# Identification of the unknown diffusion coefficient in a linear parabolic equation by the semigroup approach 

Ali Demir *, Alemdar Hasanov<br>Applied Mathematical Sciences Research Center and Department of Mathematics, Kocaeli University, Ataturk Bulvari, 41300 Izmit, Turkey

Received 6 March 2007
Available online 11 August 2007
Submitted by Steven G. Krantz


#### Abstract

In this article, we study the semigroup approach for the mathematical analysis of the inverse coefficient problems of identifying the unknown coefficient $k(x)$ in the linear parabolic equation $u_{t}(x, t)=\left(k(x) u_{x}(x, t)\right)_{x}$, with Dirichlet boundary conditions $u(0, t)=\psi_{0}, u(1, t)=\psi_{1}$. Main goal of this study is to investigate the distinguishability of the input-output mappings $\Phi[\cdot]: \mathcal{K} \rightarrow C^{1}[0, T], \Psi[\cdot]: \mathcal{K} \rightarrow C^{1}[0, T]$ via semigroup theory. In this paper, we show that if the null space of the semigroup $T(t)$ consists of only zero function, then the input-output mappings $\Phi[\cdot]$ and $\Psi[\cdot]$ have the distinguishability property. Moreover, the values $k(0)$ and $k(1)$ of the unknown diffusion coefficient $k(x)$ at $x=0$ and $x=1$, respectively, can be determined explicitly by making use of measured output data (boundary observations) $f(t):=k(0) u_{x}(0, t)$ or/and $h(t):=k(1) u_{x}(1, t)$. In addition to these, the values $k^{\prime}(0)$ and $k^{\prime}(1)$ of the unknown coefficient $k(x)$ at $x=0$ and $x=1$, respectively, are also determined via the input data. Furthermore, it is shown that measured output data $f(t)$ and $h(t)$ can be determined analytically, by an integral representation. Hence the input-output mappings $\Phi[\cdot]: \mathcal{K} \rightarrow C^{1}[0, T], \Psi[\cdot]: \mathcal{K} \rightarrow C^{1}[0, T]$ are given explicitly in terms of the semigroup. Finally by using all these results, we construct the local representations of the unknown coefficient $k(x)$ at the end points $x=0$ and $x=1$.


© 2007 Elsevier Inc. All rights reserved.
Keywords: Semigroup approach; Coefficient identification; Parabolic equation

## 1. Introduction

Consider the following initial boundary value problem:

$$
\left\{\begin{array}{l}
u_{t}(x, t)=\left(k(x) u_{x}(x, t)\right)_{x}, \quad(x, t) \in \Omega_{T}  \tag{1}\\
u(x, 0)=g(x), \quad 0<x<1, \\
u(0, t)=\psi_{0}, \quad u(1, t)=\psi_{1}, \quad 0<t<T
\end{array}\right.
$$

where $\Omega_{T}=\left\{(x, t) \in R^{2}: 0<x<1,0<t \leqslant T\right\}$. The left and right boundary values $\psi_{0}, \psi_{1}$ are assumed to be constants. The functions $c_{1}>k(x) \geqslant c_{0}>0$ and $g(x)$ satisfy the following conditions:

[^0](C1) $k(x) \in C^{1}[0,1]$;
(C2) $g(x) \in C^{2}[0,1], g(0)=\psi_{0}, g(1)=\psi_{1}$.
Under these conditions the initial boundary value problem (1) has a unique solution $u(x, t) \in C^{2,1}\left(\Omega_{T}\right) \cap$ $C^{2,0}\left(\bar{\Omega}_{T}\right)$.

Consider the inverse problem of determining the unknown coefficient $k=k(x)$ from the following observations at the boundaries $x=0$ and $x=1$ :

$$
\begin{equation*}
k(0) u_{x}(0, t)=f(t), \quad k(1) u_{x}(1, t)=h(t), \quad t \in(0, T] . \tag{2}
\end{equation*}
$$

Here $u=u(x, t)$ is the solution of the parabolic problem (1). The functions $f(t), h(t)$ are assumed to be noisy free measured output data. In this context the parabolic problem (1) will be referred as a direct (forward) problem, with the inputs $g(x)$ and $k(x)$. It is assumed that the functions $f(t)$ and $h(t)$ belong to $C^{1}[0, T]$ and satisfy the consistency conditions $f(0)=k(0) g^{\prime}(0), h(0)=k(1) g^{\prime}(1)$.

We denote by $\mathcal{K}:=\left\{k(x) \in C^{1}[0,1]: c_{1}>k(x) \geqslant c_{0}>0, x \in[0,1]\right\} \subset C^{1}[0,1]$, the set of admissible coefficients $k=k(x)$, and introduce the input-output mappings $\Phi[\cdot]: \mathcal{K} \rightarrow C^{1}[0, T], \Psi[\cdot]: \mathcal{K} \rightarrow C^{1}[0, T]$, where

$$
\begin{equation*}
\Phi[k]=\left.k(x) u_{x}(x, t ; k)\right|_{x=0}, \quad \Psi[k]=\left.k(x) u_{x}(x, t ; k)\right|_{x=1}, \quad k \in \mathcal{K}, f(t), h(t) \in C^{1}[0, T] . \tag{3}
\end{equation*}
$$

Then the inverse problem with the measured output data $f(t)$ and $h(t)$ can be formulated as the following operator equations:

$$
\begin{equation*}
\Phi[k]=f, \quad \Psi[k]=h, \quad k \in \mathcal{K}, \quad f, h \in C^{1}[0, T] . \tag{4}
\end{equation*}
$$

The monotonicity, continuity, and hence invertibility of the input-output mappings $\Phi[\cdot]: \mathcal{K} \rightarrow C^{1}[0, T]$ and $\Psi[\cdot]: \mathcal{K} \rightarrow C^{1}[0, T]$ are investigated in [2-4].

