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Abstract

In this article, we study the semigroup approach for the mathematical analysis of the inverse coefficient problems of identi-
fying the unknown coefficient k(x) in the linear parabolic equation ut (x, t) = (k(x)ux(x, t))x , with Dirichlet boundary condi-
tions u(0, t) = ψ0, u(1, t) = ψ1. Main goal of this study is to investigate the distinguishability of the input–output mappings
Φ[·] : K → C1[0, T ], Ψ [·] : K → C1[0, T ] via semigroup theory. In this paper, we show that if the null space of the semigroup
T (t) consists of only zero function, then the input–output mappings Φ[·] and Ψ [·] have the distinguishability property. Moreover,
the values k(0) and k(1) of the unknown diffusion coefficient k(x) at x = 0 and x = 1, respectively, can be determined explicitly
by making use of measured output data (boundary observations) f (t) := k(0)ux(0, t) or/and h(t) := k(1)ux(1, t). In addition to
these, the values k′(0) and k′(1) of the unknown coefficient k(x) at x = 0 and x = 1, respectively, are also determined via the input
data. Furthermore, it is shown that measured output data f (t) and h(t) can be determined analytically, by an integral representa-
tion. Hence the input–output mappings Φ[·] : K → C1[0, T ], Ψ [·] : K → C1[0, T ] are given explicitly in terms of the semigroup.
Finally by using all these results, we construct the local representations of the unknown coefficient k(x) at the end points x = 0
and x = 1.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the following initial boundary value problem:⎧⎪⎨
⎪⎩

ut (x, t) = (
k(x)ux(x, t)

)
x
, (x, t) ∈ ΩT ,

u(x,0) = g(x), 0 < x < 1,

u(0, t) = ψ0, u(1, t) = ψ1, 0 < t < T,

(1)

where ΩT = {(x, t) ∈ R2: 0 < x < 1, 0 < t � T }. The left and right boundary values ψ0,ψ1 are assumed to be
constants. The functions c1 > k(x) � c0 > 0 and g(x) satisfy the following conditions:
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(C1) k(x) ∈ C1[0,1];
(C2) g(x) ∈ C2[0,1], g(0) = ψ0, g(1) = ψ1.

Under these conditions the initial boundary value problem (1) has a unique solution u(x, t) ∈ C2,1(ΩT ) ∩
C2,0(ΩT ).

Consider the inverse problem of determining the unknown coefficient k = k(x) from the following observations at
the boundaries x = 0 and x = 1:

k(0)ux(0, t) = f (t), k(1)ux(1, t) = h(t), t ∈ (0, T ]. (2)

Here u = u(x, t) is the solution of the parabolic problem (1). The functions f (t), h(t) are assumed to be noisy free
measured output data. In this context the parabolic problem (1) will be referred as a direct ( forward) problem, with
the inputs g(x) and k(x). It is assumed that the functions f (t) and h(t) belong to C1[0, T ] and satisfy the consistency
conditions f (0) = k(0)g′(0), h(0) = k(1)g′(1).

We denote by K := {k(x) ∈ C1[0,1]: c1 > k(x) � c0 > 0, x ∈ [0,1]} ⊂ C1[0,1], the set of admissible coefficients
k = k(x), and introduce the input–output mappings Φ[·] : K → C1[0, T ], Ψ [·] : K → C1[0, T ], where

Φ[k] = k(x)ux(x, t; k)|x=0, Ψ [k] = k(x)ux(x, t; k)|x=1, k ∈ K, f (t), h(t) ∈ C1[0, T ]. (3)

Then the inverse problem with the measured output data f (t) and h(t) can be formulated as the following operator
equations:

Φ[k] = f, Ψ [k] = h, k ∈K, f,h ∈ C1[0, T ]. (4)

The monotonicity, continuity, and hence invertibility of the input–output mappings Φ[·] :K → C1[0, T ] and
Ψ [·] :K → C1[0, T ] are investigated in [2–4].

