the asymptotics of limiting model 1 are not relevant. Rather, we will consider 
the asymptotic properties of estimators under limitin, 0 models in which there exists a 
sequence of -i,j$‘m (defined in the previous paragraph) such that rnp,,,(.iJ$‘“‘) is bounded 
as nz ---, x. We shall call any such limiting model a “sparse data limiting model for the 
sequence of MPISTGs”. 

B. Estimation of S(t 1 G3.‘) in a cohort of arsenic smelter \c*orkers 

Lee and Fraumeni[8] assembled data on 8047 arsenic-exposed white males who worked 
at a Montana copper smelter for at least one year between 1937 and 1956. A worker was 
entered into follow-up at the latter of January 1, 1938 and his date of first hire (except 
workers hired prior to January 1, 1938 who were on layoff on January 1, 1938 were not 
entered into follow-up even if they subsequently returned to the workforce). Our analysis 
is based on the 5947 workers who were hired subsequent to January 1, 1935 among whom 
there were 1784 deaths of which 116 were due to lung cancer. Data on each worker 
consisted of a job and employment history from date of hire to end of follow-up in 1977. 
Each job was coded as having high, medium, or low arsenic exposure. Subjects off work 
were considered unexposed. We abstracted information for each worker on current es- 
posure concentration and employment status at six-monthly intervals. Approximately 700 
members of our subcohort had unknown vital status at end of follow-up. These workers 
were considered to be alive at end of follow-up. Such an assumption is common in oc- 
cupational epidemiology[9] because a search of Social Security Administration records 
is fairly efficient in verifying deaths but not in verifying survival. 

Since we defined tl of an MPISTG to be the time at which follow-up was begun and 
we condition on all relevant history up to t , , technically we will have a separate MPISTG 
for each subset of workers with a particular year of birth, age at hire, and, if hired prior 
to 1938, a particular exposure and employment history from date of hire to 1938. (None- 
theless, our statistical models will “borrow information” across tree graphs.) (We could. 
but choose not to, represent the entire cohort on a single MPISTG with a separate in- 
tranodal line at tl for each of the above subsets if we used as our time scale the number 
of years since start of follow-up.) Since E(t), L(t) are time-dependent covariates a viable 
modelling strategy is to use the time-dependent Cox proportional hazards model. Since 
we obtained data only at discrete times, we shall use the discrete failure time regression 
model of Cox[ lo] that specifies a linear log odds model for conditional probabilities (dis- 
crete hazards) at each failure time. Examples of the type of models one might use for the 
conditional probabilities of MPISTG 3.4 (modified so that there are three internodal lines 
arising from the superior right circumference point in each node representing low, medium 
and high exposure at work) are 

logit[YD,i[t + At 1 E(t), L(t), z(tl)l] = p0.D.i.t + PD*XD (5.1) 

logit[y&t + At 1 E(t), l(t) 

= 0, D > t + At, L(t - At), Z(t,>]] = po,L,i,t + pL.XL (5.2) 
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logit[yR,i[t + At 1 E(t), D > t + At, L.(t - At), I(r) 

= 1, Z(t~)ll = PO.R,i,r + PR*XR U.3 

where 
(1) i is a stratum indicator and we have stratified jointly by five-year intervals of age at 

hire and five year intervals of calendar year of hire. 
(2) t is age and we allow t to take on only the values At, 2At, 3At, . . . with At = 0.5 

years. 
(3) Yo,i(t ( -1 is the conditional probability of being dead by age f, given that one was alive 

at age t - At in stratum i with covariate history represented by s. .Z(t,) is all information 
on the subject up to age at start of follow-up. 

(4) YL,i(t 1 *> is the conditional probability of leaving work at age t, t > tl , given one is 
alive at t and was at work at t - At [i.e. I(r - At) = 0] in stratum i given . . 

(5) YR,i(f 1 *> is the conditional probability of returning to work at age t (t > ti) given one 
was out of work at t - At and alive at t in stratum i given a. 

(6) With J labelling failure type (i.e. J E {L, D, R}), X J is a known vector of covariates 
determined by E(t), L(t), Z(ti). BJ is a vector of unknown regression coefficients and 
&*XJ is their inner product. The Bo,.,,i,l are unknown coefficients which can vary with 
age and stratum level as well as with failure type. Note the slightly different meanings 
for L in yL and in L(t). 

We now describe our approach to estimating the parameters of Eqs. (5.1)-(5.3). Note 
that if we knew the conditional probabilities on the left side of Eqs. (5.1)-(5.3) we would 
know S(.i,J,) and y(*i,) for each MPISTG 3.4 [indexed by (Z(t,)] of the copper smelter 
workers study. In order to save computing costs, for failures of type J at t. we sampled 

‘controls without replacement from the noncases at risk for failure J at time r (matched 
to the case on stratum i)[l I-131. We sampled five controls per case. Because each in- 
dividual may leave and return to work on a number of different occasions, in our cohort 
the total number of “failures” exceeded 10,000 for both “leaving” and “returning.” To 
further save computing costs we analyzed only random samples of 700 of these two failure 
types. 

Because of the large number of stratum specific baseline discrete hazards yJJt) 3 
eeo.J.Lr/( 1 + e PO.J.i.,) we fit models (5.1)-(5.3) using conditional logistic regression[l3]. 
(Technically, the conditional logistic regression estimates are the maximum partial like- 
lihood estimates of the BJ[12].) The parameters Bo.,,i,, do not appear in the conditional 
likelihood function. We then estimated yJ,i(t) by Breslow’s[l4] estimator d,.i,,l 
~keSJ’XJ~k, where d,,i,, . 1s the number of failures of type J in stratum i at age t. k indexes 
the individuals in the risk set of the dJ.i., cases, and fiJ are the maximum partial likelihood 
estimates. We computed Breslow’s estimator from the full cohort data. Because Breslow’s 
estimator is noniterative, the computational burden is not excessive. Breslow’s estimator 
is only a good estimator of yJ,i(t) if the y,,i(t ( E(t - At), L(t - At), Z(tl)) are less than 
10%. This required us to choose At to be as short as 6 months. Even so, near retirement 
(i.e. age 65) the Breslow estimator may be a poor estimator of the baseline hazard of 
leaving work unless one chooses (t, - t,- ,) to be even less than 6 months for ages near 
65. 

The conditional probabilities estimated in Eqs. (5.1)-(5.3) can then be used to estimate 
the probabilities .S(*i,j,) and the y(*iS) required by the Monte Carlo algorithm estimator 
of s(t \ “G3.4’r). To compute the overall sampling error of the estimate of s(t 1 *‘G3.‘“) 
we would have to use bootstrap resampling methods. 

Large sample limiting model 2 (a sparse data limiting model). Under limiting model 
2, given a sequence of MPISTGs indexed by sample size m, as m --;, = we suppose m/M 
+ 0, mAr is bounded, and the number of individuals at risk for event J in each stratum 
i and at each age t increases without bound. 
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Under limiting model 2, under suitable regularity conditions. the Monte Carlo estimator 
of s(t / *‘G:.“‘) will be consistent asymptotically normal as tv * x. and .V - x (where 
N is the number of Monte Carlo trials) provided the models given in Eqs. (5.1M5.3) are 
correctly specified. A formal proof would require Martingale methods and is not given. 

If in Eqs. (j.l)-(5.3) we assumed a linear logistic form for the nuisance hazards, that 
is, 

PO../.iJ = po.i., + %.i.J.f. (5.4) 

then, an estimator of s(t 1 *‘G:.“‘) based on the fit of Eqs. (5. I)-(5.3) [incorporating Eq. 
(5.4)1 by the method of “unconditional maximum likelihood” would be consistent under 
a large sample limiting model in which the number of individuals in each stratum i increased 
without bound. Provided models (5.1)-(5.3) are correctly specified, for any G, of interest 
and for several tx of interest, e.g. tk = 55, 60. 65.70 years of age. joint confidence intervals 
for the s(t,, G:.‘, G3.“ = 0) can be constructed by bootstrapping (i.e. by refitting repeated 
samples of the original data). Similarly, valid tests of the null hypothesis that .S(t, G3.‘. 
G3.4 = 0) = 0 for all G3.’ and t might be based on constructing joint confidence intervals 
as above for several different combinations of G3.J and tk. 

In order that readers who are uninterested in the details of the analysis of the smelter 
worker cohort are not inconvenienced, we defer to Appendix D the specification of models 
(5.1)-(5.3) and the results of fitting those models. 

In practice, estimates of s(t 1 .‘G:.“‘) can be shown to be quite sensitive to the spec- 
ifications of the models in Eqs. (5.1)-(5.3). Unfortunately, in practice, model misspeci- 
fication is unavoidable. Often, with many occupational exposures, the central first ques- 
tion is whether the exposure under study has any effect on the mortality experience of 
any individual. Fortunately, under circumstances described below, nonparametric tests 
of the null hypothesis of no exposure effect on any individual’s mortality can be 
constructed. 

6. NONPARAMETRIC TESTS FOR THE CAUSAL EFFECT OF EXPOSURE 

A. G-null tests 

Often the null hypothesis that exposure has no effect on any individual’s mortality can 
be expressed as the “sharp null hypothesis” for a particular MCISTG. 

Definition 6.1. The sharp null hypothesis of a CISTG holds if and only if for all 
individuals i and for all G:, G$ E G”, .S(t / G:, i) = .S(t 1 Gq, i) for lI d t d fST I. That 
is, no individual’s survival history is influenced by the generalized treatment they might 
receive. It is important to note that an investigator’s null hypothesis of substantive interest 
might not be the sharp null hypothesis of any CISTG A. 

EXAMPLE. Suppose that Fig. 3.3 was believed to be an MCISTG and the null hy- 
pothesis of interest was “exposure had no effect on any individual’s mortality, controlling 
for exposure history.” This null hypothesis need not be a sharp null hypothesis, since it 
could hold even if the G-causal parameter comparing the outcomes of the hypothetical 
studies defined by the generalized treatments of MCISTG 3.3 “if alive at t,, receive zero 
exposure at work” and “if alive at t,, receive zero exposure off work” were nonzero. 
On the other hand, if the null hypothesis of interest to the investigator was that there was 
“no overall effect of exposure on any individual’s mortality ,” this null hypothesis would 
be the sharp null hypothesis of MCISTG 3.4. 
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Definition. The G-null hypothesis for a CISTG A holds if and only if the population 
G-causal parameters of CISTG A are all identically zero which we write S(r, G;‘, G$) = 
0 (This is a departure from our usual use of = as meaning “is defined equal to”.). If the 
sharp null hypothesis holds for an MCISTG A, then the G-null hypothesis holds for 
MCISTG A and for all MCISTG coarser than A. Therefore, any nonparametric test of 
the G-null hypotheses of A and of all MICSTG coarser than A is a test of the sharp null 
hypothesis. When MCISTG A is an FR MCISTG, by Corollary 4.3, we need only to test 
the G-null hypothesis of A. [It is easy to show by counterexample that Corollary 4.3 is 
false if CISTG A is not an FR CISTG (provided the sharp null hypothesis does not hold 
for A).] 

Definition. The “G”-null hypothesis holds for a PISTG [written s(t, “G’:“, 
“GG”) s 0] if S(t, “Gf”, “CT?“) = 0 for all t, “Gf”, “G$“. 

LEMMA. If A is an R CISTG, the G-null hypothesis holds if and only if the “G”-null 
hypothesis holds. 

We will use the following notational convention, which we will continue to use through- 
out the paper. 

Notational convention. Given a PISTG, .i*j, and *iJ; are two arbitrary internodal lines 
arising from the same right circumference point .i,. .i:ji and .isj, are two arbitrary inter- 
nodal lines arising from possibly different right circumference points of a single node at 
t .‘iJj:, .i,j, are two arbitrary internodal lines at t, that may or may not be in the same 
node and may or may not arise from the same right circumference point. 

THEOREM 6.1. Given an R CISTG A, the G-null hypothesis holds if and only if for 
each .i,, s(t 1 *i,j,) = p(D > t 1 .i,j,) = p(D > r 1 *iJi) = ,S(t 1 .ij:) wheneverj,(.i,) # 
jX.L). 

Proof. See Appendix E. 

Theorem 6.1 says that the G-null hypothesis holds for an FR CISTG if and only if, for 
any right circumference point, the subsequent survivals (in the observed study) for the 
various treatment groups (defined by the internodal lines arising from that right circum- 
ference point) are the same. We show, by example, how Theorem 6.1 can be used to 
construct nonparametric tests of the null hypothesis that all G-causal parameters of an 
FR MCISTG are identically zero. 

EXAMPLE. Suppose MPISTG 3.4 is an FR MCISTG. It is easy to check that at each 
time t, (s > 1) there are 2 x 3s-2 right circumference points .i, from which two or more 
internodal lines originate. There are a total of 3s-’ such right circumference points on 
the graph. At each such *i,, we can calculate the numerator of the ordinary log rank test 
comparing the subsequent survivals of individuals (in that -is) who received high exposure 
at t, with the survivals of those who received zero exposure at work at t,. Under the G- 
null hypothesis each log rank numerator has expectation zero. In Theorem El of Appendix 
E it is shown that the log rank numerators corresponding to different -i, are uncorrelated. 
Thus, a one degree of freedom summary test based on a sum of these log rank numerators 
standardized by the square root of the sums of the usual log rank variances will, under 
mild regularity conditions, be asymptotic normally distributed with expectation zero and 
variance one. We need not actually compute all 3s-’ log rank numerators, as most will 
be zero. 
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Rather. we use the following G-n~dl test algorithm. (1) For each time rs at which a 
death occurs [i.e. has occurred in the interval (fS-, , t,)] determine for each individual 
who died at fr the subsets .ik with iV.ii > 1, in which he had been a member (i.e. those 
from which two or more internodal lines arise). (In the case of FR MCISTG 3.4 this would 
mean determining the times at which each case failing at t, had been at work.) (2) For 
each such ‘ik determine if there are any members of the subset .ik who survived past tS. 
(3) If so, construct a 2 x N.i, contingency table denoted (.ix-, r,) in which the two rows 
are cases (individuals in .ik who died between t, _ I and f,) and controls (individuals in .ik 
who survived past t,). The columns represent the N., possible treatments at tk for indi- 
viduals in ‘iX_. If N.;, = 2, then the log rank numerator, say @‘ik, t,) - E(‘ik, t,) (i.e. the 
Mantel-Haenszel numerator) is computed for table (‘ik, t,). If iv.;, > 2 and the treatments 
have been quantitatively scored, the numerator of the log rank (Mantel-Haenszel) test 
for trend is computed. The appropriate Mantel-Haenszel (i.e. hypergeometric) variance 
is computed. (If N.;, > 2 and the treatments have no natural ordering, one could compute 
the (N.;, - I)-dimensional numerator of the N.i,-sample log rank test.) (4) Sum the nu- 
merators O(.ik-, t,) - E(*ik, t,) from each table, possibly after multiplication by weight 
functions w(‘ik, tx) chosen so as to increase power against alternatives felt to be a priori 
likely. Multiply the hypergeometric variance associated with each table by the square of 
w(‘ik, t,) and sum over tables. (5) Divide the numerator sum by the square root of the 
variance sum and compare to the standard normal distribution (see Theorem El). A pro- 
gram, “G-Null Test”, written in PASCAL by Donald Blevins and the author is available 
upon request. It will compute the G-null test for any FR MCISTG, any exposure scoring 
function, and any weight function. If at each time r, at which a case occurs, only a random 
sample of potential controls are selected from among study subjects who survived past 
t,, the validity of the G-null test is not affected. The above algorithm for such case-control 
data can be modified so that at step (2), one need only determine whether any member 
of the “matched controls” of cases failing at t, are in *ik. 

B. Remarks on the power of G-null tests in sparse data 

We would like to compare in sparse data the power of representative members (indexed 
by differing table weight and exposure scoring functions) of the class of G-null tests of 
the G-null hypothesis to the power of a test of the G-null hypothesis that is optimal or 
near optimal against specified alternatives. 

EXAMPLE. Suppose, as is implicitly assumed in standard analyses of occupational 
mortality studies, that Fig. 3.5 is an FR bfCISTG. Then tests of pi = 0 in the model 

logitydl + At 1 E(t)] = po.( + p, cc(t) (6.1) 

are tests of the G-null hypothesis for FR MCISTG 3.5 [where cc(t) is cumulative (mea- 
sured) exposure up to t]. The Cox (partial likelihood) score statistic is 

dce(t,) - - Fe(t,) 
d(ts) 1 

(6.2) 

where the sum is over the distinct death times, dce(t,) is the total cumulative exposure 
among the d(t,) individuals dying in (t, - ilrt, fS], and Z?(tS) is the average cumulative 
exposure among individuals at risk at t, - At. Tests based on the partial likelihood score 
are nearly optimal against alternatives parameterized by Eq. (6.1) for B, close to zero. 
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When the data is sparse, G-null tests (i.e. tests based on the G-null test algorithm) may 
have very poor power properties compared to tests based on the partial likelihood score 
against alternatives defined by Eq. (6.1). As an extreme example, suppose, at each time 
t,, there are 100,000 rather than two possible exposure levels, and that no two sampled 
study subjects received identical exposures at t,. (This might be the case if individual 
exposure measurements were made with a precise measuring instrument.) In such a case, 
no right circumference point beyond f, of FR MCISTG 3.5 (modified so as to reflect 
100,000 exposure levels) will represent more than one study subject. Therefore, G-null 
tests will depend only on exposures received at tl. If this initial exposure is uncorrelated 
or inversely correlated with cumulative exposure at representative death times t, a one- 
sided G-null test will have power against the alternatives of Eq. (6.1) equal to or less than 
the a-level of the test. 

As a second example, suppose now there are but four or five exposure levels; data is 
collected every few hours [so (ts - t,_ ,) is small]; and for each individual there is a small 
hour-to-hour variation in exposure level around the individual’s daily mean. Then, within 
a few months from start of follow-up, no right circumference point on FR RiCISTG 3.5 
will contain more than one study subject. Again, our G-null test will depend largely on 
exposures received near start of follow-up. Fortunately, for FR MCISTG 3.5. tests based 
on Eq. (6.2) will retain good power against alternatives in which exposures received at 
times past start of follow-up influence mortality. 

Unfortunately, if the STG of our (Stage 1 reduced) FR MCISTG has a nonnegligible 
fraction of nodes with more than one intranodal line (e.g. as would be the case when the 
healthy worker survivor effect is operative and our finest FR MCISTG is Fig. 3.4). and 
if we make no a priori assumptions beyond the nonidentifiable randomization assumptions 
of Eq. (4.6); then, under sparse data asymptotics, only the G-null tests will reject the G- 
null hypothesis at the nominal rate for all states of nature consistent with the G-null 
hypothesis. In this paper, tests with the above property shall be called nonparametric 
tests of the G-null hypothesis. This is a slight abuse of common usage. 

As an example of a test that will fail to reject at the nominal coverage rate, consider 
the test described in Sec. 5B, which is based on estimating S(t 1 ‘.G’,““) for various G 
based on models (5.1)-(5.3) and then bootstrapping to obtain standard errors. Since RR(t 
+ hr ) “G:.“‘) = yD(f + 4t 1 i‘G:.4”)I-yD(t f ht 1 “G3-“’ = 0) cannot be written as a 
function of 

YL[f + 4r I E(t), L(t)1 ydf + nt / E(t), L(t)1 Yf?(f f Lit I E(r), L(r)1 
YL[f + 4r I E(t) = 0, L(t)1 ’ yo[t + at 1 E(t) = 0, L(t)] ’ yR[t i .l.r / E(f) = 0, L(t)] 

(i.e. RR(t ( biG:.4r’) d epends on the nuisance hazards for returning. leaving. and death), 
the “G”-null hypothesis may hold even though all of the above hazard ratios differ from 
unity [as would be the case if high exposure functioned as an irritant causing individuals 
with poor prognosis to terminate employment, but neither exposure nor work status per 
se (causally) influenced mortality]. It follows that when models for Eqs. (5.1)-(5.3) are 
misspecified, the true a-level of the test based on fitting Eqs. (5.1)-(5.3) and bootstrapping 
can differ from the nominal a-level. Constrast this result to that in the situation in which 
Fig. 3.5 is assumed to be an FR MCISTG. In that case, although estimates of the G-causal 
parameters .5[t + 4t [ E(t)] - [S(t + ht 1 E(t) = 01, where 

S[t, + ht 1 E(t,)] = r-I [1 - yo(tk c at ( E(tk))] (6.3) 
k= I 

[where E(tk) is the initial part of E(t,)l 
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will be biased by misspecification of the relative risk model yD[ t + At 1 E(t)]/y,[t + 
!ir 1 E(t) = O] = RR[t f At 1 E(t)], tests of the G-null hypothesis that RR(t + Ilt / E(t)) 
= 1 will be valid, i.e., will reject at its nominal level under the null. 

Thus, for FR MCISTG 3.4, how might vve increase power of the G-null tests in sparse 
data against alternatives in which exposures received long after start of follow-up influence 
mortality. We could take one of several approaches. First, we could give sharply increased 
weight to those relatively few tables associated with nodes far from start of follow-up that 
contribute information to the test statistic. Of course , giving large weight to a few small 
tables may itself decrease power. Alternatively, one could choose to group the measured 
exposure levels into fewer categories and/or to record data at less frequent intervals. [One 
could also redefine measured exposure at t, to be a category of average exposure over 
the interval (ts_, , r,]. This device could be useful in our second example above if we also 
increase at.] That is, by one method or another one could reduce the number of internodal 
lines arising from each right circumference point and also increase At. Unfortunately, if 
higher exposure tends to make unhealthy individuals preferentially leave work, then. even 
under the G-null hypothesis, an MCISTG formed from R MCISTG 3.4 by either grouping 
exposure levels or by recording data at less frequent intervals will not itself be an R 
MCISTG. Thus, “G-null tests” based on such an MCISTG may fail to reject at the nominal 
rate under the G-null hypothesis. We may be faced with the usual trade-off between power 
and bias. We stress the “may” in the last sentence because, depending on the true state 
of nature and the true correlation between early and late exposure concentrations. the 
effect of grouping exposure and/or recording data at less frequent intervals could be to 
decrease power. 

C. Selection bias caused by cohort definition 

The definition of a PISTG in Section 4 required that rI be start of follow-up, defined 
as the first time at which an individual, had he died. would have had his death recorded 
for data analysis. In fact, such a restriction is unnecessary. When selection into follow- 
up is unrelated to health status. the requirement that : represents start of follow-up can 
result in severe loss of efficiency as the example below indicates. 

EXANPLE. Consider the occupational study represented by FR MCISTG 3.4 extended 
to tsl with ilt = f year. Suppose mortality data for the time period tl to tjo were not 
recorded, but all exposure and employment data from time t, onwards were available. If 
the workers were age 20 at time of hire (t,), few deaths would be lost. Now, groups of 
workers with different levels of [E(fjO), L(tj,)] would not, in general, be comparable at 
tso, even under the G-null hypothesis, since exposure may, for example, be an irritant 
that makes sick individuals tend to leave work. It is possible that no two workers have 
the same vector [E(tjo), L(tio)]. Thus, any FR MCISTG starting at tso (i.e. an FR MCISTG 
3.4(.i19j49(fSO)) defined by a particular history [E(tSO), L(tjo)]), would contain no right 
circumference point with two or more subjects. Thus, no test of the G-null hypothesis 
would be possible under the above restriction. 

But this is nonsense, of course, because the standard G-null test for FR MCISTG 3.4 
applied to a worker dying at, say, f60 only requires vital status information on individuals 
who were alive at tj9 (although it requires exposure and work history data from ti). Thus. 
it would be irrelevant whether follow-up started at r, or tjo. In particular, if exposure is 
received at random, conditional on past work and employment history. and, as in our 
cohort, follow-up begins in 1938, we may allow tl on FR MCISTG 3.4 to be year of hire, 
say 1905 (matching, as usual, on risk factors such as age at hire), provided subjects are 
not selected into follow-up on the basis of their health status. 

Unfortunately, in many occupational studies, our arsenic study being one, the cohort 
is defined in such a way that follow-up is initiated on workers hired prior to a given year 
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only if they were at work in that year (in our study 1938). This method of cohort definition 
can invalidate the contribution to the G-null tests from tables (.ik, t,) with tk (the time 
the exposure is received) prior to the selection date (1938). To see why, suppose that, 
although exposure has no effect on mortality, high exposure functions as an irritant that 
causes less healthy individuals to leave work. Consider two 35 year old individuals hired 
in 1935, one of whom receives high exposure and the other zero exposure at that time. 
Suppose both have been selected into the cohort by virtue of their being at work in 1938 
and one dies in 1940. For the contribution to the G-null test from the 1935 exposures to 
be valid, both must be equally likely to have died in 1940 under the null. But of the two, 
the one who received high exposure in 1935 is more likely to have lived past 1940, since 
(by virtue of his being employed in 1938) he is likely to be healthy. We are presently 
investigating the magnitude of the selection effect associated with this method of cohort 
definition. In the meanwhile, the only safe option is to match on exposure and work history 
until time of selection. In our arsenic data, this means matching an exposure and work 
history up to 1938. 

If the healthy worker survivor effect were not operating (i.e. MPISTG 3.3 and/or 3.5 
were an FR MCISTG), no bias is introduced by this method of cohort definition. 

D. An example 

The results of applying the G-null test algorithm to the 1784 deaths that occurred in 
the 5947 copper smelter workers described in Sec. 5B are reported in Table 3. We used 
several modified versions of FR MCISTG 3.4. The modified STGs 3.4 are based on either 
three exposure categories at work (H, M, L) or two exposure categories at work (H or 
M versus L), where here L stands for low exposure. The time scale for the causal tree 
graphs was chosen to be time since hire. At was chosen to be 6 months, 1 year, 2 years, 
or 3 years. The weight functions w(+ik, t,) were chosen to be identically 1 and l/ 1 t, - 
tk I. Comparisons were made between choosing 50, 25 and 5 controls per case. Controls 
were matched to cases on time since hire, to within 6 months on age at hire, and to within 
3 years on calendar period of hire. To avoid any bias due to the fact that workers hired 
prior to 1938 were selected into follow-up only if employed in 1938, no individual was 
allowed to contribute to the G-null test statistic until 1938. This effectively matches on 

Table 3. Z-scores? of G-null tests for the effect of arsenic exposure on total mortality in a 
cohort of copper smelter workers 

Exposure grouping 

Exposure 
score 

H M Lf H or M L 
32 1 2 1 

Weight functions Weight functions 
t/l f, - fk ($ Constant = I Constant = 1 

No. of controls/case 
50 

No. of controls/case No. of controlscase 
50 20 5 50 

At 
6 months 
I year 
2 years 
3 years 

3.13 2.61 (1.161) 
3.46 3.01 2.85 1.33 2.83t 
4.4 3.9 
4.7 4.23 

i Standard normal deviate under the G-null hypothesis. 
$ H, M. L-high, medium, low exposure concentration. 
B [Time from exposure to death] - ’ . 
B Summary Mantel-Haenzel odds ratio based on scoring H or M = 1, L = 0. 
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exposure and employment history till selection date. An unweighted summary Mantel- 
Haenszel odds ratio was computed over all tables with high or medium exposure con- 
stituting the exposed and low exposure, the unexposed. 

Although the value of the Mantel-Haenszel odds ratio would not be of much scientific 
interest in itself [since it is essentially a weighted average of functions of the G-causal 
parameters of FR MCISTGs (one for each .i,) coarser than the FR MCISTGs 3.4(.&)]; 
nonetheless, we report it in order to facilitate the interpretation of our test of the null 
hypothesis. In nonexperimental studies all assumptions concerning comparability are cer- 
tain to be at least slightly wrong. As such, even if the null hypothesis of no exposure 
effect is true for MCISTG 3.4, with a sufficiently large sample size any test will reject 
the null hypothesis with near certainty due to residual confounding (that is, due to the 
fact that MCISTG 3.4 will never exactly be an FR MCISTG). The p-value of, say, 0.005 
is more likely to be due to residual confounding when associated with a Mantel-Haenszel 
odds ratio of 1.1, say, than when associated with a Mantel-Haenszel odds ratio of 3. This 
reflects the fact that in the latter case a strong confounder must have been overlooked, 
which is 0 priori less likely. 

The main points of interest in Table 3 are (1) there does seem to be an adverse effect 
of arsenic on total mortality, at least on the assumption that MCISTG 3.4 is an FR MCISTG 
and (2) it seems clear that five controls per case are too few. Our results are consistent 
with those obtained in Appendix D based on fitting models (5.1)-(5.3). The standard 
analysis based on the Cox score of Eq. (6.2) had a z-score of 0.001, 1.25, 1.5 based on 
scoring exposure 1, 2, 3; 0, 1, 2; 0, 1, 4, respectively, for low, medium, and high exposure. 
Thus, the standard analysis failed to demonstrate an adverse effect of arsenic on total 
mortality, whereas our approach did so. 

7. AN ISOMORPHISM BETWEEN THE VIEWS OF CAUSAL INFERENCE 
EXPRESSED IN SECTIONS 2 AND 3 

A. Incorporation of further a priori assumptions 

Until this point, we have made no a priori assumptions other than the nonidentifiable 
assumptions necessary to define an MPISTG to be an FR MCISTG (with the exception 
that in Sec. 5 estimation of G-causal parameters from sparse data required that we make 
additional a priori assumptions as reflected in the specification of statistical models). In 
this section, we consider the use of further identifiable a priori assumptions in order to 
allow us both to more efficiently estimate the causal parameters of R MCISTGs, and to 
estimate the causal parameters of R OCISTGs that are not R MCISTGs (because data on 
certain covariates have not been obtained). We shall see that, given particular a priori 
information concerning an FR OCISTG A, there may (under circumstances defined below) 
exist an MPISTG that represents the PL-sufficient statistic for estimating the G-causal 
parameters of FR OCISTG A (see Appendix A). This MPISTG, which will be called the 
“A-complete Stage 0 PL-sufficient reduced graph of R CISTG A”, we shall now define. 
We will require a number of preliminary definitions. 

DeJinition. A PISTG B is a Stage 0 reduction of a PISTG A if and only if each subset 
[.i!] is the union of subsets [-if] and each [.i,jf] is the union of subsets [*iSj$] [that is, 
the subset of the population represented by any intranodal (internodal) line at t, on PISTG 
B is the union of subsets of the population represented by intranodal (intemodal) lines at 
t, on PISTG A]. 

EXAMPLE. PISTG 3.5 is a Stage 0 reduction of PISTG 3.4. For instance, any intemodal 
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line of 3.5 at t, is specified by a particular exposure history through t,. Any internodal 
line at I, on PISTG 3.4 is specified by a particular exposure and employment history 
through t,. Thus, one need only take the union over internodal lines on 3.4 with the same 
exposure history (but different employment histories). 

Definition. If PISTG B is a Stage 0 reduction of PISTG A then G? has a Stage 0 
counterpart G? if whenever [.i:‘] E G;’ and [-‘iJ^] E G’: are in the same [.if], then 
[.iJ;‘] E G-f and [.‘i:j;^] E Gf are in the same [-ijf] (where we have used the notational 
convention described in Sec. 6A). The Stage 0 counterpart G? is defined by the property 
.iJf E G’: if for some .ij:’ E Gf, [.i&‘] c [-iJ$]. We also call G? a Stage 0 counterpart 
of G?. A G? may have several Stage 0 counterparts. 

We describe a graphical procedure for determining whether a given GA has a Stage 0 
counterpart GB. Each intranodal line .i$ and internodal line .ij$ has a counterpart in the 
Stage 0 reduction B. These counterparts are, respectively, the -if and .isjf in which the 
.&’ and .isj$ are contained. Now, a given GA has a counterpart GE if the counterpart of 
the set of intra- and internodal lines on the highlighted subgraph G” forms a subgraph on 
PISTG B which constitutes a generalized treatment GE (that is, the subgraph on B could 
have been generated by the generalized treatment algorithm). 

EXAMPLE. “Gf.4" defined by “if at work receive zero exposure” has a Stage 0 coun- 
terpart “G:.5” defined by “if alive receive zero exposure”, while “G$“” defined by “if 
at work, receive high exposure” has no Stage 0 counterpart “G3.j”. Conversely, G:.5 
defined by “if alive, receive high exposure” has no Stage 0 counterpart G3.2. On the other 
hand, PISTG 3.5 is also the Stage 0 reduction of PISTG 8.1 (see Fig. 8.1 in Sec. 8). 
G!_.5, defined above, does have a Stage 0 counterpart G’.’ defined by “if alive receive 
high exposure .” 

Definition. If B is a Stage 0 reduction of PISTG A and each GB (GA) is the Stage 0 
counterpart of some G” (GB), we say B is a B(A)-complete Stage 0 reduction of A. A 
Stage 0 reduction is AB-complete if it is A-complete and B-complete. 

Definition. If B is a B-complete Stage 0 reduction of PISTG A such that each GB has 
a unique counterpart GA, we say that B is the unique B-complete Stage 0 reduction of A. 

