Finite-sample inference with monotone incomplete multivariate normal data, I

Wan-Ying Changa, Donald St.P. Richardsb,c,*

a Washington Department of Fish and Wildlife, Olympia, WA 98501, USA
b Department of Statistics, Penn State University, University Park, PA 16802, USA
c The Statistical and Applied Mathematical Sciences Institute, Research Triangle Park, NC 27709, USA

\textbf{A B S T R A C T}

We consider problems in finite-sample inference with two-step, monotone incomplete data drawn from $N_d(\mu, \Sigma)$, a multivariate normal population with mean μ and covariance matrix Σ. We derive a stochastic representation for the exact distribution of $\hat{\mu}$, the maximum likelihood estimator of μ. We obtain ellipsoidal confidence regions for μ through T^2, a generalization of Hotelling’s statistic. We derive the asymptotic distribution of, and probability inequalities for, T^2 under various assumptions on the sizes of the complete and incomplete samples. Further, we establish an upper bound for the supremum distance between the probability density functions of $\hat{\mu}$ and $\tilde{\mu}$, a normal approximation to $\hat{\mu}$.

Published by Elsevier Inc.

1. Introduction

During the past eighty years, there has been an enduring interest in multivariate statistical inference with incomplete data. Wilks [1] was one of the earliest contributors to this area of research, the subsequent literature has been voluminous, and we refer to Little and Rubin [2] for an extensive treatment of the field.

In this paper, we consider problems in inference with multivariate, d-dimensional data, drawn from a normal population. We suppose that the data are composed of N mutually independent observations consisting of a random sample of n complete observations on all $d = p + q$ characteristics and an additional $N - n$ incomplete observations on the last q characteristics only. We write the data in the form

$$\begin{pmatrix} X_1 \\ Y_1 \\ \\
X_2 \\ Y_2 \\ \\
\vdots \\ \\
X_n \\ Y_n \\ \\
Y_{n+1} \\ Y_{n+2} \\ \vdots \\ Y_N \end{pmatrix}$$

where each X_j is $p \times 1$, each Y_j is $q \times 1$, the complete observations $(X_j', Y_j')'$, for $j = 1, \ldots, n$, are drawn from $N_d(\mu, \Sigma)$, a multivariate normal population with mean vector μ and covariance matrix Σ, and the incomplete data $Y_j, j = n + 1, \ldots, N$,

* Corresponding address: Department of Statistics, Penn State University, 326 Thomas Building, University Park, PA 16802, USA.
E-mail address: richards@stat.psu.edu (D.St.P. Richards).

0047-259X/$- see front matter. Published by Elsevier Inc.
doi:10.1016/j.jmva.2009.05.003
are observations on the last q characteristics of the same population. The data in (1.1) are called two-step monotone, and have been widely studied; cf. Anderson [3], Bhargava [4], Morrison [5], Eaton and Kariya [6], and Hao and Krishnamoorthy [7].

Given a sample (1.1) from the population $N_n(\mu, \Sigma)$, it is well-known that closed-form expressions for $\hat{\mu}$ and $\hat{\Sigma}$, the maximum likelihood estimators of μ and Σ, may be obtained by factoring the likelihood function into a product of likelihoods with non-overlapping sets of parameters; consequently, explicit expressions for various likelihood ratio test statistics may be obtained. We refer to Anderson [3], Little and Rubin [2], Anderson and Olkin [8], and Jinadasa and Tracy [9] for derivations of the explicit formulas for $\hat{\mu}$ and $\hat{\Sigma}$; Bhargava [4,10], Eaton and Kariya [6], and Andersson and Perlman [11–13] for other aspects of inference with missing data in which factorization of the likelihood function plays a crucial role; and Morrison [5], Giguère and Styan [14], Little and Rubin [2], Kanda and Fujikoshi [15], for results on the moments and asymptotic distributions of $\hat{\mu}$ and $\hat{\Sigma}$.

