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Abstract In this paper, we propose an uncertainty analysis and design optimization method and its

applications on a hybrid rocket motor (HRM) powered vehicle. The multidisciplinary design model

of the rocket system is established and the design uncertainties are quantified. The sensitivity anal-

ysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate

model has the most significant effect on the system performances. Then the differences between

deterministic design optimization (DDO) and uncertainty-based design optimization (UDO) are

discussed. Two newly formed uncertainty analysis methods, including the Kriging-based Monte

Carlo simulation (KMCS) and Kriging-based Taylor series approximation (KTSA), are carried

out using a global approximation Kriging modeling method. Based on the system design model

and the results of design uncertainty analysis, the design optimization of an HRM powered vehicle

for suborbital flight is implemented using three design optimization methods: DDO, KMCS and

KTSA. The comparisons indicate that the two UDO methods can enhance the design reliability

and robustness. The researches and methods proposed in this paper can provide a better way for

the general design of HRM powered vehicles.
ª 2015 The Authors. Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://core.ac.uk/display/82537952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cja.2015.04.015&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:zhuhao@buaa.edu.cn
mailto:tianhui@buaa.edu.cn
mailto:tianhui@buaa.edu.cn
http://dx.doi.org/10.1016/j.cja.2015.04.015
http://dx.doi.org/10.1016/j.cja.2015.04.015
http://www.sciencedirect.com/science/journal/10009361
http://dx.doi.org/10.1016/j.cja.2015.04.015
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1 HRM powered rocket structure.
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1. Introduction

With the increasing demands for green, nontoxic and cheap
propulsion technologies, hybrid rocket motors (HRMs) show

great potential as they are less complex and cheaper than liq-
uid rocket motors (LRMs), and more easily throttled and
restarted than solid rocket motors (SRMs).1–3 It makes sense

to develop sub-orbit vehicles with HRMs which have such
advantages as safety, cheapness and non-toxicity, since the
near space of 30–100 km altitude is becoming increasingly
important in scientific research and military applications in

recent years. Therefore, there are many academic studies and
projects about sub-orbit vehicles with HRMs recently.4–7

It is necessary and important to apply design optimization

methods in the aerospace vehicle design process in order to
improve the design level and efficiency. In the traditional
design optimization methods, the input parameters are consid-

ered as deterministic values to simplify the modeling process.
However, it may be inconsistent with the objective reality.
Therefore, the studies on the uncertainties in the aerospace

vehicle design process have important theoretical and practical
values to improve the overall design level.

Compared with the traditional SRMs or LRMs, HRMs
have both a liquid oxidizer feeding system and a solid fuel

combustion chamber, so the system design model of HRMs
has more input variables and model parameters. Moreover,
since the combustion mechanism of HRMs is not fully

researched at present, there are more uncertainties in the
design process of HRMs. The uncertainties probably result
in the fact that the optimal design results under deterministic

design optimization (DDO) are infeasible or unreliable in the
following manufacturing process. Nevertheless, the current
studies on design optimization of HRMs or its applications

typically focus on the DDO method,4,5 so it is necessary to
study the uncertainties and develop uncertainty-based design
optimization (UDO) methods to enhance the design reliability
and robustness. Therefore, an approach to the uncertainty

analysis and design optimization of HRM powered vehicles
is proposed in this paper, based on our former work about
the conceptual design of HRM powered rockets.8,9

The main problem in UDO is the low efficiency of the
uncertainty analysis when the system design model is compli-
cated. The approximate model technology is one of the most

popular methods to solve this problem. Kriging model is a
widely used approximate model for its advantages such as
unbiased estimator at the training sample point, desirably
strong nonlinear approximating ability, flexible parameter

selection of the model and accurate global approximation abil-
ity.10,11 An approach that applying the Kriging model to two
uncertainty analysis methods, i.e., Monte Carlo simulation

(MCS) and Taylor series approximation (TSA), is proposed
in this paper. Both newly formed methods are applied to the
design optimization of the HRM powered vehicle for subor-

bital flight and the design results with high reliability and
robustness are obtained.