The purpose of this paper is to study a distinguishability of the unknown coefficient via the above input-output mappings. We say that the mapping $\Phi[\cdot]: \mathcal{K} \rightarrow C^{1}[0, T]$ (or $\Psi[\cdot]: \mathcal{K} \rightarrow C^{1}[0, T]$ ) has the distinguishability property, if $\Phi\left[k_{1}\right] \neq \Phi\left[k_{2}\right]\left(\Psi\left[k_{1}\right] \neq \Psi\left[k_{2}\right]\right)$ implies $k_{1}(x) \neq k_{2}(x)$. This, in particular, means injectivity of the inverse mappings $\Phi^{-1}$ and $\Psi^{-1}$.

The paper is organized as follows. In Section 2, an analysis of the semigroup approach is given for the inverse problem with the measured data $f(t)$. The similar analysis is applied to the inverse problem with the single measured output data $h(t)$ given at the point $x=1$, in Section 3. The inverse problem with two Neumann measured data $f(t)$ and $h(t)$ is discussed in Section 4. The local representations of the unknown coefficient $k(x)$ at the endpoints $x=0$ and $x=1$ are given in Section 5. Finally, some concluding remarks are given in Section 6.

## 2. An analysis of the inverse problem with measured output data $f(t)$

Consider now the inverse problem with one measured output data $f(t)$ at $x=0$. In order to formulate the solution of the parabolic problem (1) in terms of semigroup, let us first arrange the parabolic equation as follows:

$$
u_{t}(x, t)-k(0) u_{x x}(x, t)=\left((k(x)-k(0)) u_{x}(x, t)\right)_{x}, \quad(x, t) \in \Omega_{T} .
$$

Then the initial boundary value problem (1) can be rewritten in the following form:

$$
\begin{align*}
& u_{t}(x, t)-k(0) u_{x x}(x, t)=\left((k(x)-k(0)) u_{x}(x, t)\right)_{x}, \quad(x, t) \in \Omega_{T}, \\
& u(x, 0)=g(x), \quad 0<x<1, \\
& u(0, t)=\psi_{0}, \quad u(1, t)=\psi_{1}, \quad 0<t<T . \tag{5}
\end{align*}
$$

For the time being we assume that $k(0)$ were known, later this value will be determined. In order to formulate the solution of the parabolic problem (5) in terms of semigroup, we need to define a new function

$$
\begin{equation*}
v(x, t)=u(x, t)-\psi_{0}(1-x)-\psi_{1} x, \quad x \in[0,1], \tag{6}
\end{equation*}
$$

which satisfies the following parabolic problem:

$$
\begin{align*}
& v_{t}(x, t)+A[v(x, t)]=\left((k(x)-k(0))\left(v_{x}(x, t)+\psi_{1}-\psi_{0}\right)\right)_{x}, \quad(x, t) \in \Omega_{T} \\
& v(x, 0)=g(x)-\psi_{0}(1-x)-\psi_{1} x, \quad 0<x<1 \\
& v(0, t)=0, \quad v(1, t)=0, \quad 0<t<T \tag{7}
\end{align*}
$$

Here $A[]:.=-k(0) d^{2}[.] / d x^{2}$ is a second order differential operator, whose domain is $D_{A}=\left\{u \in C^{2}(0,1) \cap\right.$ $\left.C^{2}[0,1]: u(0)=u(1)=0\right\}$. It is obvious that $g(x) \in D_{A}$, since the initial value function $g(x)$ belongs to $C^{2}[0,1]$.

Denote by $T(t)$ the semigroup of linear operators generated by the operator $A[5,7]$. Note that we can easily find the eigenvalues and eigenfunctions of the differential operator $A$. Moreover, the semigroup $T(t)$ can be easily constructed by using the eigenvalues and eigenfunctions of the infinitesimal generator $A$. Hence we first consider the following eigenvalue problem:

$$
\begin{aligned}
& A \phi(x)=\lambda \phi(x) \\
& \phi(0)=0, \quad \phi(1)=0
\end{aligned}
$$

We can easily determine that the eigenvalues are $\lambda_{n}=k(0) n^{2} \pi^{2}$ for all $n=0,1, \ldots$, and the corresponding eigenfunctions are $\phi_{n}(x)=\sqrt{2} \sin (n \pi x)$. In this case the semigroup $T(t)$ can be represented in the following way:

$$
\begin{equation*}
T(t) U(x, s)=\sum_{n=0}^{\infty}\left\langle\phi_{n}(.), U(., s)\right\rangle e^{-\lambda_{n} t} \phi_{n}(x) \tag{8}
\end{equation*}
$$

where $\left\langle\phi_{n}(\zeta), U(\zeta, s)\right\rangle:=\int_{0}^{1} \phi_{n}(\zeta) U(\zeta, s) d \zeta$. Under this representation, the null space of the semigroup $T(t)$ of the linear operators can be defined as follows:

$$
N(T)=\left\{U(x, s):\left\langle\phi_{n}(x), U(x, s)\right\rangle=0, \text { for all } n=0,1,2,3, \ldots\right\}
$$

From the definition of the semigroup $T(t)$, we can say that the null space of it consists of only zero function, i.e., $N(T)=\{0\}$. As we will see later that this result is very important for the uniqueness of the unknown coefficient $k(x)$.

The unique solution of the initial-boundary value problem (7) in terms of semigroup $T(t)$ can be represented in the following form:

$$
v(x, t)=T(t) v(x, 0)+\int_{0}^{t} T(t-s)\left((k(x)-k(0))\left(v_{x}(x, t)+\psi_{1}-\psi_{0}\right)\right)_{x} d s
$$

Hence by using the identity (6) and taking the initial value $u(x, 0)=g(x)$ into account, the solution $u(x, t)$ of the parabolic problem (5) in terms of semigroup can be written in the following form:

$$
\begin{equation*}
u(x, t)=\psi_{0}(1-x)+\psi_{1} x+T(t)\left(g(x)-\psi_{0}(1-x)-\psi_{1} x\right)+\int_{0}^{t} T(t-s)\left((k(x)-k(0)) u_{x}(x, s)\right)_{x} d s \tag{9}
\end{equation*}
$$