EXAMPLE. PISTG 3.5 is a unique B-complete Stage 0 reduction of PISTG 8.1 although 
it is not A-complete, since any G8.’ for which the exposure to be received at rs depends 
on employment status at t, has no Stage 0 counterpart G3.5. As we have seen above, 
PISTG 3.5 is not a B-complete Stage 0 reduction of PISTG 3.4. PISTG 3.5 is a B-complete 
stage 0 reduction of PISTG 8.3 (see Fig. 8.3), but is not a unique B-complete Stage 0 
reduction. This is because the G3.5 defined by “if alive, receive high exposure” is the 
counterpart of two different generalized treatments of PISTG 8.3--“if alive, receive high 
exposure and c (i.e. smoke)” and of “if alive, receive high exposure and C”. 

PISTG 7. lb is an AB-complete Stage 0 reduction of PISTG 7.la. But, suppose in Fig. 
7.la the label on the inferior internodal line arising from the inferior node at i2 were H 
rather than 0, and its Stage 0 reduction, 7.lb, had a second internodal line. labelled by 
H, arising from the inferior right circumference point at tz. In that case, 7.lb would be 
a A-complete (but not B-complete) Stage 0 reduction of PISTG 7.la, since G7.1b char- 
acterized by ‘Lif7 at f2, receive zero exposure; and if 1 at tz, receive high exposure” would 
have no counterpart G7.1a. 
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5 3 
Fig. 7.la. The fundamental MPISTG of an ordinary designed randomized trial: GHO = treatment protocol of 
high exposure u_ntil t2. zero exposure thereafter, G H = treatment protocol of continuous high exposure, H = 
high exposure, 1 = at work, 1 = off work, 0 = zero exposure. 

Definition: Highlighted srrbgmph representing n function mA. We can represent any 
m* by a highlighted subgraph of PISTG A as follows. Highlight all of PISTG A except, 
for any .i,j, for which m”(.i,j,.) = 0, do not highlight any part of subgraph A(.i,j,) (i.e. 
the STG beginning at .i,j.,). 

EXAMPLE. If m” is a function identified with a particular GA (see Sec. 3E), then the 
highlighted subgraph associated with m* is identical with that associated with GA. In 
general, different functions mA may have the same highlighted subgraph. 

Definition. We say *if E m* if .i:’ lies on the highlighted subgraph represented by 
mA. We define .i,j, E m” similarly. 

Suppose now that we have a PISTG A and a set (which may be empty) R of true 
assumptions concerning the identifiable parameters of the sampled superpopulation. Then, 

Definition. PISTG B is the Stage 0 PL-sufficient reduction of PISTG A under As- 
sumptions R if and only if B is a Stage 0 reduction of A, and (1) for each “GT” there 
exists a mB such that s(t / “G:“) = S(r 1 “mB”) and p(.if / ‘*Gf”) = p(.if 1 “~7~“) 

where 

p(.jf 1 “Gf”) s c p(.it 1 “Gf”) for .$ E “G:‘. 
[~i9JC[~i~l 

(2) given that Assumptions R are known to hold u priori and given the data represented 

Fig. 7.lb. A Stage 0 reduction of MPISTG 7.la: H = high exposure, i = at work, 1 = off work, 0 = zero 
exposure. 



1440 JA~MES ROBNS 

by PISTG A (i.e. the data that would be available if PISTG A were an MPISTG A), then 
for any known function mB the PL-sufficient statistic for s(t, ( “d”) and p(-if ( “d”) 
are N[ei,jt], N[.i,jf(ts_l)], N[.i$‘] for the -iJ? and *if on the highlighted subgraph ms, 
(k 1 s), where lV[-if] is the number of sampled subjects in [*if]. 

Definition. A Stage 0 PL-sufficient reduction B of PISTG A under Assumption R is 

A-complete (B-complete) iffor each G” (GE), there exists a GB (GA) such that D(t 1 “GA”) 
= S(r ) “GE”), and p(.$ 1 “GA”) = p(.$ ) “GE”). 

Definition. A Stage 0 PL-sufficient reduction is A&complete if it is A-complete and 
B-complete. 

Remark. The importance of Stage 0 PL-sufficiency is that if MPISTG B is the A- 
complete Stage 0 PL-sufficient reduction of R OCISTG A under some assumptions R, 
then the G-causal parameters of A are indentifiable and can be estimated without loss of 
information from data on MPISTG B, providing assumptions R hold. 

EXAMPLE 1. If Assumptions R constitute the “empty set” then the Stage 1 reduction 
of PISTG A is the A&complete Stage 0 PL-sufficient reduction of PISTG A. 

EXA~C~PLE 2. Consider the R MSCISTG associated with an ordinary designed random- 
ized trial whose “fundamental MPISTG” is shown in Fig. 7.la, where being off work, 1, 
is “being off protocol”. We assume that the treatment protocols GH and GHD are assigned 
at tl and contain information on the treatments (exposures) to be received at tl and r2 (but 
no other times). 

The crosshatches on Fig. 7. Ia are to be interpreted as follows. If in generation t,, y(+iS) 
= y(.‘i:) is known a priori, intranodal lines *i, and *‘ii are marked with an identical number 
of crosshatches. Similarly, if S(*i,j,) = S(e’ilj;i:), internodal lines *isjs and .‘iiJ are marked 
with an equal number of crosshatches. No significance is attached to the fact that lines 
in different generations are marked with an equal number of crosshatches or that an 
intranodal line and an internodal line in the same generation have an equal number of 
crosshatches. The pattern of crosshatches seen in Fig. 7.la represents the discrete time 
version of the identifiable temporal assumption (see Sec. 2) applied to the R MSCISTG 
representing the ordinary randomized trial. The discrete time version of Theorem Bl in 
Appendix B shows that we can merge the intranodal lines and internodal lines in the same 
generation that have an equal number of crosshatches to give the A&complete Stage 0 
PL-sufficient reduction MPISTG 7. lb under the identifiable temporal assumptions, where, 
for example, S(r ( GLila) = s(t ( “G&“_) where “G$if,b,,” is the generalized treatment 
of the MPISTG 7.Ib characterized by “if I at f2, receive high exposure at t2”. (Theorem 
Fl of Appendix F generalizes Theorem Bl and can also be used to show that MPISTG 
7. lb is a Stage 0 PL-sufficient reduction.) 

If data on Gno and GH are not available, Fig. 7.la is an R OSCISTG. Nonetheless, if 
the identifiable temporal assumption holds, the G-causal parameters of the R OSCISTG 
7.la are identifiable based on MPISTG 7.lb. 

Given that 7.la is R SCISTG, is 7.lb an R SCISTG (or even an SCISTG)? In general, 
the Stage 0 reduction of an SCISTG (or CISTG) need not itself be an SCISTG (CISTG). 

EXAMPLE. Suppose MPISTG 3.4 is an MCISTG such that H is the treatment “walk 
up three flights of stairs” and 0 is the treatment “remain sedentary”. Suppose some 
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individuals who are 1 at time t are paralyzed at that time. Then clearly the Stage 0 reduction, 
MPISTG 3.5, is not an MCISTG, since 1 individuals at t cannot receive treatment H at 
that time. 

Lemma Fl gives a sufficient condition for the Stage 0 reduction of an SCISTG to be 
an SCISTG. Lemma F2 gives a sufficient condition for the Stage 0 reduction of an R 
SCISTG to be an R SCISTG. (A necessary condition cannot be given because of insuf- 
ficient structure in our formal definition of CISTG. In a separate paper, we modify the 
definition of CISTG so as to provide the additional structure necessary to determine 
whether or not a particular Stage 0 reduction of a CISTG is itself a CISTG.) By Lemmas 
Fl and F2, the MPISTG in Fig. 7. lb will be an R MSCISTG if the nonidentifiable temporal 
assumptions hold. (Note that Lemma F2 is a generalization of the discrete time versions 
of Lemma B 1 and Lemma 2.1.) 

B. The isomorphism between the approaches in Sections 2 and 3 

When we are interested in estimating the G-causal parameters of a given FR MCISTG 
B, we only require the knowledge that it is an R SCISTG B (see Sec. 4). We can view 
any R SCISTG B (whether from an observational study or from an alternative designed 
randomized trial) as being the A&complete Stage 0 PL-sufficient reduction of a hypo- 
thetical ordinary designed double-blind randomized trial in which the treatment protocol 
assigned at tl specifies the treatment to be received at t,, possibly conditional on the value 
of time-dependent covariates measured after start of follow-up. This is proved in Theorem 
7.1 below. The idea is that we can view the set of generalized treatments of the R 
MSCISTG, GB = {GE = {j,(+i,), j, # 0}}, as the possible treatment protocols of a hy- 
pothetical ordinary designed randomized trial, one of which is assigned at random at tl 
to each study subject. A treatment protocol G?, assigned in the hypothetical trial at t, 
gives, at each time t,, the planned treatment j, for an individual surviving to t, with 
covariate history .if. We can suppose treatment G? is assigned at tl in the hypothetical 
trial with probability pi = wf(mB, ts) for the function mB(*i,jf) = y(.isjt) (see Sec. 4E). 
Individuals in a particular -if in MPISTG B from which only one internodal line originates 
can be viewed as all having been assigned (in the hypothetical trial) to receive the same 
treatment at ts. Alternately, such individuals can be seen as being off protocol at t,. In 
that case, if two or more internodal lines arise from -iSj,if+ 1 in MPISTG B, the individuals 
in .ixjsif+ 1 must be viewed as having returned to protocol at t,, 1. 

EXAMPLE. R MSCISTG 3.4 can be viewed as the AB-complete Stage 0 PL-sufficient 
reduction of a double-blind ordinary designed randomized trial in which individuals off 
work are off protocol and G3.4 is their planned exposure. If they return to work later they 
must be assumed to have returned to protocol. Equivalently, we may view R MSCISTG 
3.4 as the A&complete Stage 0 PL-sufficient reduction of a double-blind ordinary ran- 
domized trial in which, as part of protocol, all individuals were assigned at tl to received 
zero exposure at ts if off work at t,. 

THEOREM 7.1. Suppose it were the case that each individual in the study represented 
by an MPISTG B had been assigned a treatment protocol G! at random at t1 with the 
probabilities described in the paragraph above. Suppose that Gf were not recorded for 
data analysis. Let R OSCISTG A of this ordinary designed randomized trial be defined 
by the intra- and intemodal lines -if and .isj:’ where each [-if] = [*if] rl [Gf] for some 
.ife, Gf (where [Gf] is the set of individuals assigned Gf). Similarly, [*isj;‘] = [*isjf] rl 
[Gt]. Suppose further that, because of double blinding, the generalized nonidentifiable 
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temporal assumption holds for R OSCISTG A, that is, 

p[.i! 1 .i,_Ij~_l (t,), Gf, i] and (7.1) 

p[D > tJil j .iJf, i, GB] do not depend on Gf . (7.2) 

Then 
(1) MPISTG B is an R MSCISTG; 
(2) The generalized identifiable temporal assumption holds for R OSCISTG A (i.e. the 

lack of dependence on Gf holds in Eqs. (7.1) and (7.2) without conditioning on i). 
(3) MPISTG B is the ti-complete Stage 0 PL-sufficient reduction of R OSCISTG A under 

the generalized identifiable temporal assumption. 

Proof. (1) and (2) follow directly from Lemmas Fl and F2. (3) follows by noting that 
(2) implies that the suppositions of Theorem Fl in Appendix F are met. It is easy to check 
that AB-completeness holds. 

If some node of MPISTG B has (at least) two right circumference points from which 
(at least) two internodal lines arise, it is not necessary (although it is sufficient) that the 
G? were assigned with the probabilities pi = \v?(&, ts) given above in order for Theorem 
7.1 to hold. Nevertheless, certain randomization schemes, i.e. pis, will be incompatible 
with the observed MPISTG B. In fact, one can suggest a possible randomization scheme 
and then empirically test whether the observed MPISTG B is compatible. In Sec. 8D.3 
we use this device to advantage. 

8. CIRCUMSTANCES UNDER WHICH STANDARD ANALYSES ARE VALID 

A. Circlrmstclnces in lc.hich datcl on time-dependent covnriates may be ignored (lack of 
confounding) 

We have noted that, in standard analyses of occupational mortality studies, employment 
history is generally ignored and the population parameter RR[E(t)] = yD(t T ht ) E(t))/ 
yD( t + At / E(t) = 0) estimated. In point exposure studies, conditions under which one 
may ignore data on a covariate have been thoroughly examined under the rubric of con- 
founding[lS]. We consider the appropriate generalization of such conditions to studies 
with time-dependent exposures and covariates. First we will review the concept of con- 
founding in point exposure studies. 

A. 1 Confounding in point exposure studies 

In a point exposure study with a fixed follow-up period, a time-independent covariate 
L, measured at start of follow-up, is defined to be a causal confounder if the crude pop- 
ulation risk difference (ignoring L) differs from the G-causal parameter that compares the 
proportion of the population who would have died by end of follow-up had the entire 
study population been exposed to the proportion dying had it been unexposed. (To be 
consistent with the epidemiologic literature on confounding we have, for the moment, 
expressed our comparisons in terms of the probability of death rather than survival.) This 
definition assumes (and is vacuous unless) the stratum-specific risk differences are the 
G-causal parameters for their respective strata (where strata are defined by L-status). If 
so, a necessary condition for L to be a causal confounder is that (1) there is an exposure- 
covariate association in the population and (2) L is a risk factor for disease in either the 
exposed or unexposed population. This result differs slightly from the standard definition 
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in the epidemiologic literature which defines L to be a confounder when it is both asso- 
ciated with exposure and a risk factor in the unexposed. This difference reflects the fact 
that, in the standard epidemiologic literature on confounding, the implicit causal parameter 
of interest is the G-causal parameter representing the effect of exposure on the subset of 
the population that was exposed in the observed study rather than on the whole popu- 
lation[16]. If there is no residual confounding within levels of L, the G-causal parameter 
associated with the exposed population is the internally standardized risk difference with 
weights taken from the exposed population. lvhile the G-causal parameter associated with 
the entire population is the standardized risk difference with weights taken from the entire 
population. When exposure is time-dependent and risk factors (e.g. employment status) 
determine future exposure, the implicit causal parameter of interest in the epidemiologic 
literature on confounding is not usefully generalized in a straightforward manner. For 
example, suppose MPISTC 3.4 was an FR MCISTG; and consider the subgroup of the 
study population who, in the observed study, received high exposure at work until end 
of follow-up. Suppose one wished to compare this highly exposed subgroup’s survival 
probability when unexposed (throughout the study) to its observed survival probability 
(which is one). This parameter is not identifiable from FR MCISTG 3.4. Rather, it would 
seem that the appropriate identifiable generalization of the implicit causal parameter of 
interest would be a comparison of the obsemed survival (or mortality) curve of the entire 
study population with the survival curve that would have been observed had all study 
subjects received zero exposure throughout (i.e. had been treated with “if at work, receive 
zero exposure”). Such a comparison measures the potential impact of intervention. In a 
point exposure trial, in Miettinen and Cook’s notation, this parameter (when expressed 
in terms of mortality) is (O-E) divided by the total number of study subjects while the 
internally standardized risk difference is (O-E) divided by the number of exposed study 
subjects. 

A.2 Confounding in sur\,irlcll studies \t,itll tiwe-dependent exposures ntzd co\,nrirrtes 

We shall consider the appropriate generalizations of the above conditions for con- 
founding in studies with sustained exposure periods. We first give a number of definitions. 

Definition. L is an (independent) population risk factor for death controlling for es- 
posure if 

YDlf + At / L,(t), E(f)1 = yo[t + At / E(f), L:(t)] 

for some L,(t), L?(t), E(t). 

Definition. L is a population predictor of future exposure if 

p[E(t + At) 1 L,(t), E(t), D > t - At] f p[E(t + At) 1 L?(t). E(t). D > r 

for some L,(t). L?(t), E(t). 

Dejinition. L is a population predictor of exposure if 

plE(t + ht) / L,(t + At), E(t). D > t + At] 

f p[E(r - At) 1 L2(t + It), E(t), D > t 

for some L,(t + At), Ll(t + At). E(t). 

(S.1) 

Jr] (8.2) 

At] (8.3) 
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Definition. Current I-status is a predictor of exposure if 

p[E(t + At) 1 L(t), E(t), I,(? + 4t), D > t f 4t] 

i p[E(t i- ht) j L(t), E(t), /?(t + 4t), D > t -i ht] (8.4) 

for some Ii(t + At), &(t + At), E(t), L(t). 

Definition. L is a causal risk factor for death controlling for exposure if 

vdt + 4t I E(t), Ll(t), il Z y~[t + 4t 1 E(t), L?(t), il (8.5) 

for some individual i and some E(t), Ll(t), L2(t). 

Definition. L is a causal risk factor for exposure if 

p[E(t + 4t) 1 LI(~), E(t), il # p[-J%t + 4t) ( L(t), E(t), il (8.6) 

for some L2(t), Ll(t), E(t), i. 

Note that Eqs. (8.5) and (8.6) do not require that every individual could receive both 
L,(t) and Lz(t). For example, Eqs. (8.5) and (8.6) might hold even if MPISTG 3.3 were 
not an MCISTG. Equations (8.5) and (8.6) are Eqs. (8.1) and (8.2), except at the individual 
level (and thus nonidentifiable). In Eq. (8.6) since we do not condition on the event D > 
t + ht, we have assumed (consistent with our definition of a CISTG in Sec. 4) that an 
individual’s “covariate history” is well defined even after death. The above definitions 
have symmetric versions with the role of L and E interchanged. We shall see that it is 
Defs. (8.1) and (8.3) that are the natural generalizations of the concepts (developed for 
point exposure studies) of a risk factor and of a covariate-exposure association. 

EXAMPLE. Table 5 in Appendix D shows that, in our arsenic data, L is an independent 
population risk factor for death (provided our statistical model was correctly specified). 
Also, L is tautologically a predictor of future exposure in our data, since individuals off 
work receive no measured exposure. 

A natural generalization of a point exposure study “with no residual confounding within 
levels of the ccvariate” is FR MCISTG 8.1 where in Fig. 8.1 the covariate is L history. 
An even more natural generalization would have been to allow both levels of I to occur 
at tl in FR MCISTG 8.1, which we shall call the ti-modified FR MCISTG 8.1. In that 
case, a point exposure trial would be precisely equivalent to a study represented by the 
ti-modified FR MCISTG 8.1, when follow-up ended at t 2; and S(t2, GE’, GE.‘) with the 
two generalized treatments being “if alive receive high exposure” and “if alive receive 
zero exposure” would be the population G-causal parameter of the point exposure trial. 
All our results will apply to FR MCISTG 8.1 as is and when ti-modified. In contrast, FR 
MCISTG 8.2 represents a study in which there exists residual confounding within levels 
of L, in that individuals with a given work and exposure history through &-I who are 1 
at ts do not receive exposure at random at that time. Note also that the finer MCISTG 
derived from MCISTG 8.1, in which, for all nodes, all four internodal lines leaving the 
node arise from a single right circumference point, would not be the appropriate gener- 
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1. An MPISTG with y(.i,) and y(.i,j,) displayed on intra- and intemodal lines. respectively. 

alization for several reasons, one among which is that in our investigation of confounding 
in point exposure studies we do not require the covariate L to be a treatment. 

Under what circumstances can (some) G-causal parameters of FR MCISTG 8.1 be 
estimated in the absence of data on L, that is, from the data available from the MPISTG 
3.5? Lemmas 8.1 and 8.2 demonstrate that two sufficient circumstances are (1) L is not 
a predictor of exposure and (2) L is not an independent population risk factor for death. 

LEMMA 8.1, If L is not an independent population risk factor for death, then: (1) 
MPISTG 3.5 is a B-complete Stage 0 PL-sufficient reduction of FR MCISTG 8.1; (2) For 
any G?.’ that assigns to each individual alive at t an exposure level cl(t) (irrespective of 
their 1 status at t), S(t 1 Gf,‘) = S(t 1 “G:.‘“) = ,S(t 1 El(t - At)) [as defined in Eq. (6.3)] 
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where “G:.“’ is the stage 0 counterpart of “G?.‘“. (3) For any G’.’ that assigns, at some 
time r, exposures to individuals on the basis of their I status, S(t 1 G’.‘) is. in general, 
nonidentifiable in the absence of data on L. (4) S(t, “G:.“‘, *.Gs.5”) = 0 R s(t, 
‘&GB.‘“, “G;.“‘) E 0. 

Proof. If Eq. (8.1) is false, then Assumptions R of Theorem Fl hold for MPISTG 8.1 
and its Stage 0 reduction MPISTG 3.5. (1) follows from the fact that MPISTG 3.5 is B- 
complete and Corollary Fl. Furthermore, the G’.’ described under (2) are precisely those 
G’.’ with Stage 0 counterparts in G-‘.5. (3) follows by noting that the functions m3.5 for 
which .S(t 1 “m3.“‘) = S( t 1 G8.‘) will depend on the distribution of L for those G8.’ without 
a Stage 0 counterpart. Finally, (4) follows from PL-sufficiency. 

Remark. Except for B-completeness, Lemma 8.1 also holds for FR ?IICISTG 3.4 
replacing FR MCISTG 8.1. 

LEMMA 8.2, If L is not a population predictor of exposure and MPISTG 8.1 is an FR 
MCISTG then (A) conclusion (2) of Lemma 8.1 holds; but (B) if data on L is available, 
then, even when L is known a priori not to be a predictor of exposure, the NPMLE of 
s(t 1 E(t - At)) will depend on the data through L; (C) conclusion (4) of Lemma 8.1 is 
false; (D) for any G$’ that assigns at time t’ < t different exposures to 1 individuals than 
to 1 individuals, it is not necessary that s(t 1 “G;.“‘) = s(t 1 “m3.5”) for some m3.5; (E) 
conclusion (4) of Lemma 8.1 modified so the implication arrow points only toward the 
G-causal parameter of MPISTG 3.5 still holds (i.e. valid but not consistent tests of the 
G-null hypothesis of FR MCISTG 8.1 are possible without data on L). 

Proof. (A) and (E) follow by noting that if Eq. (8.3) is false, the suppositions of 
Theorem F2 are satisfied for all G*.’ with Stage 0 counterparts G3.5. (B)-(D) are true even 
in the special case of a point exposure trial in which the dichotomous covariate and 
exposure are measured once at start of follow-up. For example, in a point exposure study, 
(B) can be rephrased as “if there is an exposure-covariate association in the data, but not 
in the population, the NPMLE of the standardized risk difference (with weights chosen 
from the entire population) differs from the empirical crude risk difference.” For proof 
see Refs. [15] and [17]. [A key idea is that knowledge that Eq. (8.3) is faIse is a prior 
restriction that crosses a cut, as described in Appendix A.] Points (C) and @> will hold 
in a point exposure trial when the two stratum-specific risk differences are of opposite 
sign and the crude risk difference is zero. 

(A) of Lemma 8.2 is false unless (1) L is not a population predictor of future exposure 
(as would be the case in a point-exposure study), and (2) current I-status is not a predictor 
of exposure. (1) and (2) hold if and only if L is not a predictor of exposure. We use Fig. 
8.1 to clarify the distinction between Eqs. (8.3) and (8.4). 

The fractions written over the internodal lines in Fig. 8.1 are p(*i,j, ( .i,). In Fig. 8.1, 
L is not a population predictor of exposure since, e.g. the ratio of individuals receiving 
high to zero exposure at r3 is 0.9/O. 1 at the first, second, fifth and sixth right circumference 
points when reading from the top. If the ratio at the first and second points differed from 
that at the fifth and sixth, then L would be a population predictor of exposure, but current 
l-status would not be a predictor of exposure. 

If there is residual confounding within levels of L (e.g. if Fig. 8.2 was our finest FR 
MCISTG), then, even when L is neither a population risk factor nor a predictor of ex- 
posure, s(t + At 1 El(t)) - S(r + At I Ez(t)) may not be the G-causal parameter of any 
MCISTG. 
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Fig. 8.2. An MPISTG. 

Finally, we might wonder, if the conditions of Lemma 8.1 or 8.2 are satisfied and 
MPISTG 8.1 is an FR MCISTG, will MPISTG 3.5 be an FR MCISTG? In general, it will 
be only if MPISTG 3.5 is a causal melded reduction of FR MCISTG 8.1 as defined in 
Appendix F. See Theorems F3 and F4. In the next section we discuss some additional 
difficulties in causal interpretation that occur when FR MCISTG 3.4 is our finest FR 
MCISTG. 

A.3 A difference between FR MCISTGs 3.4 and 8.1 

In occupational mortality studies individuals are (presumed) to be unexposed while off 
work. As such, FR MCISTG 3.4 rather than 8.1 would represent the data. If L. is not a 
risk factor in the unexposed, it follows from Lemma 8.1 that we can test the G-null hy- 
pothesis for FR MCISTG 3.4 based on MPISTG 3.5. Nonetheless (in contrast to the FR 
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s(t I El(t)) - S(t 1 E?(f)) (8.7) 

will not necessarily have a causal interpretation (when nonzero) since .Y(t 1 E,(t)) will, in 
general, not equal any .S(t / G3.4) if E,(t) $ 0. Given that exposure is a nonrisk factor in 
the unexposed and MCISTG 3.4 is an FR MCISTG, who do we tend to believe that Eq. 
(8.7) has a causal interpretation? One justification for such a belief is a conjunction of the 
following theorem with the following subjective belief. 

THEOREM 8.1. If MPISTG 3.3 is an FR MCISTG and L is not an independent causal 
risk factor, then MPISTG 3.5 is an FR MSCISTG and L is a population nonrisk factor 
controlling for E(t) = 0. 

Proof. A direct application of Lemma F2. 

Subjective belief of many investigators. If L was a causal risk factor and or MPISTG 
3.3 was not an FR MCISTG, it is unlikely (though not impossible) for L to be a population 
nonrisk factor controlling for E(t) = 0. This belief reflects the fact that it would take a 
precise balancing of the healthy worker selection effect by the direct causal effects of L, 
for L to be a population nonrisk factor. Therefore, one might have low subjective prob- 
ability that such a “balancing act occurred.” Armed with this belief, we would consider 
that Eq. (8.7) represented a G-causal parameter of FR MSCISTG 3.5 when L is an em- 
pirical nonrisk factor. 

We now ask, In what circumstances might we believe Eq. (8.7) is causal if either 
MPISTG 3.3 is not believed to be an MCISTG (because disabled individuals cannot, even 
conceptually, return to work), or L is a causal risk factor and the unusual balancing act 
described above occurred? Suppose one believed that, at least conceptually, individuals 
off work could have received high exposure (e.g. by having arsenic dust pumped into 
their homes). Then one could view FR MCISTG 3.4 as the special case of FR MCISTG 
8.1 in which the probability of receiving high exposure while off work was zero. The 
survival curve of the controlied trial defined by Gs.‘, “if alive, receive high exposure”, 
is well defined, although the curve wiIl not be identifiable without further nonidentifiable 
assumptions when no individuals actually received high exposure off work. 

One might be willing to assume if, in the observed study, L is not a risk factor among 
the unexposed, L would not be a risk factor in the hypothetical study represented by G’.‘, 
‘<if alive, receive high exposure”. If so, Eq. (8.7) would be a G-causal parameter of G’.‘. 
But unless MPISTG 3.3 is an FR MCISTG, and L is a causal nonrisk factor, Eq. (8.7) 
would not represent the effect of exposure controlling for employment history. 

B. Circumstances under which time-dependent covariates may be adjusted for in 
standard fashion 

Suppose in the study represented by MPISTG 3.3, L is an independent population risk 
factor. If so, a common practice is to adjust or stratify on L-history (i.e. to determine 
whether exposure is an independent population risk factor controlling for L). This provides 
a valid test of whether exposure is a causal risk factor, controlling for the intermediate 
variable employment history, provided MCISTG 3.3 is an FR MCISTG. But suppose now 
one believes that L is not an independent causal risk factor. Then, by Theorem 8.1, 
MCISTG 3.3 cannot be an FR MCISTG. Nevertheless, the test of the G-null hypothesis 
of FR MCISTG 3.4 would be a test of whether exposure is an independent causal risk 
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factor (since its G-null hypothesis is implied by the sharp null hypothesis for MCISTG 
3.3). In this setting, under what circumstances does testing whether exposure is a pop- 
ulation risk factor controlling for L constitute a valid test of the G-null hypothesis for FR 
MCISTG 3.4? Lemma 8.3 shows that it constitutes a valid test when exposure is not a 
population predictor of future L-history where we use future L-history to mean future L- 
experience (equivalently, L-status). 

LEMMA 8.3. If exposure is not a predictor of future L-status [i.e. Eq. (8.2) is false with 
the roles of E and L interchanged], then for a given “G:.4r’: 

(1) s(t, + At I “G:.4r’) = 2 S((t, + At) I E(t,), LOJ)i+(L(~,)) 
L(t) 

where 

p’[L(r,)l = n p[L(td 1 L(r, - At), D > rk] 
I& = I, 

and E(r) is uniquely determined by L(r) and the chosen G:.4; the sum is over the Y-l 
possible paths L(&); and L(rk) is the initial part of L( r,). 

(2) ?D(t i At 1 E!t), L(r)) = yD(t + At ) L(r)) for all E(r) if and only if S(r, 
“Gf4” “G$4”) = 0 (i.e. valid and consistent tests of the G-null hypothesis for FR 
MCIST’G 3.4 can be based on standard methods of assessing the effect of exposure con- 
trolling for L). 

Proof. Direct computation using the G-computation algorithm and the fact that ex- 
posure is not a predictor of future L-status. 

EXAMPLE. In our arsenic data, exposure is a determinant of future L-status (see Table 
5 in Appendix D), and so valid tests of the G-null hypothesis of FR MCISTG 3.4 had to 
be based on the G-null test. 

Since S(r, + Ar 1 G:.‘) can be written as a weighted average of .S((t, + At ( E(r,), 
L(r,)) when MPISTG 3.4 is an FR MCISTG and exposure is not a predictor of future L- 
status, one might wonder whether differences in the ,S((t, + At) I E(t,), L(t,)) for fixed 
L(r,) and varying E(r,) may themselves have a causal interpretation (even when MPISTG 
3.3 is not an FR MCISTG or even an MCISTG). [Note that since ,S((t, + At) 1 E(t,), 
L(r,)) = S(t, 1 b‘G3.3”) for any G3.3 that gives treatments E(t,), L(r,), such differences 
between the .Y((t, + At) I E(t,), L(rs)) would have a causal interpretation as the effect of 
exposure controlling for employment history if MPISTG 3.3 were an FR MCISTG. But 
this would be true even if exposure were a determinant of future L-status.] The following 
theorem gives an answer to our question (although it will not be appreciated by those 
who do not believe in the life we would have led had we not died). 

THEOREM 8.2. If MCISTG 3.4 is FR MCISTG and (I) exposure is not a causal risk 
factor for L [i.e. Eq. (8.6) is false with the roles of E and L interchanged]. [Note this 
implies that each individual in the population has associated an L-history L(rs) that does 
not depend on the exposures they received, or whether they die before rs. This would 
be the case if there was an unmeasured covariate at rl that determined L(rs).] 
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(2) Ydl + Ar 1 E(f), L,(t), D > t, L(b)) = yD(t + St 1 E(t), L(t), D > t) 

[i.e. those dying at f + At with history E(r), L(r) are representative with respect to L(ts) 
history]. Then, (a) exposure is not a population predictor of future L-history and (b) the 
G-causal parameter through rs of the subset of the population with a given L(ts) [i.e. S(t,, 
G:.4, G!;.4), i E L(ts)l equals S[r, / E,(r,_,), L(t,-,)I - .S[t, ( Ez(~,-I), L(r,-,)I where 
L(r,-I) is the initial part of L(r,) through t,_, and E,(t,-i) and Ez(t,-i) are uniquely 
determined by L( r, _ , ), G:.4, and Gi.4. 

Use of this theorem is much like that of Theorem 8.1. In Theorem 8.2 only conclusion 
(a) is identifiable. One might believe, that given MPISTG 3.4 is an FR MCISTG, it is 
likely that if exposure is not a population predictor of future L-history, the suppositions 
of the theorem would be true. If so, one would believe that whenever (a) is empirically 
true that conclusion (b) is likely to be true. 

Proof of Theorem 8.2. We use the device of showing the theorem is true for the 
hypothetical ordinary randomized trial whose A&complete PL-sufficient reduction is R 
SCISTG 3.4. In that trial, (fiG’.a, _&,.a) II G3.4 (using the independence notation of 
Dawid[lS]-see proof of Theorem El of Appendix E) where fiGj.d, &+J are the vectors 
of death times and L-histories through rs as G3.4 runs through G3.4. Therefore, bGl-4 II 
G3.4 1 i~3.4. This implies fiGj.4 II G3.4 1 L(rs) by supposition (1). This, in turn implies, 
using the G computation algorithm, that s(r, 1 G:.4, L(rs)] = S[r, ( E,(r,_,), L(r,_l), 
L(rs)] which does not depend on L( ts) by supposition (2), proving (b). 