2. System design model

The HRM powered sub-orbit vehicle is a ballistic rocket with
an aerodynamic stable shape. The system design process

involves many disciplines including structure, propulsion,
aerodynamic, launching dynamics and trajectory. Each disci-
pline is analyzed to find out possible mathematical relation-
ships between design variables and performance parameters,

such as the rocket lift-off mass MR or the rocket body length
LR, and develop a feasible multidisciplinary design model of
the rocket system.

2.1. Rocket structure design

The structure of the HRM powered rocket consists of head

(containing payloads), fins, HRM and the linking structures,8

as shown in Fig. 1. The rocket lift-off mass MR can be
obtained by

MR ¼Mm þMs þMpay ð1Þ

where Mpay is the payload mass. The HRM mass Mm is
deduced by HRM design. The rocket structure mass Ms

consists of head mass, fin mass and linking structures mass.
It is related to rocket diameter DR and defined as

Ms ¼ 75DR � 7:5 ð2Þ

The rocket body length LR can be obtained by

LR ¼ Lm þ Lh ð3Þ

where Lh is the rocket head length and it is 1 m in this paper.
The HRM length Lm is also deduced by HRM design.

2.2. HRM design

HRM is the main part of the rocket. Its mass and dimension
almost determine the mass, dimension and trajectory of the
rocket. A wheel port grain is selected in the HRM with a pro-

pellant combination of 98% hydrogen peroxide (HP) and
hydroxyl-terminated polybutadiene (HTPB). A nitrogen gas
pressure feed subsystem is used. The oxidizer mass flow rate

is controlled to keep constant by an ideal venturi section.
The HRM is designed as shown in Ref.8 The propellant,
including the solid fuel and liquid oxidizer, constitutes the



Table 2 Design variables.

Design variable Lower

limit

Upper

limit

Distribution Relative

limit

deviation

Grain outer

diameter Dp (m)

0.2 0.5 Normal 0.005

Initial web

thickness e1 (m)

0.02 0.05 Normal 0.01

Number of wheel

port n

3 10 Not

uncertain

factor

Initial thrust Fi

(kN)

10 20 Uniform 0.05

Initial chamber

pressure pci
(MPa)

1 3 Uniform 0.05

Initial oxidizer to

fuel ratio ai

2 5 Uniform 0.05

Nozzle expansion

ratio e
3 10 Normal 0.015

Launch elevation

angle u0 (�)
65 85 Normal 0.005
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main mass and dimension of the HRM, therefore it determines
MR and LR indirectly.

2.3. Launch simulation

A 35 m length ramp is used in the launch subsystem. The
dynamic equation of the ramp launch process can be obtained

based on Newton’s Second Law as follows:

_V ¼ F=M� g sinu0 � kg cosu0 ð4Þ

where V is the rocket velocity, F the thrust, M the rocket mass
that changes as the HRM combusts, g gravity constant and u0

the launch elevation angle which needs to be optimized. The

friction coefficient k is 0.05. The aerodynamics drag is ignored
because the rocket velocity is slow and the launch phase time is
short.

2.4. Trajectory simulation

A two degree of freedom (DOF) mass point trajectory equa-

tion is used with no control law as follows:

€X ¼ ðF� CDqSMÞ _X=V=M ð5Þ

€Y ¼ ðF� CDqSMÞ _Y=V=M� g ð6Þ

where X and Y are the horizontal and vertical distances of the

position from the launch point, q is the dynamic pressure and
CD represents the drag coefficient. Rocket body section area is
used as the reference area SM.

2.5. Dynamic computation

A U.S. 76 standard atmosphere model with no atmosphere

motion is used here. The drag coefficient CD of ‘‘Titan II’’
rocket12 is used as shown in Table 1, given a 20% increase
as the sub-orbit rocket in this paper has fins.