The purpose of this paper is to study a distinguishability of the unknown coefficient via the above input–output
mappings. We say that the mapping Φ[·] : K → C1[0, T ] (or Ψ [·] : K → C1[0, T ]) has the distinguishability prop-
erty, if Φ[k1] �= Φ[k2] (Ψ [k1] �= Ψ [k2]) implies k1(x) �= k2(x). This, in particular, means injectivity of the inverse
mappings Φ−1 and Ψ −1.

The paper is organized as follows. In Section 2, an analysis of the semigroup approach is given for the inverse
problem with the measured data f (t). The similar analysis is applied to the inverse problem with the single measured
output data h(t) given at the point x = 1, in Section 3. The inverse problem with two Neumann measured data f (t)

and h(t) is discussed in Section 4. The local representations of the unknown coefficient k(x) at the endpoints x = 0
and x = 1 are given in Section 5. Finally, some concluding remarks are given in Section 6.

2. An analysis of the inverse problem with measured output data f (t)

Consider now the inverse problem with one measured output data f (t) at x = 0. In order to formulate the solution
of the parabolic problem (1) in terms of semigroup, let us first arrange the parabolic equation as follows:

ut (x, t) − k(0)uxx(x, t) = ((
k(x) − k(0)

)
ux(x, t)

)
x
, (x, t) ∈ ΩT .

Then the initial boundary value problem (1) can be rewritten in the following form:

ut (x, t) − k(0)uxx(x, t) = ((
k(x) − k(0)

)
ux(x, t)

)
x
, (x, t) ∈ ΩT ,

u(x,0) = g(x), 0 < x < 1,

u(0, t) = ψ0, u(1, t) = ψ1, 0 < t < T . (5)

For the time being we assume that k(0) were known, later this value will be determined. In order to formulate the
solution of the parabolic problem (5) in terms of semigroup, we need to define a new function

v(x, t) = u(x, t) − ψ0(1 − x) − ψ1x, x ∈ [0,1], (6)

which satisfies the following parabolic problem:
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vt (x, t) + A
[
v(x, t)

] = ((
k(x) − k(0)

)(
vx(x, t) + ψ1 − ψ0

))
x
, (x, t) ∈ ΩT ,

v(x,0) = g(x) − ψ0(1 − x) − ψ1x, 0 < x < 1,

v(0, t) = 0, v(1, t) = 0, 0 < t < T . (7)

Here A[.] := −k(0) d2[.]/dx2 is a second order differential operator, whose domain is DA = {u ∈ C2(0,1) ∩
C2[0,1]: u(0) = u(1) = 0}. It is obvious that g(x) ∈ DA, since the initial value function g(x) belongs to C2[0,1].

Denote by T (t) the semigroup of linear operators generated by the operator A [5,7]. Note that we can easily find the
eigenvalues and eigenfunctions of the differential operator A. Moreover, the semigroup T (t) can be easily constructed
by using the eigenvalues and eigenfunctions of the infinitesimal generator A. Hence we first consider the following
eigenvalue problem:

Aφ(x) = λφ(x),

φ(0) = 0, φ(1) = 0.

We can easily determine that the eigenvalues are λn = k(0)n2π2 for all n = 0,1, . . . , and the corresponding eigen-
functions are φn(x) = √

2 sin(nπx). In this case the semigroup T (t) can be represented in the following way:

T (t)U(x, s) =
∞∑

n=0

〈
φn(.),U(., s)

〉
e−λntφn(x), (8)

where 〈φn(ζ ),U(ζ, s)〉 := ∫ 1
0 φn(ζ )U(ζ, s) dζ . Under this representation, the null space of the semigroup T (t) of the

linear operators can be defined as follows:

N(T ) = {
U(x, s):

〈
φn(x),U(x, s)

〉 = 0, for all n = 0,1,2,3, . . .
}
.

From the definition of the semigroup T (t), we can say that the null space of it consists of only zero function, i.e.,
N(T ) = {0}. As we will see later that this result is very important for the uniqueness of the unknown coefficient k(x).

The unique solution of the initial-boundary value problem (7) in terms of semigroup T (t) can be represented in the
following form:

v(x, t) = T (t)v(x,0) +
t∫

0

T (t − s)
((

k(x) − k(0)
)(

vx(x, t) + ψ1 − ψ0
))

x
ds.