To prove (a), we note that by Bayes theorem 

p[L(r, + At) ) Ur,), E(L), D > r, + At1 

= P[D > r3 + Ar I E(r,), LO,), L(rS + At)1 
PW > rs + Ar ( E(h), L(r,)l 1 hWs + At) / WA E(r,)l. 

Now by (2) the ratio term is unity, and by (1) and the fact MCISTG 3.4 is an FR MCISTG, 
the second term does not depend on E(r,). This proves (a). [Note that L(rS + Ar) in the 
numerator of the ratio term is the event that an individual would have had history I.(& 
+ At) at rl, irrespective of whether they were alive at r, + Ar.] 

Rosenbaum[l9] established an essentially identical theorem in the case of a point ex- 
posure and time-dependent covariate except he effectively assumed there are no censoring 
of covariate history by death (i.e. that all deaths occurred only at end of follow-up), so 
he did not consider the necessity for (2). We notice that even if (a) is empirically false, 
(1) may be true for a subset of the population. If the equation in (2) is still true (whenever 
the left side is well defined), then (b) still holds by the previous proof. Note that the proof 
of (a) does not go through when (1) holds only for a subset. To better understand the 
implications of this observation, consider the simple example of a point exposure ran- 
domized trial in which all deaths occur at r3, all individuals have identical values at r1 on 
a (time-dependent) dichotomous covariate. The covariate is measured again at rz, and 
exposure is found to be a predictor of future covariate history. Nonetheless, it is always 
possible although never identifiable, that the empirical differences in survival probability, 
controlling for the level of the covariate measured at r2, represent G-causal parameters 
for the effect of exposure on subsets of the population for whom exposure is not a causal 
risk factor for the covariate. If all deaths occurred between rs and rs+ 1 so that there was 
no “censoring” of L-history by death, examination of our proof (see also Ref. [191) shows 
that (a) and (b) hold without requiring (2). But when (1) applies to only a subset of pop- 
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ulation, (2) is necessary for(b) to hold, even when, as in our example. there is no censoring 
of L-history by death. 

C. A circumstance under which the carlsal ejyect of exposure controlling for L may be 

estimated in the absence of data on L 

Suppose the finer PISTG formed from PISTG 8.1 by having the four internodal lines 
leaving each node arise from a single point on the right circumference, which we will call 
PISTG F8.1, were an FR MCISTG. Suppose also that L were an independent population 
risk factor for death. Then, a test of the null hypothesis of no direct exposure effect for 
FR MCISTG F8.1 is available by testing whether exposure is a population risk factor for 
death controlling for L-history. Under what circumstances may we validly test the above 
null hypothesis in the absence of data on employment history. The following theorem 
shows that we may do so when L is not a predictor of exposure history and exposure is 
not a predictor of future L-history. 

THEOREM. If (1) L is not a predictor of exposure history, (2) exposure is not a predictor 
of future L-history, and (3) exposure is not a population risk factor for death controlling 
for L-history, then X(t, ‘LGT.5”, i’G$.5”) = 0. i.e. 

s(t + ht 1 E(t)) does not depend on E(t). (8.8) 

Proof. From Lemma 8.3 we know that when exposure is not a predictor of future L- 

history and exposure is not an independent population risk factor for death, then .S(t. 

.‘GT4 ” “G:.“‘) = 0. But, using Lemma 8 

.‘G:.5’.. 6. 
.2, if L is not a predictor of exposure, S(f. 

G?.“‘) = 0. Therefore, a valid test of (3) may be based on Eq. (8.8). 

Remark. The theorem is true if L is interchanged with exposure in the statements of 
(1) and (2). 

D. Estimating exposure effects given data on cigarette smoking histoo 

D.l Circumstances under Lvhich standard analyses are valid 

In occupational mortality studies, data on cigarette smoking history C(t) may be ob- 
tained. In such instances, the investigator will usually report an estimate of the parameters 

ydt + At / E(t). C,(t))iyo(t + At 1 E(t) = 0, c,(t)) (8.9) 

for various C,(t) in an attempt to assess the direct effect of exposure controlling for 
cigarette smoking history. When is this attempt successful? 

In general, when the healthy worker survivor effect is operative, parameters that rep- 
resent the effect of exposure controlling for smoking history will only be identifiable when 
exposure and cigarette smoking at t, are received at random conditional on cigarette 
smoking and exposure history through t,_ ,, and employment history through fr (i.e. Fig. 
8.3 is an FR MCISTG). (In Fig. 8.3. for simplicity, we have supposed that smoking status 
at t, is recorded only as currently smoking or not currently smoking. In actual practice 
we would normally record at least three to four smoking levels.) 

Any G-causal parameters of MCISTG 8.3 that represent the effect of exposure con- 
trolling for cigarette smoking history can be written 

s(t. Gf.3 = [“G;.“” 
, C(t,)], G;.3 = [“G:.“‘, C(t,)]), (8.10) 
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Fig. 8.3. An FR MCISTG: H = high exposure concentration, 0 = unexposed, 1 = at work, I = off work, c = 
current smo!;er, ? .= current nonsmoker. 

SIPISTG C8.3 is the coarser MPISTG formed from MPISTG 8.3 in which internodal lines that differ in c-status 
are given separate right circumference points. 

1IPISTG FS.3 is the finer MPISTG formed from MPISTG 8.3 in which all six internodal lines leaving each node 
arise from a single right circumference point. 

MPISTG CF8.3 is the coarser MPISTG formed from MPISTG F8.3 in which individuals with different c-status 
(but neither l-status nor exposure status) are given separate right circumference points. 

LIPISTG S08.3 is the Stage 0 reduction of LMPISTG 8.3 in which data on L-status is absent and each node has 
a single intranodal line from which four intemodai lines arise representing joint levels of c-status and exposure 
status. 
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where Gy.’ is the generalized treatment that assigns to each individual at fs a particular 
cigarette smoking status obtained from the value of the curve C(t,) at that time (irre- 
spective of employment or exposure history), and furthermore assigns to an individual at 
work a particular exposure at t, which may depend on past exposure and employment 
history. Such an exposure assignment function can be characterized by a unique gener- 
alized treatment of PISTG 3.4. Note that G!.3 and G!.3 have identical cigarette smoking 
history assignments but different “G3.4”s. To motivate our choice of the parameters 
characterized by Eq. (8.10), consider the finer PISTG, say PISTG F8.3, formed from 
PISTG 8.3 by having all six intemodal lines leaving each node arise from a single right 
circumference point. Suppose F8.3 is an MCISTG (but not an FR MCISTG because of 
the healthy worker survivor effect) and L-history is not a causal risk factor controlling 
for C- and E-history. If, in addition, exposure is not a causal risk factor controlling for 
C- (and, now trivially, L-) history in MCISTG F8.3, then the identifiable G-causal pa- 
rameters of FR MCISTG 8.3 defined by Eq. (8.10) will be identically zero (as they must 
if they are to represent the effect of exposure controlling for cigarette smoking history). 
Note that the G-causal parameters of Eq. (8.10) would not be null when exposure had no 
effect controlling for cigarette smoking history if we allowed G?.3 and G?-3 in Eq. (8.10) 
to represent generalized treatments of MCISTG 8.3 that assign cigarette smoking behavior 
based on employment history. In that case, if exposure history determines L-status, a 
given individual could have different cigarette smoking histories in the controlled trials 
represented by G?,3 and G!.3. If so, the G-causal parameters represented in Eq. (8.10) 
would not be null even when exposure had no effect controlling for cigarette smoking 
history. 

We now consider the circumstances under which the parameters represented in Eq. 
(8.9) can be used to test the null hypothesis that all G-causal parameters of FR MCISTG 
8.3 of the form given in Eq. (8.10) are identically zero (which we shall call the hypothesis 
of no exposure effect controlling for cigarette smoking). In Lemma 8.4, we show that 
valid tests can be based on Eq. (8.9) either when L is not a population risk factor controlling 
for cigarette smoking and exposure history, i.e. 

YD(~ + At I E(t), C(t), L(f)> = YD(~ + At I E(t), C(t)) for all L(t) (8.11) 

or when employment history is not a predictor of the joint distribution of exposure and 
cigarette smoking, i.e. 

p[C(t f At). E(t + At) 1 E(r), C(t), L(t + At), D > t f Ar] 

= p[C(t + At), E(t + At) 1 E(t), C(t), D > t T At] (8.12) 

for all L(t + At). Note that for MPISTG 8.3 (as with MPISTG 3.4) employment history 
is trivially a determinant of future exposure history. Therefore, for Eq. (8.12) to be other 
than trivially false we need to consider the modified version of MCISTG 8.3, called 
MCISTG EM8.3, which differs from MCISTG 8.3 only in that individuals off work can 
receive high (as well as zero) exposure. EM8.3 stands in the same relation to Fig. 8.3 as 
does Fig. 8.1 to Fig. 3.4. Therefore, when considering EM8.3 we must replace the G3.4 
by G*.’ in Eq. (8.10). 

Let MPISTG S08.3 be the MPISTG that is the Stage 0 reduction of MPISTG EM8.3 
(and MPISTG 8.3) obtained by deleting data on employment history. MPISTG S08.3 has 
one intranodal line per node from which four internodal lines arise. The intemodal lines 
reflect possible combinations of exposure and cigarette smoking status. 

LEMMA 8.4. If Eq. (8.11) holds, then MPISTG S08.3 is the Stage 0 PL-sufficient 
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reduction of MPISTG EM8.3 (or of MPISTG 8.3). In addition, the null hypothesis of no 
exposure effect controlling for cigarette smoking holds if and only if Eq. (8.9) is always 
unity. If Eq. (8.12) holds, then the null hypothesis of no exposure effect controlling for 
cigarette smoking history implies that Eq. (8.9) is unity. Finally, if either Eq. (8.11) or 
(8.12) holds, then s(t ( “GEM8.3” ) = ,S[t 1 E,(t - At), C,(t - At)] = ,S(t ) ‘*Gso8.3”) for 
any GEM8.3 that assigns individuals at t, to treatment [er(t,), cl(t,)] [irrespective of L( t,)], 
and Gso8.’ is its Stage 0 counterpart. 

Proof. We use Theorems Fl and F2 exactly as we did in Lemmas 8.1 and 8.2. 

D.2 Circumstances under which cigarette smoking history is a nonconfounder 

Note that it would not be uncommon for an investigator to believe that MCISTG 8.3 
was not fully randomized. For example, consider a group of current smokers at t,- I who 
are out of work at t, with identical exposure, smoking, and employment history through 
t,_ 1. It is reasonable to believe that the subgroup who left work due to (unrecorded) ill 
health are more likely to give up smoking at t, than those who left work for purely so- 
cioeconomic reasons. Even among a group of smokers at t, _ , who remain at work at t, , 
one might believe that those who continue smoking at t, differ on unmeasured risk factors 
from those who choose to give up smoking. In that case, our finest FR MCISTG might 
be the coarser MPISTG, formed from MCISTG 8.3, that has four intranodal lines per 
node defined by joint levels of present smoking and employment status. Note this FR 
MCISTG, which we call FR MCISTG C8.3, assumes that exposure is received at random 
at work at t, conditional on past exposure through t, _ 1 and on cigarette smoking and 
employment history through t,. As such, in the absence of further assumptions. one cannot 
identifiably estimate the direct effect of exposure controlling for cigarette smoking. One 
can estimate the overall (direct and indirect) effect of exposure. (See Sec. 8D.3 for further 
discussion.) 

Occupational mortality studies often fail to collect data on cigarette smoking history. 
In Lemma 8.5, we examine the circumstances under which various G-causal parameters 
of FR OCISTG C8.3 can be estimated from its Stage 0 reduction, MPISTG 3.4, when 
data on cigarette smoking is unavailable. Technically, the Stage 0 reduction of C8.3 is 
the ti-modified version of MPISTG 3.4 in which both levels of 1 occur at tl. Henceforth, 
for convenience, we also refer to the ti-modified version of MPISTG 3.4 as MPISTG 3.4. 

LEMMA 8.5. If cigarette smoking history is not a population risk factor for death 
controlling for exposure history and employment history, i.e. 

YD(~ + At 1 Et?), L(t), C(t)> = ydt + At 1 E(t), L(t)) for all C(r) (8.13) 

and cigarette history is not a predictor of future L-history controlling for exposure history, 
i.e. 

p(L(t + At) ( E(t), L(t), C(t), D > t + At) 

= p[L(t + At) 1 E(t), L(t), D > t + At] for all C(t) (8.14) 

then MPISTG 3.4 (technically the t,-modified MPISTG 3.4) is the B-complete Stage 0 PL- 
sufficient reduction of OPISTG C8.3. As such, the “G-null” hypothesis holds for MPISTG 
3.4 if and only if it holds for OPISTG C8.3. 

Proof. Equations (8.13) and (8.14) constitute Assumptions R of Theorem Fl. Note 
that Eq. (8.13) is not sufficient in itself to prove the Lemma. 
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LEMMA 8.6. If cigarette smoking history is not a predictor of exposure history con- 
trolling for employment history, i.e. 

p[E(t + At) 1 E(t), C(t + At), L(r + At), D > t -+ At] 

= p[E(t f At) 1 E(t), L(t i At), D > t + At] (8.15) 

for all C(t -+ At), then for any Gc8.3 which assigns exposure at work at t, conditional on 
past work and exposure history without regard to cigarette smoking history, .T(t 1 “Gc8.3”) 
= .$t 1 GGG3.4”) where &‘G3.4” is the Stage 0 counterpart of “Gc8.3.” Thus valid tests of 
the “G”-null hypothesis of MPISTG 3.4 constitute valid tests of the “G”-null hypothesis 
of OPISTG C8.3. 

Proof. Equation (8.15) satisfies the supposition of Theorem F2 for all such Gc8.3. 

Given that MCISTG C8.3 is an FR MCISTG, we say that, given data on L-history, 
smoking is not a confounder for the overall effect of exposure on mortality, whenever 
either Eqs. (8.13) and (8.14) hold or Eq. (8.15) holds. Note that, in analyzing our arsenic 
data, we have considered MPISTG 3.4 to be an FR MCISTG, even though we know that 
cigarette smoking is a population risk factor for death. Thus, we must have been implicitly 
assuming that OPISTG C8.3 is an FR OCISTG, that Eq. (8.15) holds, and finally that 
MPISTG 3.4 is a causal melded Stage 0 reduction of FR MCISTG C8.3 so that we are 
able to apply Theorem F3 to conclude that MPISTG 3.4 is an FR MCISTG. 

But scientific interest would likeiy center on the question of whether there is a causal 
effect of exposure controlling for cigarette smoking history. Given that we believe PISTG 
C8.5 is our finest FR CISTG, what further assumptions would allow us to test for a causal 
effect of exposure controlling for cigarette smoking when data on cigarette smoking are 
available? are unavailable? We answer these questions in the next subsection. 

D.3 Circumstances under which the causal effect of exposure controlling for smoking 
may be tested in the presence and absence of smoking data 

Given MCISTG C8.3 is our finest FR MCISTG, we define circumstances under which 
we may obtain valid tests of the hypothesis that “exposure has no effect controlling for 
cigarette smoking.” We begin by presenting two parallel lemmas, one for FR MCISTG 
3.4 and the other for FR MCISTG C8.3. 

LEMMA 8.7. If 

(1) exposure is not a causal risk factor for death controlling for L-history; 
(2) exposure is not a causal risk factor for L; and 
(3) MCISTG 3.4 is an FR MCISTG, then 

(a) exposure is not a predictor of futnre L-history; 
(b) exposure is not a population risk factor controlling for L; and 
(c) the “G”-null hypothesis holds for MPISTG 3.4 (since the sharp null hypothesis 

holds for MCISTG 3.4). 

Proof. See proof of Lemma 8.8. 

Remark 8.1. Given MPISTG 3.3 is an MCISTG, supposition (1) of Lemma 8.7 can 
be written as, for all individuals i, 

S(ts, G:.3 = [eiG:.4r’, L(ts)], Gz.3 = [‘iG:.4r’, L(ts)], i) s 0. (8.16) 
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The G:.4 could be replaced by Ek(tS) since the pair [“Gz.4”, L(ts>], determines a unique 
Ek(tS). 

Supposition (2) can be written as p[L(t, + A?) 1 L(t,), G3.‘, i] does not depend on G3.4. 
(a) and (b) can be written asp[l(t, + At) / L(t,), “G3.4”] and rD(rs + A.t ) “G:.“‘, L(t,)) 
do not depend on “G3.4” (as def me d in definition G 1 of Appendix G with L(t,) = aif .) 

Remark 8.2. If L is not a causal risk factor controlling for E, then Conclusion (c) 
follows from (1) and (3) alone. 

Remark 8.3. (a) implies that (b) holds @ (c) holds by Lemma 8.3. 

Remark 8.4. The suppositions of the Lemma are all nonidentifiable. Suppositions (a) 
and (b) refer to individual causal effects. In contrast, the conclusions are all identifiable 
population relationships. 

Remark 8.5. Supposition (2) of Lemma 8.7 implies each individual i has a unique 
employment history, say L’(ts), when treated with any G3.4. If Suppositions (2) and (3) 
hold, and for each individual i, Eq. 8.16 holds only for Li(ts), then Conclusions (a), (b), 
and (c) hold [even if Eq. (8.16) is either false or undefined for various other L(ts)]. Note 
if, for some individuals, Eq. (8.16) is undefined for certain L(r,), PISTG 3.3 is not a 
CISTG. 

Remark 8.6. Lemma 8.7 holds (as will nearly all results in this subsection) even if an 
individual’s “covariate” history is undefined after his death. In particular, Lemma 8.7 
would hold if in the restatement of Supposition (2) in Remark 8.1 we had conditioned on 
the eventD > t + At. 

LEMMA 8.8. Given MPISTG 8.3 is an MCISTG, if 

(1) Gc8.3 is not a causal risk factor for death controlling for cigarette smoking, which, by 
definition, is, 

S(t,, Gf.3 = [“GF8.3”, C(t,)], G:.3 = [“GF8.3”, C(t,)], i) = 0 

[b‘G;.4’r could be substituted for “G$s.3’r in Eq. (8.17)-see Remark 8.11; 
(2) Go8.3 is not a causal risk factor for cigarette smoking, i.e. 

p[C(r + At) 1 C(t), Gc8.3, i] does not depend on @8.3 ; 

(3) MCISTG C8.3 is an FR MCISTG, then 
(a) Gc8.3 is not a predictor of future C-history, that is, 

p[C( t, + At) ) C(r,>, “G?*.3”] does not depend on G?’ 

(as in Definition Gl with C(t,) = .if); 

(b) 

yo(t, + At 1 “G?8.3”, C(t,>> does not depend on “G?8.3” 

(again see Definition Gl); and 
(c) 

the “G”-null hypothesis holds for MPISTG C8.3 

(since the sharp null hypothesis holds for MCISTG C8.3). 

(8.17) 

(8.18) 

(8.19) 

(8.20) 

(8.21) 
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Sketch of Proof of Lemma 8.8. Since MCISTG C8.3 is, by supposition, an FR 
MCISTG, we can proceed, as in the proof of Theorem 8.2, to view the observed data as 
having arisen from a randomized trial in which each individual was assigned a treatment 
G’c8.3 (see Theorem 7.1). It is clear that (1) and (2) imply the sharp nulI hypothesis for 
MCISTG C8.3 and that furthermore each individual has a history (C(t,), D) that does 
not depend on the Gc8.3 to which they are assigned (where D is the individual’s time of 
death). Thus, (C(r,), 0) II Gc8.3. Conclusions (a), (b), and (c) follow immediately. 

Remark 8.7. The statement of Lemma 8.8 can be seen to be formally equivalent to 
that of Lemma 8.7 when we rewrite Lemma 8.7 by making the substitutions described in 
Remark 8.1 and then identify PISTG 3.3 with PISTG 8.3, and PISTG 3.4 with C8.3. 

Remark 8.8. Both Lemmas 8.7 and 8.8 are special cases of Theorem G5. 

Remark 8.9. Paralleling Remark 8.3, Equation (8.19) implies that Equation (8.20) holds 
@ Equation (8.21) holds. The proof of this Result is isomorphic to the proof of Lemma 
8.3, and is a special case of Theorem G4 in Appendix G. 

Remark 8.10. Lemma 8.8 remains true if, for each individual i, Eq. (8.17) holds only 
for the individual’s unique smoking history Ci(ts). (See Remark 8.5.) 

We now discuss how we can use Lemma 8.8 to help draw inferences concerning the 
null hypothesis Eq. (8.17). Since all the suppositions of Lemma 8.8 are nonidentifiable, 
it is clear that to make use of the Lemma, we shall need to merge our prior beliefs 
concerning these suppositions with the data evidence. Here we shall give an informal 
Bayesian analysis in which uncertainty is expressed qualitatively rather than quantita- 
tively. For pedagogical purposes (only), we shall suppose there are three different actions 
we would take depending on whether we (1) strongly believe that Eq. (8.17) holds [then 
accept Eq. (8.17)], (2) strongly believe that Eq. (8.17) is false [then reject Eq. (8.17)], or 
(3) do not have strong beliefs either that Eq. 8.17 is true or false [i.e. do not accept or 
reject Eq. (8.17)]. Furthermore, we suppose that prior to observing the data, we do not 
have strong beliefs one way or the other about the truth of Eq. (8.17). This exercise is 
pedagogic in the sense that it is meant to sharply raise the issues one must face in analyzing 
real data. It is not meant, though, as a prescription for actual analysis. 

We first consider the case in which data on cigarette smoking are not available. Suppose 
we have strong subjective beliefs that (1) OPISTG C8.3 is an FR OCISTG, (2) Eq. (8.18) 
holds, and (3) Eq. (8.15) holds. Then, as a direct consequence of Lemma 8.8 and Lemma 
8.6, we would reject the null hypothesis Eq. (8.17) when the “G’‘-null test for MPISTG 
3.4 rejects. On the other hand, even when both Eq. 8.15 and the “G”-null hypothesis for 
MPISTG 3.4 hold, the “G”-null hypothesis need not hold for OPISTG C8.3. Nevertheless, 
we would consider it unlikely that this latter situation would occur. Therefore, if the “G”- 
null test for MPISTG 3.4 accepts, we would accept Eq. (8.17). 

If our prior belief that Equation 8.18 held was weak, we would neither accept nor reject 
Eq. (8.17) irrespective of whether “G”-null test for MPISTG 3.4 accepted or rejected, 
as we could not invoke Lemma 8.8. 

If our beliefs in Eq. (8.18) were moderately strong [and our beliefs that C8.3 was an 
FR OCISTG and that Eq. (8.15) held remained strong] we might accept Eq. (8.17) if the 
“G’‘-null test for MPISTG 3.4 accepted, but neither accept nor reject Eq. (8.17) if the 
“G”-null test for MPISTG 3.4 rejects. To see why, consider the following argument. For 
both Eq. (8.18) and (8.17) to be false and yet for MPISTG 3.4 not to reject, a somewhat 
unusual balancing act must occur (for example, a direct adverse effect of exposure on 
mortality controlling for cigarette smoking is perfectly balanced by an indirect beneficial 
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effect on mortality operating through the effect of exposure on smoking behavior). Since 
we have moderately strong beliefs that Eq. (8.18) holds, we would be unlikely to believe 
both that Eq. (8.18) is false and the unusual balancing act described above occurred. Thus, 
we would accept Eq. (8.17). On the other hand, if the “G’‘-null test for MPISTG 3.4 
rejected, we would be justified in rejecting (8.17) only if we were near certain that Eq. 
(8.18) held (which we are not). 

We now consider the case in which data on cigarette smoking is available. If we make 
the following rather reasonable assumption, then somewhat sharper results can be ob- 
tained. Suppose we assume that any individual affected by a treatment Gc8.3, when con- 
trolling for C(t,), is adversely affected, Formally, we shall only require the following. 

Adverse effect assumption. If Eq. (8.17) is false and Eq. (8.18) is true, then, when 
Gf8.3 is the treatment “always receives zero exposure”, we assume that: (1) for all 
G?8.3, Eq. (8.17) is true when the = is replaced by 5 and (2) for some individual i, some 
t, and some Gy8.3, the inequality described in (1) is strict for C’( ts) (as defined in Remark 
8.10). 

The following two lemmas follow from the adverse effect assumption. 

LEMM_4 8.9. Given that the adverse effect assumption holds, if MCISTG C8.3 is an 
FR MCISTG and Eq. (8.18) holds, and furthermore, either (8.20) or (8.21) holds, then 
Eq. (8.17) holds. 

Proof. By contradiction. Assume Eq. (8.17) is false and Eq. (8.21) holds. For the 
G?8.3, t, described in (2) of the adverse effect assumption, and for the G?8.3 “always 
receive zero exposure” S( t,, G F”.’ G$8.3) < 0 under the suppositions of the Lemma. But 
this contradicts the fact that Eq. (8.21) holds. If we assume Eq. (8.20) rather than (8.21) 
holds, a similar proof can be used. 

LEMMA 8.10. If MCISTG C8.3 is an FR MCISTG, Eq. (8.20) or (8.21) holds, Eq. 
(8.19) is false, and the adverse effect assumption holds, then Eq. (8.18) is false. 

Proof. By contradiction. Assume Eq. (8.18) is true. Then Eq. (8.17) must hold by the 
previous Lemma. But if Eq. (8.17) holds, then, by Lemma 8.8, Eq. (8.19) is true. 

Suppose now that we have strong beliefs that (1) MPISTG C8.3 is our finest FR 
MCISTG, (2) Eq. (8.18) holds, and (3) the adverse effect assumptions holds. We will call 
this set of beliefs-Belief Structure 1. Then if Eq. (8.20) or (8.21) holds, we would accept 
Eq. (8.17) by Lemma 8.9. But, if Eq. (8.19) is false and Eq. (8.20) or (8.21) holds, then 
by Lemma 8.10 our beliefs must have been mistaken. [Here we are supposing that we 
have sufficient data to determine, without error, whether Eq. (8.19) and Eq. (8.20) em- 
pirically hold.] Therefore, we would neither accept nor reject Eq. (8.17). If Eq. (8.20) and 
(8.21) were both false, then we would reject Eq. (8.17) irrespective of whether Eq. (8.19) 
were true or false. [Note, without further assumptions, if Eq. (8.18) is true and Eq. (8.17) 
is false, Eq. (8.19) will, in general, be expected to be false.] 

Now suppose our belief that Eq. (8.18) is true is only moderately strong and our other 
beliefs remain as in Belief Structure 1. We call this set of beliefs Belief Structure 2. Then, 
if Eq. (8.19) and Eq. (8.20) [and thus Eq. (8.21) by Remark 8.91 hold, we might accept 
Eq. (8.17), since, again, it would take an unusual balancing act for Eqs. (8.18) and (8.17) 
to be false and yet for Eqs. (8.19) and (8.20) to hold. We now consider the three other 
possible empirical outcomes. 

Case 1. If Eq. (8.20) or (8.21) holds and Eq. (8.19) is false, in general, we neither 
accept nor reject Eq. (8.17). This follows because Eq. (8.18) is false by Lemma 8.10, and 
thus Lemma 8.8 cannot be invoked. 
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Case 2. If Eqs. (8.20), (8.21), and (8.19) were all false, we would, in general, neither 
accept nor reject Eq. (8.17). This reflects the fact that we would not be able to come to 
a definitive conclusion as to whether it was Eq. (8.17) or (8.18) (or both) that was false. 

Remark 8.11. If one but not both of Eqs. (8.17) and (8.18) is true, then, without further 
assumptions, Eqs. (8.20), (8.21), and (8.19) will, in general, all be false. 

Case 3. If Eqs. (8.20) and (8.21) were false and Eq. (8.19) true, we shall assume we 
would usually reject Eq. (8.17), although it would not be unreasonable to neither accept 
nor reject Eq. (8.17). To see why, we first show that it is possible for Eq. (8.17) to be 
true and Eq. (8.18) to be false. As a rather extreme example, suppose a population was 
composed of equal numbers of two homogeneous groups of individuals A and B. Indi- 
viduals in group A are nonsmokers at rl, become smokers at t2 when treated with high 
exposure at tl, and remain nonsmokers at tz when unexposed at tl. Group A individuals 
die at t3 if and only if they are smokers at t *. On the other hand, individuals in group B 
are smokers at tl, remain smokers at tz if treated with zero exposure ai tl , and become 
nonsmokers at tz if treated with high exposure at tl . Furthermore, no group B individuals 
die at r3 irrespective of smoking status at fz. Then, Eqs. (8.20) and (8.21) will be false and 
(8.19) true, although Eq. (8.17) is true and Eq. (8.18) is false. This example required that 
the exposure influence the smoking status of type A and B individuals in opposite direc- 
tions. For the outcome of smoking status (in contrast with mortality), it does not seem 
reasonable to exclude such a possibility a priori. Even so, the “balancing act” described 
in this example seems quite unlikely to actually occur. Therefore, we shall reject Eq. 
(8.17) when Eqs. (8.20) and (8.21) are false and Eq. (8.19) true. In light of Remark 8.11, 
we should not expect Case 3 to often occur. 

In the absence of moderately strong beliefs that Eq. (8.18) holds, we would neither 
accept nor reject Eq. (8.17) even when Eqs. (8.19) and (8.20) held. 

Henceforth, we shall assume that we hold beliefs compatible with Belief Structure 2. 
It follows that when data on cigarette smoking history are available, we shall need to test 
whether Eqs. (8.19) and (8.21) [equivalently Eqs. (8.19) and (8.20)] simultaneously hold. 
It may appear that any test of Eq. (8.19) requires that we use statistical models to estimate 
the probabilities S(.i,j,> and y(.ix) of MPISTG C8.3 in order to estimate p(C(t + At) 1 C(t), 
“Gcs.3”) for several times t, smoking histories C(t), and generalized treatments “GC8.3’r. 
Such an approach would be quite sensitive to model misspecification. Fortunately, we 
can construct a nonparametric test of the joint null hypothesis that Eqs. (8.19) and (8.20) 
hold based on the following lemma (which is a special case of Theorem G4). 

LEMMA 8.11. Equation (8.19) and Eq. (8.20) hold if and only if for 1 < fk < fs 

P(C(~, + At) 1 C(t,), L(tx-), E(tk-I), e(t~), D > t, + At) does not depend on e(tk) 

(8.22) 

and 

YD(~, + Aft) 1 C(t,), L(tk), E(~k-i), e(tk)) does not depend on e(tk), (8.23) 

where e(tk) is the exposure concentration at tk. In Sec. 9 we explicitly construct a non- 
parametric test of the null hypothesis that Eq. (8.19) and (8.20) hold based on Eqs. (8.22) 
and (8.23). 

Suppose now our beliefs conform with Belief Structure 2. Then, if our nonparametric 
test of Eqs. (8.19) and (8.20) accepts, we accept Eq. (8.17). If the test rejects, we would 
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neither accept nor reject Eq. (8.17), unless Eq. (8.19) held and Eqs. (8.20) and (8.21) both 
did not (Case 3) in which case we would reject Eq. (8.17). But, unfortunately, if Eqs. 
(8.19) and (8.20) do not both hold, there exists no valid nonparametric test of either Eq. 
(8.19) or (8.20). In particular, Eq. (8.19) alones does not imply Eq. (8.22) and Eq. (8.20) 
alone does not imply Eq. (8.23). Thus, in theory to test whether Eq. (8.19) holds, we must 
resort to modelling the conditional probabilities of MCISTG C8.3. 

We have seen that acceptance of the joint null hypothesis that Eq. (8.19) and (8.20) 
hold would lead us to accept Eq. (8.17) only if we have moderately strong beliefs that 
Eq. (8.18) holds. But our beliefs about Eq. (8.18) may be hard to assess because the 
meaning of Eq. (8.18) may be rather nonintuitive. Therefore, we now give two sufficient 
conditions for Eq. (8.18) to hold. 

LEMMA 8.12. If 

dC(t + At) 1 C(r), L(r), E(t), Cl = p[C(t + Ar) ) C(t), L(r), i] (8.24) 

holds and either 

or 

p[C(f + At) 1 E(t), C(t), L(t), il = p[C(t + Ar) ) E(r), C(r), i] (8.26) 

then Eq. (8.18) holds. In words, if E is not a causal risk factor for L and C jointly [Eqs. 
(8.24) and (8.25)], or neither E nor L is a causal risk factor for C [Eqs. (8.24) and (8.26)], 
then Eq. (8.18) holds. 

Proof. Left to the reader. 

It is our conjecture that the meanings of these two sufficient conditions are more in- 
tuitive than that of Eq. (8.18) in the sense that any investigator having moderately strong 
belief in Eq. (8.18) would have this belief only as a consequence of holding a moderately 
strong belief in Eq. (8.24) and in either Eq. (8.25) or (8.26). 

Our conjecture, if correct, has implications for our inference concerning the null hy- 
pothesis Eq. (8.17). To deduce these implications, we shall need the following two lemmas. 