Based on the analysis and deduction above, the multidisci-
plinary design model of the rocket system is established. There
are 43 input parameters, including 8 design variables (shown in
Table 2) and 35 model parameters (shown in Table 3), in the

mathematical model through which the performance response
parameters, such as MR and LR, are computed.
3. Design uncertainty analysis

3.1. Design uncertainties

In design phase, specifically the simulation-based computa-
tional design, there are three sources contributing to the total

uncertainty of computational simulation, namely model input
uncertainty, model uncertainty, and model error.13 The model
Table 1 Drag coefficient of USA ‘‘Titan II rocket’’.12

Ma CD

0 6Ma< 0.8 0.29

0.8 6Ma< 1.068 Ma � 0.51

Ma P 1.068 0.091 + 0.5Ma�1
input uncertainties constitute the main part of the total uncer-
tainties, so only they are considered in this paper. The model

input uncertainties are the uncertainty factors in the design
variables and model parameter. Most of them are emerged
from the engineering realization process. Except for the num-
ber of wheel port n, all the other 42 input parameters are

uncertain factors in the hybrid rocket system design model.
The most accurate methodology to classify and quantify these
uncertain factors is probability theory, which is applied in this

study. The uncertainties in the three types of the input param-
eters, including physical or chemistry characteristic parameters
such as fuel density, machining parameters such as grain outer

diameter and parameters obtained by testing(such as injector
pressure drop coefficient), are classified to be normal distribu-
tion. The uncertainties in the other parameters, which are
either generated from the cognitive incompletion of the physi-

cal word such as the regression rate, or determined by these
parameters directly or indirectly such as the initial thrust, are
classified to be uniform distribution. According to design crite-

ria and engineering experience14–16, the relative limit deviations
of the design uncertainties are confirmed as shown in Tables 2
and 3. The standard deviations of uncertainties with normal

distribution can be evaluated in terms of ‘‘6r’’ principle.
At each step of the optimization process, the uncertainties

of design variables can be quantified as

x0L ¼ �x0D
x0U ¼ x0D

�
ð7Þ

where D is the relative limit deviation; x0L and x0U are the

upper limit deviation and the lower limit deviation of the
design variable when its value is x0.

3.2. Sensitivity analysis

It makes the uncertainty analysis complicated and time-
consuming with a lot of input uncertainties, so a sensitivity
analysis method17 is used to filter out the insignificant model



Table 3 Model parameters.

Model parameter Symbol Mean Limit deviation Distribution

Regression rate precision coefficient x1 1 0.02 Uniform

Weld coefficient x2 0.8 0.03 Uniform

Pressure oscillation coefficient x3 1.2 0.03 Uniform

Volume fraction of remained oxidizer x4 0.05 0.05 Uniform

Volume fraction of initial air cushion x5 0.05 0.05 Uniform

Combustion efficiency x6 0.96 0.015 Uniform

Nozzle efficiency x7 0.93 0.015 Uniform

Initial tank temperature (K) x8 293.15 0.0682 Uniform

Injector pressure drop coefficient x9 0.2 0.0325 Normal

Tube pressure loss coefficient x10 0.2 0.08 Normal

Initial gas bottle pressure (MPa) x11 30 0.03 Normal

Fuel density (kg/m3) x12 1218 0.015 Normal

Oxidizer density (kg/m3) x13 1440 0.015 Normal

Chamber heat insulation layer density (kg/m3) x14 1000 0.015 Normal

Chamber and nozzle shell density (kg/m3) x15 7750 0.015 Normal

Chamber head density (kg/m3) x16 7750 0.015 Normal

Tank shell density (kg/m3) x17 2850 0.015 Normal

Gas bottle shell density (kg/m3) x18 1750 0.015 Normal

Semi-minor axis length ratio of chamber head x19 3 0.01 Normal

Semi-minor axis length ratio of oxidizer tank head x20 2 0.01 Normal

Semi-minor axis length ratio of gas bottle head x21 2 0.01 Normal

Chamber heat insulation layer thickness (m) x22 0.003 0.025 Normal

Nozzle heat insulation layer thickness (m) x23 0.015 0.025 Normal

Injector panel thickness (m) x24 0.005 0.02 Normal

Minimum machining thickness of chamber and nozzle shell material (m) x25 0.0015 0.066 Normal