Hence by using the identity (6) and taking the initial value u(x,0) = g(x) into account, the solution u(x, t) of the
parabolic problem (5) in terms of semigroup can be written in the following form:

u(x, t) = ψ0(1 − x) + ψ1x + T (t)
(
g(x) − ψ0(1 − x) − ψ1x

) +
t∫

0

T (t − s)
((

k(x) − k(0)
)
ux(x, s)

)
x
ds. (9)

In order to arrange the above solution representation, let us define the followings:

ζ(x) = (
g(x) − ψ0(1 − x) − ψ1x

)
,

ξ(x, t) = ((
k(x) − k(0)

)
ux(x, t)

)
x
,

z(x, t) =
∞∑

n=0

〈
φn(.), ζ(.)

〉
e−λntφ′

n(x), (10)

w(x, t, s) =
∞∑

n=0

〈
φn(.), ξ(., s)

〉
e−λntφ′

n(x). (11)

Then we can rewrite the solution representation (9) in terms of ζ(x) and ξ(x, s) in the following form:

u(x, t) = ψ0(1 − x) + ψ1x + T (t)ζ(x) +
t∫
T (t − s)ξ(x, s) ds.
0



8 A. Demir, A. Hasanov / J. Math. Anal. Appl. 340 (2008) 5–15
Differentiating both sides of the above identity with respect to x and using semigroup properties at x = 0 yields

ux(0, t) = −ψ0 + ψ1 + z(0, t) +
t∫

0

w(0, t − s, s) ds.

Taking into account the measured output data k(0)ux(0, t) = f (t) we get

f (t) = k(0)

(
−ψ0 + ψ1 + z(0, t) +

t∫
0

w(0, t − s, s) ds

)
. (12)

Using the measured output data k(0)ux(0, t) = f (t), we can write k(0) = f (t)/ux(0, t) for all t > 0 which can be
rewritten in terms of semigroup in the following form:

k(0) = f (t)/

(
−ψ0 + ψ1 + z(0, t) +

t∫
0

w(0, t − s, s) ds

)
.

Taking limit as t → 0 in the above identity, we obtain the following explicit formula for the value k(0) of the unknown
coefficient k(x):

k(0) = f (0)/
(−ψ0 + ψ1 + z(0,0)

)
. (13)

Note that in [1] the value k(0) is defined via the same input data, by different way. However compare with formula
given in [1], formula (13) is more convenient for practical purposes.

Let us differentiate now the both sides of identity (9) with respect to t

ut (x, t) = T (t)A
(
u(x,0) − ψ0(1 − x) − ψ1x

) + ((
k(x) − k(0)

)
ux(x, t)

)
x

+
t∫

0

AT (t − s)
((

k(x) − k(0)
)
ux(x, s)

)
x
ds.

Using semigroup properties, we obtain

ut (x, t) = T (t)g′′(x) + 2T (0)
((

k(x) − k(0)
)
ux(x, t)

)
x

− T (t)
((

k(x) − k(0)
)
ux(x,0)

)
x
.

Taking x = 0 in the above identity, we get

ut (0, t) = T (t)g′′(0) + 2T (0)
(
k′(0)ux(0, t)

) − T (t)
(
k′(0)ux(0,0)

)
.

Since u(0, t) = ψ0 we have ut (0, t) = 0. Taking into account this and substituting t = 0 yield

0 = g′′(0) + k′(0)ux(0,0).

Solving this equation for k′(0) and substituting ux(0,0) = f (0)/k(0), we obtain the following explicit formula for
the value k′(0) of the first derivative k′(x) of the unknown coefficient

k′(0) = −k(0)g′′(0)

f (0)
. (14)

Under the determined values k(0) and k′(0), the set of admissible coefficients can be defined as follows:

K0 := {
k ∈ K: k(0) = f (0)/

(−ψ0 + ψ1 + z(0,0)
)
, k′(0) = −k(0)g′′(0)/f (0)

}
.

The right-hand side of identity (12) defines explicitly the semigroup representation of the input–output mapping
Φ[F ] on the set of admissible source functions F

Φ[k](x) := k(0)

(
−ψ0 + ψ1 + z(0, t) +

t∫
w(0, t − s, s) ds

)
, ∀t ∈ [0, T ]. (15)
0
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The following lemma implies the relation between the coefficients k1(x), k2(x) ∈ K0 at x = 0 and the correspond-
ing outputs fj (t) := kj (0)ux(0, t; kj ), j = 1,2.