In the literature on inference for μ and Σ, it is noticeable that the exact distributions of $\hat{\mu}$ and $\hat{\Sigma}$ were unknown. This problem is basic to inference with incomplete data when large samples are infeasible or impractical such as: in sociological research, where subjects have transient lifestyles and cannot be contacted for further data collection after relocation to new addresses; in panel surveys, where subjects may be available for only part of the study; and in astronomy, where monotone incomplete data arise in the classification of galaxies (Lang [16]). It is noticeable that the area of monotone incomplete multivariate normal inference is not well-endowed with the range of explicit formulas appearing in Anderson [17], Eaton [18], and Muirhead [19]. Thus, this paper initiates a program of research on inference for μ and Σ, where n and N are fixed, with the goal of deriving explicit results analogous to those existing in the classical complete case. Here, we concentrate on inference for μ, and the companion paper [20] is dedicated primarily to inference for Σ. A synopsis of our results is as follows.

We provide in Section 2 some preliminary results needed in the sequel. In Section 3, we derive a stochastic representation for the exact distribution of $\hat{\mu}$. Then, generalizing results of Morrison [5], we apply the stochastic representation to deduce formulas for all marginal central moments of $\hat{\mu}_1, \ldots, \hat{\mu}_{p+q}$, the components of $\hat{\mu}$.

In Section 4 we list some properties of $\hat{\Sigma}$, taken from [20], that are needed to analyze the distribution of T^2, an analog of Hotelling’s statistic. In Section 5, we obtain the asymptotic distribution of T^2 and inequalities for its distribution function; by means of these results, lower and upper bounds may be obtained for the confidence levels of ellipsoidal confidence regions obtained for μ through T^2. Finally, in Section 6, we derive an upper bound on the supremum distance between the density and distribution functions of $\hat{\mu}$ and $\tilde{\mu}$, a normal approximation to $\hat{\mu}$.

Throughout this paper and the companion article [20], we assume that data are missing completely at random, i.e., that missingness depends neither on the nature nor the values of the data. Indeed, it is noted in [7, p. 397], that the explicit expression (4.1) for the full matrix $\hat{\Sigma}$ requires such an assumption. For further details on this issue in a broader context, see [2, Eqs. (6.13), (6.14)].

2. Preliminary results

Throughout the paper, we write all vectors and matrices in boldface type. We denote by 0 any zero vector or matrix, the dimension of which will be clear from the context, and we denote the identity matrix of order d by I_d. We write $A > 0$ to denote that a matrix A is positive definite (symmetric), and we write $A \geq B$ to mean that $A - B$ is positive semidefinite.

Let M be a $p \times q$ matrix, C and D be $p \times p$ and $q \times q$ positive definite (symmetric) matrices, respectively, and denote by $C \otimes D$ the Kronecker product of C and D. If $\lambda_1, \ldots, \lambda_p$ are the eigenvalues of C, denote by $C^{1/2}$ the positive definite square root of C whose eigenvalues are $\lambda_1^{1/2}, \ldots, \lambda_p^{1/2}$ [19, p. 588, infra Theorem A9.3], and denote by $C^{-1/2}$ the inverse of $C^{1/2}$.

Following [19, p. 79], we say that a $p \times q$ random matrix B_{12} has a multivariate normal distribution, denoted $B_{12} \sim N(M, C \otimes D)$, if the probability density function of B_{12} is

$$
(2\pi)^{-pq/2}|C|^{-q/2}|D|^{-p/2} \exp \left[-\frac{1}{2} \text{tr} C^{-1}(B_{12} - M)D^{-1}(B_{12} - M)' \right],
$$

$B_{12} \in \mathbb{R}^{p \times q}$. As noted in [19, p. 79], this distribution is related to the classical multivariate normal distribution as follows: Let T be a rectangular matrix with columns t_1, \ldots, t_r, and define the vector vec(T) as

$$
\text{vec}(T) = \begin{pmatrix} t_1 \\ \vdots \\ t_r \end{pmatrix}.
$$

Then $B_{12} \sim N(M, C \otimes D)$ is equivalent to vec$(B_{12}) \sim N_{pq}(\text{vec}(M'), C \otimes D)$.