Minimum machining thickness of oxidizer tank shell material (m) x26 0.0015 0.066 Normal

Minimum machining thickness of gas bottle shell material (m) x27 0.005 0.025 Normal

Nozzle half expansion angle (�) x28 15 0.012 Normal

Nozzle half convergence angle (�) x29 45 0.012 Normal

Yield limit of chamber and nozzle shell material (MPa) x30 1080 0.01 Normal

Yield limit of chamber head material (MPa) x31 1080 0.01 Normal

Yield limit of oxidizer tank shell material (MPa) x32 490 0.01 Normal

Yield limit of gas bottle shell material (MPa) x33 1760 0.01 Normal

Ramp length (m) x34 35 0.0001 Normal

Drag precision coefficient x35 1 0.1 Normal

Fig. 2 Sensitivity of MR to model uncertain factors.
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parameter uncertainties in the UDO approach of hybrid rocket
design. According to the probability distributions, the model
parameter uncertainties are sampled 1000 times respectively

with a Latin hypercube sampling (LHS) method.18 Then the
main performance parameters are computed by the system
design model. The sensitivities of the rocket’s main perfor-

mance parameters, including MR, the top altitude of trajectory
Ymax, the maximum rocket axes acceleration Nxmax, and the
rocket length to diameter ratio L/D are obtained by the sensi-
tivity analysis method. The top ten model parameter uncer-

tainties that have the most significant effects on MR, Ymax,
Nxmax, and L/D are shown respectively from Figs. 2–5. The
length of the bar in the figures represents the sensitivity of

the performance parameters to model parameter uncertainties.
The positive value of bar means that the performance param-
eter increases when the model parameter uncertainty increases

and vice versa.
When the oxidizer mass flow rate is constant, the regres-

sion rate determines the burning time, which directly deter-

mines the oxidizer mass Mo; Mo has an important influence
on MR and LR as discussed in Section 2.2. Therefore, the
fuel regression rate precision coefficient (x1) has the greatest
impact on MR and L/D indirectly as shown in Figs. 2 and
3. The oxidizer density determines the oxidizer mass which

influences the rocket structure mass. The yield limit of oxi-
dizer tank shell material determines the tank wall thickness
which influences the tank mass Mt consequently. In addi-

tion, Nxmax and Ymax are mainly determined by the rocket
velocity, attitude and altitude at the burnout point which
is influenced by rocket structure mass according to

Tsiolkovski formula. Therefore oxidizer density (x13) and
the yield limit of oxidizer tank shell material (x32) have



Fig. 3 Sensitivity of L/D to model uncertain factors.

Fig. 4 Sensitivity of Nxmax to model uncertain factors.

Fig. 5 Sensitivity of Ymax to model uncertain factors.
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the greatest impact on Nxmax and Ymax indirectly as shown
in Figs. 4 and 5. At the current level of science and technol-
ogy, the uncertainty of material density and strength can be

quantified accurately, while the fuel regression rate model of
HRM is not investigated clearly enough. Most uncertain
data of regression rate is mainly obtained through certain

test of a special HRM and it is not suitable for all
HRMs. Therefore uncertain factors in the regression rate
are the main source of the rocket performance uncertainties

using an HRM.
Through the above sensitivity analysis, three model param-

eter uncertainties, including the fuel regression rate precision
coefficient (x1), oxidizer density (x13) and the yield limit of

oxidizer tank shell material (x32) (shown in Table 3 with bold-
faced words), together with 7 design variables (except for n) are
selected as the uncertain factors in the following UDO

approach.
4. Kriging-based UDO

The Kriging-based uncertainty analysis methods are proposed
in this section. The general UDO process and two uncertainty

analysis method including MCS and TSA are discussed, then a
global approximation Kriging modeling approach is pre-
sented. Two newly formed uncertainty analysis methods

including the Kriging-based Monte Carlo simulation
(KMCS) and Kriging-based Taylor series approximation
(KTSA) are proposed sequentially.