LEMMA 8.13. If Eqs. (8.24), (8.25), and (8.17) hold, and MCISTG C8.3 is an FR 
MCISTG then 

rdr + At 1 E(r), L(r), C(r)) = ydr + At I L(r), C(r)) (8.27) 

P[C(t + At), L(r + Ar) 1 C(r), L(r), E(r), D > r + At] 

= p[C(r + At), L(r + At) 1 C(r), L(r), D > r + Ar] (8.28) 

Proof. The lemma is a special case of Theorem G5 on letting aif = (L(r,), C(z,)), 
CISTG A be CISTG C8.3, and 7A = G c8.3. Supposition (1) of Theorem G.5 is then equiv- 
alent to Eqs. (8.24) and (8.25). Supposition (2) follows from Lemmas 8.12 and 8.8. Finally, 
Eq. (Gl) becomes Eq. (8.28) and Eq. (G5) is Eq. (8.27). 

LEMMA 8.14. If Eq. (8.28) holds then we have Eq. (8.27) holds if and only if Eqs. 
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(8.19) and (8.20) hold [and thus Eq. (8.21) holds]. Furthermore, if Eqs. (8.27), (8.28), and 
(8.15) holds, then, when ignoring data on C, exposure is neither a predictor of future L- 
history nor a population risk factor for death controlling for L. 

Proof. Let F(t,) = (L(t,), C(t,)) replace L(t,) in Lemma 8.3. Let MPISTG C8.3 
replace MPISTG 3.4 in that Lemma. Then Lemma 8.3 states that if Eq. (8.28) holds, then 
Eq. (8.27) holds if and only if Eq. (8.21) holds. It remains to show that Eq. (8.27) plus 
Eq. (8.28) imply Eq. (8.19). This is left as an exercise. The second part of the Lemma is 
proved in Ref. [7]. 

It follows that if we held Belief Structure 2 on the basis of a moderately strong belief 
in Eqs. (8.24) and (8.25), then, if Eq. (8.27) and (8.28) hold, we would accept that Eq. 
(8.17) holds. Furthermore, by reasoning similar to that we have used above, if Eq. (8.28) 
is false, we would neither accept nor reject Eq. (8.17), and if Eq. (8.28) held and Eq. 
(8.27) were false, we would reject Eq. (8.17). In Sec. 9, we briefly discuss empirical tests 
of Eqs. (8.27) and (8.28). The second part of Lemma 8.14 has implications for our infer- 
ences about Eq. (8.17) in the absence of data on cigarette smoking. Previously, we sug- 
gested that when our beliefs in Eq. (8.18) were moderately strong and the “G”-null test 
for MPISTG 3.4 accepts, we accept Eq. (8.17). It is now clear that if the basis of our n 
priori belief in Eq. (8.18) is our beliefs in Eq. (8.24) and (8.25), then even when the “G”- 
null test for MPISTG 3.4 accepted, if exposure was an empirical predictor of future L- 
history, we should neither accept nor reject Eq. (8.17). 

Remark 8.12. In contrast to Lemma 8.13, the knowledge that MPISTG C8.3 is an FR 
MCISTG and that Eqs. (8.24), (8.26), and (8.17) hold implies no further empirical rela- 
tionships beyond Eqs. (8.19), (8.20), and (8.21). 

We next suppose that one was willing to assume a priori that MPISTG 8.3 was FR 
MCISTG. Then Eq. (8.17) implies 

S(t, ccGf.377 
= [*‘G~8.3rr, C(t,)], “G53” = [iGGz8.3’7, ,qt,)]) s 0 (8.29) 

for all t, G?.3, G:,’ of the above form. Obviously if Eq. (8.29) is false, Eq. (8.17) is faise 
even when Eqs. (8.19) and (8.20) are true. (Thus, in this circumstance, it follows from 
Lemma 8.9 that, if the adverse effect assumption holds, Eq. (8.18) would be false as well.) 
Unfortunately, in general, no nonparametric test of Eq. (8.29) exists. Nevertheless, we 
would like to determine particular (empirical) conditions under which a nonparametric 
test of Eq. (8.29) exists. For instance, we would like to know the (empirical) circumstances 
under which the “G”-null test for MPISTG C8.3 is a valid test of Eq. (8.29). These 
circumstances are described in the following lemmas. 

LEMMA 8.15. If Eq. (8.29) holds and if for all tk, 2 5 tk 5 tsTl 

p[C(ts+,) 1 c!t,>, D > ts-1, L(tk-,), E(tk_-l), I(tk)] 

= AC(t,+,) 1 C(ts), D > t,-. I, L(tk- i), E(fk- i), ?(&)I (8.30) 

then Eq. (8.23) holds. 
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LE;M,x~ 8.16. Equations (8.19) and (8.30) hold if and only if for s 2 1 

P[C(L-,) 1 C(tx), E(ts), D ’ fJt1, L(t,+i)l = p[C(t,+,) ( C(t,), D > t,-,I. (8.31) 

Furthermore, if Eq. (8.19) and (8.30) hold, then we have Eq. (8.29) holds e Eq. (8.21) 
holds e Eqs. (8.20), (8.22), and (8.23) hold. 

Corollary 8.16. If Eq. (8.31) holds and Eq. (8.15) holds, then Eq. (8.29) implies that 
the “G”-null hypothesis holds for MPISTG 3.4. 

If we strengthen Eq. (8.31) slightly, we have the following. 

LEMMA 8.17. If Eq. (8.31) holds for all s 2 0, then 

yD(t, + At 1 “Gy8.3”, C(t,)) = yD(f, + At 1 “G:.3” = (“Gy8.3”, C(ts)) 

and 

s(t,-i 1 “GY8.3”) = C S[ts+i 1 “G?i3” = (“GE’8.3”, Ci(ts))]p*[Ci(t,)], (8.32) 

where i indexes the 2” possible paths Ci(t,); C,(fs) is only required to have initial segment 
Ci(t,), and p”[C(t,)l = fli=b p[C(t,,~) I C(t,), D > t k+ I] with C(tk) the initial part of 
C(r*). 

Proofs. Lemmas 8.15-8.17 are special cases of Theorem Gl-G3. 

As promised, Lemma 8.16 gives a sufficient (empirical) condition [i.e. that Eq. (8.31) 
holds] for the equivalence of Eqs. (8.21) and (8.29). In Sec. 9, we show that Eq. (8.31) 
can itself be tested nonparametrically. Lemma 8.15 shows that if Eq. (8.30) holds [even 
though Eq. (8.19) does not], then Eq. (8.29) implies Eq. (8.23). In Sec. 9 we consider 
whether Lemma 8.15 can serve as the basis of a valid nonparametric test of Eq. (8.29). 

Remark 8.13. Lemmas 8.15, 8.16, and Corollary 8.16 were not initially obvious to 
us. We guessed them by imagining various double blind randomized trials that could have 
led to R SCISTG 8.3 as their Stage 0 PL-sufficient reduction. The informal power of this 
kind of reasoning to guess theorems about PISTGs is great enough that we describe the 
process by which we guessed the above lemmas. Ifan investigator had conducted a double 
blind ordinary designed randomized trial in which treatments G3.4 and C( ts) were assigned 
independently at tl, and if no individual left their treatment protocol C(ts) or G3.4 [e.g. 
individuals at work always received their assigned exposure, irrespective of their C(t,) 
history, and treatment G3.4 had no effect on mortality controlling for C(r,>, then the crude 
survival-G3.4 association would be null. This would have the “empirical consequence” 
that the “G’‘-null hypothesis would hold for MPISTG 3.4 even in the absence of data on 
treatment protocol. As such, we were interested in determining whether the observed 
study data were consistent with being the Stage 0 PL-sufficient reduction of such an 
ordinary designed randomized trial. To do so, we built up such a trial in three steps 
corresponding to Lemmas 8.15, 8.16, and Corollary 8.16, respectively. First, we only 
supposed that in the ordinary designed double blind randomized trial, protocols C(t,> and 
Gc8.3 were assigned at random [i.e. individuals were assigned a protocol such that, if at 
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work at t,, their assigned exposure might depend on their value of C(t,)]. no individual 
left protocol, but the probability of assignment to a particular Gc8.3 might depend on the 
assigned C(ts). In such a trial, Eqs. (8.29), (8.30) and (8.23) follow from (8.17). If Eq. 
(8.17) were false. neither (8.30) nor (8.23) need be true. We leave the proof as an exercise. 
This approach allows us to guess Lemma 8.15. It is not a proof of the Lemma since we 
would still need to show that Eqs. (8.30) and (8.29) imply (8.23). In the second stage vve 
asked what the further observable consequences would be if C(t,) and Gc8.3 had been 
assigned independently (and no one left protocol). It follows from the nonidentifiable 
temporal assumption that Eqs. (8.30), (8.19), and (8.31) must all hold even when Eq. (8.17) 
is false. In addition, Eq. (8.21) must hold since if the stratum-specific Gcs.3 effects are 
null [Eq. (8.17) and (8.29) hold] and there is no stratum-GC8.’ association [with strata 
defined by C(t,)], then empirical crude effect [as represented by Eq. (S.Zl)] must hold. 
In the last stage, we asked what would be the additional empirical consequences of having 
all the Gc8.3 assigned in the above trial be of the form G’.” (and no individual left protocol). 
It is obvious that Eq. (8.15) and the conclusion to Corollary 8.16 would then hold. 

We now give a further (empirical) condition under which Eqs. (8.29) and (8.21) are 
equivalent. 

LEhlSIA 8.18. If Eq. (8.28) holds, then we have Eq. (8.29) holds a Eq. (8.21) holds 
e Eq. (8.27) holds. 

Proof. From Lemma 8.14 we know that if Eq. (8.21) holds, then Eq. (8.27) holds, 
which immediately implies Eq. (8.29) holds. Conversely, one can show that if Eq. (8.29) 
holds, then Eq. (8.27) holds, which implies that Eq. (8.21) holds. 

Remark 8.14. Suppose MCISTG CS.3 were an FR MCISTG. Consider an investigator 
who held moderately strong n priori beliefs that Eqs. (8.24) and (8.25) held and who 
subsequently accepted Eq. (8.17) upon empirically confirming that Eqs. (8.27) and (8.28) 
held. Lemma 8.18 shows that this investigator’s inferences concerning Eq. (8.17) could 
not be changed by further a priori knowledge that MCISTG 8.3 was an FR MCISTG. 

Finally, we have the following. 

LE&~.LIA 8.19. If the “G”-null hypothesis holds for MPISTG 8.3 then Eq. (8.29) holds 
and Eq. (8.21) holds. Of course, in general, cigarette smoking will be a causal risk factor 
for death controlling for C8.3 and so 

S(t; 6iGf.3” = [“Gc8.3”, C,(t,)]; “G;.3” = [.bGcs.3”, Cz(ts)]) = 0 (8.33) 

will be false if MCISTG 8.3 is an FR MCISTG. 
Now, it is possible that one’s interest is not in testing whether there is any effect of 

exposure controlling only for cigarette smoking history, [i.e. lvhether Eq. (8.17) holds], 
but rather in whether there is an effect of exposure controlling for cigarette and employ- 
ment history, i.e. whether for MCISTG FS.3 

Ydr + Al I E(t), L(r), C(r), i) = yD(r i Art / L(r), C(r), i). (8.34) 

If so, in order to utilize Lemma 8.8, we need to describe conditions under which Eq. 
(8.34) implies Eq. (8.17). We have the following. 
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LEMMA 8.20. If Eq. (8.34) holds and either Eq. (8.25) holds or 

YD(~ f At 1 E(r), L(t), C(t), i) = YD(I + At ) E(r), C(t), i), (8.35) 

then Eq. (8.17) holds. 

Remark 8.15. Given that MCISTG C8.3 is an FR MCISTG, knowledge that Eqs. 
(8.34) and (8.25) hold or that (8.34) and (8.35) hold does not imply any empirical restric- 
tions. Knowledge that Eqs. (8.34), (8.35), (8.24), and (8.26) hold imply no empirical re- 
strictions beyond those implied by Eqs. (8.18) and (8.17) in Lemma 8.8. Finally, knowledge 
that Eqs. (8.34), (8.25), and (8.24) hold implies no empirical restrictions beyond those 
implied by Eqs. (8.24), (8.25), and (8.17) in Lemmas 8.13, 8.14, and 8.18. These last 
remarks are unchanged if it is known that MCISTG 8.3 is an FR MCISTG. 

We now summarize the conditions under which one may test for a causal effect of 
exposure controlling for employment and cigarette smoking history [i.e. Eq. (8.34)1 both 
in the presence and absence of data on cigarette smoking. First we consider the case in 
which only exposure is received at random (i.e. MCISTG C8.3 is our finest FR MCISTG). 
From Lemmas 8.8, 8.12, 8.13, 8.14, 8.20, and 8.6 it follows that 

LEMMA 8.21. If MCISTG C8.3 is an FR MCISTG, Eq. (8.24) holds, and either (a) 
Eqs. (8.26) and (8.35) hold, or (b) Eq. (8.25) holds, then Eq. (8.34) implies (1) the “G”- 
null hypothesis for MPISTG C8.3 holds, and, if Eq. (8.15) holds as well, the “G”-null 
hypothesis holds for MPISTG 3.4; and (2) if (b) holds, Eqs. (8.27) and (8.28) hold and, if 
Eq. (8.15) holds as well, exposure is not a predictor of future L-history and exposure is 
not a population risk factor for death controlling for L. 

Next we consider the case in which both exposure and cigarette smoking are given at 
random (i.e. MCISTG 8.3 is our finest FR MCISTG). Then, if either Eq. (8.25) or (8.35) 
holds, Eq. (8.34) implies Eq. (8.29). On the other hand, if data on C is unavailable, the 
additional knowledge that MCISTG 8.3 is an FR MCISTG does not appear to be useful. 

Next we consider the case in which E and L are given at random, i.e. CF8.3 is our 
finest FR MCISTG (see legend to Fig. 8.3). 

LEMMA 8.22. If Eqs. (8.24) and (8.34) hold then for all individuals i: 

S[r, GFF8.’ = (E,(t& L(ts)), GfF8.’ = (E&>, L(rd), i] = 0. (8.36) 

Proof. This is a special case of Theorem G5 with MCISTG F8.3 as (2, MCISTG CF8.3 
as A and for each L( rs), T CF8.3(L(rs)) is determined by the condition GyFS.’ E .rCF8.3(L(ts)) 
e GyF8.’ = [E,(rs), L(rs)] for some El(rs). 

Thus, if MCISTG CF8.3 is an FR MCISTG and we have data on C we only require 
the additional information that Eq. (8.24) holds in order to validly test Eq. (8.34). We now 
give further consideration to inference in the absence of data on cigarette smoking. 

If (as is natural) we assume that MCISTG 3.3 is a causal melded reduction of MCISTG 
CF8.3, we have 

Corollary 8.22. IfEqs. (8.24) and (8.34) hold, then Eq. (8.36) holds with CF8.3 replaced 
by 3.3 [equivalently, Eq. (8.16) holds]. In words, this corollary says that if exposure is 
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not a causal risk factor for C controlling for L, and if exposure is not a causal risk factor 
for death controlling for L and C, exposure is not a causal risk factor for death controlling 
only for L. 

Remark 8.16. Now from Lemma 8.7 and Remark 8.2 we know that ifEq. (8.16) holds, 
the G-null hypothesis will hold for MCISTG 3.4 if E is not a causal risk factor for L or 
if L is not a causal risk factor for death controlling for E. But, 

LEMMA 8.23. If Eqs. (8.24) and (8.25) hold, and MCISTG 3.4 is a causal melded 
reduction of MCISTG C8.3, then, in MCISTG 3.4, E is not a causal risk factor for L. 

Proof. Straightforward. 

LEMMA 8.24. If Eqs. (8.26) and (8.35) hold and MCISTG 3.3 is a causal melded 
reduction of MCISTG CF8.3, then L is not a causal risk factor for death controlling for 
E. 

Proof. Isomorphic to Corollary 8.22. Note that Eq. (8.26) implies L is not a causal 
risk factor for C controlling for E and Eq. (8.35) implies L is not a causal risk factor for 
death controlling for C and E. 

Note, the last two lemmas really just reprove part of Lemma 8.21. This follows by 
noting that if Eq. (8.15) holds, if MCISTG C8.3 is an FR MCISTG, and if MCISTG 3.4 
is the causal melded reduction of MCISTG C8.3, then MCISTG 3.4 is an FR MCISTG 
by Theorem F3. Now apply the empirical conclusions of Lemma 8.7 and Remark 8.2. 
The results beginning with Corollary 8.22 did not require that MCISTG CF8.3 was an FR 
MCISTG. When MCISTG CF8.3 is an FR MCISTG we have 

LEM,MA 8.25. If Eq. (8.24) holds, MCISTG CF8.3 is an FR MCISTG, Eq. (8.15) holds, 
MCISTG 3.3 is the causal melded reduction of FR MCISTG CF8.3 and 

p[L(t + At) 1 E(t), L(t), C(t + Af), D > r + At] 

= p[L(t + At) 1 E(r), L(r), D > t + At] (8.37) 

then Eq. (8.34) implies 

ydr + At 1 E(r), L(r)) = y&r + Ar 1 L(r)). (8.38) 

Proof. By Corollary 8.22, Eqs. (8.24) and (8.34) together imply Eq. (8.16) holds. Thus, 
Eq. (8.38) will follow if MCISTG 3.3 is an FR MCISTG. This in turn will follow from 
Theorem F3 if CF8.3 is an FR MCISTG, and Eqs. (8.15) and (8.37) hold. 

Remark 8.17. Since, in this subsection, we have, where possible, tried to clarify the 
basis of any empirical conditions in terms of the underlying individual causal effects, we 
now attempt to do so for Eq. (8.37). To do so, we first consider the conditions under 
which C is not an empirical predictor of future L-history controlling for E-history [i.e. 
the conditions under which Eq. (8.37) would hold when “modified” such that C(r + At) 
is replaced by C(r)]. If C were a causal risk factor for L-history controlling for E-history 
(as would be the case if cigarette smoking caused an (unrecorded) illness which, in turn, 
caused individuals to leave work), then the “modified” Eq. (8.37) would, in general, not 
hold. Similarly, if C and E were not received at random with respect to risk factors for 
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future L-history conditional on past E-, C-, and L-history, the “modified” Eq. (8.37) would 
in general be false. This would be the case if, for example, socially maladjusted individuals 
both tend to smoke at a greater rate than other individuals and to leave work early (because 
of inability to hold a stable job). Finally, even if C and E are received at random with 
respect to risk factors for future mortality and L-history, and C is not a causal risk factor 
for L controlling for E, nonetheless, if C is an independent causal risk factor for death, 
the “modified” Eq. (8.37) still may not hold (compare Lemmas 8.7 and 8.8). Rather, an 
additional condition sufficient for the “modified” Eq. (8.37) to hold, would be that deaths 
occur independently of future L-history, i.e. the second supposition of Theorem 8.2 would 
hold when C(r) is added to the conditioning event on each side of the equation. For Eq. 
(8.37) to hold given that the “modified” version of Eq. (8.37) holds, we would first require 
that, at tl , L and C were unassociated. This would be trivially true if tl is the date of hire 
since all individuals would be at work. Secondly, we would require that the time intervals 
At on our causal tree graph be very short in order to approximate the infinitesimal intervals 
needed to insure that a change in a cause is not followed by a change in its effect in the 
same interval. (If Ar were not short then, even if C did not predict future L, there could 
exist a cigarette smoking-employment status association in a given node if it was the case 
that L is an empirical predictor of future C-history when the data are recorded at intervals 
of At/2. If we take At sufficiently small, no individual’s L- and C-history would simul- 
taneously change in any interval At so that there would be no possibility of association 
with a given node after rl . A formal treatment would require the restatement of our problem 
in terms of multivariate counting processes in continuous time.) 

We must now determine whether our actual beliefs concerning our arsenic-exposed 
cohort are such that we are able to empirically test for an effect of exposure controlling 
for employment and cigarette smoking history. (We have no data on smoking history.) 
Presumably if disabled individuals tend to leave the workforce MCISTG CF8.3 will not 
be an FR NCISTG and Eq. (8.37) will be false (see above discussion). Therefore, any 
valid test of Eq. (8.34) must be based on the results of Lemma 8.21. We now examine 
the plausibiIity of the various suppositions of Lemma 8.21. 

To begin, it seems reasonable to assume that MCISTG C8.3 is an FR MCISTG provided 
we are not studying an industry in which job assignment is related to unmeasured health 
status (e.g. the mining industry). Furthermore, it seems reasonable to assume that Eq. 
(8.15) holds, i.e. job assignment conditional on past work and exposure history is unrelated 
to cigarette smoking history. [In the asbestos industry, Eq. (8.15) might not hold since 
smokers are now often preferentially transferred out of jobs with high exposure to 
asbestos.] 

We next consider the plausibility of Eq. (8.18) [i.e. by Lemma 8.12, the plausibility of 
Eq. (8.24) and either Eq. (8.25) or (8.26)]. If we accept that an individual is more likely 
to give up cigarette smoking when ill (e.g. when suffering from chronic heart or lung 
disease) than when healthy, Eq. (8.18) can, in general, hold only when Eq. (8.17) is true. 
This follows because if Eq. (8.17) were false and the deaths caused by exposure (i.e. 
Gc8.3) are preceded by a period of illness, then the treatments Gc8.3 would influence 
cigarette smoking history through the intermediate variable of ill health. Fortunately, for 
testing a null hypothesis that implies Eq. (8.17), it is immaterial that Eq. (8.18) would be 
false under the alternative. 

But, as argued above, we require not only that Eq. (8.18) be plausible, but that we 
have moderately strong beliefs that it be true [either as a consequence of our beliefs in 
Eqs. (8.24) and (8.26), or in Eqs. (8.24) and (8.291. It seems reasonable that Eq. (8.24) 
will hold under the null hypothesis Eq. (8.34) since, if exposure does not cause a disabling 
illness leading to death, exposure may well not affect cigarette smoking history. An ex- 
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ception would be when the exposure was a respiratory irritant (for example, an asth- 
magen). Exposure would then influence an individual’s cigarette smoking behavior 
through the intermediate variable, asthma (even though it did not influence mortality.) 
Fortunately, arsenic is not a known respiratory irritant. 

In contrast, there is a good chance that, even under the null hypothesis, Eq. (8.25) 
would be false. For example, high exposure jobs may pay more than low exposure jobs. 
Therefore, individuals may tend to remain employed longer in high exposure jobs for 
purely economic reasons. Thus, it would not seem warranted to put much faith in Eq. 
(8.25). [By Lemmas 8.14 and 8.20 it follows that, given we have accepted Eq. (8.15) and 
(8.24) as true, Eq. (8.34) and (8.25) together imply E is not a predictor of future L-history. 
But in Table 5 of Appendix D, we observe that E is a predictor of future L-history. Thus, 
if our prior beliefs in Eq. (8.18) were based on beliefs concerning Eq. (8.25) then, even 
if the “G”-null test for MPISTG 3.4 accepted, we would not accept the null hypothesis 
Eq. (8.34). See the discussion following Lemma 8.14.1 

From the above discussion it follows that we would consider the “G’‘-null test for 
MPISTG 3.4 to be a valid test of Eq. (8.34) only if we had moderately strong prior beliefs 
that Eq. (8.26) and (8.35) held. (See Lemma 8.21) Now Eq. (8.35) will be false, under the 
null hypothesis, when L-history is a causal risk factor controlling for C-history (mediated. 
e.g. through the adverse effects of the loss of health insurance and the increased stress 
associated with unemployment). We believe that various investigators would hold quite 
different degrees of belief as to whether Eq. (8.35) was false to a biologically significant 
degree. For the time being, we proceed as if we were willing to give high credibility to 
Eq. (8.35). 

Equation (8.26) would be false (i.e. L would be an independent causal risk factor for 
C-history) if individuals respond to the increased stress of unemployment by increasing 
their cigarette consumption. Again, we believe investigators would disagree as to the 
likelihood that Eq. (8.26) would be false to a biologically significant degree. Note also 
that if individuals, when ill, tend to give up smoking, Eq. (8.24) would be false if L were 
a causal risk factor for death controlling for C-history [i.e. if Eq. (8.35) were false]. 

One might hope that if data on cigarette smoking were available, one could test Eq. 
(8.26) directly by testing, for example, whether L-history was an independent population 
predictor of future C-history. But, this would not be a valid test even under the null since. 
when the healthy worker survivor effect is operating, even were Eq. (8.26) true, L-history 
may be a population predictor of future C-history (because, for example, illness status 
predicts future cigarette smoking history controlling for past cigarette smoking history, 
and L-history is correlated with illness status because sick individuals leave work). 

9. CAUSAL INFERENCE FROM CASE-CONTROL DATA 

In cohort mortality studies, nested case-control sampling designs are often used to save 
computing and/or data acquisition costs. In the usual case-control design[ 11, 121 one sam- 
ples controls from individuals at risk at the death age of the case (possibly matched to 
the cases on levels of various covariates). As we did in Sec. 5, one can allow other types 
of failure to also represent cases (e.g. “leaving work” and “returning to work”) and 
sample controls from individuals at risk for these failures as well. As such, one may 
simultaneously have data from nested case-control studies of different failure types. In 
this section, we consider the estimation of and tests for the G-causal parameters of an 
R MCISTG using case-control data. For the present, we define an analysis in which 
information on the control sampling fractions is either unknown or not used to be a case- 
control analysis. We define a cohort analysis of case-control data to be one in which 
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information on the control sampling fraction is used to estimate absolute hazards as well. 
We choose to slightly modify these definitions later. 

A. The null hypothesis of no exposure effect controlling for cigarette smoking may be 
untestable from case-control data when the healthy worker selection effect is operative 

In the following example, we show that even when Fig. 8.3 is an FR MCISTG, we 
cannot test the null hypothesis that exposure has no effect on mortality controlling for 
smoking history on the basis of a case-control analysis. 

Example 1. We suppose that (1) the observed data are at their expected values (i.e. 
we can ignore sampling variability and the associated problems of small sample size); (2) 
data from a single case-control study (in which deaths constitute the cases) has been 
obtained; and (3) no data is available concerning the sampling fraction. 

The STG in Fig. 9.1 b represents data from a case-control study in which all deaths and 
a random sample of noncases were sampled. Individuals who are small c (T) are (not) 
current smokers at tz. Subjects who are j(l) are (not) at work at tz. All deaths occurred 
at t3. If the control sampling fraction were . 1, Fig. 9. la would represent the full cohort 
data. If the sampling fraction were 1, Fig. 9. lb would represent the full cohort (both 9.1 A 
and 9.lB can be viewed as special cases of Fig. 8.3). Obviously, without knowledge of 
the sampling fraction, we cannot empirically determine which graph represents the full 
cohort data. Whichever it is, we will assume that it is an FR MCISTG. If Fig. 9.la were 
the FR MCISTG of the cohort, then exposure has no effect on controlling for smoking 
history [i.e. using the G-computation algorithm, p(D > f3 1 G%j:)= %% &%% i $%$$ %%r 
= w and p(D > t3 1 Gg::“) = $$l$$. G H,c’ is the hypothetical study in which all indi- 
viduals received high exposure at t, and do not smoke at tz. Go.i: is similar, except all 
individuals received zero exposure at t,]. If Figure 9.Ib is the FR MCISTG, then exposure 
has an adverse effect on mortality, controlling for smoking history, since p(D > 
t3 ) G%!,b) = &% #$ + $&j ## = .08 and p(D > t3 1 Gz:ib) = #$ = 0.14. 

Allowing for sampling variability, we conclude that for FR MCISTG 8.3 there can be 
no consistent test of the null hypothesis of no effect of exposure controlling for smoking 
based on our case-control data even under large sample limiting model 1. That is, there 
is no test which can, even asymptotically, distinguish between the null hypothesis and 
all possible alternatives. On the other hand, a consistent test can be constructed from full 
cohort data. Simply compute the NPMLE of s(t, GH.C, Go.r), which under limiting model 
1 is asymptotically unbiased. As an obvious corollary, we cannot estimate the G-causal 
parameters of FR MCISTG 9.la or 9.lb from our case-control data (not even the ratio 
of the odds of disease when treated with GH,? to the odds of disease when treated with 
Go.c is estimable). In a standard point exposure study in which exposure and smoking 
data are measured only at start of follow-up, we can test the null hypothesis of no exposure 
effect controlling for smoking from case-control data. We can also estimate the prospective 
odds ratio of death (or survival) controlling for smoking behavior. 

Example 2. Example 2 is the same as Example 1, except we now add to our previous 
data, data from a case-control study of “leaving work” in which at tz all individuals who 
left work and a random sample of controls remaining at work at that time are selected. 
Data on exposure status at t, and on cigaarette smoking behavior at tl are obtained for 
each of the cases and controls. The control sampling fraction is unknown. The somewhat 
surprising result is that although in neither case-control study is the control sampling 
fraction known, we can use the data from the two studies together to calculate both control 
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sampling fractions. This result can be seen as a special case of more general results found 
in Hsieh et a1.[70]. We leave it to the reader to demonstrate this result for our special 
case. But if we know the control sampling fractions, we know the population proportions 
in the FR MCISTG representing the full cohort data. Therefore, we can compute the same 
population parameters from the combined data in our two case-control studies as we can 
from the full cohort data. 

The conclusion is that, now allowing for sampling variability, we can obtain from our 
combined case-control data an asymptotically normal and unbiased estimator of the G- 
causal parameter representing the effect of exposure controlling for smoking history (under 
large sample limiting model 1). We do not examine the efficiency of this estimator here. 

The estimation of the G-causal parameter representing the effect of exposure controlling 
for smoking on the basis of our combined case-control data we would prefer to call a 
cohort analysis (rather than a case-control analysis) of case-control data, since the analysis 
inherently (even if indirectly) relied on the fact that the control sampling fractions were 
estimable. The following definition provides what we shall treat as the fundamental deli- 
nition of a case-control analysis. 

c ~O,CCO~6,CGOl 

Fig. 9. la. Population from which the data in Fig. 9.1 b was sampled if control sampling fraction = .l. Numbers 
in parentheses at 13 = deaths at rj, numbers not in parentheses at f, = survivors at t,. b. Data from a case- 

control study of deaths. Numbers in parentheses at t, = deaths at r,, numbers not in parentheses at I, = survivors 
at t,. 
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Definition. Case-control analysis. When the goal of an analysis is the estimation of 
a population parameter, we will say that the parameter is identifiable from a case-control 
analysis if and only if it can be expressed as an odds ratio function of the (joint distribution 
of the) observed data. Tests of the null hypothesis can be incorporated into this framework 
by regarding such tests as attempts to estimate the null parameter. 

Example 3. All corresponding odds ratios in Figs. 9.la and 9.lb are identical. The 
reader may check this for himself. Thus, the G-causal parameters of FR MCISTG 8.3 
representing the effect of exposure controlling for smoking (even when all are identically 
zero) may not be identifiable from a case-control analysis. This is true regardless of the 
number of case-control studies whose data are combined. 

Note, for any FR MCISTG, a consistent test of the G-null hypothesis under large sample 
limiting model 1 can be obtained from a case-control study in which the deaths are the 
cases and the sampling fraction is unknown. [Simply compute the standard omnibus chi- 
squared test statistic for independence separately for each table contributing to the G- 
null test algorithm. Add the test statistics from each table and compare the value to that 
expected under the null. Since under limiting model 1 the number of observations per 
cell increases without bound, this test will be consistent. The G-causal parameters of any 
FR MCISTG are therefore identifiable from a case-control analysis when they are all 
identically zero (as would be the case for FR MCISTG 8.3, if there was no effect of 
cigarette smoking controlling for exposure as well as no effect of exposure controlling for 
cigarette smoking).] 

The above results concerning FR MCISTG 8.3 become quite disturbing when we rec- 
ognize that often our interest will be in detecting whether or not there exists a small 
exposure effect controlling for smoking, and the data will be sparse-disturbing, because, 
in general, the only potentially valid tests of the null hypothesis, Eq. (8.29), require that 
we first estimate the conditional probabilities of MPISTG 8.3 and then apply the G-com- 
putation algorithm. In sparse data, the validity of these tests will be compromised by 
unavoidable model misspecification. 