In order to arrange the above solution representation, let us define the followings:

$$
\begin{align*}
& \zeta(x)=\left(g(x)-\psi_{0}(1-x)-\psi_{1} x\right) \\
& \xi(x, t)=\left((k(x)-k(0)) u_{x}(x, t)\right)_{x} \\
& z(x, t)=\sum_{n=0}^{\infty}\left\langle\phi_{n}(.), \zeta(.)\right) e^{-\lambda_{n} t} \phi_{n}^{\prime}(x)  \tag{10}\\
& w(x, t, s)=\sum_{n=0}^{\infty}\left\langle\phi_{n}(.), \xi(., s)\right\rangle e^{-\lambda_{n} t} \phi_{n}^{\prime}(x) \tag{11}
\end{align*}
$$

Then we can rewrite the solution representation (9) in terms of $\zeta(x)$ and $\xi(x, s)$ in the following form:

$$
u(x, t)=\psi_{0}(1-x)+\psi_{1} x+T(t) \zeta(x)+\int_{0}^{t} T(t-s) \xi(x, s) d s
$$

Differentiating both sides of the above identity with respect to $x$ and using semigroup properties at $x=0$ yields

$$
u_{x}(0, t)=-\psi_{0}+\psi_{1}+z(0, t)+\int_{0}^{t} w(0, t-s, s) d s
$$

Taking into account the measured output data $k(0) u_{x}(0, t)=f(t)$ we get

$$
\begin{equation*}
f(t)=k(0)\left(-\psi_{0}+\psi_{1}+z(0, t)+\int_{0}^{t} w(0, t-s, s) d s\right) \tag{12}
\end{equation*}
$$

Using the measured output data $k(0) u_{x}(0, t)=f(t)$, we can write $k(0)=f(t) / u_{x}(0, t)$ for all $t>0$ which can be rewritten in terms of semigroup in the following form:

$$
k(0)=f(t) /\left(-\psi_{0}+\psi_{1}+z(0, t)+\int_{0}^{t} w(0, t-s, s) d s\right)
$$

Taking limit as $t \rightarrow 0$ in the above identity, we obtain the following explicit formula for the value $k(0)$ of the unknown coefficient $k(x)$ :

$$
\begin{equation*}
k(0)=f(0) /\left(-\psi_{0}+\psi_{1}+z(0,0)\right) \tag{13}
\end{equation*}
$$

Note that in [1] the value $k(0)$ is defined via the same input data, by different way. However compare with formula given in [1], formula (13) is more convenient for practical purposes.

Let us differentiate now the both sides of identity (9) with respect to $t$

$$
\begin{aligned}
u_{t}(x, t)= & T(t) A\left(u(x, 0)-\psi_{0}(1-x)-\psi_{1} x\right)+\left((k(x)-k(0)) u_{x}(x, t)\right)_{x} \\
& +\int_{0}^{t} A T(t-s)\left((k(x)-k(0)) u_{x}(x, s)\right)_{x} d s
\end{aligned}
$$

Using semigroup properties, we obtain

$$
u_{t}(x, t)=T(t) g^{\prime \prime}(x)+2 T(0)\left((k(x)-k(0)) u_{x}(x, t)\right)_{x}-T(t)\left((k(x)-k(0)) u_{x}(x, 0)\right)_{x}
$$

Taking $x=0$ in the above identity, we get

$$
u_{t}(0, t)=T(t) g^{\prime \prime}(0)+2 T(0)\left(k^{\prime}(0) u_{x}(0, t)\right)-T(t)\left(k^{\prime}(0) u_{x}(0,0)\right)
$$

Since $u(0, t)=\psi_{0}$ we have $u_{t}(0, t)=0$. Taking into account this and substituting $t=0$ yield

$$
0=g^{\prime \prime}(0)+k^{\prime}(0) u_{x}(0,0)
$$

Solving this equation for $k^{\prime}(0)$ and substituting $u_{x}(0,0)=f(0) / k(0)$, we obtain the following explicit formula for the value $k^{\prime}(0)$ of the first derivative $k^{\prime}(x)$ of the unknown coefficient

$$
\begin{equation*}
k^{\prime}(0)=-\frac{k(0) g^{\prime \prime}(0)}{f(0)} \tag{14}
\end{equation*}
$$

Under the determined values $k(0)$ and $k^{\prime}(0)$, the set of admissible coefficients can be defined as follows:

$$
\mathcal{K}_{0}:=\left\{k \in \mathcal{K}: k(0)=f(0) /\left(-\psi_{0}+\psi_{1}+z(0,0)\right), k^{\prime}(0)=-k(0) g^{\prime \prime}(0) / f(0)\right\}
$$

The right-hand side of identity (12) defines explicitly the semigroup representation of the input-output mapping $\Phi[F]$ on the set of admissible source functions $\mathcal{F}$

$$
\begin{equation*}
\Phi[k](x):=k(0)\left(-\psi_{0}+\psi_{1}+z(0, t)+\int_{0}^{t} w(0, t-s, s) d s\right), \quad \forall t \in[0, T] \tag{15}
\end{equation*}
$$

The following lemma implies the relation between the coefficients $k_{1}(x), k_{2}(x) \in \mathcal{K}_{0}$ at $x=0$ and the corresponding outputs $f_{j}(t):=k_{j}(0) u_{x}\left(0, t ; k_{j}\right), j=1,2$.