4.1. UDO

The tradition optimization can be expressed in a mathematics
model as

find x

min fðx; pÞ
s:t: gðx; pÞ 6 0

xL
6 x 6 xU

8>>><
>>>:

ð8Þ

where x is the design variables and p the model parameters,

both of them are input parameters; xL and xU are the lower
and upper boundaries of x, f(x,p) is the objective function
and g(x,p) represents the constraint vector. In DDO, all of

x;p, f(x,p) and g(x,p) are treated as deterministic parameters,
and the optimal organization and the search strategy are based
on the deterministic relationships as a result. The benefits are

the simplification of the optimal process and the saving of
computing time.

However, there are many uncertainties in the real world. In

UDO, all design variables, model parameters and mathemati-
cal models are analyzed and the uncertain factors between
them are separated. The uncertainties of the performance
responses can be computed with different methods sequen-

tially. The mathematical model of UDO can be expressed as

find x

min F½lfðx; pÞ; rfðx; pÞ�
s:t: P½gðx; pÞ 6 0�P R

xL
6 x 6 xU

8>>><
>>>:

ð9Þ

where both x and p could be uncertain; lf and rf are the mean
and standard deviation of the original optimization objective
function f, and F is the reformulated optimization objective

function with respect to lf and rf; P is the probability of the
statement within the braces to be true, and R is the reliability
vector specified for the constraint vector. The robustness of the

system is achieved through minimizing lf and rf, and the reli-
ability of constraints is accomplished through confidence level
at which constraints are met with a higher probability.

Uncertainty analysis is a key procedure of UDO process.

At this step, the uncertainty characteristics of the system
responses propagated from the input uncertainties are quanti-
tatively analyzed. There are many uncertainty analysis meth-

ods, including MCS, TSA, reliability analysis, etc.
MCS method is the most accurate solution for uncertainty

problems based on probability theory. The mean value, stan-

dard deviation, distribution function and probability density
of the responses are predicted statistically from the random
sampling metric in MCS analysis. lf and rf are obtained as



Fig. 6 Procedures of global approximation Kriging modeling

process.
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lf ¼

XN
i¼1

fðxiÞ

N
ð10Þ

rf ¼

XN
i¼1
ð fðxiÞ � lfÞ

N� 1
ð11Þ

where f(xi) is the response function about the xi sample

point. The prediction accuracy of MCS analysis is inversely
proportional to the square root of the sampling number N,
thus extensive sample number is needed to ensure the

prediction accuracy. As a result, it is unacceptable for the
optimization problems with a long-running time simulation
program.

TSA method is one of the most efficient solutions for uncer-
tainty problems with probability theory. Based on the first-
order Taylor series, lf can be estimated as13

lf ¼ EðfðxÞÞ � fðlxÞ þ
Xn
i¼1

@f

@xi

Eðxi � lixÞ ¼ fðlxÞ ð12Þ

where lx is the mean value of n-dimensional vector x. If the
input variables are not related, rf can be estimated as13

rf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

@f

@xi

� �2

r2
xi

s
ð13Þ

where rxi is the standard deviation of xi. The efficiency of TSA

method is much higher than that of the MCS method, since it
does not need repeated calculation. However, when f(x) is a
nonlinear system whose first-order gradient cannot be

obtained with analytical method, the application of TSA is
restricted. How to obtain an accurate gradient value with
low time cost is the key point to solve this problem.