Lemma 2.1. Let $B_{12} \sim N(0, C \otimes D)$, $A \geq 0$ be $q \times q$, and $u \in \mathbb{R}^p$. Then

$$
E \exp(-u'B_{12}D^{-1}A D^{-1}B_{12}'u) = |I_q + 2(u'C\mu)A D^{-1}|^{-1/2}.
$$

Proof. Because $B_{12} \sim N(0, C \otimes D)$, equivalently, vec$(B_{12}) \sim N_{pq}(0, C \otimes D)$, then it follows that $D^{-1/2}B_{12}u \sim N_q(0, (u'C\mu)I_q)$. Hence,
Suppose that \(W \sim \mathcal{W}_d(a, \Lambda) \), a Wishart distribution with 1 degree of freedom. Then, (2.1) follows from the well-known formula for the moment-generating function of the Wishart distribution. □

Suppose that \(W \sim \mathcal{W}_d(a, \Lambda) \), a Wishart distribution, where \(a > d - 1 \) and \(\Lambda > 0 \), i.e., \(W \) is a \(d \times d \) positive definite random matrix with density function

\[
\frac{1}{2^{d/2}|\Lambda|^{d/2} \Gamma_d(a/2)} |W|^{2a - \frac{d}{2} + 1} \exp \left(-\frac{1}{2} \text{tr} \, \Lambda^{-1} W \right),
\]

\(W \succ 0 \), where

\[
\Gamma_d(a) = \pi^{d(d-1)/4} \prod_{j=1}^{d} \Gamma \left(a - \frac{1}{2} (j - 1) \right).
\]

Re(\(a \)) > \((d - 1)/2 \), is the multivariate gamma function [19, p. 62].

We will need some well-known properties of the Wishart distribution. For ease of exposition, we collect together these properties. In stating these results, we partition the matrices \(W \) and \(\Lambda \) into \(p \times q \) rows and columns, i.e.,

\[
W = \begin{pmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22} \end{pmatrix},
\]

where \(W_{11} \) and \(\Lambda_{11} \) are \(p \times p \), \(W_{12} = W_{21}' \), and \(\Lambda_{12} = \Lambda_{21}' \) are \(p \times q \), and \(W_{22} \) and \(\Lambda_{22} \) are \(q \times q \). We set \(W_{112} = W_{11} - W_{12} W_{22}^{-1} W_{21} \) and define \(\Lambda_{112} \) similarly.

Proposition 2.2 ([17, pp. 142–143, 262], [18, pp. 310–312], [19, pp. 93–96, 117]). Suppose that \(W \sim \mathcal{W}_d(a, \Lambda) \). Then,

(i) \(W_{112} \) and \(|W_{12}| \) are mutually independent, and \(W_{112} \sim \mathcal{W}_p(a - d + p, \Lambda_{112}) \).

(ii) \(W_{12} W_{22} \sim N(\Lambda_{12}^{-1} W_{22}, \Lambda_{112} - \Lambda_{12} \otimes W_{22}) \).

(iii) If \(\Lambda_{12} = 0 \) then \(W_{112} \), \(W_{22} \), and \(W_{12} W_{22}^{-1} W_{21} \) are mutually independent, and \(W_{12} W_{22}^{-1} W_{21} \sim \mathcal{W}_p(d - p, \Lambda_{112}) \).

(iv) For \(k \leq d \), if \(M \) is a \(k \times d \) matrix of rank \(k \) then \((MW^{-1}M')^{-1} \sim \mathcal{W}_k(a - d + k, (MA^{-1}M')^{-1}) \). In particular, if \(Y \) is a \(d \times 1 \) random vector which is independent of \(W \) and satisfies \(P(Y = 0) = 0 \) then \(Y' \Lambda^{-1} Y/Y'W^{-1}Y \sim \chi^2_{d - q + 1} \).