Lemma 1. Let u1(x, t) = u(x, t; k1) and u2(x, t) = u(x, t; k2) be the solutions of the direct problem (5) correspond-
ing to the admissible coefficients k1(x), k2(x) ∈ K, k1(x) �= k2(x). Suppose that fj (t) = kj (0)ux(0, t; kj ), j = 1,2,
are the corresponding outputs, and denote by �f (t) = f1(t) − f2(t), �w(x, t, s) = w1(x, t, s) − w2(x, t, s). If the
condition

k1(0) = k2(0) := k(0),

holds, then the outputs fj (t), j = 1,2, satisfy the following integral identity:

�f (τ) = k(0)

( τ∫
0

�w(0, τ − s, s) ds

)
ds, (16)

for each τ ∈ (0, T ].

Proof. By using identity (12), the measured output data fj (t) := kj (0)ux(0, t; kj ), j = 1,2, can be written as follows:

f1(τ ) = k(0)

(
−ψ0 + ψ1 + z1(0, τ ) +

t∫
0

w1(0, τ − s, s) ds

)
,

f2(τ ) = k(0)

(
−ψ0 + ψ1 + z2(0, τ ) +

t∫
0

w2(0, τ − s, s) ds

)
,

respectively. From identity (10) it is obvious that z1(0, τ ) = z2(0, τ ) for each τ ∈ (0, T ]. Hence the difference of these
formulas implies the desired result. �

This lemma with identity (11) implies the following.

Corollary 1. Let the conditions of Lemma 1 hold. Then f1(t) = f2(t), ∀t ∈ [0, T ], if and only if〈
φn(x), ξ1(x, t) − ξ2(x, t)

〉 = 0, ∀t ∈ (0, T ], n = 0,1, . . . .

Since the null space of semigroup contains only zero function, i.e., N(T ) = {0}, Corollary 1 states that f1 ≡ f2 if
and only if ξ1(x, t) − ξ2(x, t) = 0 for all (x, t) ∈ ΩT . From the definition of ξ(x, t), it implies that k1(x) = k2(x) for
all x ∈ [0,1].

Theorem 1. Let conditions (C1) and (C2) hold. Assume that Φ[·] : K0 → C1[0, T ] be the input–output mapping
defined by (3) and corresponding to the measured output f (t) := k(0)ux(0, t). Then the mapping Φ[k] has the distin-
guishability property in the class of admissible coefficients K0, i.e.,

Φ[k1] �= Φ[k2], ∀k1, k2 ∈ K0, k1(x) �= k2(x).

3. An analysis of the inverse problem with measured output data h(t)

Consider now the inverse problem with one measured output data h(t) at x = 1. As in the previous section, let us
arrange the equation in parabolic problem (1) as follows:

ut (x, t) − k(1)uxx(x, t) = ((
k(x) − k(1)

)
ux(x, t)

)
x
, (x, t) ∈ ΩT .

Then the initial boundary value problem (1) can be rewritten in the following form:
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ut (x, t) − k(1)uxx(x, t) = ((
k(x) − k(1)

)
ux(x, t)

)
x
, (x, t) ∈ ΩT ,

u(x,0) = g(x), 0 < x < 1,

ux(0, t) = ψ0, ux(1, t) = ψ1, 0 < t < T . (17)

In order to formulate the solution of the above parabolic problem in terms of semigroup, let us use the same function
v(x, t) in identity (6) which satisfies the following parabolic problem:

vt (x, t) + B
[
v(x, t)

] = ((
k(x) − k(1)

)
ux(x, t)

)
x
, (x, t) ∈ ΩT ,

v(x,0) = g(x) − ψ0(1 − x) − ψ1x, 0 < x < 1,

v(0, t) = 0, v(1, t) = 0, 0 < t < T . (18)

Here B[.] := −k(1) d2[.]/dx2 is a second order differential operator whose domain is DB = {u ∈ C2(0,1) ∩
C2[0,1]: u(0) = u(1) = 0}.