4.2. Global approximation Kriging modeling

The Kriging model is an interpolation technique based on sta-

tistical theory. Its advantages, such as unbiased estimator at
the training sample point, desirably strong nonlinear approxi-
mating ability, flexible parameter selection of the model and
accurate global approximation ability, make it widely used in

approximate models. It takes full account of the relevant char-
acteristics of the variable space, containing the regression part
and the nonparametric part

ŷðxÞ ¼ fðxÞ þ zðxÞ ð14Þ

where f(x) is deterministic function that is a global approxima-
tion of the design space represented by the polynomial of x;
z(x) is a Gaussian stochastic process with zero mean and vari-

ance. Ref.10 showed the detailed developing process of Kriging
model with N sampling points. When using Gauss function as
the correlation function in Kriging model, the first-order

derivative at point xi can be estimated by

@ŷðxÞ
@xi

¼ @fðxÞ
@xi

þ @zðxÞ
@xi

ð15Þ

The approximation accuracy of the approximate model is
closely related to the quantity of sample points, thus a global

approximation Kriging modeling method is developed by
sequentially sampling the design space and update the
Kriging model in order to get higher approximation accuracy
with fewer sample points. The process is shown in Fig. 6 and
the main steps are shown as follows:

Step 1. Use LHS method to generate the initial training
points with a small scale.

Step 2. Establish the initial Kriging model.
Step 3. Use LHS method to generate the test points.
Step 4. Calculate the response values using the original

model and the Kriging model respectively, then compare
the results to get the approximation error of the Kriging
model.
Step 5. According to the results of Step 4, judge if the error

satisfies the precision criterion. The adjusted multiple corre-
lation coefficient Ra

2 is used as the global precision criterion
and the maximum relative error emax is used as the local

precision criterion.19 If yes, end the iteration and output
the present Kriging model; else, goto the next step.
Step 6. Choose the test points at which the relative errors

are larger than emax and put them into the training space
to update the Kriging model in order to enhance its approx-
imation accuracy at the design areas where the test points

have large relative errors with the previous Kriging model.
Step 7. Return to Step 2, continue the iteration until the
Kriging model satisfies the desired precision.

There are many verifications about the approximation
accuracy of Kriging model, so only the prediction precision
of the first-order derivative is tested by a symmetric two-

dimensional nonlinear function with multiple local extreme
points20 shown as

yðx1; x2Þ ¼ 2þ 4x1 þ 4x2 � x2
1 � x2

2 þ 2 sinð2x1Þ sinð2x2Þ
x1; x2 2 ½0:5; 3:5� ð16Þ

The number of the initial training points is 10 to develop
the Kriging model of the test function and the results are
shown in Table 4. Along with the increase of the training point



Table 4 Iteration process of Kriging model for the test

function.

Iteration Training points Test points Ra
2 emax

0 10 20 0.6934 0.3302

1 27 20 0.9832 0.0555

2 36 20 0.9961 0.0384

3 37 20 0.9995 0.0189
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number m, Ra
2 increases to 1 gradually and emax decreases.

When the number of training points reaches 37, Ra
2 is close

to 1 and emax nearly decreases to 0, indicating that Kriging
model has reached a good prediction precision of the first-

order derivative as shown in Figs. 7 and 8.

4.3. Design optimization with KMCS

MCS is considered to be the most accurate method among the
uncertainty analysis methods based on probability theory;
Fig. 7 First-order derivative of test fu

Fig. 8 First-order derivative of test fu
however its computation precision is directly related to sam-
pling frequency, thus a great number of sampling points are
needed when MCS is used. It is unacceptable for the

simulation-based design optimization problems whose system
design model is complicated and time-consuming. Therefore
the KMCS method is developed in which the original compli-

cated system design model f(x) used in MCS is surrogated by

the approximate function f̂ðxÞ established by the global
approximation Kriging modeling method. The approximate
mean value l̂f and the standard deviation r̂f of the system

responses in KMCS can be computed using Eqs. (17) and
(18). Fig. 9 shows the procedure of UDO with KMCS method.

l̂f ¼

XN
i¼1

ŷðxiÞ

N
ð17Þ

r̂f ¼

XN
i¼1

ŷðxiÞ � l̂f

� �
N� 1

ð18Þ
nction and its Kriging model to x1.

nction and its Kriging model to x2.