Lemma 2.3. Suppose that \(B \sim \mathcal{W}_q(n - 1, I_q) \) and \(t \in \mathbb{C} \), where Re(\(t \)) \(\geq 0 \). Then

\[
E[|q + tB|^{-1/2}] = E \exp \left(-\frac{1}{2} tQ_1^{-1} Q_2 \right),
\]

where \(Q_1 \sim \chi^2_{n - q} \), \(Q_2 \sim \chi^2_q \), and \(Q_1 \) and \(Q_2 \) are mutually independent. In addition, if \(C \) is a \(q \times q \) positive semidefinite random matrix that is independent of \(B \) then, for \(t \in \mathbb{R} \),

\[
E[|q - 2itCB|^{-1/2}] = E \exp(itQ_1^{-1} V' CV),
\]

where \(V \sim N_q(0, I_q) \), \(Q_1 \), and \(C \) are mutually independent.

Let \(V \sim \mathcal{W}_q(0, I_q) \), so that \(VV' \sim \mathcal{W}_q(1, I_q) \), and let \(V \) be independent of \(B \). By the formula for the moment-generating function of a Wishart matrix, \(E[|q + tB|^{-1/2}] = E \exp(-\frac{1}{2} V' B^{-1} V) \). By Proposition 2.2(iv), \(V' / V' B^{-1} V \sim \chi^2_{n - q} \); also, \(V' / V' B^{-1} V \) is independent of \(V \), so we may write \(V' B^{-1} V \) in the form

\[
V' B^{-1} V = (V' / V' B^{-1} V)^{-1} V' V \equiv Q_1^{-1} Q_2,
\]

where \(Q_1 = V' / V' B^{-1} V, Q_2 = V' / V \sim \chi^2_q \), and \(Q_1 \) and \(Q_2 \) are independent. This establishes (2.3).

The proof of (2.4) is similar. Note that

\[
E[|q - 2itCB|^{-1/2}] = E \exp(itV' C^{1/2} B^{-1} C^{1/2} V)
\]

\[
= E \exp(it(C^{1/2} V)B^{-1}(C^{1/2} V)).
\]

By Proposition 2.2(iv),

\[
Q_1 = \frac{(C^{1/2} V)(C^{1/2} V)}{(C^{1/2} V)B^{-1}(C^{1/2} V)} = \frac{V' CV}{V' C^{1/2} B^{-1} C^{1/2} V} \sim \chi^2_{n - q}
\]

and \(Q_1 \) is independent of \(V \) and \(C \). Therefore

\[
V' C^{1/2} B^{-1} C^{1/2} V = \left(\frac{V' CV}{V' C^{1/2} B^{-1} C^{1/2} V} \right)^{-1} V' CV \equiv V' CV / Q_1^{-1},
\]

and in conjunction with (2.5), we now have (2.4). □
3. The distribution of $\hat{\mu}$

We partition μ and Σ in conformity with (1.1), writing $\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ and $\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$ where μ_1 and μ_2 are of dimensions p and q, respectively, and $\Sigma_{11}, \Sigma_{12} = \Sigma_{21},$ and Σ_{22} are of order $p \times p, p \times q,$ and $q \times q$, respectively. We assume throughout that $n > q + 2$ to ensure that all means and variances are finite and that all integrals encountered later are absolutely convergent. We will use the notation $\tau = n/N$ for the proportion of data which are complete; and we denote $1 - \tau$ by $\bar{\tau}$, so that $\bar{\tau} = (N - n)/N$ is the proportion of incomplete observations.

Define sample means

$$
\tilde{X} = \frac{1}{n} \sum_{j=1}^{n} X_j, \quad \tilde{Y}_1 = \frac{1}{n} \sum_{j=1}^{n} Y_j,
$$

and the corresponding matrices of sums of squares and products by

$$
A_{11} = \sum_{j=1}^{n} (X_j - \tilde{X})(X_j - \tilde{X})', \quad A_{12} = A_{21} = \sum_{j=1}^{n} (X_j - \tilde{X})(Y_j - \tilde{Y}_1)',
$$

$$
A_{22, n} = \sum_{j=1}^{n} (Y_j - \tilde{Y}_1)(Y_j - \tilde{Y}_1)', \quad A_{22, N} = \sum_{j=1}^{N} (Y_j - \tilde{Y}_1)(Y_j - \tilde{Y}_1').
$$