Lemma 1. Let $u_{1}(x, t)=u\left(x, t ; k_{1}\right)$ and $u_{2}(x, t)=u\left(x, t ; k_{2}\right)$ be the solutions of the direct problem (5) corresponding to the admissible coefficients $k_{1}(x), k_{2}(x) \in \mathcal{K}, k_{1}(x) \neq k_{2}(x)$. Suppose that $f_{j}(t)=k_{j}(0) u_{x}\left(0, t ; k_{j}\right), j=1,2$, are the corresponding outputs, and denote by $\Delta f(t)=f_{1}(t)-f_{2}(t), \Delta w(x, t, s)=w^{1}(x, t, s)-w^{2}(x, t, s)$. If the condition

$$
k_{1}(0)=k_{2}(0):=k(0)
$$

holds, then the outputs $f_{j}(t), j=1,2$, satisfy the following integral identity:

$$
\begin{equation*}
\Delta f(\tau)=k(0)\left(\int_{0}^{\tau} \Delta w(0, \tau-s, s) d s\right) d s \tag{16}
\end{equation*}
$$

for each $\tau \in(0, T]$.
Proof. By using identity (12), the measured output data $f_{j}(t):=k_{j}(0) u_{x}\left(0, t ; k_{j}\right), j=1,2$, can be written as follows:

$$
\begin{aligned}
& f_{1}(\tau)=k(0)\left(-\psi_{0}+\psi_{1}+z^{1}(0, \tau)+\int_{0}^{t} w^{1}(0, \tau-s, s) d s\right) \\
& f_{2}(\tau)=k(0)\left(-\psi_{0}+\psi_{1}+z^{2}(0, \tau)+\int_{0}^{t} w^{2}(0, \tau-s, s) d s\right)
\end{aligned}
$$

respectively. From identity (10) it is obvious that $z^{1}(0, \tau)=z^{2}(0, \tau)$ for each $\tau \in(0, T]$. Hence the difference of these formulas implies the desired result.

This lemma with identity (11) implies the following.
Corollary 1. Let the conditions of Lemma 1 hold. Then $f_{1}(t)=f_{2}(t), \forall t \in[0, T]$, if and only if

$$
\left\langle\phi_{n}(x), \xi^{1}(x, t)-\xi^{2}(x, t)\right\rangle=0, \quad \forall t \in(0, T], n=0,1, \ldots
$$

Since the null space of semigroup contains only zero function, i.e., $N(T)=\{0\}$, Corollary 1 states that $f_{1} \equiv f_{2}$ if and only if $\xi^{1}(x, t)-\xi^{2}(x, t)=0$ for all $(x, t) \in \Omega_{T}$. From the definition of $\xi(x, t)$, it implies that $k_{1}(x)=k_{2}(x)$ for all $x \in[0,1]$.

Theorem 1. Let conditions $(\mathrm{C} 1)$ and $(\mathrm{C} 2)$ hold. Assume that $\Phi[\cdot]: \mathcal{K}_{0} \rightarrow C^{1}[0, T]$ be the input-output mapping defined by (3) and corresponding to the measured output $f(t):=k(0) u_{x}(0, t)$. Then the mapping $\Phi[k]$ has the distinguishability property in the class of admissible coefficients $\mathcal{K}_{0}$, i.e.,

$$
\Phi\left[k_{1}\right] \neq \Phi\left[k_{2}\right], \quad \forall k_{1}, k_{2} \in \mathcal{K}_{0}, k_{1}(x) \neq k_{2}(x)
$$

## 3. An analysis of the inverse problem with measured output data $\boldsymbol{h}(\boldsymbol{t})$

Consider now the inverse problem with one measured output data $h(t)$ at $x=1$. As in the previous section, let us arrange the equation in parabolic problem (1) as follows:

$$
u_{t}(x, t)-k(1) u_{x x}(x, t)=\left((k(x)-k(1)) u_{x}(x, t)\right)_{x}, \quad(x, t) \in \Omega_{T}
$$

Then the initial boundary value problem (1) can be rewritten in the following form:

$$
\begin{align*}
& u_{t}(x, t)-k(1) u_{x x}(x, t)=\left((k(x)-k(1)) u_{x}(x, t)\right)_{x}, \quad(x, t) \in \Omega_{T} \\
& u(x, 0)=g(x), \quad 0<x<1 \\
& u_{x}(0, t)=\psi_{0}, \quad u_{x}(1, t)=\psi_{1}, \quad 0<t<T \tag{17}
\end{align*}
$$

In order to formulate the solution of the above parabolic problem in terms of semigroup, let us use the same function $v(x, t)$ in identity (6) which satisfies the following parabolic problem:

$$
\begin{align*}
& v_{t}(x, t)+B[v(x, t)]=\left((k(x)-k(1)) u_{x}(x, t)\right)_{x}, \quad(x, t) \in \Omega_{T} \\
& v(x, 0)=g(x)-\psi_{0}(1-x)-\psi_{1} x, \quad 0<x<1 \\
& v(0, t)=0, \quad v(1, t)=0, \quad 0<t<T \tag{18}
\end{align*}
$$

Here $B[]:.=-k(1) d^{2}[.] / d x^{2}$ is a second order differential operator whose domain is $D_{B}=\left\{u \in C^{2}(0,1) \cap\right.$ $\left.C^{2}[0,1]: u(0)=u(1)=0\right\}$.

Denote by $S(t)$ the semigroup of linear operators generated by the operator $B$. As mentioned above, in order to construct semigroup $S(t)$ we need to know the eigenvalues and eigenfunctions of the infinitesimal generator $B$. Therefore we first consider the following eigenvalue problem:

$$
\begin{aligned}
& B \phi(x)=\lambda \phi(x) \\
& \phi(0)=0, \quad \phi(1)=0
\end{aligned}
$$

Then the eigenvalues of the above problem become $\lambda_{n}=k(1) n^{2} \pi^{2}$ for all $n=0,1, \ldots$, and the corresponding eigenfunctions become $\phi_{n}(x)=\sqrt{2} \sin (n \pi x)$. Hence the semigroup $S(t)$ can be represented in the following form:

$$
S(t) U(x, s)=\sum_{n=0}^{\infty}\left\langle\phi_{n}(.), U(., s)\right\rangle e^{-\lambda_{n} t} \phi_{n}(x)
$$

Using above representation of the semigroup $S(t)$ of the linear operators, we can define the null space of it as follows:

$$
N(S)=\left\{U(x, s):\left\langle\phi_{n}(x), U(x, s)\right\rangle=0, \text { for all } n=1,2,3, \ldots\right\}
$$

The definition of the semigroup $S(t)$ above implies that the null space of it consists of only zero function, i.e., $N(S)=$ $\{0\}$. As we mentioned in the previous section, this result plays very important role in the uniqueness of the unknown coefficient $k(x)$.