Denote by S(t) the semigroup of linear operators generated by the operator B . As mentioned above, in order
to construct semigroup S(t) we need to know the eigenvalues and eigenfunctions of the infinitesimal generator B .
Therefore we first consider the following eigenvalue problem:

Bφ(x) = λφ(x),

φ(0) = 0, φ(1) = 0.

Then the eigenvalues of the above problem become λn = k(1)n2π2 for all n = 0,1, . . . , and the corresponding eigen-
functions become φn(x) = √

2 sin(nπx). Hence the semigroup S(t) can be represented in the following form:

S(t)U(x, s) =
∞∑

n=0

〈
φn(.),U(., s)

〉
e−λntφn(x).

Using above representation of the semigroup S(t) of the linear operators, we can define the null space of it as
follows:

N(S) = {
U(x, s):

〈
φn(x),U(x, s)

〉 = 0, for all n = 1,2,3, . . .
}
.

The definition of the semigroup S(t) above implies that the null space of it consists of only zero function, i.e., N(S) =
{0}. As we mentioned in the previous section, this result plays very important role in the uniqueness of the unknown
coefficient k(x).

The unique solution of the initial value problem (18) in terms of semigroup S(t) can be represented in the following
form:

v(x, t) = S(t)v(x,0) +
t∫

0

S(t − s)
((

k(x) − k(1)
)(

vx(x, t) + ψ1 − ψ0
))

x
ds.

Hence by using the identity (6) the solution u(x, t) of the parabolic problem (17) in terms of semigroup can be written
in the following form:

u(x, t) = ψ0(1 − x) + ψ1x + S(t)
(
u(x,0) − ψ0(1 − x) − ψ1x

)
+

t∫
0

S(t − s)
((

k(x) − k(1)
)
ux(x, s)

)
x
ds. (19)

Defining the followings:

χ(x, s) = ((
k(x) − k(1)

)
ux(x, s)

)
x
,

z1(x, t) =
∞∑

n=0

〈
φn(.), ζ(.)

〉
e−λntφ′

n(x), (20)

w1(x, t, s) =
∞∑〈

φn(.),χ(., s)
〉
e−λntφ′

n(x). (21)

n=0
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The solution representation of the parabolic problem (17) can be rewritten in the following form:

u(x, t) = ψ0(1 − x) + ψ1x + S(t)ζ +
t∫

0

S(t − s)χ(x, s) ds.

Now differentiating both sides of the above identity with respect to x and substituting x = 1 yield

ux(1, t) = −ψ0 + ψ1 + z1(1, t) +
t∫

0

w1(1, t − s, s) ds.

Taking into account the measured output data k(1)ux(1, t) = h(t), we get

h(t) = k(1)

(
−ψ0 + ψ1 + z1(1, t) +

t∫
0

w1(1, t − s, s) ds

)
. (22)

Now we can determine the value k(1) by using the overmeasured output data h(t) = k(1)ux(1, t). The identity
k(1) = h(t)/ux(1, t) for all t > 0, can be rewritten in terms of semigroup in the following form:

k(1) = h(t)/

(
−ψ0 + ψ1 + z1(1, t) +

t∫
0

w(1, t − s, s) ds

)
.

Taking limit as t → 0 in the above identity yields:

k(1) = h(0)/
(−ψ0 + ψ1 + z1(1,0)

)
. (23)

Differentiating both sides of identity (19) with respect to t , we get

ut (x, t) = S(t)B
(
u(x,0) − ψ0(1 − x) − ψ1x

) + ((
k(x) − k(1)

)
ux(x, t)

)
x

+
t∫

0

BS(t − s)
((

k(x) − k(1)
)
ux(x, s)

)
x
ds.

Using semigroup properties, we obtain

ut (x, t) = S(t)g′′(x) + 2S(0)
((

k(x) − k(1)
)
ux(x, t)

)
x

− S(t)
((

k(x) − k(1)
)
ux(x,0)

)
x
.

Taking x = 1 in the above identity, we get

ut (1, t) = S(t)g′′(1) + 2S(0)
(
k′(1)ux(1, t)

) − S(t)
(
k′(1)ux(1,0)

)
.