By Anderson [3] (cf. Morrison [5], Anderson and Olkin [8], Jinadasa and Tracy [9]), the maximum likelihood estimator of μ is $\hat{\mu} = \begin{pmatrix} \hat{\mu}_1 \\ \hat{\mu}_2 \end{pmatrix}$, where

$$
\hat{\mu}_1 = \tilde{X} - \bar{\tau} A_{12} A_{22, n}^{-1}(\tilde{Y}_1 - \tilde{Y}_2), \quad \hat{\mu}_2 = \tilde{Y}.
$$

The estimator $\hat{\mu}_1$ is sometimes called the regression estimator of μ_1 [21, p. 594]; this terminology stems from a well-known procedure in sampling theory in which additional observations on a subset of variables are used to improve estimation of a parameter.

Introduce the matrix

$$
\Omega = \begin{pmatrix}
\frac{1}{n} \Sigma_{11} - \bar{\tau} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \\
\frac{1}{n} \Sigma_{22} \\
\end{pmatrix} = \begin{pmatrix}
\frac{1}{N} \Sigma_{11} + \bar{\tau} \Sigma_{112} \\
\frac{1}{N} \Sigma_{22} \\
\end{pmatrix},
$$

where we have applied the standard notation $\Sigma_{112} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$.

Here and throughout the paper, we use the notation “$R_1 \overset{\Omega}{\sim} R_2$” whenever two random entities R_1 and R_2 have the same probability distribution. If R_1 is a statistic that depends on a sample size N, then we use the notation “$R_1 \overset{\Omega}{\sim} R_2$ as $N \to \infty$” to denote that R_1 converges in distribution to R_2 as $N \to \infty$. If R_1 and R_2 are real-valued random variables, then we write “$R_1 \overset{\Omega}{\geq} R_2$” or “$R_2 \overset{\Omega}{\leq} R_1$” if $P(R_1 \geq t) \geq P(R_2 \geq t)$ for all $t \in \mathbb{R}$.

Theorem 3.1. The maximum likelihood estimator $\hat{\mu}$ satisfies the stochastic representation

$$
\hat{\mu} \overset{\Omega}{\sim} \mu + V_1 + \begin{pmatrix} \tilde{Q}_2 \\ \tilde{Q}_1 \end{pmatrix},
$$

where $V_1 \sim N_{p+q}(\mathbf{0}, \Omega), \tilde{Q}_2 \sim N_{pq}(\mathbf{0}, I_p), Q_1 \sim \chi^2_{n-q}, \bar{Q}_2 \sim \chi^2_{q},$ and $V_1, Q_1, Q_2,$ and V_2 are mutually independent. Further, $\hat{\mu}_1$ and $\hat{\mu}_2$ are mutually independent if and only if $\Sigma_{12} = \mathbf{0}$.

The representation (3.5) will be seen later to provide fundamental insight into the probabilistic behavior of $\hat{\mu}$ and inference about μ.

We remark that the appearance of stochastic representations in the context of monotone samples is not new; in testing that, in a monotone sample from a normal population, missingness is completely at random, Little [22] proposed a test statistic and derived a stochastic representation for its null distribution.

The asymptotic distribution of $\hat{\mu}$ for large values of N or n can also be deduced from (3.5). For instance, if n is fixed and $N \to \infty$ then $\Omega \to n^{-1} \begin{pmatrix} \Sigma_{112} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$, a singular matrix, hence $\sqrt{n}(\hat{\mu}_1 - \mu_1) \overset{\Omega}{\sim} \Sigma_{112}^{1/2} (\tilde{V}_{11} + \mathbf{1}/\tilde{Q}_1 V_2)$ where \tilde{V}_{11} and V_2 are independent, identically distributed $N_p(\mathbf{0}, I_p)$ vectors. We also obtain the following result from (3.5).
Corollary 3.2. Suppose \(n, N \to \infty \) with \(n/N \to \delta, 0 < \delta \leq 1 \). Then
\[
\sqrt{N}(\hat{\mu} - \mu) \overset{d}{\rightarrow} N_{p+q}(0, \Sigma + (\delta^{-1} - 1) \left(\begin{array}{cc} \Sigma_{11:2} & 0 \\ 0 & 0 \end{array} \right)).
\]