One potential way out is to recognize that the null hypothesis of no effect of exposure 
controlling for cigarette smoking for FR MCISTG 8.3, although not testable from a case- 
control analysis for the state of nature (parameter values) represented in the above ex- 
ample, is testable based on a case-control analysis for certain other states of natute. For 
example, if (1) L is not a predictor of the joint distribution of exposure and cigarette 
smoking history or (2) L is a population nonrisk factor controlling for exposure and cig- 
arette history, then, by Lemma 8.4, Eq. (8.9) is the basis of a valid test of Eq. (8.29). The 
hypothesis that Eq. (8.9) is always unity can be tested using a case control analysis. Of 
course, in sparse data, if few individuals have the same smoking history, even in testing 
Eq. (8.9), one must resort to modelling assumptions and sacrifice the nonparametric nature 
of the test. Since individuals start smoking at similar ages and since giving up smoking 
is a relatively infrequent event, matching rather precisely on cigarette smoking history in 
large occupational cohorts may be feasible. (1) and (2) above can themselves, in principle, 
be tested by case-control analysis. Of course, in occupational mortality studies (1) is 
obviously false and (2) is false when the healthy worker survivor effect is operative. (If 
we were interested in the effect of exposure controlling for employment and cigarette 
smoking history, and if MCISTG F8.3 were an FR MCISTG, we could test the null hy- 
pothesis using a case-control analysis by an empirical test of whether exposure was a 
population risk factor for death controlling for L- and C-history. But, of course, if the 
healthy worker survivor effect is operative, F8.3 will not be an FR MCISTG.) 
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B. An algorithm for testing for an effect of exposure controlling for cigarette smoking 

A potentially more fruitful approach to testing whether the null hypothesis of Eq. (8.17) 
holds for FR MCISTG 8.3 is to use the results of Lemmas 8.15 and 8.16 and 8.18. For 
example, from Lemma 8.16, it follows that if Eq. (8.31) holds, the “G-null test” for 
MPISTG C8.3 provides a valid nonparametric test of the “null hypothesis of no exposure 
effect controlling for cigarette smoking history”. 

Further a nonparametric test of Eq. (8.31), itself, can be constructed from case control 
data on the “outcome” C(t,j. One possible test, among many, is as follows. First, we 
ample “cases” and controls. Since “change in smoking behavior” between I, and t, + 
At is, in most cohorts, a low probability event, we define any change in cigarette smoking 
behavior to be a “case”. Each case is identified by (1) the time at which the change in 
smoking rate occurred (the “failure” time), (2) the case’s past smoking history, and (3) 
whether the change in smoking rate was an increase or decrease. (We could choose to 
assign a score for the magnitude of the change but we do not consider that possibility 
here.) A given individual may be a case many times. In the first pass through the data 
set, we determine all cases and keep a record of their smoking histories. In a second pass, 
we select “controls” for a case whose change occurred at t, i At from among individuals, 
alive at t, + At, with smoking histories identical to that of the case through ?,, but who 
did not change smoking behavior at t, + At. For simplicity of exposition we are assuming 
there is only one case failing at a particular time with a given cigarette smoking history. 

Next, in order to have power against the alternatives to Eq. (8.31) such as “leaving 
work is associated with a decrease in smoking rate”, we relabel as controls, cases whose 
“change in their cigarette smoking rate” was a decrease; and we relabel their matched 
controls as cases. Our data now appears as a standard matched case-control study with 
a mixture of I-M and M-l matching. We now fit, by conditional logistic regression, a 
model such as ln[p[case(t,) 1 E(t,_l), L(t,), k]l(l - p[case(t,) 1 E(t,_,), L(t,), k])] = l30.k 
+ B, ce(t,_l) + B2cl(fs), whereB O.k are nuisance parameters for the matched sets indexed 
by k; t, describes the “failure time of the matched set” and cc(t) and cl(r) are cumulative 
exposure and cumulative years off work, respectively. A two-degree-of-freedom score 
test of Bi = 0 and Bz = 0 is a (nonparametric) test of Eq. (8.31). (It can be shown that 
the contribution to the “likelihood score” are uncorrelated. Therefore standard errors 
based on the information matrix are valid.) Terms such as an interaction between pack 
years of cigarettes through t,_ , and cumulative exposure through rs_ 1 could be added to 
the right side of the equation. We would then have a three-degree-of-freedom test of Eq. 
(8.31) that would have greater power against certain alternatives. 

Now, if our test of Eq. (8.31) fails to reject, and our “G”-null test for MPISTG C8.3 
rejects, we “reject” the null hypothesis, Eq. (8.29). If both tests fail to reject we “accept” 
the null hypothesis. [Even if Eqs. (8.15) and (8.31) both hold, the power of the G-null test 
for C8.3 should be greater than the power of the (now valid) G-null test of MPISTG 3.4. 
This reflects the fact that MPISTG 3.4, even when Eq. (8.15) holds, is not the Stage 0 
PL-sufficient reduction of C8.3. In fact, if Eq. (8.15) were known to hold in the population, 
but, due to sampling variability, it was not empirically true in the data, the G-null test 
based on MPISTG 3.4 would be an invalid test of the “G’‘-null hypothesis for C8.3, 
conditional upon approximate ancillary statistics that measure the degree to which the 
empirical version of Eq. (8.15) was false in the data.] 

If our test of Eq. (8.31) rejects, we could attempt to take advantage of the observation 
that, by Lemma 8.15, even if Eq. (8.31) is false, if Eq. (8.30) holds, then Eq. (8.29) implies 
Eq. (8.23). We can construct a test of Eq. (8.30) using the mixture of l-Mand M-l matched 
sets of cases and controls selected to test Eq. (8.31). 

Given a single case (single control) and its M-matched controls (cases) with the failure 
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time at t,_ i , we construct at each tk, tk 5 t, i 1 a 2 x 2 table comparing the employment 
status of the case (control) at tk to that of the subset of his matched controls (cases) whose 
exposure and employment history agree with that of the case (control) through fk- , . We 
combine the information over tables and matched sets by performing a standard Mantel- 
Haenszel summary test of the null hypothesis of no effect of “employment status” on 
case-control status. 

We can proceed to construct a test of Eq. (8.23) as follows. One matches cases dying 
at t, + At to controls alive at that time with cigarette smoking histories through rz identical 
to that of the case. To the set of matched sets, one applies the G-null test algorithm for 
MPISTG C8.3. Unfortunately, even when both Eqs. (8.30) and (8.23) hold, the table- 
specific contributions to the numerator of the above test of Eq. (8.23) will usually be 
correlated. Similarly for the test of Eq. (8.30). Therefore neither test statistic may have 
a standard normal distribution, and thus the two statistics cannot be recommended for 
use together as a test of Eq. (8.29) without further modifications which are yet to be 
developed. 

We therefore proceed to test whether Eq. (8.28) holds using a case-control analysis 
with the joint outcomes C- and L-history. We omit the details. If our test of Eq. (8.28) 
accepts, then by Lemma 8.18, the G-null test for MPISTG C8.3 and a test of Eq. (8.27) 
would both be valid tests of Eq. (8.29). For example, if the “G”-null test for MPISTG 
C8.3 accepted (rejected) we would accept (reject) the null hypothesis Eq. (8.29). If our 
test of Eq. (8.28) rejects, we have no recourse but to test Eq. (8.29), in a cohort analysis, 
by modelling the probabilities in MPISTG 8.3 and then applying the G-computation al- 
gorithm. Here we are assuming a priori that C is a causal risk factor for death controlling 
for exposure history. If not, then a “G’‘-null test for MPISTG 8.3 would be a valid test 
of Eq. (8.29). 

If we believe that MCISTG C8.3 (rather than MCISTG 8.3) were our finest FR 
MCISTG, we might accept the null hypothesis, Eq. (8.17), if both Eq. (8.22) and (8.23) 
hold (see the discussion following Lemmas 8.11 and 8.14). We have previously described 
a test of Eq. (8.23). A test of Eq. (8.22), similar to the test of Eq. (8.30), can be based 
on the mixture of 1-M and M-l matched sets of cases and controls previously selected to 
test Eq. (8.31). In particular, given a single case (single control) and its M matched controls 
(cases) with the failure time at t,, i, we construct at each tk, tk 5 t,, a 2 X 2 table comparing 
the exposure status of the case (control) at tk to that of the subset of its matched controls 
(cases) whose exposure status through tk- I and employment status through tk agree with 
that of the case (control). Corollary El can be generalized to show that when both Eqs. 
(8.22) and (8.23) hold, the table-specific contributions to the numerators of each test are 
uncorrelated. It follows that both test statistics will have an (asymptotic) standard normal 
distribution. The test statistics for the tests of Eq. (8.22) and Eq. (8.23) can be shown to 
be uncorrelated with one another, as well. If either or both the tests of Eqs. (8.22) and 
(8.23) reject, we know only that Eq. (8.19) or (8.20) or both are false (ignoring sampling 
error). 

In the next sub-section we return to the simpler setting of an occupational mortality 
study in which only data on exposure and employment history are available. We discuss 
whether previously proposed designs for nested case-control studies are valid when the 
healthy worker survivor effect is operating. 

C. The bias of previously suggested design and analysis strategies for nested case- 
control studies 

We have seen that when MCISTG 3.4 is our finest FR MCISTG, the G-null test al- 
gorithm provides a valid test of the null hypothesis of no exposure effect on any person’s 
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mortality when controlling for employment history (provided employment history is not 
an independent causal risk factor) from case-control data. We now discuss case-control 
design and analysis strategies commonly used in occupational epidemiology and show 
that all are potentially biased for testing the G-null hypothesis of FR MCISTG 3.4. 

In occupational eidemiology, three commonly suggested case-control designs and an- 
alysis strategies (hereafter DA strategies) are to randomly sample controls from those 
individuals at risk at the failure age of the case (preferably, matched to the case on date 
of birth and age at hire) who: (DAl) were sampled without regard to time of termination 
of employment; or (DA2) terminated employment at the same time as the case; or (DA3) 
were employed at least as long as the case. In a matched analysis, a summary measure 
of each case’s lifetime exposure history (e.g. lifetime cumulative exposure or lifetime 
cumulative exposure lagged some number of years) is compared to that of his matched 
controls. Under DA 1 and 2 the control’s exposure history up to the death age of the case 
is summarized, while under DA 3 the control’s exposure history subsequent to the ter- 
mination age of the case is ignored. DA 2 and 3, by comparing the exposure history of a 
case and its matched controls only while both are at work, insure, albeit by different 
strategies, that the case and their controls have an “equal opportunity for exposure”[21]. 

We also consider a design and analysis strategy, DA 4, in which controls are sampled 
at random as in DA 1, and, then, at each time t at which the case is at work (i.e. has an 
opportunity for exposure), the exposure concentration of the case at that time is compared 
with that of the subset of his matched controls who are also at work at t. This design and 
analysis strategy has been proposed independently by the author and by Allan Smith. 

Lemmas 8.1 and 8.2 indicate that DA 1 will in general be biased under the G-null 
hypothesis of FR MCISTG 3.4 unless L is not an independent risk factor for death or L 
is not a predictor of exposure. Thus, DA 1 will be biased when the healthy worker survivor 
effect is operative. From Lemma 8.3, we see that DA 2 will be biased unless L is not an 
independent risk factor for death or exposure is not a predictor of future L-history. Thus, 
if the healthy worker survivor effect is operative and exposure is, for example, an irritant 
that increases the termination rate in the exposed (or if high exposure jobs are more or 
less socioeconomically desirable than low exposure jobs; or if high exposure and low 
exposure jobs have different layoff rates), DA 2 will be biased. 

DA 3 can be biased even when L is not an independent risk factor for death (i.e. even 
when there is no healthy worker survivor effect) if exposure is a predictor of future L- 
history. To see this, consider a “point-exposure” occupational study in which workers 
are randomly assigned to receive high or zero exposure at start of follow-up and are never 
exposed thereafter. Suppose a random sample of 50% of the highly exposed workers leave 
work early due to irritation effects or for socioeconomic reasons. Suppose no unexposed 
workers leave work. Then, under the null, employment history will not be a risk factor. 
Any individual who dies while off work must have been highly exposed. Yet his controls 
under DA 3 consist of a random sample of highly exposed and unexposed individuals who 
survived at work at least as long as he did. Thus, under the null, there will be an apparent 
excess of exposure among the cases dying while off work. For individuals dying at work, 
there will be no bias. Thus, a summary Mantel-Haenszel test will falsely reject the null. 

Finally, from its definition, DA 4 will be valid only if, among individuals at work at 
time 2, exposure is received at random irrespective of past exposure history (since past 
exposure history is not matched on in DA 4). But FR MCISTG 3.4 only assumes that 
exposure is received at random among individuals at work at time r with identical past 
exposure and work histories. Now suppose exposure was an upper airway irritant that 
produced cough (but had no effect on mortality). Then workers with chronic lung disease 
might be less likely than healthy workers to be able to tolerate the irritating effects of 
exposure, and thus would preferentially terminate employment. If so, individuals with 



high exposure at work at time r would be healthier than those with lower exposure and 
thus less likely to be cases at t f At. Thus, DA 4 will be biased. 

10. ARTIFACTUAL “EMPIRICAL HEALTHY WORKER SURVIVOR EFFECTS” 

A. An artifactual “empirical healthy worker survivor effect” due to model 
misspecification 

An investigator may base his causal inferences on FR MCISTG 3.4 if L is an inde- 
pendent population risk factor and on FR MCISTG 3.5 ifit is not (see Sec. 8A.3). As such, 
an investigator’s first task is to empirically test whether L is a population risk factor. Due 
to limitations of sample size, this can involve modelling yD[t + At 1 E(t), L(t)]. Model 
misspecification can lead one to conclude that L is a strong population risk factor when, 
in fact, it is not. For example, consider the model of Eq. (5.1) with BD.XD as defined in 
Appendix D. Suppose, in reality, that Eq. (5.1) is correctly specified when, in ~D*XD, 
cumulative exposure cc(t) is replaced by cumulative exposure up to 9 years previously, 
i.e. ce(t - 9) (due, for example, to a biological latent period). Suppose, in reality, L is 
a popuiation nonrisk factor, i.e. BZ.o and Bj,o are 0 and pl,o = BJ,o in the correctly 
specified model. If such is the case, inference based on the misspecified BD*XD of Ap- 
pendix D will suggest L is a population risk factor. To see this, consider two groups of 
workers at risk at age t with identical cumulative exposures up to t. Suppose all members 
of one group left work many years ago. The members of the other left work only one 
year previously. On average, individuals who has been out of work for many years will 
have attained a higher level of cumulative exposure at t - 9 years. Thus, the group which 
terminated employment many years previously will be at greater risk for death at t. It 
follows that the misspecified model will incorrectly estimate p3.D to be positive in order 
to account for the increasing risk with years off work when controlling for cumulative 
exposure. One might then discover an artifactual empirical healthy worker survivor effect 
upon performing the computations outlined in Appendix D using the misspecified model. 
In our arsenic data set, the estimates of l.3 2,0 and B3,D were little effected by using cu- 
mulative exposure lagged 5, 15, or even 20 years. 

B. An artifactual healthy worker survivor effect due to “Lay-Off’ 

Investigators who have attempted to demonstrate the existence of an empirical healthy 
worker survivor effect have often (1) defined date of termination as date of last employ- 
ment and (2) ignored all other information on employment history. In studies of an industry 
in which workers frequently leave and then return to work (for example, due to economic 
layoff), such a practice will artifactually create the appearance that the healthy worker 
survivor effect is operating even when it is not. Furthermore, incorrect causal inferences 

400 H 400 75 (i ,o) 

150 (i .o) 

Fig. 10.1. An FR MCISTG in which all surviving laid off workers return at t3. 
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Fig. 10.2. An MPISTG derived from FR MCISTG 10.1 where an individual is le after leaving work for the last 
time. 

will be made if one identifies such an occupational mortality study with a randomized 
trial in which ‘date of last employment’ is ‘date of termination of protocol’. 

Example. Figure 10.1 is an FR MCISTG representing the results of an occupational 
mortality study. Since we have supposed that the true state of nature is that Fig. 10.1 is 
an FR MCISTG, there is no actual healthy worker survivor effect operative. Also note 
employment history is not a cause of death on controlling for exposure history. Likewise, 
exposure has no effect on mortality either overall or when controlling for employment 
history. Of the 200 individuals who left work at t2, all 150 surviving at t3 return to work. 

An investigator who defined date of termination as date of last employment would 
create the MPISTG shown in Fig. 10.2 where an individual at t is le if he has terminated 
employment at a time less than or equal to t and is z otherwise. le status is an enormously 
strong population risk factor for death on controlling for exposure history. Many inves- 
tigators have incorrectly interpreted this observation as evidence that “unhealthy indi- 
viduals tend to leave work”. Of course, in our example le status is a population risk factor 
only because, when we define date of termination as date of last employment, the future 
event, death, determines the previous event “date of termination”. If an investigator 
assumed that MPISTG 10.2 was an FR MCISTG, he would falsely discover an adverse 
effect of high exposure. The problem, of course, is that MPISTG 10.2 is not an 
FR MCISTG. The 100 individuals with covariates (le, N) measured at tZ are not random- 
ized with respect to the 250 (6, 0) individuals, since the 150 (E, 0) individuals who had 
been off work at tz are guaranteed to survive to t3 by the very fact that they are E rather 
than le. 

11. GILBERT’S PROPOSED METHOD FOR CONTROLLING FOR THE 
HEALTHY WORKER SURVIVOR EFFECT AND THE CONCEPT OF MINIMUM 

LATENT PERIOD 

As mentioned in the introduction, Gilbert[l] noted that when the healthy worker sur- 
vivor effect is operative, the mortality-cumulative exposure association would be biased, 
whether or not one adjusted for employment history. Gilbert assumed for most cancers 
that (93.1) the minimum latent period exceeds 10 years and that (93.2) the healthy worker 
survivor effect is operative for less than 10 years after leaving work. (She assumed that 
%.2 followed from the empirical observation that most cancers will cause death within 10 
years of the onset of clinical disease if they are to cause death at all. We will show in 
Sets. 1 lC-11E that this empirical observation is necessary but not sufficient for %.2 to 
hold.) She suggested that if these assumptions held, the association of mortality with 
observed exposure history lagged ten years would be causal. She therefore proposed that 
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the investigator compute the ratio 
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yo,(t + At 1 E(t - 10)) 

yo1(t + At 1 E(t - 10) = 0) 

where Di is death from the cancer of interest and E(t - 10) is observed exposure history 
up until 10 years prior to t. 

In this section we provide formal definitions of Assumptions (9.1 and %.2 above. We 
then demonstrate that for death from all causes Gilbert’s proposed parameter, modified 
to s(t + At ( E(t - x)) - S(t + At 1 E(r - x) = 0) [as defined in Eq. (11.3c)], is indeed 
causal under Assumptions 94.1 and (4.2, provided employment history has no causal effect 
on mortality controlling for exposure history, which we shall call Assumption 9I.3. This 
latter assumption was implicit in Gilbert[l]. In Sec. 12, we consider the conditions nec- 
essary for our results to extend to the competing risk case. Many recent analyses of 
occupational lung cancer mortality have been based on Gilbert’s proposed parameter (e.g. 
Refs. [22, 23]), and therefore have implicitly assumed that Assumptions 59.1, g.2, and $4.3 
held for lung cancer. We show in Sec. 11E that, in our arsenic data set, Assumption 94.2 
apparently fails to hold for lung cancer. 

A. Formal definition of Assumption 93.2 

Since we have considered outcomes to be deterministic, at each time t, there must 
exist a well-defined set of “x-doomed” individuals who will be dead within x years from 
t, regardless of their future exposure or work history. We say that the healthy worker 
survivor effect is operative for less than x years, if and only if, at each time t, employment 
and exposure status are received by the subset of individuals who are not x-doomed at 
random conditional on past employment and exposure history. Let 1s be a time-dependent 
covariate such that is(t) = 1 if an individual is doomed to die before t + x and Is(t) = 
0 (also written 1s) otherwise. Then, the healthy worker effect is operative for less than x 
years if Fig. 11.1 is an FR OCISTG. In Fig. 11.1 we have assumed x = 2A t. This is 
shown by vertical bars that block internodal lines. Such bars serve to indicate that no 
individual in the subset represented by a particular internodal line survives past the time 
at which the bar is blocking the line. Since data on 1s status is not available, we cannot 
estimate the G-causal parameters of FR OCISTG 11.1 without further assumptions. (Fig- 
ure 11 .l is the appropriate graph when x/At = 2. The situation of interest considered by 
Gilbert has At + 0, x = 10 years. The corresponding graph will be exactly like Fig. 11.1 
except with vertical bars drawn lo/At generations after a subgroup first becomes 1s. Due 
to lack of space we obviously cannot draw this graph.) 

Throughout the remainder of this paper, we shall assume that At = 1 year and that x 
is measured in years. 

Remark. If we assume, for convenience, that MPISTG 3.3 is an MCISTG and that 
the death time for any individual who is x-doomed at t, is uninfluenced by exposure or 
employment status experienced at later times, then s(t ( G:.3, i) = S(t 1 Gil.‘, i) when- 
ever G:.3 and Gil.’ are characterized by the same E,(ts), Ll(ts). 

B. Definition of the minimum latent period 

At an individual level, one might wish to express the statement that x is less than the 
minimal biologic latent period (Assumption 5% 1) by the nonidentifiable relationship 

YD(~ + At 1 E(t), i) = ydt + At 1 E(t - x), i) (11.1) 
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for each individual i. One might expect that if an increment of exposure given at t could 
have no direct biological effect on (recorded) mortality for at least x + 4t years, Eq. 
(11.1) would hold. This is not the case because it is possible for exposure to have no 
biological effect on outcome whatsoever, but Eq. (11.1) to be false, if, for example, high 
exposure were an irritant that causes people to terminate employment and then the effects 
of termination per se (i.e. loss of health insurance, poverty, etc.) cause death within .K 
years. Thus a better definition of “x is less than the ‘biologic minimum latent period’ ” 
is that 

yo(t f hr 1 E(t), L(r), i) = yo(t + ht 1 E(t - .r), L(t), i) (11.2) 

(i.e. that exposure has no effect on any individual’s mortality for x + 4r years when 
controlling for employment history). Gilbert did not consider the distinction between Eqs. 
(11.1) and (11.2) because she implicitly assumed that L(r) was not an independent causal 
risk factor controlling for exposure. At the moment we will not completely exclude the 
possibility that L is an independent causal risk factor, although we will suppose, following 
Gilbert, that it too has a minimum latent period of at least .Y years. That is, we will express 
Assumption 9% 1 as 

Assumption 9% 1. 

ydr + rlr 1 E(r), L(r), i) = y&r f 4r 1 E(r - x), L(r - x), i). (11.3) 

We now generalize 
CISTG. 

De$nirion. For a 
,,G?” from rl to r,. 

Definition. Given 

the concept of the minimum latent period so that it applies to any 

given r,, “G?(r,)” is the portion of the highlighted subgraph of 

a CISTG A, we say that x is less than the generalized minimum 
latent period if and only if for all r and all individuals i, yo(r + hr 1 i, G$) = y&r i 
4r 1 i, G$) if“G?(r - x)” = “G$(r - x)” (that is, the highlighted subgraphs up to r - 
x are the same). 

LEMMA 11.1. If Eq. (11.3) holds, then x is less than the generalized minimum latent 
period of OCISTG 11.1 (and MCISTG 3.4). (Note that Fig. 11.1 is not required to be an 
FR CISTG for the lemma to hold.) 

Proof. Obvious. 

LEMMA 11.2. If-r is less than the generalized minimum latent period of an R CISTG 
A, then 

yo(r + hr 1 “G?“) = yo(r + 4.t 1 “G?“) 

when “Gf(r - x)” = “G$(r - x)“. (11.3a) 

Proof. See Ref. [7]. 

Dejkirion. When Eq. (11.3a) holds for a PISTG A, we say that x is less than the 
identifiable generalized minimum latent period. 

Given a PISTG A we construct a Stage 0 reduction PISTG, A(x), for each positive 
integer x as follows. (Figures 11.1 and 11.2 are examples of A and A(x) for x = 2.) 



'1 ‘2 ‘3 ‘4 

Fig. 11.1. An FR OCISTG. H = high exepsure concentration, 0 = unexposed, i = at work, 1 = off work, Is 
= doomed to die within x = Z1.t years, is = not doomed to die within x = Zlt years. 

Srep I. STG A(x) is STG A with .\: single nodes (each with a single inter- and intranodal 
line) added onto the left of the graph. The generations of A(x) are labelled beginning with 
t, . There is a one-to-one correspondence between A(x) at s, for s 2 x -t 1, and A at r,_,. 
The corresponding intra- and internodal lines in A(x), s 2 x -t 1, and A are said to be 
images of one another. 

Step 2. Ifs I ,x, [.i;‘(“‘] [in the standard labelling of A(x)] is the subset of individuals 
in the entire study population who survived to t,. Ifs > x, [+i:““‘] and [~ij$? are those 
individuals in the image sets [.i:‘-,] and [*i,_j$_,] who survived to rs. 

There is a natural many-to-one map from the set of “generalized treatments” of PISTG 



‘1 ‘2 ‘3 ‘4 ‘5 

Fig. 11.2. An MPISTG. 

A onto those of A(x). For any “G”“, consider the highlighted subgraph “GA*‘. On A(x), 
highlight the subgraph representing the images of “GA(rS - x)” plus the single intranodal 
and intemodal lines from l1 to r,. The result will be a unique generalized treatment of 
A(x), the Stage 0 counterpart of “GA”. Thus, A(x) is a AB-complete Stage 0 reduction 
of A, although it is not unique B-complete. 

THEOREM 11.1. If x is less than the identifiable generalized minimum latent period of 
PISTG A, then .!?(t 1 “GA”) = .Y(t 1 “GACr)“) where “GACx)” is the Stage 0 counterpart 
of “GA”. Furthermore, MPISTG A(x) is the A&complete PL-sufficient Stage 0 reduction 
of PISTG A under Eq. (11.3a). 

Proof. See Ref. [7]. 
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THEOREMS I1 2. If for OPISTG 11.1 the following three assumptions hold-(%. 1) x is 
less than the minimum latent period (i.e. Eq. (11.3) holds], (g.2) the healthy worker 
survivor effect is operative for less than x years, and (3) 

yo[t + At 1 E(r - x), L(r - x)] = yD[t + At / E(t - x)] (11.3b) 

-then, for any G i’.‘characterized by “stay at work and receive, at rs, exposure ei(/,)” 

S(fs+~ 1 Gil,‘) = Sttsci 1 Ei(t, - x)1 = k [l - yo[t,‘ + At 1 El(tk - x)]]. (11.3~) 
k=l 

Proof. Assumption Yi.1 implies by Lemma 11.1 that x is less than the generalized 
minimum latent period of OCISTG 11 .l. By Assumption Yi.2, OCISTG 11 .l is an FR 
OCISTG. By Lemma 11.2, Eq. (11.3a) holds for FR OCISTG 11 .l. Thus, by Theorem 
11.1, OPISTG 11.2 is the A&complete PL-sufficient Stage 0 reduction of FR OCISTG 
11.1. The subsets on OPISTG 11.2 at t, represented on the graph by ls(t, - x) are empty, 
since by Assumption (8.2, Is individuals do not survive x years. Thus, OPISTG 11.2 is 
actually an MPISTG and can be represented by MPISTG 3.3(x). Furthermore, given Eq. 
(11.3b) holds, Theorem Fl implies that MPISTG 3.5(x) is the A&complete PL-sufficient 
Stage 0 reduction of MPISTG 3.3(x) under Eq. (11.3b) [and the A&complete PL-sufficient 
Stage 0 reduction of FR OCISTG 11.1 under %.2, Eq. (11.3a), and Eq. (11.3b)l. Applying 
the G-computation algorithm [equivalently, Eq. (4.7)] to MPISTG 3.5(x) proves the theo- 
rem. (Note Theorem 11.2 holds even if PISTG 3.4 is not an FR MCISTG, as, for example, 
if?c-doomed individuals alive at t, preferentially transfer from highly exposed to unexposed 
jobs, as in the mining industry.) 

In Sec. 11F we show that, given Assumptions %. 1 and %.2 hold, Eq. (11.3b) is implied 

by 
Assumption Y4.3. L is not a causal risk factor for death controlling for exposure (as 

defined in Sec. 8A.2). 
Thus, if Assumptions %.l-%.3 hold, the NPMLE of the G-causal parameters of FR 

OCISTG 11.1 do not depend on the data through L(r) or /s-status. We would therefore 
only wish to collect data on exposure and vitai status and estimate Gilbert’s parameter. 
Of course, we do not usually have u priori knowledge that Assumptions %.l-%.3 hold. 
We cannot empirically prove these assumptions hold, since they are nonidentifiable even 
if data on Is-status is included. But we can empirically rule them out. It is obvious that 
tests of Assumptions %.1-X3 must be based on MPISTG 3.4 when data on Is-status is 
missing. 

C. Tests of Assumptions YI.1 and %.2 

Tests of whether Assumptions 3.1 and % .2 hold are based on the following theorems. 

THEOREMS 11.4. If MPISTG 3.4 is an MCISTG and Assumption 93.1 [i.e. Eq. (11.3)1 
holds, then for all .i,, G:.4(‘ir), G:.4(.is), 

YD(t 1 (p”” ) = yo(t 1 @“““‘) V At + ts + x a t 2 t,. (11.4) 

THEOREM 11.5. If Assumption 93.2 holds and the minimum latent period for employ- 
ment history controlling for exposure history is greater than x [i.e. Eq. (11.2) holds with 
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the roles of L and E reversed], then 

yD(t, + x + At 1 bbG:.4[.ir-If,-1(11)1~~, [.$‘I) 

= vD([s + _y + it 1 L’G:.4[.i~-lfs-lff~)1”, [.$4’]) (11.5) 

for all nodes *i,_ J,_ I(tS), but only for the generalized treatment G1 of FR MCISTG 
3.4(-i, _ ds_ I(ts)) “if at work, receive zero exposure” where [.$“I are those individuals 
at work at t, and [.$“‘I are those individuals off work at t,. That is, consider any node 
at t, and compare the incidence of death at t, + x + At of the subset of individuals who 
were off work at f, with that of the subset of individuals who were on work at t, when 
subsequent to rs both are treated with the generalized treatment “if at work receive zero 
exposure”. If Assumption %.3 holds, the theorem will be true with t, + x + At replaced 
byanyrsuchthattat, +x+ At. 

THEOREM 11.6. If Assumptions %.I and %.2 both hold, then 

rdt + At I L(t - x - Aht), E(t - x - At), l,(t - x), e,(t - x)] 

= yo[t + At 1 L(t - x - At), E(r - x - At), Iz(t - x), ez(t - $1. (11.6) 

Proofs of Theorems 11.4-I 1.6 in a discursive manner 

Proof of Theorem 11.4. Theorem 11.4 follows at once from the fact that Assumption 
%.I implies that the sharp null hypothesis holds for MCISTG 3.4(.i,) for x + At years of 
follow-up (since the sharp null hypothesis implies the G-null hypothesis expressed in the 
theorem). 

Proof of Theorem I 1 S. G individuals off work in any given node at t, are comparable 
with respect to mortality to IS individuals on work, since by Assumption %.2, Fig. 11.1 
is an FR OCISTG. Therefore, if the E individuals off work at rs receive exactly the same 
subsequent exposure history as IS individuals on work, they will still be comparable at 5 
+ x since by assumption L has a minimum latent period of x years. Furthermore, the Is 
individuals off work and on work at t, surviving to t, + x are, respectively, the set of all 
individuals off work and on work at ts surviving to t, + x by Assumption g.2. Thus, the 
incidence of death at ts + x + At will be exactly the same for individuals off work at ts 
as individuals on work at t, [by Eq. (11.2) with L and E interchanged]. The only generalized 
treatment which is guaranteed to give individuals off work and on work at t, the same 
subsequent exposure history is “if at work, receive zero exposure”. 

Proof ofTheorem 11.6. If 9% 1 and %.2 hold, then the survival of subsets of E individuals 
at any given node at t, - x who differ in I(tS - x) and e(r, - x) will be identical through 
t, + At [since the groups were randomized at t, - x and Eq. (11.3) holds]. By 99.2, the 
set of individuals at t, - x who survive past t, is exactly the set of s individuals at t, - 
x who survived past t,. This proves the theorem. 

We now discuss how one can, in theory, use Theorems 11.4-11.6 to test whether 
Assumptions 9.1 and %.2 hold. We first suppose that MPISTG 3.4 is an FR MCISTG. 

Consider the following lagged exposure test algorithm. (1) Test, using the method given 
in (2) below, whether (at some prespecified a-level) the minimum latent period is greater 
than x years for x = Ar, x = 2A t, x = 3At, etc. until one finds an x = nA t at which the 
test rejects. Declare x = (n - 1)At to be the greatest x less than the minimum latent 
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period. (2) To test whether x is less than the minimum latent period use any G-null test 
for FR MCISTG 3.4 such that lt‘(.i,, t,) = 0 if t, < t, - .r (i.e. ignore all tables more 
than x years before a death). It is straightforward to check that such a G-null test is a 
test of Eq. (11.4). (3) Test whether the healthy worker effect lasts for a period of time 
less than I [declared in (1) above] as follows: Apply the G-null test algorithm to MPISTG 
3.3 (not FR MCISTG 3.4), using a weight function such that )t’(.is, t,) = 0 if ts # t,,, - 
.r - At, except modify the G-null test so that we construct for a given table (.irm-.X-l,, 
t,) a 2 x 2 table of cases and controls by at work and not at work status (i.e. we deviate 
from the usual G-null test algorithm in combining the treatments “high and low exposure 
at work”). Since each .i, of MPISTG 3.3 represents a unique E(t,), L(t,), and since we 
are presumably at the minimum latent period, this is a test of whether Eq. (11.6) holds. 
If the test does not reject, we assume that %.I and Yl.2 hold simultaneously for less than 
X . 