The unique solution of the initial value problem (18) in terms of semigroup $S(t)$ can be represented in the following form:

$$
v(x, t)=S(t) v(x, 0)+\int_{0}^{t} S(t-s)\left((k(x)-k(1))\left(v_{x}(x, t)+\psi_{1}-\psi_{0}\right)\right)_{x} d s
$$

Hence by using the identity (6) the solution $u(x, t)$ of the parabolic problem (17) in terms of semigroup can be written in the following form:

$$
\begin{align*}
u(x, t)= & \psi_{0}(1-x)+\psi_{1} x+S(t)\left(u(x, 0)-\psi_{0}(1-x)-\psi_{1} x\right) \\
& +\int_{0}^{t} S(t-s)\left((k(x)-k(1)) u_{x}(x, s)\right)_{x} d s \tag{19}
\end{align*}
$$

Defining the followings:

$$
\begin{align*}
& \chi(x, s)=\left((k(x)-k(1)) u_{x}(x, s)\right)_{x} \\
& z_{1}(x, t)=\sum_{n=0}^{\infty}\left\langle\phi_{n}(.), \zeta(.)\right) e^{-\lambda_{n} t} \phi_{n}^{\prime}(x)  \tag{20}\\
& w_{1}(x, t, s)=\sum_{n=0}^{\infty}\left\langle\phi_{n}(.), \chi(., s)\right\rangle e^{-\lambda_{n} t} \phi_{n}^{\prime}(x) . \tag{21}
\end{align*}
$$

The solution representation of the parabolic problem (17) can be rewritten in the following form:

$$
u(x, t)=\psi_{0}(1-x)+\psi_{1} x+S(t) \zeta+\int_{0}^{t} S(t-s) \chi(x, s) d s
$$

Now differentiating both sides of the above identity with respect to $x$ and substituting $x=1$ yield

$$
u_{x}(1, t)=-\psi_{0}+\psi_{1}+z_{1}(1, t)+\int_{0}^{t} w_{1}(1, t-s, s) d s
$$

Taking into account the measured output data $k(1) u_{x}(1, t)=h(t)$, we get

$$
\begin{equation*}
h(t)=k(1)\left(-\psi_{0}+\psi_{1}+z_{1}(1, t)+\int_{0}^{t} w_{1}(1, t-s, s) d s\right) \tag{22}
\end{equation*}
$$

Now we can determine the value $k(1)$ by using the overmeasured output data $h(t)=k(1) u_{x}(1, t)$. The identity $k(1)=h(t) / u_{x}(1, t)$ for all $t>0$, can be rewritten in terms of semigroup in the following form:

$$
k(1)=h(t) /\left(-\psi_{0}+\psi_{1}+z_{1}(1, t)+\int_{0}^{t} w(1, t-s, s) d s\right)
$$

Taking limit as $t \rightarrow 0$ in the above identity yields:

$$
\begin{equation*}
k(1)=h(0) /\left(-\psi_{0}+\psi_{1}+z_{1}(1,0)\right) . \tag{23}
\end{equation*}
$$

Differentiating both sides of identity (19) with respect to $t$, we get

$$
\begin{aligned}
u_{t}(x, t)= & S(t) B\left(u(x, 0)-\psi_{0}(1-x)-\psi_{1} x\right)+\left((k(x)-k(1)) u_{x}(x, t)\right)_{x} \\
& +\int_{0}^{t} B S(t-s)\left((k(x)-k(1)) u_{x}(x, s)\right)_{x} d s
\end{aligned}
$$

Using semigroup properties, we obtain

$$
u_{t}(x, t)=S(t) g^{\prime \prime}(x)+2 S(0)\left((k(x)-k(1)) u_{x}(x, t)\right)_{x}-S(t)\left((k(x)-k(1)) u_{x}(x, 0)\right)_{x}
$$

Taking $x=1$ in the above identity, we get

$$
u_{t}(1, t)=S(t) g^{\prime \prime}(1)+2 S(0)\left(k^{\prime}(1) u_{x}(1, t)\right)-S(t)\left(k^{\prime}(1) u_{x}(1,0)\right)
$$

Since $u(1, t)=\psi_{1}$ we have $u_{t}(1, t)=0$ Taking into account this and substituting $t=0$, we get

$$
0=g^{\prime \prime}(1)+k^{\prime}(1) u_{x}(1,0)
$$

Solving this equation for $k^{\prime}(1)$ and substituting $u_{x}(1,0)=h(0) / k(1)$, we reach the following result:

$$
\begin{equation*}
k^{\prime}(1)=-\frac{k(1) g^{\prime \prime}(1)}{h(0)} \tag{24}
\end{equation*}
$$

Then we can define the admissible set of diffusion coefficients as follows:

$$
\mathcal{K}_{1}:=\left\{k \in \mathcal{K}: k(1)=h(0) /\left(-\psi_{0}+\psi_{1}+z(1,0)\right), k^{\prime}(1)=-k(1) g^{\prime \prime}(1) / h(0)\right\}
$$

The right-hand side of identity (22) defines the semigroup representation of the input-output mapping $\Psi[k]$ on the set of admissible source functions $\mathcal{F}$

$$
\begin{equation*}
\Psi[k](t):=k(1)\left(-\psi_{0}+\psi_{1}+z_{1}(1, t)+\int_{0}^{t} w_{1}(1, t-s, s) d s\right), \quad \forall t \in[0, T] \tag{25}
\end{equation*}
$$

The following lemma implies the relation between the coefficients $k_{1}(x), k_{2}(x) \in \mathcal{K}_{1}$ at $x=1$, and the corresponding outputs $h_{j}(t):=k_{j}(1) u_{x}\left(1, t ; k_{j}\right), j=1,2$.