Proof. As \(n \to \infty \), note that \(Q_2/Q_1 \sim \chi^2_q/\chi^2_{n-q} \to 0 \), almost surely. Also, from (3.4), as \(n/N \to \delta \), \(\text{Cov}(\sqrt{N}Y_1) = N\Omega \to \Sigma + (\delta^{-1} - 1) \left(\begin{array}{cc} \Sigma_{11:2} & 0 \\ 0 & 0 \end{array} \right) \). Hence the result follows. \(\Box \)

We shall also derive from (3.5) some properties of the moments of \(\hat{\mu} \). Throughout, we use the notation \((a)_j = a(a + 1) \cdots (a + j - 1) \), where \(j = 0, 1, 2, \ldots \) for the shifted factorial; we denote by \(\mu_{1r} \) and \(\mu_{1r} \) the \(r \)th components of \(\mu_1, \mu_\cdot, \mu_\binom{1}{r} \), respectively, and by \(E(\hat{\mu}_{1r} - \mu_{1r})^k \) the \(k \)th central moment of \(\mu_{1r} \). The following results generalize from the case in which \(p = 1 \) results of Morrison [5].

Corollary 3.3. (i) All odd central moments of \(\hat{\mu}_{1r} \) are zero. In particular, \(\hat{\mu} \) is unbiased.
(ii) For \(n > q + 2 \), the covariance matrix of \(\hat{\mu} \) is
\[
\text{Cov}(\hat{\mu}) = \frac{1}{N} \Sigma + \frac{(n - 2)\bar{t}}{n(n - q - 2)} \left(\begin{array}{cc} \Sigma_{11:2} & 0 \\ 0 & 0 \end{array} \right). \tag{3.6}
\]
(iii) Denote by \(\omega_{ij} \) and \((\Sigma_{11:2})_{ij} \) the \((i, j)\)th entries of \(\Omega \) and \(\Sigma_{11:2} \), respectively. Then the even central moments of \(\hat{\mu}_{1r} \) are
\[
E(\hat{\mu}_{1r} - \mu_{1r})^{2k} = \frac{(2k)!}{k!} \sum_{j=0}^{k} \binom{k}{j} \frac{(-1)^j (\frac{1}{2} q)^j}{(-\frac{1}{2}(n-q)+1)^j} \omega_{r_j}^{k-j} \left(\frac{\bar{t}}{n} (\Sigma_{11:2})_{rr_j} \right)^j,
\]
for \(k \leq (n-q)/2 \). If \(k \geq (n-q)/2 \) then \(E(\hat{\mu}_{1r} - \mu_{1r})^{2k} \) does not exist.

We note that the unbiasedness, and the odd central moments, of \(\hat{\mu} \) can be derived from (3.3) and the sampling distributions of the means and covariance matrices appearing above; see Kanda and Fujikoshi [15], and Fujisawa [23].

Proof of Theorem 3.1. We shall establish this result through an analysis of \(\phi \), the characteristic function of \(\hat{\mu} \), simplifying expressions for \(\phi \) until we recognize that we have obtained the characteristic function of the right-hand side of (3.3).

Because \(\tau = 1 - \bar{t} = n/N \) then, by (3.1),
\[
\hat{\mu}_1 = \bar{X} - \bar{t} A_{12}A_{22,n}^{-1}(\bar{Y}_1 - \bar{Y}_2), \quad \hat{\mu}_2 = \bar{Y} = \tau \bar{Y}_1 + \bar{t} \bar{Y}_2.
\]
For \(t = \left(\begin{array}{c} t_1 \\ t_2 \end{array} \right) \in \mathbb{R}^{p+q} \), the joint characteristic function of \(\hat{\mu} = \left(\begin{array}{c} \hat{\mu}_1 \\ \hat{\mu}_2 \end{array} \right) \) is
\[
\phi(t) = E e^{i(t_1 \hat{\mu}_1 + t_2 \hat{\mu}_2)}
\]
straightforward, calculation, we find that the expectation in (3.8) equals
\[
\exp \left[\frac{1}{2n} \bar{\tau} t' \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} t \right] E_{\mathcal{A}_{22,n}} E_{\mathcal{B}_{12}} \exp \left[-\frac{1}{2n} \bar{\tau} t' \mathcal{B}_{12} \mathcal{A}_{22,n}^{-1} \Sigma_{22} \mathcal{A}_{22,n}^{-1} t' \right].
\]