If, as in the mining industry, we do not wish to assume MCISTG 3.4 is an FR MCISTG, 
the lagged exposure algorithm must be modified [since the G-null test statistic described 
in Step (2) above will not have expectation 0 for .K = kA r for all kA t less than the minimum 
latent period]. Rather, we can use the following modified algorithm. 

(I) For each successive value of x (x = 0, x = At, x = 2At, x = 3At, etc.) construct 
the test of “work status” described in Step (3) of the lagged exposure algorithm above. 

(2) For the same successive values of I construct a similar test for the “effect of 
exposure at work” based on MPISTG 3.3 in which for each table of the form 
(.ir,--x-1r, t,) we construct a 2 x K table of cases and controls by the K levels of exposure 
received at work. Individuals off work do not contribute to the test statistic. We then 
construct a one degree-of-freedom test statistic based on the sum of the 2 x K table- 
specific Mantel-Haenszel test for trend statistics. 

(3) Let nAt be the first value of x such that neither of the tests described in (1) or (2) 
above rejects. Let n’At be the last value of .r at which both tests fail to reject. Declare 
n’A t to be the latest time at which Assumptions %.I and %.2 both hold. If there is no x 
for which neither test rejects, assume that there is no x for which %. 1 and 3.2 both hold. 
This algorithm is simply a test of Eq. (11.6) broken into two pieces, one piece testing for 
the work status effect and the other for an exposure effect at work. If Eq. (11.6) is true, 
then for any fixed value of x, the two test statistics are uncorrelated. 

If we have a greatest x for which %.I and Y.2 both hold, then we can test Assumption 
%.3 by testing whether 

yo[t + At (E(t - x>, ut - 41 = Ydf I at - x)1 v L(t - x). (11.7) 

Tests of Eq. (11.7) will require modelling in sparse data. 
The lagged exposure test algorithms, although theoretically pure, have serious weak- 

nesses. The power to detect the true minimum latent period and/or the duration of the 
healthy worker survivor effect, when short, may be very poor in sparse data. This is 
because few cases will have “controls” with identical employment and exposure history 
until a few years before the case fails. The cases that will have such controls tend to be 
cases that died soon after hire. They probably are a quite unrepresentative sample of all 
cases. Further problems with the algorithm are that tests for successive years are cor- 
related. Also, it is not clear that we have optimally exploited the fact that if Assumption 
%. 1 is false for x, it is false for x + At. 

Often we would be willing to assume a priori that Assumption 3.3 holds. In Sec. 1 lE, 
we show that we can use this assumption to develop tests with reasonable power that are 
able to demonstrate that the healthy worker survivor effect lasts for at least x years even 
when .r is greater than the minimum latent period. 
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D. A substantive interpretation of Assumption Yl.2 
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Since the a-level chosen for a test of Assumption %.2 should, in an informal Bayesian 
sense, depend on one’s prior degree of belief as to the likelihood that the assumption is 
true, we need to better understand the substantive meaning of %.2. Gilbert implied that 
the healthy worker effect for lung cancer is operative for less than 10 years because 
individuals with symptomatic lung cancer (almost) never survive 10 years. For the pur- 
poses of this discussion assume lung cancer is the only cause of death (see Sec. 12 for 
discussion of this assumption). Implicit in her logic (and explicit in our Assumption %.2) 
is the assumption that, among individuals at work at t - At who are not doomed to die 
within 10 years (and are thus without symptomatic lung cancer), those leaving work at t 
are on average at no higher risk for lung cancer mortality at times greater than t + 10 
than individuals remaining at work at t (when controlling for exposure history up to time 
at risk). (Here we are supposing, as did Gilbert, that employment history is not an in- 
dependent causal risk factor.) Assumption %.2 is almost certainly incorrect even for lung 
cancer if, as in most occupational health studies, data on cigarette smoking history has 
not been obtained. To see this, note that individuals terminating employment at time t 
will have, in general, a greater history of exposure to cigarettes when compared to similar 
individuals continuing employment (since terminees will include disabled individuals with 
nonmalignant lung disease and heart disease induced by cigarettes). (In fact, socioeco- 
nomic factors alone may also lead to terminees having a greater history of cigarette smok- 
ing. For instance, early terminees are more likely to be socially maladjusted individuals 
who cannot hold a job. Such social maladjustment is probably highly associated with the 
cigarette smoking habit.) In the absence of the ability to control for cigarette smoking 
history, terminees (even without lung cancer) will be at an increased risk of death from 
lung cancer for many years to come compared to individuals surviving them at work (since 
heart disease, nonmalignant respiratory disease, and social maladjustment, unlike lung 
cancer, are not rapidly fatal). Thus, even when exposure has a minimum latent period of 
x years and the disease of interest is uniformly fatal within x years of clinical onset, one 
must empirically check, using the test described above, whether causal parameters can 
be defined in terms of the association of mortality with observed exposure history lagged 
some number of years. Furthermore, even if data on cigarette smoking had been obtained. 
the healthy worker effect for lung cancer might still be operative for more than 10 years 
when controlling for imperfectly measured cigarette smoking history. This reflects the 
fact that among individuals with identical past measured covariate histories, inc!uding 
measured cigarette history, those who leave work may be at greater risk than those who 
remain at work because their true cumulative exposure to cigarettes is greater than that 
of individuals remaining at work. 

E. A worked example 

We analyzed lung cancer and all-cause mortality in our cohort of arsenic-exposed cop- 
per smelter workers with an eye to investigating the duration of the minimum latent period 
and the duration of the healthy worker survivor effect. The results are summarized in 
Table 4. The entries in Table 4 are explained as follows. Columns l-5 are tests based on 
modifications of the G-null test algorithm for a modified MPISTG 3.3 (modified so that 
four internodal lines arise from the single right circumference point in each node, rep- 
resenting three possible levels of exposure at work-L, M, H-and being off work, I). 
(Note L in Table 4 refers to low exposure at work and not to employment history.) In 
implementing the G-null test algorithm (see Sec. 6C), 50 controls per case were selected. 
In the analysis of lung cancer mortality, deaths from other causes were treated as censored 
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observations at the time of death. For the moment the reader should assume that all our 
prior results concerning G-null tests for death from all causes are also valid for such G- 
null tests of lung cancer mortality. Whether this is actually so is the subject of Sec. 12. 
Time since hire was the time scale on the tree graph and matching was to within 6 months 
on age at hire and within 3 years on calendar period of hire. At was chosen to be one 
year. The lag variable describes the weight to be given to each table as follows. Lag 0 
gives weight 1 to all tables, Lag 9 (15) gives weight 1 to all tables more than 9 (15) years 
prior to death of the case, and 0 weight to all other tables (e.g. w(?k, t,) = 0 if 1 tk - t, 1 
s 9). Symmetrically, lag (-9) [(- j)] g ives weight 0 to all tables more than 9 (5) years 
before the event and weight 1 to all other tables. The columns labelled “Type of Com- 
parison” describe the test statistic computed for each table. In the column labelled L vs 
M vs H the Mantel-Haenszel test for trend was computed for each table for individuals 
at work with exposure scored as 0, 1,2 for L, M, H. (Individuals off work do not contribute 
to the test.) The table specific trend statistic numerators were combined in an overall one 
degree-of-freedom Mantel-Haenszel test for trend. The xZ value for this test is given in 
parentheses with a + sign if there was a positive association of mortality with increasing 
exposure. Note, because individuals off work did not contribute any information, this test 
is exactly the G-null trend test for MPISTG 3.4. Therefore, the entry (lag 0, column 1) 
for all causes of death is the square of the Z-score, 3.01, in Table 3. The column labelled 
L vs (M, H) differs from the previous column only in that individuals who were M or H 
were scored identically as 1. The numbers in parentheses again represent the overall 
Mantel-Haenszel x2 statistic. The other number in each row of column 2 represents the 
summary Mantel-Haenszel odds ratio. The numbers in the succeeding three columns are 
also x2 statistics and M-H odds ratios. In the column labelled 1 vs (L, M, H) individuals 
off work were coded 0 and individuals at work were coded 1 (irrespective of exposure). 
In the column labelled 1 vs L, individuals off work were coded as zero, individuals at low 
exposed jobs were coded 1, and individuals at medium or high exposed jobs did not 
contribute to the test statistic. In the column labelled I vs (M, H) individuals off work 
were coded as 0, individuals at either high or medium exposed jobs were coded as 1, and 
individuals at low exposed jobs did not contribute. The entries in the Cumulative Exposure 
column are the partial likelihood estimates of p, from Eq. (6.1). The entries in parentheses 
are the x2 statistic from the partial likelihood score test of Eq. (6.2). The exposure code 
gives the weights assigned to each exposure level when cumulating exposure. A lag of 9 
years implies that exposures experienced in the 9 years before the death time of the case 
were ignored in computing the cumulative exposure of the cases and their matched con- 
trols. The same matched sets of cases and controls were used in the analysis represented 
in columns 6 and 7 as in the analysis in columns l-5. 

The most striking aspect of the lung cancer results in Table 4 is that there is no sta- 
tistically significant association of cumulative exposure with lung cancer mortality, even 
if one lags exposure 1.5 years. As discussed in the Introduction, we know that among 
individuals in this cohort hired prior to 1935, arsenic exposure was a cause of lung cancer. 
Although clean up occurred in the 192Os, nevertheless, the SMR comparing the lung cancer 
mortality rate in the entire subcohort hired after 1935 to that of the general U.S. population 
is 1.4. This suggests a possible persistent effect of arsenic on lung cancer mortality that 
is not detected by lagging cumulative exposure 15 years when computing the score test 
for Eq. (6.2). In contrast, as shown in column 1, the G-null trend test based on MPISTG 
3.4 shows a clear exposure effect (x’ = 18). Furthermore, the Mantel-Haenszel odds 
ratio associated with the G-null test for MPISTG 3.4 (when grouping medium and high 
exposure) is 1.9 (column 2). Can these results be explained by a healthy worker survivor 
effect whose duration exceeds 15 years for lung cancer? What evidence can we find for 
such an effect in Table 4? As we now explain, there is some evidence to be found in 
column 4. 
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Consider two individuals (technically, we should consider two groups, but speaking of 
individuals aids the exposition) hired at the same age and in the same calendar year with 
identical employment and exposure histories until, one day, one of the individuals finds 
himself out of work, and the other finds himself in a low exposure job. (For the present, 
we assume we gather no further information on their subsequent employment or exposure 
history.) Both individuals survive an additional 15 years from the day (which we will call 
D-day) on which their histories diverged. According to entry (lag 15, column 4) of Table 
4, the subsequent lung cancer mortality rate in the individual at a low exposure job on 
D-day is 0.77 that of the individual who had left work (although the associated x2 is only 
2.9). Assuming the relative risk of 0.77 is real, possible causal explanations for this finding 
include (1) the state of being off work is an independent causal risk factor for death from 
lung cancer; (2) the healthy worker survivor effect is operative, probably because the 
individual who left work is more likely to be a cigarette smoker; (3) during the I5 years 
that have elapsed since D-day, the arsenic exposure of the individual who was off work 
during D-day exceeded that of the individual at low exposure (this might occur if, for 
example, the individual off work on D-day later returned to a high exposure job); and (4) 
arsenic is protective against lung cancer, (4) we might rule out a priori. In addition, the 
x2 of 18 for the G-null test for MPISTG 3.4 would essentially exclude this option if MPISTG 
3.4 were an FR MCISTG. If (3) were the explanation, we would have expected to find 
an association of cumulative exposure with lung cancer mortality in entry (lag 15, column 
7). As an even better check, for each table (.i k, t,) contributing to the test statistic in (lag 
15, column 4) we determined whether the average cumulative exposure in the interval 
(tk, t,) was greater in subjects who were 1 at tk than in those who were L when using the 
exposure scoring scheme in column 7. On average, it was not greater. In addition, the 
subjects who actually died do not contribute a greater average cumulative exposure. As 
always, explanations 1 and 2 cannot be empirically distinguished. 

For the present, we shall assume that we are observing a pure selection effect (i.e. 
Assumption %.3 holds) and that MPISTG 3.4 is an FR MCISTG. The observed relative 
risk of 1.5 in (lag 15, column 5) suggests that the risk associated with high or medium 
arsenic exposure was of greater magnitude than the selection effect associated with leaving 
work. Nonetheless, the relative risk of 1.8 in entry (lag 15, column 2) suggests the relative 
risk of 1.5 is almost certainly biased towards the null by the healthy worker survivor 
effect. Entry (lag - 5, column 4) suggests that the magnitude of the healthy worker survivor 
effect is much greater in the first 5 years after an individual leaves work, presumably 
because individuals forced to leave work because of symptomatic lung cancer die within 
a 5 year period. Note that the relative risk of 1.8 in the entry in (lag - 5, column 5) suggests 
the absence of a minimum latent period for lung cancer. But this estimate is so unstable 
as to be meaningless. (Although the reader might be surprised that the relative risk in 
columns 2 and 5 of row (lag -5) could be identical given the risk estimate in column 4, 
this may occur when there are but few controls per case in each table.) 

Although we consider the above results to be some evidence for a healthy worker 
survivor effect lasting for more than fifteen years, we are skeptical whether the selection 
effect is of sufficient magnitude to explain the marked discrepancy between the x2 values 
associated with the G-null test of MPISTG 3.4 and those of the Cox cumulative exposure 
score tests of Eq. (6.2). Our present research is aimed at resclving this question. 

In general, the overall character of the results for death from all causes is quite similar 
to those for deaths from lung cancer. It is interesting to note that the healthy worker 
survivor effect for deaths from all causes is apparently less than that for lung cancer. 
Furthermore, there is statistically convincing evidence in entry (lag -5, column 5) and 
entry (lag - 5, column 2) that the minimum latent period for deaths from all causes is less 
than 5 years. One would not be surprised by this if accidental death was the main con- 
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tributor to the excess (since inexperienced workers tend to have accidents) and jobs with 
high arsenic exposure were also, incidentally, the dangerous jobs. But, interestingly, a 
similar analysis (not shown) for death from heart disease shows a similar lack of a minimum 
latent period. If a biological explanation for this finding cannot be found, one would have 
to carefully check that personnel policies did not systematically place individuals with 
cardiac risk factors into high-exposure areas. 

Before one allows oneself to be persuaded of the causal effect of arsenic on lung cancer 
mortality in this cohort on the basis of the large x1 value produced by the G-null test for 
MPISTG 3.4, there are several other issues we must consider. To review, we argue in 
Section 11D that the association of lung cancer mortality with exposure lagged some 
number of years can underestimate the effect of arsenic exposure on mortality if cigarette 
smoking is an empirical risk factor for leaving employment. In Sec. 11E we apparently 
confirmed our prediction, provided that we believed MCISTG 3.4 was an FR MCISTG. 
But if we are willing to accept the hypothesis that cigarette smoking is a determinant of 
leaving employment, we must ask what is the implication of this hypothesis for our beliefs 
concerning whether MCISTG 3.4 is an FR MCISTG? And, even if we believe that 3.4 is 
an FR MCISTG, do our beliefs that cigarette smoking is a determinant of leaving em- 
ployment, influence our thoughts about the likelihood that a test of the G-null hypothesis 
of FR MCISTG 3.4 is a test of the null hypothesis of no effect of exposure controlling 
for cigarette smoking. (That is, must we consider the possibility that the G-null test of 
MPISTG 3.4 rejected due to an effect of exposure on cigarette smoking behavior rather 
than due to a direct biological effect on the lungs?) And, finally, how do we account for 
competing causes of death? 

To shed some light on this issue, in subsection 12C we shall give conditions under 
which (1) Gilbert’s parameter when adjusting for x-lagged cigarette smoking history would 
be the basis of a valid test of the null hypothesis of no exposure effect on lung cancer 
controlling for cigarette smoking history, (2) Gilbert’s parameter without controlling for 
x-lagged smoking would lead to a biased test, and (3) the G-null test for MPISTG 3.4 
would be a valid test of the null hypothesis of no exposure effect controlling for cigarette 
smoking. , 

F. Can treatments at t be determined by events that occurred prior to t? 

We have seen that when x is less than the generalized minimum latent period of FR 
OCISTG 11.1, MPISTG 11.2 is the Stage 0 PL-sufficient reduction of the FR OCISTG 
11.1. Is MPISTG 11.2 an FR MCISTG as well? Obviously, only if it is an MCISTG, which 
would require, for example, that the treatment given at t3 is an individual’s employment 
and exposure status at tl. Although one could take the position that it is philosophically 
inappropriate for treatment at t to be determined by events that occurred prior to t, we 
nonetheless examine whether MPISTG 11.2 satisfies the formal definition of an MCISTG 
given in Sec. 4. We consider two cases: (1) x is greater than the generalized minimum 
latent period of OCISTG Il. 1 and (2) x is less than the generalized minimum latent period. 
If x is greater than the generalized minimum latent period, without loss of generality, we 
can assume there is some individual observed, say, to have received zero exposure at 
work at tl and to have survived to t3 who, had he received high exposure at tl, would 
have died before t3. Using the formalism of Sec. IC, we consider the value of 0.;~~ for 
that individual in the standard labelling of MPISTG 11.2, wherej) is the treatment “high 
exposure at work at tl” given at t3. D+s, is undefined, since when in -i;i3 the individual 
(having died prior to t3) neither dies in the interval (t,, t4] nor survives past t4. Thus, 
MPISTG 11.2 is not an MCISTG. Now suppose that x is less than the generalized minimum 
latent period for MCISTG 11.1. Then D+s, will always be well defined and, in fact, for 
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each individual HT(.‘iJ”.’ ) in MCISTG 11.1 naturally induces a unique HT(*‘i;!,!:) where - 
-‘i:‘c’>’ is the image of *‘ii”.‘. Thus, formally MPISTG 11.2 is an MCISTG. In fact, within 
the context of our formal definitions, it is easy to show that 

THEOREM 11.7. If x is less than the generalized minimum latent period of an FR 
MCISTG A, then MCISTG A(x) is an FR MCISTG. 

Proof. See Ref. [7]. 

We can now prove in a simple manner that 

THEOREM. If Assumptions 9% 1, 9.2 and YI.3 hold for OPISTG 11.1, then Eq. (11.3b) 
holds. 

Proof. Given Xl and g.2, MPISTG 3.3(x) is an R MCISTG by the above theorem. 
But if (8.3 holds, the supposition of Lemma F2 holds. The theorem is proved by now 
applying Lemma F2. 

12. OTHER CONSIDERATIONS 

A. Competing risks and censoring 

Consider a study represented by an MPISTG with followup from t, to ts+ ,. Often 
individuals will be lost to followup (censored) prior to ts+, . In this section we generalize 
our theory of causal inference in observational mortality studies to allow for right cen- 
soring. (We shall assume that no censored individuals reenter into followup, although 
extension of our approach to include such interval censoring would not be difftcult.) 

A closely related (in fact, formally identical) problem is that of competing risks. We 
believe that an investigator who professes interest in the causal effect of exposure on 
cause of death D, is often assuming (either implicitly or explicitly) that each individual 
has a potential death time from D, that may be unobserved due to either censoring by 
loss to (or end of) followup or by death from other causes DZ. This assumption will form 
the basis of our formalization of the competing risks problem. Various investigators have 
professed displeasure with this assumption of potential but unobserved death times[24]. 
We discuss this issue further in Sets. 12B and 12C. 

Our formal development can refer either to the pure competing risk problem, pure 
censoring problem, or the mixed problem. In the pure competing risk problem DI refers 
to time of death from the cause of interest and D2 to time of death from all other causes. 
In the pure censoring problem, D, refers to time of death from any cause and D2 to time 
of censoring. In the mixed problem D, refers to time of death from the cause of interest 
and DZ to the minimum of the time of censoring and time of death from other causes. For 
consistency of exposition we have written this section from a single point of view, that 
of the pure competing risks problem. 

We now develop our formal theory. First, we modify the definition of HT(.i,) in Sec. 
4 by assuming that each individual in *i, has deterministic sets Dl(tu) and D2(tu) in place 
of D(t,). Both are defined exactly like D(t,), except D, refers to death from the cause of 
interest and DZ refers to death from all other causes. It follows from this definition that 
an investigator will consider an MPISTG to be MCISTG only if he believes that, at least 
conceptually, deaths from cause Dz could be eliminated in a manner that does not affect 
past or future covariate status or time of death from cause D1. A modification of the 
competing risk problem that does not require this assumption is discussed in Sec. 12C. 
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Whenever we speak informally of the causal effect of exposure on cause of death D1 , 
we shall be referring formally to the effect of exposure on death in the world in which 
death from DZ has been removed. We denote such a world by RDz. 

We shall suppose that for any PISTG (even if not a CISTG) each individual has a 
deterministic vital status and covariate history (that lies on the PISTG) in RDz. 

Definition. Let HT,(*i,) be HT(.i,) less the sets Dl(t,). 

Definition. A PISTG A is an FR CISTG RDZ if Eq. (4.6) holds with HT, (.i,) substituted 
for HT(.i,). We represent the G-causal parameters of CISTG A in RDz by SD,(ts, 
G$‘, G$, RDt). Since, in RDz, D, is our only cause of death, all of our previous results 
apply in such a world. 

We shall need a number of definitions. In this section only, we shall assume that data 
on exact death times have been collected. X,,(t / a) is the instantaneous hazard of death 
from cause D, at time t given the information in . . Note that we use this symbol A (rather 
than y) to represent instantaneous hazards. 

Definition 12A. 1. Given a PISTG, the full-independence assumption holds for DI if 
and only if for all *i,, y(*iS 1 RDz) = y(.iS) and for all .iSj,, t,, , > t 2 ts, AD,(t 1 *ij,, RDz) 
= b,(t 1 *i,j,). The full independence assumption is similar to that usually made in the 
competing risk problem (i.e. independence of the competing risks conditional on all mea- 
sured covariatesj. 

Definition 12A.2. sa(t 1 eiJs) = exp] - .I?, XD,(U 1 *ids) du] and S( t 1 .i,j,) = 
exp[-_l% Mu ) .isjs) dul. 

Definition 12A.3. p(.iS, D 3 t 1 “G”) = S[t 1 *iSj,]p(.iS 1 “G”) where *i,j,E“G”. Note 
p(*is, D > fr+l I “G”) = p[*i,j,(t,+d I “G”]. 

Definition 12.A.4. p*(.iS, D > t 1 “G”) is p(.i,, D 5 t I “G”) with SD,(tk+l I *ikjk) 
substituted for S(*ikjk) in the definition of p(*iS 1 “G”) and ,SD,(t I .iSj,> substituted for 
S(t I *iSjS). Note p(* I ., RDz) = p*(. I a, RDJ since in RDz, cause of death D, is the only 
cause. 

Definition 12A.5. For t, s t s t,, I 

x hD,(t 1 *iSjS)p(*iS, D L t I “G”) 

Definition 12.A.6. h&(t 1 “G”) is ho,(t I “G”) with p* substituted for p. Note 
A:,(. 1 *, RDd = AD,(* 1 *, RDz). 

LEM,MA 12A. 1. Full independence for D1, implies A&(t ) “G”) = Ag,(t ( “G”RD2). 

Definition 12.A7. Given a PISTG, the G-independence assumption holds for D, if and 
only if Ao,(t I “G”) = A,,(t 1 “G”, RDz). 

[Note if there is but one intranodal line per node (e.g. MPISTG 3.5) full and G-inde- 
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pendence are identical.] Note G-independence would hold if the observed MPISTG rep- 
resented the PL-sufficient Stage 0 reduction of a double blind ordinary designed random- 
ized trial in which hu,(t 1 G) = Xn,(t ) G. RD?). 

It is of course nonidentifiable whether full independence or G-independence or neither 
assumption holds. In Sec. I2C we discuss what prior beliefs an investigator would need 
to have in order to wish to make the assumption of full or G-independence. Until Sec. 
13B. we assume that full or G-independence are the only nonidentifiable assumptions that 
an investigator might entertain about the joint distribution of D, . Dz, and the covariates. 
We now examine the consequences of full and G-independence. We shall use * to represent 
results related to full independence and no * for results related to G-independence. 

Definition 12A.8. .S,,(t, ) “G;“) = exp[-J;; x~,(u ) “Gj”) du]. 

Definition 12A.9. S&(t,. [ “G?“) is defined as in Eq. (4.7) except any S(.ikjk) is re- 
placed by S~~(fk+i 1 .ir,id. Note S&(t, ( “G;‘“) = exp[-J:; h&(u ( “CC”) du]. 

THEOREM 12A. 1. If (1) an MPISTG A is an FR MCISTG RDz and (2) the full-inde- 
pendence assumption holds, then s&(t, \ “Gf “) = S,,(t, ) G’:, RDz), where the expres- 
sion on the right refers to the survival curve in RDz when the population is treated with 
G;\ . Furthermore, under Large Sample Limiting Model 1, So,(t ) G? , RD,) can be esti- 
mated using Eq. (4.7) as previously described, except the NPMLE of any S(.iJ,) is re- 
placed by that of SO, (t,, I 1 .iJs) [which is just the Kaplan-Meier estimator of the (con- 
ditional) survival curve for D, in the interval (t,, t, j ,)]I. 

Proof. Obvious. 

THEOREM 12A.2. If (I) an MPISTG A is an FR MCISTG RDz and (2) the G-inde- 
pendence assumption holds, then So,(t, 1 *‘CC”) = SD,(t, ( G,?, RD?). 

Definition 12A. Il. The “G-independence” (“full-independence”) null hypothesis for 
DI holds if So,(r, “G,“, “Gz”) = 0 (.S&(t, “G,“, “G?“) = 0) in notation similar to that 
we have used before. 

Definition. Given a MCISTG, the sharp null hypothesis holds for D, if the sharp null 
hypothesis holds in RDZ. 

LEXlblA 12A.2. If MPISTG A is an FR MCISTG RDz and the sharp null hypothesis 
holds for cause of death D,, then the G-independence (full-independence) assumption 
implies that the “G-independence” (“full-independence”) null hypothesis holds. 

Proof. Straightforward. 

B. The circumstance under rvhich the G-null tests for D, are valid and a ivorked 
example 

If our interest is in whether an exposure has any effect on mortality from cause of 
death D, , we would like to have available a valid nonparametric test of the “G- and full- 
independence” null hypotheses for D, analogous to G-null test? The only natural candidate 
is the modification of the G-null test algorithm, in which we treat deaths from cause D, 
as “deaths” and deaths from cause Dz as censored. We called this procedure the G-null 
test for DI in Sec. 1lE. Unfortunately the circumstances under which it is valid are rather 
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restrictive. In the following we assume that At = 0 on our PISTG so that the probability 
of death from either D1 or D2 is small in any interval At. Then we may return to the use 
of y rather than X. Then, without loss of generality we can and do assume that all deaths 
from cause Dz in the interval (tS- ,, r,] occur instantaneously right at t,. 

THEOREhl 12A.3. If 

YDz(tsT I 1 *ikjk(tk), ‘idkik+ I), tk_ , S tr does not depend on ‘ikjkiX_-, (12.1) 

then Sz,(t, “G,“, Gz”) = 0 implies 

yo,(t,- , 1 ‘ik, ‘iljk) does not depend on ‘iAjj,. (12. la) 

The G-null test for D, is, in general, not a valid test of the “full-independence” null 
hypothesis even when Eqs. (12.1) and (12. la) hold since the contributions to the numerator 
can be correlated. On the other hand, if a PISTG has but one intranodal line per node 
the G-null test for D, is a valid test of both the “full and G-independence null hypothesis.” 

THEOREM 12A.4. The “G-independence” null hypothesis holds for both DI and DZ if 
and only if Eq. (12.la) holds, both as written and with Dz substituted for D1. In this 
instance, together the G-null tests for both D, and D2 constitute a valid test of the joint 
“G-independence” null hypothesis for D, and D2 (see Corollary El). 

THEOREM 12A.5. If, for .S 2 0, 

yoJt,_2 1 .iJ&+,) = yp(ts+?) for all .irjsis_l (12.2) 

then Eq. (12.1) holds, the “G-independence” null hypothesis holds for Dz. and 
y;,(t,_, 1 “G”) = yD!(t,_, 1 “G”). Th us, uhen Eq. (12.2) holds the G-null test for DI is 
a valid test of the “G-independence null hypothesis”. 

Proofs. The trick is to recognize that DZ is just another covariate, in particular, a 
covariate that can itself be a treatment, since, if individuals experience D2, we are as- 
suming it can be removed. That is to say, the competing risk problem is just a question 
of inference about the effect of the treatment G on D,, controlling for the covariate Dz. 
In Sec. 8D.3 and Appendix G, we solve this problem for cigarette smoking as a covariate. 
Using MPISTG 3.4 as a paradigmatic example, we shall without loss of generality establish 
the analogous results in the competing risk case. Assume At is small. Let Dz, % indi- 
viduals at each time t, be labelled c and C (where individuals who are c at t, are individuals 
who died of cause Dz in the observed study at t,). Since Dz can be a treatment, if we add 
c-status to the set of intemodal lines arising from each right circumference point of 
MPISTG 3.4 (technically of the ti-modified version of MPISTG 3.4, see Sec. 8D.3), we 
have MPISTG 8.3. Now, since we have identified Dz with c, D, can play the role in 
MPISTG 8.3 that D did when c was cigarette smoking. Now, from the definitions, it is 
straightforward to check that with c as Dz and D as D1 Eq. (8.29) represents the “full- 
independence null hypothesis”. Equation (12.1) becomes Eq. (8.30). Equation (12.la) 
becomes Eq. (8.23), Eq. (12. la) with D1 substituted for D, becomes Eq. (8.22). Equation 
(12.2) becomes Equation 8.31. And the “G-independence null hypothesis” for DZ and D,, 
respectively, becomes Eqs. (8.19) and (8.20). Then Theorems 12A.3, 12A.4, and 12A.5 
become Lemmas 8.15 (equivalently, Theorem Gl), L emma 8.11 (Theorem G4), and Lem- 
mas 8.16 and 8.17 (equivalently, Theorems G2 and G3), respectively. 
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We now consider the circumstances under which we can empirically test the sharp null 
hypothesis for D1 when neither the G-independence nor the full-independence assumption 
holds and thus Lemma 12A.2 is not applicable. 

LEMMA 12A.3. Given MCISTG A is an FR MCISTG, if the sharp null hypothesis 
holds for causes of death D, and D2, then the “G-independence” null hypothesis holds 
for D, and D2. 

Proof. This result is just a restatement of Lemma 8.8 when MCISTG A is MCISTG 
3.4 and, as above, we have labelled D2 as c. Note that the sharp null hypothesis for D, 
becomes Eq. (8.17) and that for Dz becomes Eq. (8.18). [Recall that, in this section, the 
set HT(*I’,) in the definition of an FR MCISTG contains the two sets Dl(ru) and Do.] 

Definition. The adverse effect assumption holds for D1 if, under the above labelling 
of Dz as c and D, as D, the adverse effect assumption holds as written in Sec. 8D.3 
modified so that following the words “some r,“, we add “such that C’(t,) for individual 
i takes on the value Z for all times up to and including ts (so that individual i is alive at 
f,). 

Definition. The adverse effect assumption holds for D2 if the above modified version 
of the adverse effect assumption holds upon labelling D, as c and D2 as D. 

LEMMA 12A.4. If the adverse effect assumption holds for Dz, then if (1) MCISTG 3.4 
is a FR MCISTG, (2) the “G-independence” null hypothesis holds for Dz and (3) the “G- 
independence” null hypothesis is false for D, , then the sharp null hypothesis is false for 
D,. 

Proof. This is exactly Lemma 8.10 with D1 as c and Dz as D. 

Remark. Lemma 12A.4 holds with the roles of D2 and D1 reversed. 

Remark. Given MCISTG 3.4 is a FR MCISTG RDz, and that we (a priori) make the 
G-independence assumption for D1 , then, in the spirit of Sec. 8D.3, we should accept 
(reject) the sharp null hypothesis for D, when the “G-independence” null hypothesis for 
D1 does (does not) hold. On the other hand, as in Sec. 8D.3, if we assume MCISTG 3.4 
is an FR MCISTG and that the adverse effect assumption holds for Dz, then, when the 
“G-independence” null hypothesis holds for D2, we would accept (reject) the sharp null 
hypothesis for D, when the “G-independence” null hypothesis for D, holds (does not 
hold). If the “G-independence” null hypothesis for Dz does not hold, then without further 
assumptions we will neither accept nor reject the sharp null hypothesis for D1 regardless 
of the truth of the “G-independence” null hypothesis for DI . 