Lemma 2. Let $u_{1}(x, t)=u\left(x, t ; k_{1}\right)$ and $u_{2}(x, t)=u\left(x, t ; k_{2}\right)$ be solutions of the direct problem (17) corresponding to the admissible coefficients $k_{1}(x), k_{2}(x) \in \mathcal{K}, k_{1}(x) \neq k_{2}(x)$. Suppose that $h_{j}(t)=u\left(1, t ; k_{j}\right), j=1,2$, are the corresponding outputs and denote by $\Delta h(t)=h_{1}(t)-h_{2}(t), \Delta w_{1}(x, t, s)=w_{1}^{1}(x, t, s)-w_{1}^{2}(x, t, s)$. If the condition

$$
k_{1}(1)=k_{2}(1):=k(1)
$$

holds, then the outputs $h_{j}(t), j=1,2$, satisfy the following integral identity:

$$
\begin{equation*}
\Delta h(\tau)=k(1) \int_{0}^{\tau} \Delta w_{1}(1, \tau-s, s) d s \tag{26}
\end{equation*}
$$

for each $\tau \in[0, T]$.
Proof. By using identity (22), the measured output data $h_{j}(t):=k_{j}(1) u_{x}\left(1, t ; k_{j}\right), j=1,2$, can be written as follows:

$$
\begin{aligned}
& h_{1}(\tau)=k(1)\left(-\psi_{0}+\psi_{1}+z_{1}^{1}(1, \tau)+\int_{0}^{t} w_{1}^{1}(1, \tau-s, s) d s\right), \\
& h_{2}(\tau)=k(1)\left(-\psi_{0}+\psi_{1}+z_{1}^{2}(1, \tau)+\int_{0}^{t} w_{1}^{2}(1, \tau-s, s) d s\right),
\end{aligned}
$$

respectively. From identity (20), it is obvious that $z_{1}^{1}(1, \tau)=z_{1}^{2}(1, \tau)$ for each $\tau \in(0, T]$. Hence the difference of these formulas implies the desired result.

This lemma with identity (21) implies the following conclusion.
Corollary 2. Let conditions of Lemma 2 hold. Then $h_{1}(t)=h_{2}(t), \forall t \in[0, T]$, if and only if

$$
\left\langle\phi_{n}(x), \chi^{1}(x, t)-\chi^{2}(x, t)\right\rangle=0, \quad \forall t \in(0, T], n=0,1, \ldots,
$$

hold. Then $h_{1}(t)=h_{2}(t), \forall t \in[0, T]$.
Since the null space of it consists of only zero function, i.e., $N(S)=\{0\}$, Corollary 2 states that $h_{1} \equiv h_{2}$ if and only if $\chi^{1}(x, t)-\chi^{2}(x, t)=0$ for all $(x, t) \in \Omega_{T}$. From the definition of $\chi(x, t)$, it implies that $k_{1}(x)=k_{2}(x)$ for all $x \in(0,1]$.

Theorem 2. Let conditions (C1) and (C2) hold. Assume that $\Psi[\cdot]: \mathcal{K}_{1} \rightarrow C^{1}[0, T]$ be the input-output mapping defined by (3) and corresponding to the measured output $h(t):=k(1) u_{x}(1, t)$. Then the mapping $\Psi[k]$ has the distinguishability property in the class of admissible coefficients $\mathcal{K}_{1}$, i.e.,

$$
\Psi\left[k_{1}\right] \neq \Psi\left[k_{2}\right], \quad \forall k_{1}, k_{2} \in \mathcal{K}_{1}, k_{1}(x) \neq k_{2}(x) .
$$

## 4. The inverse problem with two Neumann measured output data

Consider now the inverse problem (1)-(2) with two measured output data $f(t)$ and $h(t)$. As shown before, having these two data, the values $k(0)$ as well as $k(1)$ can be defined by the above explicit formulaes. Based on this result, let us define now the set of admissible coefficients $\mathcal{K}_{2}$ as an intersection

$$
\begin{aligned}
& \mathcal{K}_{2}:=\mathcal{K}_{0} \cap \mathcal{K}_{1}=\left\{k \in \mathcal{K}: k(0)=f(0) /\left(-\psi_{0}+\psi_{1}+z(0,0)\right), k(1)=h(0) /\left(-\psi_{0}+\psi_{1}+z(1,0)\right),\right. \\
& \left.k^{\prime}(0)=-k(0) g^{\prime \prime}(0) / f(0), k^{\prime}(1)=-k(1) g^{\prime \prime}(1) / h(0)\right\} .
\end{aligned}
$$

On this set both input-output mapping $\Phi[k]$ and $\Psi[k]$ have distinguishability property.

Corollary 3. The input-output mappings $\Phi[\cdot]: \mathcal{K}_{2} \rightarrow C^{1}[0, T]$ and $\Psi[\cdot]: \mathcal{K}_{2} \rightarrow C^{1}[0, T]$ distinguish any two functions $k_{1}(x) \neq k_{2}(x)$ from the set $\mathcal{K}_{2}$, i.e.,

$$
\Phi\left[k_{1}\right] \neq \Phi\left[k_{2}\right], \quad \Psi\left[k_{1}\right] \neq \Psi\left[k_{2}\right], \quad \forall k_{1}(x), k_{2}(x) \in \mathcal{K}_{2}, k_{1}(x) \neq k_{2}(x) .
$$

## 5. Local representations of the diffusion coefficient $k(x)$ near $x=0$ and $x=1$

This section deals with the local analysis of the unknown coefficient $k(x)$ in order to obtain its representations in the neighborhood of $x=0$ and $x=1$. The semigroup representation of the solution is used here as an effective tool for the determination of the unknown coefficient $k=k(x)$. We determine the diffusion coefficient $k(x)$ first numerically.