Since u(1, t) = ψ1 we have ut (1, t) = 0 Taking into account this and substituting t = 0, we get

0 = g′′(1) + k′(1)ux(1,0).

Solving this equation for k′(1) and substituting ux(1,0) = h(0)/k(1), we reach the following result:

k′(1) = −k(1)g′′(1)

h(0)
. (24)

Then we can define the admissible set of diffusion coefficients as follows:

K1 := {
k ∈ K: k(1) = h(0)/

(−ψ0 + ψ1 + z(1,0)
)
, k′(1) = −k(1)g′′(1)/h(0)

}
.

The right-hand side of identity (22) defines the semigroup representation of the input–output mapping Ψ [k] on the
set of admissible source functions F

Ψ [k](t) := k(1)

(
−ψ0 + ψ1 + z1(1, t) +

t∫
w1(1, t − s, s) ds

)
, ∀t ∈ [0, T ]. (25)
0
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The following lemma implies the relation between the coefficients k1(x), k2(x) ∈K1 at x = 1, and the correspond-
ing outputs hj (t) := kj (1)ux(1, t; kj ), j = 1,2.

Lemma 2. Let u1(x, t) = u(x, t; k1) and u2(x, t) = u(x, t; k2) be solutions of the direct problem (17) corresponding
to the admissible coefficients k1(x), k2(x) ∈ K, k1(x) �= k2(x). Suppose that hj (t) = u(1, t; kj ), j = 1,2, are the
corresponding outputs and denote by �h(t) = h1(t)−h2(t), �w1(x, t, s) = w1

1(x, t, s)−w2
1(x, t, s). If the condition

k1(1) = k2(1) := k(1)

holds, then the outputs hj (t), j = 1,2, satisfy the following integral identity:

�h(τ) = k(1)

τ∫
0

�w1(1, τ − s, s) ds, (26)

for each τ ∈ [0, T ].

Proof. By using identity (22), the measured output data hj (t) := kj (1)ux(1, t; kj ), j = 1,2, can be written as follows:

h1(τ ) = k(1)

(
−ψ0 + ψ1 + z1

1(1, τ ) +
t∫

0

w1
1(1, τ − s, s) ds

)
,

h2(τ ) = k(1)

(
−ψ0 + ψ1 + z2

1(1, τ ) +
t∫

0

w2
1(1, τ − s, s) ds

)
,

respectively. From identity (20), it is obvious that z1
1(1, τ ) = z2

1(1, τ ) for each τ ∈ (0, T ]. Hence the difference of
these formulas implies the desired result. �

This lemma with identity (21) implies the following conclusion.

Corollary 2. Let conditions of Lemma 2 hold. Then h1(t) = h2(t), ∀t ∈ [0, T ], if and only if〈
φn(x),χ1(x, t) − χ2(x, t)

〉 = 0, ∀t ∈ (0, T ], n = 0,1, . . . ,

hold. Then h1(t) = h2(t), ∀t ∈ [0, T ].

Since the null space of it consists of only zero function, i.e., N(S) = {0}, Corollary 2 states that h1 ≡ h2 if and
only if χ1(x, t) − χ2(x, t) = 0 for all (x, t) ∈ ΩT . From the definition of χ(x, t), it implies that k1(x) = k2(x) for all
x ∈ (0,1].

Theorem 2. Let conditions (C1) and (C2) hold. Assume that Ψ [·] : K1 → C1[0, T ] be the input–output mapping
defined by (3) and corresponding to the measured output h(t) := k(1)ux(1, t). Then the mapping Ψ [k] has the distin-
guishability property in the class of admissible coefficients K1, i.e.,

Ψ [k1] �= Ψ [k2], ∀k1, k2 ∈ K1, k1(x) �= k2(x).

4. The inverse problem with two Neumann measured output data

Consider now the inverse problem (1)–(2) with two measured output data f (t) and h(t). As shown before, having
these two data, the values k(0) as well as k(1) can be defined by the above explicit formulaes. Based on this result, let
us define now the set of admissible coefficients K2 as an intersection

K2 := K0 ∩K1 = {
k ∈K: k(0) = f (0)/

(−ψ0 + ψ1 + z(0,0)
)
, k(1) = h(0)/

(−ψ0 + ψ1 + z(1,0)
)
,

k′(0) = −k(0)g′′(0)/f (0), k′(1) = −k(1)g′′(1)/h(0)
}
.