Applying (2.1) with \(\mathcal{C} = \Sigma_{11,2}, \mathcal{D} = \mathcal{A}_{22,n}, \mathcal{A} = \Sigma_{22}, \) and \(\mathcal{U} = (\bar{\tau} / 2n)^{1/2} t, \) the inner expectation in (3.9) is seen to equal \(|\mathcal{L}_q + n^{-1} \bar{\tau} (t' \Sigma_{11,2} t) | \Sigma_{22} \mathcal{A}_{22,n}^{-1} |^{-1/2}; \) inserting this result in (3.9), substituting the outcome in (3.8), and simplifying the resulting expression, we obtain
\[
\phi(t) = \exp \left(it' \mu - \frac{1}{2} t' \Omega t \right) \left| \bar{\tau} t' \Sigma_{11,2} t \right| | \Sigma_{22} \mathcal{A}_{22,n}^{-1} |^{-1/2},
\]

where \(\Omega \) is defined in (3.4). Because \(\mathcal{A}_{22,n} \sim \mathcal{W}_q(n - 1, \Sigma_{22}) \) then \(\mathcal{B}_{22} := \Sigma_{22}^{1/2} \mathcal{A}_{22,n} \Sigma_{22}^{1/2} \sim \mathcal{W}_q(n - 1, I_q); \) therefore, by (2.3) of Lemma 2.3, the expectation in (3.10) equals
\[
E_{\mathcal{B}_{22}} \left| \bar{\tau} Q \left(\tau(\nu) \right) \right|^{-1/2} = \exp \left(-\bar{\tau} \Sigma_{22}^{-1} \mathcal{B}_{22} ^{-1} Q \right),
\]

where \(Q_1 \sim \chi^2_{n - q} \) and \(Q_2 \sim \chi^2_q \) are mutually independent. Substituting (3.11) in (3.10), we have
\[
\phi(t) = \exp \left(it' \mu - \frac{1}{2} t' \Omega t \right) E \exp \left(-\bar{\tau} Q \right),
\]

where \(\mathcal{V}_1 \sim \mathcal{N}(0, \mathcal{Q}) \) independently of \(Q_1 \) and \(Q_2. \) Furthermore, by writing
\[
E \exp \left(-\bar{\tau} Q \right) = \left(\exp \left(i \bar{\tau} Q \right) \right)^{1/2} \mathcal{A}_{11,2} \mathcal{V}_2,
\]

where \(\mathcal{V}_2 \sim \mathcal{N}(0, \mathcal{L}) \) independently of \(\mathcal{V}_1, Q_1, \) and \(Q_2, \) and substituting this latter result in (3.12), we obtain (3.5).

Finally, note that by (3.5), \(\hat{\mu}_1 \) and \(\hat{\mu}_2 \) are independent if and only if \(\mathcal{V}_1 \) and \(\mathcal{V}_2 \) are independent, equivalently, \(\Omega \) is block-diagonal. However, by (3.4), \(\Omega \) is block-diagonal if and only if \(\Sigma_{12} = 0. \)

Remark 3.4. As an application of Theorem 3.1, we consider the problem of deriving a 100(1 - \(\alpha \))% confidence interval for a linear combination \(v' \mu, \) where \(v \in \mathbb{R}^{p+q} \) is specified. Writing \(v = \left(v_1, v_2 \right) \) where \(v_1 \in \mathbb{R}^p \) and \(v_2 \in \mathbb{R}^q, \) it follows from (3.5) that
\[
v' \hat{\mu} \pm \hat{\sigma}_v \mathcal{V}_1 + (\bar{\tau} Q_2 / n Q_1)^{1/2} \mathcal{V}_1 \mathcal{V}_2.
\]