Remark 12.1. When (1) MCISTG 3.4 is an FR MCISTG, (2) the sharp null hypothesis 
for D1 holds, (3) the adverse effect assumption holds for Dt, and (4) the sharp null hy- 
pothesis for D2 is false (so that the “G-independence” null hypothesis for D2 is false under 
the adverse effect assumption for Dz by Lemma 8.9 with D, as c and Dz as D) the minimal 
additional assumption necessary for the “G-independence” null hypothesis for DI to hold 
is much less stringent than that of the G-independence assumption for D,. In fact given 
(l)-(4) above, we only need assume that at each time rs, for each G, the incidence of 
death from cause D, at t, + At for the subset of individuals who would be alive at t, 
when treated with G = 0 (i.e. the treatment “always receive zero exposure”) but not 
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alive when treated with G is the same as the incidence of death from cause DI for the set 
of all individuals who would be alive at t, when treated with G = 0. Given (1) and (3), if 
an investigator is willing to make the above assumption. he will reject the sharp null 
hypothesis for D, whenever the “G-independence” null hypothesis for DI is false. 

Remark 12.2. An alternative definition of the sharp null hypothesis for D, can be 
constructed without requiring that an individuals’ covariate history or death time from 
D1 be defined after death from D,. 

Definition. The alternative sharp null hypothesis holds for D, if for any G,. Gz, t for 
which individual i would be at risk at t when treated with both Gi and Gz. yDl(t 1 G, , i) 
= y~,,(t 1 Gz, i). The statements of the adverse effect assumption for DI and Dz and of 
Lemmas 12A.3 and 12A.4 remain unchanged under this alternative definition. 

On the other hand, it is much less clear how to define the magnitude of the population 
effect of a generalized treatment on death from cause D, without invoking the existence 
of RDz. We cannot define the effect of treatment in terms of yo,(t 1 GI 1 - y~,(t ) Gd for 
an MCISTG. For example, yo,(t 1 G,) - yol (t j Gz) may be nonzero even if the alternative 
sharp null hypothesis holds for D,. This reflects the fact that if there exists a non-null 
effect of treatment on D2, the set of individuals at risk at t under the hypothetical study 
defined by Gi will differ from those at risk in the study defined by Gz. We could, in theory. 
compute yo,(r 1 G,) - yD, (t I G-) only for individuals who are alive at t when treated 
with both G, and GZ, but this leads to nonrransitivity of treatment comparisons. 

EXAMPLE: Suppose, for MPISTG 3.4, D, is death from lung cancer, and D2 is death 
from all other causes plus censored individuals. Then Eq. (12.1) becomes 

Yoz(t,c I I E(tk), L(tx.), r(t,- I)) = yol(t,- I j E(tk), L(tk), I(tk+ ]))for tk_, S t,. (12.3) 

Therefore, under the “full-independence assumption”, the chi-squared value of the G- 
null test for lung cancer given in entry (lag 0, column 1) of Table 4 is valid evidence against 
the null hypothesis of no overall exposure effect on lung cancer mortality provided (1) 
MCISTG 3.4 is an FR MCISTG RDz (which is a nonidentifiable assumption), (2) Eq. (12.3) 
holds (which is an empirically testable assumption) and (3) the correlations mentioned in 
Theorem 12A.3 are unimportant. We assume (3) holds (because, as discussed below, Eq. 
(12.2) is “nearly true”). We have assumed that no censoring occurs in our cohort (see 
Sec. 5B). Therefore, Dz represents death from all causes other than lung cancer. Deaths 
from lung cancer represent only 116 out of 1782 deaths. Thus, as espected, the results 
for death from all causes (as shown in Table 4) are nearly identical to those for death 
from all causes but lung cancer (data not shown). Therefore, we can simpiy allow D2 to 
be deaths from all causes without introducing substantial bias. Entry (lag 0, column 3) in 
Table 4 for all causes of death is then a valid test of Eq. (12.3). Equation (12.3) is rejected 
(x2 = 4.7), although the magnitude of this effect (OR = .935) would. we believe, make 
it improbable that the xZ of 18 in entry (lag 0, column 1) for lung cancer could be due to 
this bias. 

We now consider the entry (lag 9, column 3) for all causes of death. This entry represents 
a valid test of Eq. (12.3) when tx- is restricted so that rk.+, + 9 5 t,. Let us call this 
restricted version of Eq. (12.3), Eq. (12.3-lag 9). Note that the odds ratio (.964) in this 
entry is greater than its counterpart under lag 0 (OR = .935). Furthermore, the test of 
Eq. (12.3-lag 9) does not reject (x2 = 1.8). Why should this be the case? The obvious 
reason is that, by lagging nine years, the 1 individuals who left work because they were 
imminently going to die no longer contribute to the test statistic. 
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But if Eq. (12.3-lag 9) is true (at ieast. the modified G-null test does not reject). then 
the x2 value of 15 in entry (lag 9, column 1) for lung cancer constitutes valid evidence 
against the null hypothesis of no overall exposure effect on D, (i.e., the G-null hypothesis 
in RD- for MCISTG 3.4) under the full-independence assumption provided MPISTG 3.4 
is an FR MCISTG RD,. In fact, it is valid if MPISTG 3.4(1) with x = 9 is an FR MCISTG 
RD?, provided for individuals who are already .r-doomed in RD-, future exposure and 
employment history do not influence their death times. (This is a weaker assumption than 
the assumpticn that MPISTG 3.4 is an FR MCISTG RD1_ since, for MPISTG 3.4(x) to be 
an FR MCISTG RDr under the G-null hypothesis in RDz for MCISTG 3.4, it is sufficient 
that for the subset of individuals who were not x-doomed at t,, exposure at work, given 
past employment and exposure history, is at random in RD:. This follows from Theorem 
11.7, upon recognizing that, under the null hypothesis, for all x, x is less than the gen- 
eralized minimum latent period. 

If we had believed a priori that MCISTG 3.4 were an FR MCISTG and that either the 
G-independence assumption held for DI or (only) the adverse effect assumption held for 
Dz (and we considered low exposure to be essentially equivalent to zero exposure so that 
.S(t 1 G3.4 = 0) is identifiable), then we would reject the sharp null hypothesis for lung 
cancer based on the extreme x2-value of 18 for the G-null test for lung cancer when Eq. 
(12.2) holds. To see this note that by Theorem 12A.5, Eq. (12.2) implies the “G-inde- 
pendence” null hypothesis holds for D2. Therefore, given the G-null test for D, rejects, 
Theorem 12A.4 implies the “G-independence” null hypothesis is false for D,. Hence 
under either the G-independence assumption for D, or the adverse effect assumption for 
DZ (by using Lemma 12A.4), the sharp null hypothesis for D, must be false. Equation 
(12.2) can be shown to imply that the “G-independence” null hypothesis for all causes 
of death (but lung cancer) holds for MPISTG 3.3. This in turn implies that to a good 
approximation the “G”-null hypothesis for MPISTG 3.3 holds for all causes of death. 
Thus, all the tests represented in columns l-5 of Table 4 would be null. But there is 
evidence in both column 1 and column 4 against the G-null hypothesis of hIPISTG 3.3, 
MPISTG 3.3(9), MPISTG 3.3(15) and thus against Eqs. (12.2), (12.2-lag 9), and (12.2-lag 
15). Why, in contrast, did we have the good fortune (when considering the full-inde- 
pendence assumption) to find the test in column 3 for lags 9 and 15 did not reject the null? 
The reason is that for the comparisons made in column 3, the increased mortality rate 
observed in individuals off work due to the healthy worker survivor effect (shown in 
column 4-x * = 2 9 x2 = 4.1) is partly balanced by the adverse effect of arsenic on the 
mortality of the healihier individuals who remained at work (shown in column 1-x’ = 
6.2, x* = 5.5). 

Even though Eq. (12.2) is likely false, we conjecture that Eq. (12.2) is close enough to 
being true (in terms of the magnitude of the non-null associations) that given the extreme 
x’-value and large Mantel-Haenszel odds ratio associated with the G-null tests of DI , the 
sharp null hypothesis for D, can still be rejected. An active research issue is to turn this 
conjecture into a sharp theorem. 

In Sec. 12C, we consider (1) whether it is reasonable to assume that MCISTG 3.4 is 
an FR MCISTG or even an FR MCISTG RDz, (2) which assumptions among the full- 
independence, G-independence and adverse effect assumptions are a priori reasonable, 
and (3) whether we are successfully testing for the effect of exposure on lung cancer 
controlling for cigarette smoking and employment history. 

C. Testing for effects of exposure on lung cancer controlling for cigarette smoking in 
the presence and absence of data on cigarette smoking 

It would not be unreasonable to assume that, among individuals free from clinical lung 
cancer, exposure, employment, and cigarette smoking status were received at random 
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with respect to unmeasured risk factors for lung cancer conditional on past exposure, 
employment and smoking history. It would also be a reasonable approximation to assume 
that all individuals with newly diagnosed clinical lung cancer will die within .r years (e.g. 
five years). Then, OCISTG 11.1 modified so that .r = 5lt and the right circumference 
points labelled by G were the source of six internodal lines representing joint levels of 
exposure, employment and smoking status [i.e. (0, 7, T), (0, 2, c), (H, 7, T), (H, 7, c), (0, 
1, c), (0, 1, C)] would be an FR OCISTG RDz (i.e. in a world in which the only cause of 
death was lung cancer). [Note that with x = 5 years one would, in general, not consider 
the above modified version of OCISTG 11.1 to be an FR OCISTG if we considered causes 
of death other than lung cancer. For instance, individuals who leave work at t, are more 
likely to be suffering from (unrecorded) angina pectoris than individuals with the same 
past history who stayed at work. Since, while alive, individuals with angina pectoris both 
continue to be at elevated risk of death from heart disease, and are not .r-doomed for x 
= 5 years (or even 15 years), employment status is not received at random (with respect 
to unmeasured risk factors for all causes of mortality) among non-.r-doomed individuals. 
Furthermore, even among those who left work at t,, those who left due to angina pectoris 
may be more likely to give up cigarette smoking at that time than those who left work 
for purely socioeconomic reasons. As such, even cigarette smoking would not be received 
at random at t, (conditional on C(t,_ i), E(t,_ ,>, L(t,)) among non-s-doomed individuals.] 

LEMMA. In a world in which lung cancer is the only cause of death, if the above 
modified version of OPISTG 11.1 is an FR OCISTG RD2 (i.e. the healthy worker survivor 
effect lasts for less than x years) and the minimum latent period for exposure and cigarette 
smoking (and employment history) is greater than x years, i.e. for each individual i 

YD,(~ + At 1 E(t), C(t), L(t), i) = ydt + At 1 E(t - I), c(t - x), L(t - s), i)) 

then, F8.3(x) is an FR MCISTG RDz. 

Proof. Similar to Theorems 11.2 and 11.7. 

If F8.3(x) is an FR MCISTG RDz and if there is no exposure effect 
controlling for cigarette smoking and employment history (when defined 
G-causal parameters of our modified FR OCISTG Il. 1) then in RDz 

on lung cancer 
in terms of the 

?D,(t + AtlE(t - x),L(t - x),C(t -x)) = yD,(t + AtjUt - x),C(t -x)). (12.4) 

Furthermore, it may be reasonable to assume that L is not a causal risk factor controlling 
for cigarette and exposure history, since it would be unlikely that, for example, loss of 
health insurance and increased poverty would have a causal effect on lung cancer mortality 
when controlling for cigarette smoking. Under this further assumption, the right-hand side 
of Eq. (12.4) reduces to 

ydt + At I C(t - x)). (12.5) 

Epidemiologic evidence suggests that the minimum latent period for cigarette smoking 
may be short, since the mortality from lung cancer among individuals who have given up 
smoking five years previously is observed to be less than the rate among continuing 
smokers (when controlling for smoking history up to five years before the time at risk). 
Thus, five years is probably the maximum value one would wish to use for the minimum 
latent period in the previous Lemma. 

We might find it reasonable to assume that the full-independence (equivalently the G- 
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independence) assumption holds for MPISTG F8.3(x). This assumption would follow if 
one believed that, conditional on L-, C-, and E-history, unmeasured risk factors for lung 
cancer death were distributed independently of those for death from other causes. Under 
this assumption an empirical test of Eq. (12.4) (in this world) serves as a test of the null 
hypothesis of no exposure effect controlling for L- and C-history in RDz. 

Remark. Because of the assumed lack of correlation between unmeasured risk factors 
for lung cancer mortality and those for all other causes of death, the left side of Eq. (12.4) 
would equal 

yo,(ts + At 1 G = [E(t,), L(t,), C(t,)]) (where G is a generalized 

treatment of the modified OCISTG 11.1) 

both in this world (as well as in RDz) even though the modified OCISTG 11.1 is not an 
FR MCISTG in this world. 

Now suppose data on cigarette smoking is missing. We now consider whether MPISTG 
3.4 is an MCISTG. If so, yol(fs 1 G:.4, RDz) would be well defined for G:.4 “if at work, 
receive high exposure” even when there is an independent exposure effect [i.e. Eq. (12.4), 
is false in RDz]. Does this make sense? Consider an individual who, when treated with 
G:.4 in this world, leaves work at age 48 with disabling angina and dies of coronary artery 
disease at age 55. In RDz, he survives past 55. But does he go back to work? His time 
of death from lung cancer will, in general, depend on the answer. Possibly he returns to 
work at age 56 if his angina remits? But does his angina remit? It is clear why Kalbfleish 
and Prentice may have argued against believing in RDz. 

[This discussion is further complicated by the fact that one might want to eliminate the 
assumption (contained in the definition of a CISTG) that covariate history prior to time 
of death from Dz would not be influenced when cause of death Dz is removed. For example, 
one might want to assume that if death from heart disease were removed, disabling angina 
pectoris should also be removed, Formally we could accomplish this by unlinking the 
definition of a CISTG A RDz from that of CISTG A. If so, our individual who, in this 
world left work at age 48 with disabling angina, would not have left work in RDz, thus 
accumulating even larger exposures.] 

Nonetheless, from a practical point of view, the above example is not that problematic. 
We are not able to identifiably estimate survival as a function of a generalized treatment 
in RDr unless the G- or full-independence assumption holds. So it makes little difference 
whether we consider outcomes in RDz as ill-defined or as (arbitrarily) well-defined but 
not identifiable (for example, by arbitrarily assuming that all individuals who would have 
died of heart disease at age t become symptom free at t + At in RDz). We made essentially 
the same point at the end of Sec. 3E when we decided to arbitrarily define MPISTG 3.3 
to be an MCISTG. 

In contrast with the problems of estimation, we shall now see that testing of the null 
hypothesis of no exposure effect on D, controlling for cigarette smoking and employment 
history (in the absence of data on smoking) can be, relatively speaking, less problematic, 
provided that the null hypothesis of no independent effect of exposure on cause of death 
D2 holds. To begin, it seems quite reasonable to believe both that exposure is given at 
random conditional on past cigarette smoking, exposure, and work history, and that Eq. 
(8.15) holds (in this world). Now, if Eqs. (8.35) and (8.34) hold both for cause of death 
D1 and for cause Dz [i.e. when D, (D2) is substituted for D in Eqs. (8.34) and (8.35)1, 
then, at times, it may be reasonable to assume that Eqs. (8.24) and (8.26) hold as well. 
(See discussion at the end of Sec. 8D.3.) If so, then MPISTG 3.4 is an FR MCISTG, and 
for, MCISTG 3.4, the sharp (and alternative sharp) null hypotheses for D1 and DZ will 
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hold. This essentially follows from Lemma 8.24 and Corollary 8.22. But these sharp null 
hypotheses imply the “G-independence” null hypothesis for both Di and D2 (by Lemma 
12A.3). Thus, if the G-null test for D, and D2 both accept (see Theorem 12A.4), we might 
well accept that exposure has no effect on death from either DI or D2 when controlling 
for cigarette and employment history. 

Nonetheless, even in this setting, the full- and G-independence assumptions will not 
in general hold, especially if, as discussed at the end of Sec. 8D.3, an individual’s health 
status influences cigarette smoking behavior (since, then yo,(ts 1 G:.‘, RDz) will again 
depend on whether our previous subject’s angina remits after the would be date of cardiac 
death.) Even if illness status does not determine cigarette smoking behavior the full- and 
G-independence assumptions cannot hold for MPISTG 3.4 [or 3.4(x)1, even under the null, 
if they hold for MPISTG F8.3(.r) and cigarette smoking is a cause of both lung cancer 
and death from other causes. 

Suppose that if, for MPISTG 3.4, the “G-independence” null hypothesis held for D,, 

then, for MCISTG 3.4, we would accept the sharp null hypothesis holds for DI. (If one 
were willing to make the assumptions concerning MCISTG 3 .-i described in Remark 12.1, 
one might be willing to use this decision rule). Then if, for MPISTG 3.4, the “G-inde- 
pendence” null hypothesis for D2 failed to hold and that for D, held, one would accept 
the sharp null hypothesis of MCISTG 3.4 for D,, but this would not count as evidence 
for the null hypothesis of no effect of exposure on D1 controlling for cigarette smoking 
and employment history. This follows because the sharp null hypothesis of MCISTG 3.4 
for DZ must be false. A likely explanation for which is that either Eq. (8.34) or (8.35) is 
false for D1. But, as discussed at the end of Sec. 8D.3, if Eq. (8.34) or (8.35) is false (even 
if only for D,) then, in general, either Eq. (8.24) or (8.26) will be false. If Eq. (8.24) or 
(8.26) is false, then, even when there is no exposure effect on D, controlling for cigarette 
smoking and employment history, the sharp null hypothesis of MCISTG 3.4 for DI will, 
in general, not hold. Thus, even when we accept that discover the sharp null hypothesis 
for D, does hold, we will not be inclined to conclude that exposure has no effect on D, 

controlling for L- and C-history. 

D. Extension of our results to other studies 

It is common for risk factors for death to be determinants of future exposure in a variety 
of mortality studies outside of occupational epidemiology. For example, in studying the 
effect of exogenous estrogens on mortality, an investigator needs to be aware that phy- 
sicians frequently withdraw women from exogenous estrogens at the time they develop 
hypertension or angina. 

Similarly, in observational studies of the efficacy of cervical cancer screening on mor- 
tality, women who have had operative removal of their cervix due to malignancy are no 
longer at risk for further screening (i.e. exposure). This example was pointed out to the 
author by Alan Morrison. For example, suppose MPISTG 3.4 represented the results of 
an observational mortality study of screening for cervical cancer where women screened 
at t, are H, women not screened at t, are 0, 1 t, - t,_ , 1 = 1 day, individuals with (without) 
a cervix at ts are 1 (1), respectively, and we suppose among women with a cervix that, 
conditional on past screening history, screening status at t, is received at random. Then, 
MPISTG 3.4 is an FR MCISTG. (Note women who are 1 at ts have probability 0 of 
becoming 1 at later times.) 

In this setting, Sasco et al. (25) recently suggested one could analyze the results of 
such a study from case-control data by using design and analysis strategy 3 as defined in 
Sec. 9C. But, as pointed out in Sec. 9C, if exposure (screening) history is a determinant 
of l-status (which it almost certainly is, even under the null hypothesis), then design and 
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ZinalySiS Strdtegy 3 does not produce valid tests. Rather, if, as is possible, I-status is a 
determinant of mortality (since individuals with invasive cancer are among those who 
have their cervix removed), then only the G-null test for MPISTG 3.4 is a valid test of 
the null hypothesis of no overall effect of screening history on mortality. Furthermore, 
based on the results given in Sec. 9A. we are unable to test, using case-control data, the 
null hypothesis of no direct effect of screening on mortality. controlling for cigarette 
smoking, if women, sobered by the experience of needing to have their cervixes removed, 
change their cigarette smoking habits. (In this setting, as in Fig. 9.la and 9.lb. MCISTG 
5.3 will be an FR MCISTG, smoking is an independent risk factor for death. L is an 
independent predictor of future smoking history and of death, and exposure is an inde- 
pendent predictor of future L-status.) 

The extension of our results to outcomes other than mortality is, at least in a theoretical 
sense, straightforward. For example, if an investigator believed that MPISTG 3.4 was an 
FR MCISTG, the population distribution of employment history L(rs_ ,) can be estimated 
for the hypothetical studies defined by the generalized treatments of FR MCISTG 3.4. 
The interpretation is complicated by the fact that death censors f.(t,+ ,). One might be 
interested in the effect on the covariate’s history in a world in which death has been 
removed. In that setting the “G-independence” and “full independence” assumptions 
and null hypotheses for death from D, can be generalized to arbitrary time-dependent 
covariates. 

To be precise: suppose that whenever we speak informally of the causal effect of 
exposure on a time dependent covariate I 5, as defined in Appendix G, [e.g. on cigarette 
smoking history, C(r,Y), where paths of possible C(t,s) are the various .if] we are referring 
to the effect of exposure on ff in a world without death. We denote such a world by RD. 
We have the following definitions and results. (These results are numbered to correspond 
to their isomorphic counterparts in Sets. 12A and B. Since we have changed the ordering 
of the definitions slightly the numbers are slightly out of order.) 

Definition 12D.1. Given a PISTG A, the full-independence assumption holds for Z$ 
if and only if for all .i;’ , y(*it ) RD) = y(.i:‘). 

Definition 12D.4. p’(.i! 1 “G?“) = p’(.iJ,(t,& I)rl ) “G;‘“) is the product of intranodal 
probabilities r(.iJ [ending with (si.,)] on the sequence of inter- and intranodal lines con- 
necting the left circumference of the t, node to node .iJ,(t,+ ,). 

Definition 12D.5. y(.if_, 1 “G’;‘“) = p[.if+, [ “G:“, .?I. The term on the right is 
defined in Definition G. 1. 

Definition 12D.6. y”(.if+~ 1 “Gf”) is defined exactly like y(.if-, 1 “G?“) 
except pY.i,j,(t,+ ,)A ) “Gf”) is substituted for p(.iXj,Y(f,, ,)A 1 “G.:“). Note 
y(.i:_, 1 “G’:“, RD) = y’(.i:+, 1 “G;“‘, RD). 

Definition 12D.8. p,;[.i,B ( “G;‘“] = p(iy) fi y(.jf ( -‘offs). 
L=Z 

Definition 12D.9. p$.if ) “G;‘“] is similarly defined except yA replaces y. Note: 
p;;[.i: 1 “@“I = p’[.is” ] “.;,“I, where p’[+if ) “G?“] is defined like p[.if I “G?“] 
(which is defined under Definition Gl) except p”[.it I “G?“] replaces p[.i:’ ( *‘Gf”]. 

LEMMA 12D. 1. Full independence for 1: implies yA(.if, I 1 “GC”) = y(. 
if+, 1 “CT”, RD). 
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Definition 12D.7. The G-independence assumption holds for Z4 if and only if’ y(. 
if_, 1 “GT”) = y(.if_] 1 “Gf”, RD). Note if within each node all intranodal lines have 
a unique value of .if, then y(.if_, j “Gf”) = y’(.if,, 1 .‘G;‘“) (e.g. this would be the 
case for MPISTG 3.4 with L(r,) determining levels of .if). 

THEOREM 12D. 1. If MPISTG A is an FR MCISTG RD and the full-independence 
assumption holds, then y.‘(-it_ 1 1 “Gi”‘) = y(.if_, 1 G;\, RD) where the expression on 
the right refers to probability statements about outcomes in RD when the population is 
treated with G?. 

THEOREM 12D.2. If the G-independence assumption holds for FR MCISTG RD A, 

$-if+, ( “G?“) = y(*if+I 1 G;‘, RD). 

Definition 12D. 11. The “G-independence” (“full-independence”) null hypothesis 
holds for Zg if the -y[.if+ i 1 “G:“] (yh[.ifl+ I 1 “G?“]) are the same for all G’: E G”. 

THEOREM 12D.3. If Eq. (12.1) holds with D substituted for Dz and the “full-inds- 
pendence” null hypothesis for Zf holds then for tk 5 t, 

P[.if+ i 1 -if, ‘ik, ‘idkr D > t,+ i] does not depend on .iJ,. (12.6) 

If each intranodal line corresponds to a different level of .if, both the “full- and G- 
independence” null hypothesis for ZS imply Eq. (12.6) holds. 

THEOREM 12D.4. If Eq. (GS) holds, then the “G-independence” null hypothesis for 
Zf implies Eqs. (12.6) and (G3A) hold. 

THEOREM 12D.5. If Eq. (12.2) holds with D substituted for Dz, then y(. 
if+, ) “G?“) = yA(+if+, 1 “G?“). A test for Eq. (12.6) can be const,ucted in a manner 
exactly like that described in Sec. 9 for testing Eq. (8.22). It can be shown simply by 
changing the rotation in Corollary El that the contributions to the test statistic numerator 
from tables [‘ik, t,, 1] are uncorrelated when Eqs. (12.6) and (G3A) both hold. 
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APPENDIX A 

In this Appendix we review some concepts that will be used in the paper. Consider a statistical 
model with minimal sufficient statistics (T, Q) and parameters P = (P,, P2), where T, Q, PI ~ P2 
are possibly vector valued with the following property. 

f(K Q; PI 3 P2) = f(T / Q; P,)f(Q; Pz), (Xl) 

where f either is a density function or a probability function, and any value of PI can arise with 
any value of PI. The following are trivial to show: 

(1) In a Bayesian framework, if PI, Pr have independent priors, then the posterior distribution of 
PZ depends on the data only through Q. 

(2) The maximum likelihood estimator of PI and the observed information matrix or expected 
information evaluated at the maximum likelihood estimate depend on the data only through 

Q. 
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(3) Pure likelihood inference based on maximized relative likelihoods for P2 depend on the data 
only through Q. 

Furthermore, by definition, Q is called a cut, and Q is said to be S-sufficient for P2, and S-ancillary 
for P, [26]. By extended principles of conditionality and sufficiency, frequentist inference on P2 is 
from the marginal distribution of Q, and on PI is from the conditional distribution of T given Q. 

More generally suppose, 

f(T Q; PI, Pd x L,(P,; Q, T)LzV’z; Q). 642) 

If any value of PI and P2 can appear together we continue to call Q a cut, contrary to standard 
usage. If Eq. (A2) holds, then (l)-(3) above still hold. If the functions L, and Lz in Eq. (A2) cannot 
be interpreted as the conditional distribution of T given Q and the marginal distribution of Q, 
respectively, Q is not S-sufficient. (Note that if P, is infinite dimensional and Pz is finite dimensional, 
the standard large sample properties of the maximum likelihood estimator of P2 will be valid under 
regularity conditions if Lz(P2; Q) is a partial likelihood). 

EXAMPLE. Suppose X, Y, Z, V are random variables with X - Bin(N, 8,). N a known constant; 
Y 1 X - Bin(N - X, I!@; Z 1 Y, X - Bin(N - X - Y, &); V 1 X, Y, Z - Bin( Y, 0,). Let Q = (X. 
Y, Z), T = V, P2 = (6,, El,), and PI = (Cl?, 8,). Then Eq. (A2) holds with 

L,(p,; Q, z-) = e;(l - ez)“-x- Ye,Y(I - wy-” 

LdP2; Q, = ei e, X ,N-Xgfo$V-X- Y-z). 

Equation (Al) is false and Lz is a partial likelihood. 
This example could represent a study of survival time in which 8, was the probability of survival 

from start of follow-up to some time tr. At t2 survivors were independently and instantaneously 
censored with probability &. & represents the probability of survival from time tz to end of follow- 
up in uncensored individuals. &, might represent the probability that a censored individual is a male. 
Thus, Y would represent the censored individuals and V, the male censored individuals, and some 
way or another the value of V is made available. It follows that inference on the probability of 
survival up to end of follow-up, i.e. 8,%, would, for a likelihood-based frequentist or a Bayesian 
with independent priors, depend only on the data through Q. 

When Eq. (AZ) holds, we will say that Q is L-sufficient for Pz. When L- is a partial likelihood, 
we will say that Q is PL-sufficient for Pz. 

Consider that Eq. (A2) held but PI - &P2 = 0 was known a priori. Then the priors for PI and 
P2 are no longer independent, and thus the posterior distribution will depend on the data through 
T; the restricted maximum likelihood estimator of P2 given PI - iP2 = 0 and maximized relative 
likelihoods for P2 will depend on the data through T; every value of P2 cannot arise with every 
value of PII so by definition Q cannot be a cut for Pz. A prior restriction that functionally depends 
on both P, and P2 will be called a cross over since it crosses over the “cut” between PI and Pz. 
On the other hand, the restrictions such as P, = 5 or P, = 6 do not cross over, and properties l- 
3 above continue to hold. 

APPENDIX B 

LEMMA B 1. IfP(G 1 i) = p(G) and Eqs. (2.1) and (2.3) hold then yr(t I E(t), G) = yr[t I E(t)]. 

Proof. YL(~ 1 E(t), G) = Zi yL.(f 1 E(t), i, G)p(i 1 E(r), L > t. D z=- t, G). By Eq. (2.1) the first 
factor in the sum does not depend on G. The lemma follows if we can show 

p(i 1 E(t), L > t, D > t, G,) = p(i ) E(t), L > t, D > t). (Bl) 

Let Z[G,(t)] be the subset of the population such that L > r, D > t when assigned any G such that 
G(t) = G,(t). By (2.1) and (2.3), Z[G,(t)] is well defined since by (2.1) and (2.3) Z[G,(t)] cannot 
depend on g(lc) for 11 > t. Now Eq. (Bl) may be restated as p(i 1 G,) = p(i), i E Z[G,(t)] II {i; GXt) 
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= G,(t)} (where {i; G,(r) = G,(r)} is the set of individuals assigned a G such that G(t) = G,(t)), 
which follows immediately from the fact that p(i / G) = p(i). The proofs that the nonidentifiable 
temporal assumptions plus randomization imply the other two identifiable temporal assumptions 
are similar. 

THEOREM Bl. If the identifiable temporal assumptions hold a priori. then {(Li, E(Li), Di)} are 
sufficient in the ordinary sense (i.e. B-sufficient) for {(p(D > r 1 G); for all G on test}. 

Proof. For notational convenience in this proof, we without loss of generality define Li = D; 
if an individual i dies on treatment protocol. 

p(L, D, E(L), G) = p(G 1 L, E(L), D)p(L E(L). D). 

If the identifiable temporal assumption holds, then the tirst factor in the above likelihood factori- 
zation equals p(G 1 E(L)), which depends only on the investigator’s known choice for the distri- 
bution of projected exposure paths under study, i.e. the randomization scheme. Thus {(L+, E(Li), 
Di}, i indexing the individuals studied is sufficient in the ordinary sense (i.e. B-sufficient) for p(D 
> t 1 G). 

APPENDIX C 

Proof of Theorem 4.1. The theorem follows by induction from the following three lemmas. 

(For notational convenience, we use p(. 1 .i,, .) to mean DC. 1 .i,. D > r,. B. .) where B is the 
CISTG of the theorem.) 

,- . . -. I. 

LEMMA 1. If Eq. (4.5) holds and if, for all G, 

p(H(,i,) 1 .i,, C) = p(ff(~iJ I .i,) 

then p(H(.i,) j .ij,, .i,) = p[H(.i,) / ‘i,, .isjs, Cl, S(.i,j, 1 G) = S(.ij,), and y(.i,_, / G) = 

Proof, 

But 

S(.iSjA = c p(D > ts+l 1 .iJ,, H(.i,))p(H(%) I .iJ,, .i,). 
H(.is) 

p(H(.i,) 1 .ij,, .i,) = p[H(.i,) 1 .i,] = p[H(.i,) 1 .i,, G] = p[H(.i,) I .i,, .ij,, G]. (C.3 

The first equality follows from the definition of an R ISTG [i.e. Eq. (4.5)], the second from sup- 
position (Cl) and the third from the fact that, in the unobserved study defined by G, .i, determines 
.ij,. Also 

P@ > fr+l I %.L, H(.L)l = p[D > tsel I .iJ,, H(.i,), Cl (C3) 

since H(.i,) includes information on survival to rs+, given .ixjs. Therefore, S(.ij,) = S(.ij, I G). 
Now 

r(.&+l) = x p(*i,+l I .ij,, D > tstl, Ht*i,))p[H(*i,) 1 %i,, D > t,-lQl. 
H(.i,) 

By definition of H(.i,), the first term is 1 or 0 and is unchanged in the study defined by G. By Bayes 
theorem 

p[ff(.i,) 1 .ij,, D > tr+,, .i,)] = 
P(D > ts+t I H(.i,), ,ij,, .i,)p(H(.i,)) I -ij,, .i,) 

‘cH(+,) dD ’ fx+ 1 j H(%), ‘id, ‘i,)p[H(‘i,) / ‘ids, ‘is] * (“) 
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But by (C2) and (C3), no term on the right side of Eq. (C4) is changed in a study defined by G. 
Thus, y(.i,,,j = y(.i,_, 1 G). 

LEMMA 2. If p(H(.i,) 1 .i,) = p(H(.i,) 1 ‘i,, G) and Eq. (4.5) holds, then p(H(.i,_,) 1 .isti) = 

p[H(,i,-lj 1 +,+,, Gl. 