Let us introduce the uniform mesh $w_{h}=\left\{x_{i} \in[0,1]: x_{0}=0, x_{i}=x_{i-1}+h, i=1, \ldots, N ; h=1 / N\right\}$ and denote $k_{i}=k\left(x_{i}\right), i=1, \ldots, N$. Then the piecewise linear approximation of the coefficient $k(x)$ is as follows:

$$
\begin{equation*}
k_{h}(x)=\sum_{i=1}^{N} k_{i} \xi_{i}(x), \tag{27}
\end{equation*}
$$

here $\xi_{i}(x)$ is the continuous, piecewise linear Lagrange basic functions; $\xi_{i}\left(x_{j}\right)=\delta_{i j}$ [6].
Having the values $k_{0}=k(0)$ and $k^{\prime}(0)$ of the diffusion coefficient $k(x)$ and its derivative at $x=0$, we can approximately determine its value at $x=h$ for small enough $h>0$ as follows:

$$
k_{1} \cong k_{0}+k^{\prime}\left(x_{0}\right) h
$$

where $h=\frac{1}{N}$ and $N$ is the number of meshes.
To determine the value $k_{2}=k\left(x_{2}\right)$ of the diffusion coefficient $k(x)$, we rearrange the parabolic equation as follows:

$$
u_{t}(x, t)-k\left(x_{1}\right) u_{x x}(x, t)=\left(\left(k(x)-k\left(x_{1}\right)\right) u_{x}(x, t)\right)_{x}, \quad(x, t) \in \Omega_{T} .
$$

Then the initial boundary value problem (1) can be rewritten in the following form:

$$
\begin{aligned}
& u_{t}(x, t)+A_{2} u(x, t)=\left(\left(k(x)-k\left(x_{1}\right)\right) u_{x}(x, t)\right)_{x}, \quad(x, t) \in \Omega_{T}, \\
& u(x, 0)=g(x), \quad 0<x<1, \\
& u_{x}(0, t)=\psi_{0}, \quad u_{x}(1, t)=\psi_{1}, \quad 0<t<T
\end{aligned}
$$

where $A_{2}[]=.-k\left(x_{1}\right) d^{2}[.] / d x^{2}$ and $T_{2}(t)$ is the analytic semigroup.
Differentiating both sides of this identity with respect to $t$, we get

$$
\begin{aligned}
u_{t}(x, t)= & T_{2}(t) A_{2}\left(u(x, 0)-\psi_{0}(1-x)-\psi_{1} x\right)+\left(\left(k(x)-k\left(x_{1}\right)\right) u_{x}(x, t)\right)_{x} \\
& +\int_{0}^{t} A_{2} T_{2}(t-s)\left(\left(k(x)-k\left(x_{1}\right)\right) u_{x}(x, s)\right)_{x} d s .
\end{aligned}
$$

Using semigroup properties, we obtain

$$
u_{t}(x, t)=T_{2}(t) g^{\prime \prime}(x)+2 T_{2}(0)\left(\left(k(x)-k\left(x_{1}\right)\right) u_{x}(x, t)\right)_{x}-T_{2}(t)\left(\left(k(x)-k\left(x_{1}\right)\right) u_{x}(x, 0)\right)_{x} .
$$

At $x=x_{1}$, we have

$$
u_{t}\left(x_{1}, t\right)=T_{2}(t) g^{\prime \prime}\left(x_{1}\right)+2 T_{2}(0) k^{\prime}\left(x_{1}\right) u_{x}\left(x_{1}, t\right)-T_{2}(t) k^{\prime}\left(x_{1}\right) u_{x}\left(x_{1}, t\right) .
$$

Furthermore using the data of $\psi_{0}=u(0, t)$ and $f(t)=k(0) u_{x}(0, t)$ at the point $(0, t)$, we can determine the approximate value of $u(h, t)$ for small enough $h$ as follows:

$$
u\left(x_{1}, t\right)=u(0, t)+u_{x}(0, t) h, \quad u\left(x_{1}, t\right)=\psi_{0}+\frac{f(t)}{k(0)} h .
$$

Last equation implies that $u_{t}\left(x_{1}, t\right)=\frac{f^{\prime}(t)}{k(0)} h$. Here we assume that $k(0) \neq 0$. Substituting this in (28) at $x=x_{1}$

$$
\frac{f^{\prime}(t)}{k(0)} h=T_{2}(t) g^{\prime \prime}\left(x_{1}\right)+2 T_{2}(0) k^{\prime}\left(x_{1}\right) u_{x}\left(x_{1}, t\right)-T_{2}(t) k^{\prime}\left(x_{1}\right) u_{x}\left(x_{1}, t\right)
$$

At $t=0$, we have

$$
f^{\prime}(0) h=k(0) g^{\prime \prime}\left(x_{1}\right)+\left(k^{\prime}\left(x_{1}\right) k(0) u_{x}\left(x_{1}, 0\right)\right) .
$$

Using here the data $u_{x}\left(x_{1}, 0\right)=g^{\prime}\left(x_{1}\right)$, finally we obtain

$$
k^{\prime}\left(x_{1}\right)=\frac{f^{\prime}(0) h-k(0) g^{\prime \prime}\left(x_{1}\right)}{k(0) g^{\prime}\left(x_{1}\right)}
$$

This identity allow us to determine the approximate value of the $k(x)$ at $x=x_{2}$

$$
k\left(x_{2}\right) \cong k\left(x_{1}\right)+k^{\prime}\left(x_{1}\right) h, \quad k\left(x_{2}\right) \cong k\left(x_{1}\right)+\frac{f^{\prime}(0) h-k(0) g^{\prime \prime}\left(x_{1}\right)}{k(0) g^{\prime}\left(x_{1}\right)} h .
$$

Continuing this procedure recursively, at the $i$ th step we get

$$
k^{\prime}\left(x_{i}\right) \cong \frac{f^{\prime}(0) h-k(0) g^{\prime \prime}\left(x_{i}\right)}{k(0) g^{\prime}\left(x_{i}\right)}, \quad \forall i \in 1, \ldots, N .
$$

Hence the approximate value of the unknown coefficient $k(x)$ at $x=x_{i}$ can be calculated as follows:

$$
k\left(x_{i}\right) \cong k\left(x_{i-1}\right)+\frac{f^{\prime}(0) h-k(0) g^{\prime \prime}\left(x_{i}\right)}{k(0) g^{\prime}\left(x_{i}\right)} h .
$$