On this set both input–output mapping Φ[k] and Ψ [k] have distinguishability property.
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Corollary 3. The input–output mappings Φ[·] : K2 → C1[0, T ] and Ψ [·] : K2 → C1[0, T ] distinguish any two func-
tions k1(x) �= k2(x) from the set K2, i.e.,

Φ[k1] �= Φ[k2], Ψ [k1] �= Ψ [k2], ∀k1(x), k2(x) ∈ K2, k1(x) �= k2(x).

5. Local representations of the diffusion coefficient k(x) near x = 0 and x = 1

This section deals with the local analysis of the unknown coefficient k(x) in order to obtain its representations in
the neighborhood of x = 0 and x = 1. The semigroup representation of the solution is used here as an effective tool for
the determination of the unknown coefficient k = k(x). We determine the diffusion coefficient k(x) first numerically.

Let us introduce the uniform mesh wh = {xi ∈ [0,1]: x0 = 0, xi = xi−1 + h, i = 1, . . . ,N; h = 1/N} and denote
ki = k(xi), i = 1, . . . ,N . Then the piecewise linear approximation of the coefficient k(x) is as follows:

kh(x) =
N∑

i=1

kiξi(x), (27)

here ξi(x) is the continuous, piecewise linear Lagrange basic functions; ξi(xj ) = δij [6].
Having the values k0 = k(0) and k′(0) of the diffusion coefficient k(x) and its derivative at x = 0, we can approxi-

mately determine its value at x = h for small enough h > 0 as follows:

k1 ∼= k0 + k′(x0)h,

where h = 1
N

and N is the number of meshes.
To determine the value k2 = k(x2) of the diffusion coefficient k(x), we rearrange the parabolic equation as follows:

ut (x, t) − k(x1)uxx(x, t) = ((
k(x) − k(x1)

)
ux(x, t)

)
x
, (x, t) ∈ ΩT .

Then the initial boundary value problem (1) can be rewritten in the following form:

ut (x, t) + A2u(x, t) = ((
k(x) − k(x1)

)
ux(x, t)

)
x
, (x, t) ∈ ΩT ,

u(x,0) = g(x), 0 < x < 1,

ux(0, t) = ψ0, ux(1, t) = ψ1, 0 < t < T,

where A2[.] = −k(x1)d
2[.]/dx2 and T2(t) is the analytic semigroup.

Differentiating both sides of this identity with respect to t , we get

ut (x, t) = T2(t)A2
(
u(x,0) − ψ0(1 − x) − ψ1x

) + ((
k(x) − k(x1)

)
ux(x, t)

)
x

+
t∫

0

A2T2(t − s)
((

k(x) − k(x1)
)
ux(x, s)

)
x
ds.

Using semigroup properties, we obtain

ut (x, t) = T2(t)g
′′(x) + 2T2(0)

((
k(x) − k(x1)

)
ux(x, t)

)
x

− T2(t)
((

k(x) − k(x1)
)
ux(x,0)

)
x
.

At x = x1, we have

ut (x1, t) = T2(t)g
′′(x1) + 2T2(0)k′(x1)ux(x1, t) − T2(t)k

′(x1)ux(x1, t).

Furthermore using the data of ψ0 = u(0, t) and f (t) = k(0)ux(0, t) at the point (0, t), we can determine the
approximate value of u(h, t) for small enough h as follows:

u(x1, t) = u(0, t) + ux(0, t)h, u(x1, t) = ψ0 + f (t)

k(0)
h.

Last equation implies that ut (x1, t) = f ′(t)
h. Here we assume that k(0) �= 0. Substituting this in (28) at x = x1
k(0)
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f ′(t)
k(0)

h = T2(t)g
′′(x1) + 2T2(0)k′(x1)ux(x1, t) − T2(t)k

′(x1)ux(x1, t).