Proof. p[H(.i,+,j I .i,+ll = CH(.&) p[ff(~k~,) I ff(.i,), . .l,,,]p[H(.i,) 1 .iST1]. But, since H(.i,) 
determines H(.i,,,) = H(.i,j,i,+, , ) the first term in the sum is 1 or 0 and is identical in a study 
defined by G. 

p[H(.i,) 1 .is+ll 3 p(H(.i,) I .i,, .ij,, D > t,+~, .iJ,i,,,j 

P[D > ts+l, .4j,i,+l = I .ij,, H(+i,)lp[H(.iJ I .iJ,, %I E e 
p[~k.k+t I D > t,+~, ~iJ,lp[D > ts+l 1 %_Ll CD 

where A, B, C, and D correspond to the four terms in the previous expression and we have used 
Bayes’ theorem. By definition of H(.i,), A is unchanged in a study defined by G. By Lemma 1, B, 
C, and D are also unchanged in such a study. This proves the lemma. 

LEMMA 3. p(H(.il) I il) = piM.i,) I .il, Gl. 

Proof. Obvious, since the subset .il is the same subset in the observed study as in a study in 
which all individuals are given G. 

APPENDIX D 

In this appendix we discuss the results of analyzing the copper smelter cohort data by the methods 
described in Sec. 5B under the model specifications 

PD.&I = pl.o[ce(t).[l - I(t)11 + P2,LJ(t, 

+ P3.D[Cl(f).Kf)l + P4.LJ[ce(tMt)l. 

PL..XL = Pl.Lce(r) + PdzR~CR(t)l + f33,r[ce(c)4t - tJ], 

PR.XR = h.Rce(f) + b.~[Cdf)'(t - th)] + @3,R[cr(t)], 

PI) 

UW 

(D3) 

where 

(1) 

(2) 
(3) 
(4) 
(5) 

letting e(u) be a quantitative estimate of exposure concentration received at time U, cc(t) is 
the sum of the biannual measurements e(u), taken on an individual up to age r. It is a discretized 
version of lifetime cumulative exposure. 
th is age at hire. 
r(t) = 1 if an individual is out of work at r and r(t) is zero otherwise. 
Cl(t) is the number of years since last at work. 
IR is an indicator variable taking the value 1 if an individual has ever been off work since time 
of hire and 0 otherwise. 

(6) CR(r) is the number of years elapsed since an individual was last off work. 
The above models are simplistic and are used for illustrative purposes. They are not the basis 

of a definitive analysis. They do have a number of desirable features: 
(1) 

(2) 

(3) 

(4) 

For the outcome of death, the variable t is used to represent age as mortality rates are most 
strongly related to age [13]. 
The incidence of death should be allowed to depend on time since hire, since at hire workers 
were selected into the workforce on the basis of health. Stratification on five year intervals 
of age at hire performs this function. 
The relative risk associated with cumulative exposure (for mortality) may differ for workers 
at work at t and workers out of work at t (i.e. p,.o # /3d.o). In addition, the effect on mortality 
of being out of work at t (i.e. pZ,o) may be modified by the length of time one has been out 
of work (i.e. 13~.~). 
The conditional probability of leaving work at t may depend on the time since an individual 
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Table 5. Maximum partial likelihood estimates of 
coefficients of Eqs. (5.1)-(5.3) with covariate 

specification given in Eqs. (Dl)-(D3) 

Death (D) 
Failure type 
Leaving (L) Return (R) 

- ,003 (.OOlS)f - ,049 (.Oll) .023 (.025) 
.I6 (.06) - ,008 (.013) - .Oool (.0070) 

P3 - ,008 (.003) .0016 (.0004) - ,367 (.031) 
P4 .002 (.0013) - - 

t Standard errors in parenthesis. 

was last out of work (i.e. Pz.r). In addition, the effect of cumulative exposure on leaving work 
may be influenced by the number of years since hire (i.e. P3.r). 

(5) The conditional probability of returning to work might depend on the number of years since 
an individual was last at work (i.e. P3,R). In addition, the effect of exposure on the conditional 
probability of returning to work may be modified by time since hire. 

Results. In the data available to us, exposure at work was measured as high, medium, or low 
(as opposed to high or zero as in Fig. 3.4) and coded as 3, 2, 1, respectively, when computing ce( t). 
Thus, MPISTG 3.4 needs to be modified to reflect the actual study data by having three internodal 
lines (representing the three exposure levels) originating from each right circumference point that 
represents individuals at work. Table 5 gives parameter estimates and standard errors (computed 
from the inverse of the estimated expected information matrix) based on fitting models (5. I)-(5.3) 
by the method of conditional logistic regression. 

For individuals who in the observed trial had Z(t,) defined by being born in 1902, beginning 
work in 1935, and staying at work continually at high-exposure jobs until start of follow-up in 1938. 
Table 6 gives Monte Carlo estimates (and, in parentheses, Monte Carlo standard errors) of the 
survival curves up to age 3.5, 55, and 75 that would have been observed in two different hypothetical 
studies. The first of these studies, labelled GH, is that defined by the generalized treatment of the 
modified MCISTG 3.4 “if at work (after 1938), receive high exposure”. The second study, labelled 
Go. is a hypothetical study in which each individual in the subset received “zero exposure when 
at work (after 1938)“. Such a study is technically not represented by a generalized treatment of 
the modified MCISTG 3.4, because no unexposed jobs existed in the factory. Nonetheless, we 
assumed that models (5.1)~(5.3) would give valid estimates of S[.i,j, 1 Go, [Z(t,)]] and y(.is 1 Go, 
[Z(C,)]) if they do so in the hypothetical studies defined by the generalized treatments of the modified 
FR MCISTG 3.4 (i.e. we assumed, we could use the models to extrapolate beyond the range of 
the data). The Monte Carlo standard errors are based on a N of 200 Monte Carlo trials. We did 
not carry out any bootstrap replications. Therefore, the true standard error of the estimates of, e.g. 
s(t 1 “Gy.‘, Z(t,)) is not known. Thus, although there is a suggestion of an adverse effect of “high 
exposure if at work” on the probability of survival to age 75, we cannot tell if it is statistically 
significant. We return to the question of its statistical significance in Sec. 6, at which time we 

Table 6. Comparison of the estimated survival probabilities in hypothetical 
studies of a cohort of arsenic-exposed copper smelter workers 

Age 

Study 35 55 75 

GHt 9921 (.0005)C .873 (.013) .325 
Go: 

(.005) 
,992 (.OOOS) ,874 (.004) .370 (.002) 

t Generalized treatment of “if at work past start of follow-up, receive high 
exposure” for the subset of the observed study population hired at age 32 
in 1935 remaining on work at high exposure until start of follow-up in 1938. 

$ Generalized treatment of “if at work past start of follow-up, receive zero 
exposure” for the same subset of the population. 

5 Estimated survival probability. 
T Empirical Monte Carlo standard error. 
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compare our results with those obtained using the standard approach of assessing the relationship 
of mortality with cumulative exposure. 

Since l& and l& were significantly different from zero, it appears that employment history 
is a population risk factor controlling for exposure history (as defined in Sec. 3G). As discussed in 
Sec. 3G, that raises the question of whether the empirical healthy worker survivor effect is operative. 
We have performed a partial but not exhaustive check of the empirical healthy worker survivor 
effect as follows. We used to estimate the Monte Carlo version of G-computation algorithm, for 
a group of workers who remained at work at high exposure through age 56 [with the Z(t,) used 
above], the probability of survival to 75 for the subgroup who left work at age 57 compared to the 
subgroup who remained at work at 57 when both subgroups were treated, beginning at age 57, with 
the generalized treatment “if at work receive zero exposure .” Survival probability for the “off 
work at 57 subgroup” was .26 and for the “at work at 57 subgroup” .31. Similar survival differences 
were obtained comparing groups at work and off work at age 47 and at age 52 (in each case when 
treated with the generalized treatment “if at work receive zero exposure” beginning at the cor- 
responding age). Thus, it appears that “the empirical healthy worker survivor effect is operative.” 

We give an informal discussion of why the results in Table 5 and Table 6 might be as observed 
in order to give the reader a sense of the issues involved. Our discussion is overly schematic and 
simplistic. It treats the models as correct and their estimates as precise. It is a form of Monday 
morning quarterbacking, since we are making up explanations to tit our results. Other quite different 
explanations may be equally plausible. Nonetheless, we do think it is valuable to give a sense of 
how one might think about the plausability of the results and the causal mechanisms that might 
have produced them. First we show how the estimates in Table 5 might lead to the survival curves 
in Table 6. Then we discuss possible sociobiologic explanations for why the results in Table 5 were 
observed. First we summarize the main results in Table 5. In Table 5, the group of unexposed 
individuals off work at t are, in general, at greater risk for death than the group of individuals at 
work at t(fi2.o = 0.16). This excess risk wears off with increasing time off work. Unexposed in- 
dividuals off work for more than 20 consecutive years have a lower risk than unexposed individuals 
at work (i.e. &, + 20& .D = 0). In addition, increasing exposure increases the risk of death in 
the subgroup of individuals off work but not the subgroup at work (p,., < 0. ply 1 0). Exposure 
protects individuals from leaving work within the first 30 years from time of hire. After 30 years, 
increasing exposure increases the rate of leaving work (i.e. pl,L + 30& = 0). Exposure has little 
effect on the incidence of returning to work. 

The estimates in Table 5 might predict the adverse effect of high exposure, as seen in Table 6, 
due to the conjunction of the following facts. (Caveat: Here we are predicting the results of the 
Monte Carlo estimates of the G-causal parameters based only on estimates of the coefficients with- 
out considering the nuisance hazards. This is fraught with danger but we give it a try.) 

It is known that most deaths occur at age 60 and above (i.e. greater than 28 years from hire for 
individuals treated with GH or Go). Highly exposed individuals treated with GH have a tendency 
to remain at work, possibly until age 60. They then start leaving work at a rate faster than unexposed 
individuals treated with Go. Therefore, at age 60 there are a number of highly exposed individuals 
recently off work with high cumulative exposures. They will experience high mortality rates due 
to the fact that l&, and fi4.D are positive. In contrast, workers treated with Go have a tendency to 
leave work soon after start of follow-up in 1938 and, if they do not return to work. the excess 
relative risk associated with leaving will be dissipated by the time they reach the age (i.e. 60) at 
which the baseline risk of death is finally high. These remarks could explain the difference in survival 
curves that is observed. 

The estimates observed in Table 5 could reflect some or all of the following sociobiologic factors. 
(1) Most individuals leaving work soon after time of hire leave not for health related reasons 

(but rather for economic and social reasons). 
(2) In this factory, it might have been the case that for social and economic reasons, the turnover 

rate in the first few years after hire is greater in low than high-exposure jobs. 
(3) Individuals who leave employment at later ages (e.g. age 50-60) are often individuals who 

have developed chronic diseases. 
(4) Exposure is a cause of chronic disabling disease. This would explain why the leaving rate 

finally increases with increasing exposure after 25-30 years from hire. 
(5) 55-60 year old individuals who left work due to disability have a high mortality rate compared 
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to workers who are still remaining at work (i.e. &.n = 0.16). (Note that since most deaths occur 
after age 55 it will be these deaths that determine the estimate of Bz,n. In particular. if the model 
is misspecified and B2.n varies with age, our estimate of the relative risk associated with recently 
leaving work will be biased for the young individuals.) 

(6) Among individuals who left work near age 60, by (4) above, exposure is a marker of chronic 
disability. Thus, increasing exposure is associated with a higher relative risk (i.e. pl,, = 0.002). 
Exposure may also be an irritant that affects unhealthy individuals. Therefore, unhealthy individ- 
uals, whether unhealthy from the effects of exposure or not, tend to leave highly exposed jobs in 
their later years. Thus, individuals who accumulate high exposure and remain at work must be 
healthy individuals and thus fii,n < 0. 

(7) Individuals who left work soon after start of follow-up tend to be healthy years later (i.e. 
pz.n + 20p3.D = 0) for two separate reasons. (1) The group of individuals leaving work at any age 
is a mixture of healthy and disabled workers. Disabled workers die off over time, leaving healthy 
workers. (2) Most individuals who left long ago in their twenties and thirties did so for socioeconomic 
reasons and not due to chronic disabling illness. Thus, their risk will not be high years later. (From 
other occupational health studies there is some evidence that individuals who leave work soon after 
hire may be individuals who have difficulty holding a job due to problems with drinking, etc. As 
such, they are often observed to have higher mortality rates in their later years. We see no evidence 
of this in our analysis, although we do find such evidence in Sec. I 1E when we reanalyze this data 
using another analytic approach.) 

APPENDIX E 

Proof&Theorem 6.1. (I. Since A is an R CISTG it follows from Corollary 4.1 that we need 
to show that for any PISTG, if for all a&j,, *iJJ, S(r 1 .ij,) = S(t 1 .ijJ), then S(t 1 “G:“) = 
,S(t 1 “G:“) for all “Cf.‘, G:.” The proof follows by indJction. We assume the theorem is true if 
for a PISTG of S generations and show that it is true for S + 1 generations. Suppose A has S + 
1 generations. Now by supposition p(D.> tk 1 .i,j,) and S(.i,j,) can be written as p(D > tk 1 .i, -) 
and S(.i, -). Thus 

Furthermore, 

p[D > tk 1 ~~GA[~iljl(IZ)l~~ 1 = P[D > tl, I A[.fLjdt2)11 (El) 

fk 1 ('i, - (t2)). 

since we have assumed the theorem holds for PISTGs of S generations and we have used Lemma 
4.2. But 

P[D ’ fk I A[~iJdf,)ll = p[D > tk 1 -i~j,(td] = p[D > tk 1 [.il - (t2)]], 03) 

where the first equality is definitional and the second follows from above. Now, from its definition, 
for k B 3. 

p(D > tk 1 “GA") = s p[D > tk 1 “GA(.iy"(r2))r']S(i,jl)p(il), 
il=l 

(E3) 

where the j,(i,) are determined by “GA” and “GA[‘iU”(t2)1” is the highlighted subgraph of graph 
A[*iJl(rz)] induced by “GA.” But by (El), (E2) and our supposition, no term on the right of the 
equality sign in Eq. (E3) depends on j,(ii) and thus on “GA”. The theorem now follows by checking 
that it is true for t2, and seeing that it is true for a PISTG of two generations. 

j. The proof in this direction follows by noting that p(D > f 1 .isjs) - p(D > t I .ij:) can be 
written as [.S(t 1 “G?“) - s(t 1 “Gf”)]/p(*i, I “GA”) for a PISTG B coarser than A. The proof 
follows by applying Lemma 4.3. 
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Preliminaries to the statement to Theorem El. Consider a cohort mortality study represented 
by an IMPISTG A with tl, . . . , t41 being the ordered death times. Let D(.i,, t,) be the number of 
individuals who died at t, who are in .i, and let JD(.i,, t,) be the D(.i,, r,)-dimensional vector of 
the treatments j,(.i,) they received at t,. Similarly, let K(.i,, t,,,) be the set of individuals at risk to 
die at t, who are in .i, and JK(.i,, t,) be the vector of treatments they received at t,. Let F(.i,, t) 
be the event that, for each individual in ‘i,. records the treatmentj,(.i,) received at t, and subsequent 
failure and censoring history through t. Let F(.i,, t -) be F(.i,, t) except that it records failure and 
censoring history only to a time t- just preceding t. [In our discrete set-up this would be to t - 
At.] Let F+(*‘i$, t) contains the information in F(.‘i$, t) only for those individuals who were also 
in ‘is. Let O(.i,, t,) and E(.i,, tm) be respectively functions of JD(*i,, t,) and JK(.i,, t,) ifD(.i,, 
t,) > 0. Otherwise, both O(.i,, t,) and E(.i,, t,) are defined to be zero. The functions 0(-i,, t,) 
and E(.i,, t,) may be many valued but they must have the same dimension. Define A(.i,, t,) = 
O(.i,, t,) - E(.i,, t,). 

THEOREM El. Suppose for all .i,, *i,j,, .iji, 

-f&t I U) = YD(~ I .iJl), t > t, (E4) 

and E[A(+i,, t,,,) / F(.i,, t,)$(.i,, t,)] = 0 and there is no censoring before end of follow-up. Then 

Cov[A(.i,, t,), A(*‘$, t,,,,)] = 0 if .i, f *‘ii, or t, # tnts. 

Proof. The theorem would follow upon taking unconditional expectations if we can show that 
for all t: 5 t,, 

E[A(.‘$, tk)A(.i,, I,) 1 F(.i,, t,), D(.i,, t,), F(*‘i$, t,,)] = 0. 0% 

Since A(.‘$, 1;) is fixed given the conditioning event, and since the event [F(.‘i:,, t,,,,) - 
F.i,(*‘i:, , t,,)] does not contain information on individuals in +i,, it follows from the assumption of 
independent random sampling that we need only to show that E[A(.i,, t,) 1 F(.i,, t;), D(*i,, t,), 
F.i,(.‘i:*, t,,)] = 0. This will follow ifJD(.i,, t,) II F.,(.‘i:,, t,,) 1 F(.i,, ti), D(.i,, t,) where the 
notation A LI B 1 C means A is conditionally independent of B given C as in Dawid [lg]. We need 
to consider three cases. 

Case 1. If f,, < t, the F.i,(.‘i:,, t,,) is fixed given F(.i,, t,) and (ES) follows immediately. 
Case 2. If t, = t,, and fs = t,,, then since *‘ii, # ‘is, F.i,(.‘i$, t,,) is the empty set, and (E5) 

follows. 
Case 3. The only interesting case is if rm, 2 t, when tf < t,. Equation (E5) then follows by 

the supposition of equal survival curves without censoring. 
By essentially the same argument, we have 

Corollary El. Theorem El holds in the presence of right censoring if Eq. (El) holds for the 
“censoring” hazard as well as for the death hazard. 

APPENDIX F 

THEOREM F 1. If MPISTG B is a Stage 0 reduction of MPISTG A and Assumptions R defined 
below holds, then B is the Stage 0 PL-sufftcient reduction of A under Assumptions R. 

Assumptions R. For each .ijf and for all .i&’ such that [.i&‘] C [.ijf], 

S(.i,j:) = S(*ijf) W) 

p(X+l I M(.f,+d) = p(.if+l I %.Z(t,+~), U;‘). (F2) 

Proof. See Ref. [7]. 
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Corollary Fl. Under the suppositions of the above theorem if G: has a Stage 0 counterpart 
Gf then .Y(t, 1 “G:“) = S(r, 1 “Gf”) and p(.if 1 “G:“) = p(.if 1 “Gf”). 

Proof. See Ref. [7]. 
Our next major result, Theorem F2, requires some introductory definitions. 

Definitions. If a PISTG B is a Stage 0 reduction of a PISTG A and for any .ijf, given [-$1 
contained in [.if] there exists an [.ij;‘] contained in [.i,jf]; we say that B is a semimelded reduction 
of PISTG A. If the +ij$ is unique, we say that B is a melded reduction of A. 

LEMMA. If B is a semimelded reduction of PISTG A, then B is a B-complete Stage 0 reduction 
ofA. 

Proof. Given a GE for each .iJ$’ on the highlighted subgraph GE find the complete set of .i$ 
that is contained in .if. Choose from each such .it a single .iJ’: contained in .iSjf. This is possible 
by the definition of semimelded. The set of such .ij$ are seen to determine a G” with counterpart 
GE. 

LEMMA. If B is a melded Stage 0 reduction of PISTG A, then B is a unique B-complete Stage 
0 reduction of A. 

Proof. Obvious. 

EX.V.IPLES. PISTG 3.5 is a melded reduction of PISTG 8.1. PISTG 3.5 is a semimelded reduction 
of PISTG 8.3. 

Remark. The converses of the last two lemmas are false. 

EXX.[PLE. PISTG 7.lb is a unique B-complete reduction of PISTG 7.la, but it is neither a 
semimelded nor a melded reduction. 

Remark. If PISTG B is the melded Stage 0 reduction of PISTG A, then PISTG B’ coarser than 
B is the melded Stage 0 reduction of a unique PISTG A’ coarser than A. A’ is constructed as follows: 
if, in forming B’ from B, the set .iJ$! arising from any .if IS divided into K mutually exclusive subsets 
(each with its own right circumference point); the .iJj:: arising from each .i: contained in .if are 
divided into K mutually exclusive sets in such a way that the .iJc remain contained in the original 
.iJfl. We call A’ the antimeld of B’. 

THEOREM F2. Suppose PISTG B is a melded reduction of PISTG A, and Gf is a Stage 0 coun- 
terpart of G:. If for all .i: and .‘iiA on highlighted subgraph Gf such that [.i:] and [.‘iiA] are 
contained in the same [.if], y(.i&‘) = -y(.‘iijiA) (where .i&’ and -‘iJjl” are on subgraph G:), then 
.S(t, 1 “Gf”) = .Y(t, 1 “Gf”) and p(.if I “G:“) = p(.ia 1 “Gf”). 

Proof. See Ref. [7]. 

Remark. The above theorem is false, when PISTG B is a unique B-complete Stage 0 reduction 
of PISTG A, but is not a melded reduction. PISTG 7.1A and its unique B-complete Stage 0 reduction 
PISTG 7.1B, serve as an example of this. The theorem is also false if B is only a semimelded 
reduction of PISTG A. The reader can verify that PISTG 8.3 and its semimelded reduction PISTG 
3.5 provide an example. 

If PISTG A is an FR CISTG in Theorems Fl and F2, under what circumstances will the Stage 
0 reduction B also be a FR CISTG? We develop sufficient conditions. We begin with an example 
to motivate the necessary definitions. 

Given that PISTG 8.1 is a CISTG, is its melded Stage 0 counterpart PISTG 3.5 also a CISTG? 
By definition, a necessary condition would be that if an investigator had intervened and gave to 
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an individual who received zero exposure at t2 in the observed study, high exposure at t2, the 
individual’s survival history through t3 must be well defined. Now, since the investigator, in giving 
a treatment of MCISTG 3.5, does not choose employment at t:, nature must deterministically do 
so when 1 is a causal risk factor. Otherwise, survival through t3 would not be well defined. Although 
there is not sufficient formal structure in our definition of a CISTG to require nature to “choose,” 
we shall assume that nature does indeed choose so that MPISTG 3.5 is a CISTG. Furthermore, it 
is natural to suppose (there is, of course, no observational verification possible) that when the 
investigator intervenes to change exposure, nature leaves employment status unchanged. In that 
case, the generalized treatment of G3.5, “always receive high exposure,” is exactly equivalent to 
the generalized treatment of G8.’ defined by “always receive high exposure” in terms of both 
exposure and employment status. Thus, we should have 

qt 1 G-, i) = S(t 1 G’.‘, 1). (F3) 

In fact, Eq. F3 would hold for any G3.5 and its Stage 0 counterpart G’.‘. In addition, an equivalent 
relationship would hold between any generalized treatment of a coarser MCISTG derived from 
MCISTG 3.5 and that generalized treatment of its antimeld which is its counterpart. Nonetheless, 
it is important to remember that if nature did not leave employment status unchanged, then, even 
though two generalized treatments of MCISTG 3.5 and 8.1 had the same name, “always receive 
high exposure”, they would be different treatments if 1 were a causal risk factor. Furthermore, Eq. 
F3 would be false. We now provide the following generalizations. 

Definition. If B is a melded Stage 0 reduction of CISTG A, we say B is a causal melded Stage 
0 counterpart of CISTG A if (1) B is a CISTG; (2) 

p(D > t,+l 1 a&j;‘, GB, i) = p(D > ts+I 1 .i,j$, G”, i) (F4) 

p(-i$+, I *iJ$(t,+,), GE, i) = p(.i:‘+I 1 %.$(t,+l), G”, i) (F5) 

for GB and GA that are Stage 0 counterparts; and (3) (F4), (FS) hold with GE’ and GA’ (also B’ and 
A’) replacing GB and GA (also B and A), respectively, where B’ is coarser than B and A’ is the 
antimeld of B’. Note (F4) and (F5) generalize (F3). 

Remark. To give further clarification of the necessity for the definition of a causal melded 
reduction, suppose MPISTG F8.1 is an MCISTG. Since our formal definition of a CISTG assigns 
no meaning to names of treatments, we relabel the four treatments (representing joint levels of 
exposure and employment status) at any right circumference point as a,b,c,d. Consider two coarser 
MCISTGs A, and A2 such that A, (AZ) has treatments a and c (a and 6) arising from one right 
circumference point and b and d (b and c) from another. There exists a melded reduction, say, AR, 
of both Al and AZ which has two treatments-one characterized by “a or b” and the other by “d 
or c”-arising from a single right circumference point. AR is not a CISTG without further as- 
sumptions, since it could be either the causal melded reduction of A1 or of A2. If it is the causal 
melded reduction of Al (AZ) individuals who receive c in the observed trial receive a (b) when 
treated with the treatment “a or b.” 

THEOREM F3. If the suppositions of Theorem F2 hold for each ‘&GA” that is a Stage 0 counterpart 
of some “GE”, and B is a causal melded Stage 0 reduction of FR CISTG A, then B is an FR CISTG. 

THEOREM F4. If B is a causal melded Stage 0 reduction of FR CISTG A and Assumptions R 
of Theorem Fl hold, then B is an FR CISTG. 

Proofs. For both theorems, we must show p[HB(*if) 1 -iJf] = p[H8(.if) 1 (*if)]. But 

(F6) 
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Now under the suppositions of Theorem F3, Eq. (F6) equals 

(F7) 

where the sum in Eq. (F6) over .ij: has been replaced by a sum over .i:’ in Eq. (F7) because B 
is a melded reduction A; .i& is replaced by .i: in the first term in the summand of Eq. (F6) because 
A is an R CISTG and, since B is a causal melded Stage 0 reduction of A, H’(.i$) is a function of 
HA(*i$). Finally, .i: and .if can replace *ij$ and .iJfl in the second term in the summand by the 
supposition of Theorem F2. Summing over the .i$ proves Theorem F3. To prove Theorem F4, it 
is sufficient to show that the first term in the summand of Eq. (F7) does not depend on .i: under 
Assumptions R (see Ref. [7]). 

LEMMA Fl. Let PISTG B be a stage 0 reduction of SCISTG A such that no two intranodal lines 
in the same node on A have the same intranodal line on B as counterpart. Suppose that whenever 
.iJj and .‘i3iAare in the same .ij: (and whenever the following suppositions are defined for some 
Gf and G$), for any individual i, (1) S(.i&’ 1 G:, i) = S(.‘i:jiA 1 G:, i) and (2) p(*if_, I . 
ij$?(t,_,), .iJ;‘, i, G:) = p(.if,, 1 ~i&t,+,), .‘iij:“, i, G:); then H(*i$) induces a natural unique 
H(.if) so that PISTG B is an SCISTG B. 

Proof. See Ref. [7]. 

LEM,MA F2. If the suppositions of Lemma Fl hold and SCISTG A is an R SCISTG, then SCISTG 
B is an R SCISTG and suppositions (1) and (2) of the supposition hold when not conditioned on i. 

Proof. Use the following construction. Given individual i is in .if in the observed study, select 
a Gf such that there exists some .i;’ on Gf and contained in .<. Let (.$,D) be that individual’s 
covariate history (on MPISTG B) and death time when treated with Gt. Then, for each GB such 
that .if E GE define (.if,D) to be that individual’s covariate history and death time when treated 
with GE. As the Gf’s vary over GA, this procedure will exhaust the GB E GE with .c E GE. 
This process defines a unique (because of suppositions (1) and (2)) H(.fi. 

Ai’PENDIX G 

The effect of a generalized treatment controlling for a time-dependent covariate 

Given a PISTG A, suppose we have covariate histories ili2 . . . if = .if defined as follows. Each 
[.i:‘] is contained in some [.if] (abbreviated .i$ E .if), [.i,-l.if] C [.if-,I, and the union of the 
[.if] for fixed s is the entire population alive at t,. 

EUVPLE. For PISTG C8.3 (as defined in Sec. 8), we could let a particular .i$’ be the subset 
of the population with a particular cigarette smoking history C(t,). 

Definitions G 1. 

p[.ia 1 “G:“] = _k!$u’p(.i$ 1 “G:“) 
I I I 
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where x(.<) is determined by “Gf,” and .t n G: are the .i;’ on graph “G:” with history 
.l$. 

If A is an R CISTG then, when the quotation marks are erased from around G:, the above 
definitions refer to probability statements about the controlled trial defined by Gf. 

Definition. The “G”-independence null hypothesis holds for Zf = {.it; s E (1, . . . , S + 1)) 
if and only if 

p[.i!,, ) “G:“, *it] = p[.i:+, 1 “G$“, .if] (Gl) 

for all G?, G: E GA and all -it. 
Given a PISTG Q, suppose that for each .igthe *iJ$can be grouped into one of K categories. 

EXAMPLE 1. Let PISTG 8.3 be PISTG Q and group individuals in each .iJf’ into one of two 
categories, depending on whether or not they are a current smoker at t,. 

Consider a coarser PISTG A formed from PISTG Q by, for each .i$, giving the .ij? in each 
category k, k E (1, . . . , K), a separate right circumference point. Then each [*if] is the union of 
the [*iJ?l in a single category k. Define [if’] to be the union (both within and across nodes) of the 
[if] associated with category k. There are K such [iFI. Let each of the K’ [i,if] be the union of 
the [ilit with [if] in some level k,, and [iii:] in some level k2, and so on. 

EXAMPLE 1 (continued). PISTG C8.3 would be the coarser PISTG A if PISTG 8.3 were PISTG 
Q. Again, the [.if] would be defined by cigarette smoking history through t,. 

Definition. “GQ-3 = (rrGA*r, -if) is the generalized treatment of PISTG Q defined by the prop- 
erty .isjp E “GQ” e [-ij:j C [*if] and [.iJ$‘] C [.iJ;‘] for some *ij:’ E GA, where .if is the initial 
part of .i:. 

Definition. If Q is an FR MCISTG we say that there is no population effect of G” controlling 
for -if if and only if for all G:, G$ , -i<, 

S[t, “Gf” = (“Gf”, .i$), “G?” = (“G:“, .if)] E 0. ((32) 

E~AFAPLE 1 (continued). Note that the above definition suggests that when FR 5fCISTG Q is 
FR MCISTG 8.3, Gc8.3 rather than G3.4 should be in Eq. (8.10). Of course, this is not necessary 
because there is many-to-one map from the Gc8.3 to the G3.’ when, as in Eq. (8. lo), C(tS) is futed. 

THEOREM Gl. Given Q, A, and -if defined as above if (1) 

p[?+l 1 .if, D > t++l, -i&(t~+dQ, *ilj&+ ,] does not depend on +i/j& 1 

for 1 I k I s and (2) Eq. (G2) holds, then, for 1 5 k s s, 

yD[t, + At 1 *if, .ikjt, *if] does not depend on .ikjf. 

Proof. See Ref. [7]. 

THEOREM G2. Equation (Gl) and (G3) hold a for s 2 1 

p[*if+l 1 *if, D > trtl, -ij,i$?+,) = p[.if_, 1 .if, D > t,_,] 

Corollary G2. Given Eq. (Gl) and (G3) hold 
(1) Equation (G2) holds e S(t, “Gf”, “Gt”) = 0 e 

ydts+, I “G:“, -if) = yD(ts+ i 1 “G:“, -if) 

(G3) 

Wa) 

(G4) 

(G5) 

for all G: , G? E GA and all .if . 
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Theorem G2 continues to hold when Eqs. (G3) and (G4) are modified such that 1 I k 5 s is 
replaced by 0 5 k 5 s in Eq. (G3), and s 2 1 is replaced by s 2 0 in Eq. (G4). 

THEOREM G3. Equation (G4), when modified as above, + 

y~[t,+i 1 “Gp” = (“G?“, .if)] = yo(t,,i 1 “Gf”, .if) G6) 

where -if is the initial part of .i:. 

THEOREM G4. If Eq. (Gl) and Eq. (G5) hold 3 Eq. (G3a) holds and 

p[*if+i I .iB, .ik$, .if] does not depend on .ik jt . (G7) 

for 1 i k 5 s. In addition, Eq. (Gl) implies that ,S(t, “Gf”, “G$“) = 0 e Eq. (G5) holds. 

Corollary G4. Given a subset 2A of GA, if Eq. (Gl) holds (only) for the G:, G< E lA, then s(t, 

“GiQ”, “G:“) = 0 for Gf , G: E ~~ e Eq. (G5) holds for Gf , Gq E 7A. 

THEOREM G5. If PISTG A is an FR CISTG and for each individual j, (1) p[.if_ i 1 G:, .if, j] 
does not depend on Gf for all G: E iA C GA and (2) .S(t, G;L, G$, j) = 0 for all G:, G$ E T~, then 
Eqs. (Gl) and (GS) hold for any G:, G: E TV. Since (1) implies each individual j has a unique 
history .if when treated with a Gf (which we write as .&“), the outcome of an individual j when 
treated with GQ = (G:, -i’s”), Gf E T is well defined even when PISTG Q is not a CISTG. Thus 
for G:, G$ E 7A supposition (1) implies that 

S(r, Ge = (“Gf”, *i’s”), Gg = (“G:“, .$/), j) c 0 

e S(t, G;4, G:,j) = 0. 

Proofs. See Ref. [7]. 
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