More generally this identity can be rewritten in the following form:

$$
\begin{equation*}
k\left(x_{i}\right) \cong k(0)+\sum_{i=1}^{n} \frac{f^{\prime}(0) h-k(0) g^{\prime \prime}\left(x_{i-1}\right)}{k(0) g^{\prime}\left(x_{i-1}\right)} h . \tag{28}
\end{equation*}
$$

This shows also influence of the Cauchy data $g(x)$ to the diffusion coefficient on the neighborhood of $x=0$.
By the similar way we can derive the representation formula for $k(x)$ in the neighborhood of $x=1$ with the assumption $k(1) \neq 0$. Then the general form of this identity becomes

$$
\begin{equation*}
k\left(x_{N-i}\right) \cong k(1)-\sum_{i=1}^{n} \frac{h^{\prime}(0) h-k(1) g^{\prime \prime}\left(x_{N-i}\right)}{k(1) g^{\prime}\left(x_{N-i}\right)} h . \tag{29}
\end{equation*}
$$

Remark 1. In some physical situations the flux attains maximum (or minimum) value at the initial moment $t=0$. In this case we have $f^{\prime}(0)=0$. Using this in (29) and taking limit as $N \rightarrow \infty$, we get

$$
k(x) \cong k(0)-\int_{0}^{x} \frac{g^{\prime \prime}(s)}{g^{\prime}(s)} d s
$$

The same consideration are valid for the right flux $h(t)$. If $h^{\prime}(0)=0$, then the limit case of the representation (30) has the following form:

$$
k(x) \cong k(1)+\int_{x}^{1} \frac{g^{\prime \prime}(s)}{g^{\prime}(s)} d s
$$

Formulas (29) and (30) can sequentially determine the approximate values of $k_{i}=k\left(x_{i}\right)$, having those values and using (27) we can restore the piecewise linear approximation $k_{h}(x)$ of the unknown coefficient $k(x)$.

On the other hand the local representation formulas (29), (30) for the unknown coefficient $k(x)$ in the neighborhoods of the endpoints $x=0$ and $x=1$, that the first and second derivatives of the function $g(x)$ play here an important role. If the function $g^{\prime}(x)$ takes values close 0 at any point $x \in[0,1]$, then the coefficient $k(x)$ blows up at that point.

## 6. Conclusion

The aim of this study was to analyze distinguishability properties of the input-output mappings $\Phi[\cdot]: \mathcal{K}_{2} \rightarrow$ $C^{1}[0, T]$ and $\Psi[\cdot]: \mathcal{K}_{2} \rightarrow C^{1}[0, T]$, which are naturally determined by the measured output data. In this paper we show that if the null spaces of the semigroups $T(t)$ and $S(t)$ include only zero function then the corresponding inputoutput mappings $\Phi[\cdot]$ and $\Psi[\cdot]$ are distinguishable.

This study shows that boundary conditions and the region on which the problem is defined play an important role on the distinguishability of the input-output mappings $\Phi[\cdot]$ and $\Psi[\cdot]$ since these key elements determine the structure of the semigroup $T(t)$ of linear operators and its null space.

The similarities among the formulas for $k(0), k^{\prime}(0), k(1), k^{\prime}(1)$ give insight us that we can find the values $k\left(x_{i}\right)$ and $k^{\prime}\left(x_{i}\right)$ for all $x_{i} \in(0,1)$ by the following formulas:

$$
\begin{align*}
& k\left(x_{i}\right)=f_{i}(0) /\left(-\psi_{0}+\psi_{1}+z(0,0)\right)  \tag{30}\\
& k^{\prime}\left(x_{i}\right)=-k\left(x_{i}\right) g^{\prime \prime}\left(x_{i}\right) / f_{i}(0) \tag{31}
\end{align*}
$$

where $f_{i}(t)=k\left(x_{i}\right) u_{x}\left(x_{i}, t\right)$. This implies that more measured output data $f_{i}$, more information about unknown coefficient $k(x)$. Here the only difficulty we encounter here is the determination of the functions $f_{i}$. In numerical calculations we can approximate the these functions by using the following Taylor expansions $k\left(x_{i}\right)=k\left(x_{i-1}\right)+$ $k^{\prime}\left(x_{i-1}\right)\left(x_{i}-x_{i-1}\right)$ and $u_{x}\left(x_{i}, t\right)=u_{x}\left(x_{i-1}, t\right)+u_{x x}\left(x_{i-1}, t\right)$, successively. Hence we approximately determine $f_{i}$ as $f_{i}(t)=\left(k\left(x_{i-1}\right)+k^{\prime}\left(x_{i-1}\right)\left(x_{i}-x_{i-1}\right)\right)\left(u_{x}\left(x_{i-1}, t\right)+u_{x x}\left(x_{i-1}, t\right)\right)$.

## Acknowledgments

The research was supported by parts by the Scientific and Technical Research Council (TUBITAK) of Turkey.

## References

[1] J.R. Cannon, The One-Dimensional Heat Equation, Encyclopedia Math. Appl., vol. 23, Addison-Wesley, Massachusets, 1984.
[2] P. DuChateau, Introduction to inverse problems in partial differential equations for engineers, physicists and mathematicians, in: J. Gottlieb, P. DuChateau (Eds.), Parameter Identification and Inverse Problems in Hydrology, Geology and Ecology, Kluwer Academic Publishers, The Netherlands, 1996, pp. 3-38.
[3] P. DuChateau, Monotonicity and invertibility of coefficient-to-data mappings for parabolic inverse problems, SIAM J. Math. Anal. 26 (1995) 1473-1487.
[4] P. DuChateau, R. Thelwell, G. Butters, Analysis of an adjoint problem approach to the identification of an unknown diffusion coefficient, Inverse Problems 20 (2004) 601-625.
[5] M. Renardy, R.C. Rogers, An Introduction to Partial Differential Equations, Springer, New York, 2004.
[6] P. Ciarlet, Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[7] R.E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, American Mathematical Society, Providence, RI, 1997.


[^0]:    * Corresponding author.

    E-mail address: ademir@kou.edu (A. Demir).