At t = 0, we have

f ′(0)h = k(0)g′′(x1) + (
k′(x1)k(0)ux(x1,0)

)
.

Using here the data ux(x1,0) = g′(x1), finally we obtain

k′(x1) = f ′(0)h − k(0)g′′(x1)

k(0)g′(x1)
.

This identity allow us to determine the approximate value of the k(x) at x = x2

k(x2) ∼= k(x1) + k′(x1)h, k(x2) ∼= k(x1) + f ′(0)h − k(0)g′′(x1)

k(0)g′(x1)
h.

Continuing this procedure recursively, at the ith step we get

k′(xi) ∼= f ′(0)h − k(0)g′′(xi)

k(0)g′(xi)
, ∀i ∈ 1, . . . ,N.

Hence the approximate value of the unknown coefficient k(x) at x = xi can be calculated as follows:

k(xi) ∼= k(xi−1) + f ′(0)h − k(0)g′′(xi)

k(0)g′(xi)
h.

More generally this identity can be rewritten in the following form:

k(xi) ∼= k(0) +
n∑

i=1

f ′(0)h − k(0)g′′(xi−1)

k(0)g′(xi−1)
h. (28)

This shows also influence of the Cauchy data g(x) to the diffusion coefficient on the neighborhood of x = 0.
By the similar way we can derive the representation formula for k(x) in the neighborhood of x = 1 with the

assumption k(1) �= 0. Then the general form of this identity becomes

k(xN−i ) ∼= k(1) −
n∑

i=1

h′(0)h − k(1)g′′(xN−i )

k(1)g′(xN−i )
h. (29)

Remark 1. In some physical situations the flux attains maximum (or minimum) value at the initial moment t = 0. In
this case we have f ′(0) = 0. Using this in (29) and taking limit as N → ∞, we get

k(x) ∼= k(0) −
x∫

0

g′′(s)
g′(s)

ds.

The same consideration are valid for the right flux h(t). If h′(0) = 0, then the limit case of the representation (30) has
the following form:

k(x) ∼= k(1) +
1∫

x

g′′(s)
g′(s)

ds.

Formulas (29) and (30) can sequentially determine the approximate values of ki = k(xi), having those values and
using (27) we can restore the piecewise linear approximation kh(x) of the unknown coefficient k(x).

On the other hand the local representation formulas (29), (30) for the unknown coefficient k(x) in the neigh-
borhoods of the endpoints x = 0 and x = 1, that the first and second derivatives of the function g(x) play here an
important role. If the function g′(x) takes values close 0 at any point x ∈ [0,1], then the coefficient k(x) blows up at
that point.
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6. Conclusion

The aim of this study was to analyze distinguishability properties of the input–output mappings Φ[·] : K2 →
C1[0, T ] and Ψ [·] : K2 → C1[0, T ], which are naturally determined by the measured output data. In this paper we
show that if the null spaces of the semigroups T (t) and S(t) include only zero function then the corresponding input–
output mappings Φ[·] and Ψ [·] are distinguishable.

This study shows that boundary conditions and the region on which the problem is defined play an important role
on the distinguishability of the input–output mappings Φ[·] and Ψ [·] since these key elements determine the structure
of the semigroup T (t) of linear operators and its null space.

The similarities among the formulas for k(0), k′(0), k(1), k′(1) give insight us that we can find the values k(xi)

and k′(xi) for all xi ∈ (0,1) by the following formulas:

k(xi) = fi(0)/
(−ψ0 + ψ1 + z(0,0)

)
, (30)

k′(xi) = −k(xi)g
′′(xi)/fi(0), (31)

where fi(t) = k(xi)ux(xi, t). This implies that more measured output data fi , more information about unknown
coefficient k(x). Here the only difficulty we encounter here is the determination of the functions fi . In numerical
calculations we can approximate the these functions by using the following Taylor expansions k(xi) = k(xi−1) +
k′(xi−1)(xi − xi−1) and ux(xi, t) = ux(xi−1, t) + uxx(xi−1, t), successively. Hence we approximately determine fi

as fi(t) = (k(xi−1) + k′(xi−1)(xi − xi−1))(ux(xi−1, t) + uxx(xi−1, t)).
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