Fig. 9 Procedures of UDO with KMCS method.

Fig. 10 Procedure of UDO with KTSA method.
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4.4. Design optimization with KTSA

The Kriging model has a high prediction accuracy not only on
the function value but also its first-order derivatives, thus the
Kriging model is applied to obtaining the first-order gradient

value of f(x) used in the TSA method and it can effectively
solve the problems that generated when TSA is applied to
multidimensional nonlinear systems. With a Kriging model
accurate enough, the KTSA method can effectively expand

the application field of TSA method. The mean value and
the standard deviation of the system responses can be com-

puted using Eqs. (19) and (20), where @ŷðxÞ
@xi

is computed by

Eq. (15). The ‘‘6r’’ principle is used to compute constraint sat-
isfaction probability as shown in Eqs. (21) and (22), where G is
the reliability level, lg the mean of the constraint functions, rg
the standard deviation of the constraint functions, and k

Sigma level. For the normal distribution function, when
k = 6, constraint satisfaction probability is 99.9999998%;
when k= 3, constraint satisfaction probability is about

99.9937%. k= 3 is chosen in this paper. Fig. 10 shows the
procedure of UDO with KTSA method.

l̂y ¼ ŷðlxÞ ð19Þ

r̂y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

@ŷðxÞ
@xi

� �2

r2
xi

vuut ð20Þ

lg1
ðx; pÞ � krg1ðx; pÞP G1 ð21Þ
lg2
ðx; pÞ þ krg2ðx; pÞ 6 G2 ð22Þ
5. Optimization, results and discussion

5.1. Design variables, target function and constraints

The general mission of sub-orbit rocket is to detect the high-

altitude environment or supply the payload with a certain
microgravity time. A HRM powered rocket with a mission
to send a 50 kg payload to an altitude over 120 km is designed

in this study. The payloads are often avionic equipment which
is sensitive to acceleration, so the maximum rocket axial accel-
eration Nxmax is constrained. One of the characteristics of the

rocket body with a series-wound structure HRM is its great
length, so a value of 18 is chosen to constrain the rocket length
to diameter ratio L/D, considering that a too high L/D is not
good for the rocket structure strength. Both the design diffi-

culty and the cost of a rocket vehicle are mainly determined
by MR, so the target function is to minimize MR by satisfying
the constraints above. All the design variables x and their

boundaries xL, xU are shown in Table 2 and the three model
uncertain parameters are shown in Table 3 with boldfaced
words. The mathematics model of the DDO is shown in Eq.

(23).



Fig. 11 Cumulative distribution function (CDF) of the target and constraints.

Table 5 Design results of HRM powered rocket.

Design variable Dp (m) e1 (m) n Fi (kN) pci (MPa) ai e u0 (�) Run time(min)

DDO 0.267 0.0322 4 14.30 1.89 2.66 4.61 85.0 499

KMCS 0.277 0.0316 4 14.31 1.93 2.79 4.51 85.0 1887

KTSA 0.277 0.0417 4 13.65 1.81 2.33 4.56 85.0 281

Table 6 Statistical results of HRM powered rocket.

Target/constraints Method l r Maximum Minimum l/r G

MR (kg) DDO 333.97 2.80 342.26 326.31 0.00837

KMCS 353.36 2.89 362.62 344.92 0.00819

KTSA 364.41 2.93 372.95 356.37 0.00803

Ymax (km) DDO 119.28 4.02 131.18 107.51 0.429

KMCS 127.04 4.23 139.47 114.85 0.954

KTSA 128.59 4.56 141.94 115.89 0.978

L/D DDO 17.97 0.14 18.40 17.58 0.589

KMCS 17.50 0.14 17.94 17.12 1

KTSA 17.57 0.13 17.92 17.22 1

Nxmax (g) DDO 9.23 0.25 9.77 8.67 1

KMCS 9.23 0.25 9.78 8.62 1

KTSA 8.23 0.23 8.78 7.78 1
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find x

min MR ¼ fðx; pÞ
s:t: Ymax ¼ g1ðx; pÞP 120 km

L=D ¼ g2ðx; pÞ 6 18

Nxmax ¼ g3ðx; pÞ 6 10 g

xL
6 x 6 xU

8>>>>>>>><
>>>>>>>>:

ð23Þ

In UDO approach, the robustness of the system is achieved
through minimizing the mean value lMR

and standard devia-

tion rMR
of the target function while the reliability of con-

straints is accomplished through the confidence-level that the
constraints are met with a higher probability, shown as Eq.

(24).

find x

min F½lMRðx;pÞ; rMRðx;pÞ�
s:t: P1½Ymaxðx; pÞP 120km�P 0:95

P2½L=Dðx; pÞ 6 18�P 0:95

P3½Nxmaxðx; pÞ 6 10g�P 0:95

xL
6 x 6 xU

8>>>>>>>><
>>>>>>>>:

ð24Þ
5.2. Results and discussion

A modified differential evolution (MDE) algorithm21 is
applied to implementing global optimization and improving
the efficiency and quality of the optimization solution, then

DDO, KMCS and KTSA methods are applied respectively
to the design optimization of the HRM powered rocket for a
suborbital flight. The design variables n and u0 are set to be

constant and equal to the DDO optimal result to simplify
the calculation. The comparisons of the results are shown in
Table 5, and the statistical results considering all the uncertain

input parameters are shown in Table 6 and Fig. 11. Compared
to the DDO results, the two UDO methods achieve reliability
requirements at a higher confidence level and r/l of MR

reduces by 8.0% as shown in Table 6. The reason that reliabil-

ity of Nxmax satisfying the constraint is 100% in DDO method
is that optimal result is not at the boundary between feasible
and unfeasible region as shown in Fig. 11. Although the mean

value of the rocket lift-off mass is a little bigger than that of
deterministic one, the reliability and robustness are enhanced
obviously with two UDO method. Compared with KTSA,

the results of KMCS are comparatively better while its effi-
ciency is lower. The prediction precision of KTSA is not better
than KMCS inherently since the former applies two approxi-

mate process, Kriging model and TSA method. As a result,
the KTSA method is more suitable for the initial design
optimization phase while the KMCS method is more applica-
ble for the detailed design optimization phase. The results and

comparisons prove that the uncertainty design optimization
methods can also provide a better means for system conceptual
design of aerospace vehicles.

6. Conclusions

(1) The multidisciplinary system design and analysis model

of the HRM powered rocket is established and the input
uncertain factors are quantified. The sensitivity analysis
of the uncertain factors shows that among 42 uncertain
factors the regression rate uncertainty has the most
significant effect on performances of the HRM powered

rocket, thus it is necessary to accelerate the investigation
on the combustion mechanism in HRMs.

(2) Two newly formed uncertainty analysis method includ-

ing the KMCS and KTSA are carried out with a global
approximation Kriging modeling method. The design
optimization of the HRM powered rocket is carried
out applying three methods including DDO, KMCS

and KTSA. The results and comparisons show that
the two UDO methods can provide design results with
a higher reliability and robustness than DDO method

and the KTSA method is more suitable for the initial
design optimization phase while the KMCS method is
more applicable for the detailed design optimization

phase. The uncertainty design optimization methods
can provide a better means for system concept design
of aerospace vehicles.

(3) Due to the insufficiency of experiment or engineering

data about the uncertain factors, there may be some
inaccuracy on the related distributions and relative limit
deviations. Our future work will focus on finding suffi-

cient data to achieve accurate results. It is another
important work to promote the engineering application
of the UDO approach for HRM powered vehicles.
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