To obtain an approximate confidence interval for \(v' \mu, \) we approximate the distribution of \(v' \hat{\mu} \) by a normal distribution, \(\mathcal{N}(0, \theta^2), \) where \(\theta^2 = \text{Var}(v' \hat{\mu}). \) By (3.6) and (3.13),
\[
\theta^2 = \frac{1}{N} v' \Sigma_v + \frac{(n - 2) \bar{\tau}}{n(n - q - 2)} v' \Sigma_{11,2} v.
\]

Using the approximation \(v' \hat{\mu} \approx \mathcal{N}(0, \theta^2), \) we obtain an approximate 100(1 - \(\alpha \))% confidence interval for \(v' \mu \) as
\[
\hat{\theta} \left(\left(\frac{1}{N} v' \Sigma_v + \frac{(n - 2) \bar{\tau}}{n(n - q - 2)} v' \Sigma_{11,2} v \right) \right)^{1/2},
\]

where the estimators \(\hat{\Sigma} \) and \(\hat{\Sigma}_{11,2} \) are defined in (4.1). To obtain a rigorous bound on the error in the above normal approximation, we apply the arguments in Section 6 and deduce that if \(f_1 \) and \(f_2 \) are the density functions of \(v' \hat{\mu} \) and \(\mathcal{N}(0, \theta^2), \) respectively, then there exists a universal constant \(C > 0 \) such that \(\sup_{t \in \mathbb{R}} |f_1(t) - f_2(t)| \leq \epsilon \) \(\hat{\theta} \mathcal{V}_1 \mathcal{V}_2. \)

Proof of Corollary 3.3. In the case of (i), denote by \(\mu' \nu, \mathcal{V}_1, \) and \(\Sigma_{11,2} \mathcal{V}_2 \) the rth components of \(\mu, \mathcal{V}_1, \) and \(\Sigma_{11,2} \mathcal{V}_2, \) respectively. By (3.5),
\[
\hat{\mu}_r - \mu_r \equiv \mathcal{V}_1 + (\bar{\tau} Q_2 / n Q_1)^{1/2} \Sigma_{11,2} \mathcal{V}_2.
\]

Because the distributions of \(\mathcal{V}_1 \) and \(\mathcal{V}_2 \) are symmetric about \(0 \) then \(\hat{\mu}_r - \mu_r \equiv -(-\mu_r - \mu_r), \) so it follows that all odd moments of \(\hat{\mu}_r - \mu_r \) are equal to zero. In particular, \(E(\hat{\mu}_r) = \mu_r \) for all \(r; \) therefore \(\hat{\mu} \) is unbiased.

The proof of (ii) follows directly from (3.5).
To establish (iii), we apply the binomial theorem to (3.14). Noting that the odd moments of \(V_{1r} \) and \((\Sigma_{112}^{1/2} V_2)_r \) are zero, we obtain

\[
E(\hat{\mu}_{1r} - \mu_{1r})^{2k} = E \sum_{j=0}^{k} \left(\begin{array}{c} 2k \\ 2j \end{array} \right) \left(\frac{\sigma}{n} \right)^j V_{1r}^{2(k-j)} Q_2^{j-1} \left((\Sigma_{112}^{1/2} V_2)_r \right)^{2j}.
\]

Because \(V_{1r} \sim N(0, \omega_{1r}) \) and \((\Sigma_{112}^{1/2} V_2)_r \sim N(0, (\Sigma_{112})_r) \) then

\[
EV_{1r}^{2(k-j)} = \frac{(2k-2j)!}{(k-j)! 2^{k-j} \omega_{1r}^{k-j}}
\]

and

\[
E \left((\Sigma_{112}^{1/2} V_2)_r \right)^{2j} = \frac{(2j)!}{j! 2^{j}} \left((\Sigma_{112})_r \right)^{j}.
\]

By standard calculations, \(E(Q_2^j) = 2^{j} \left(\frac{q}{2} \right)_j \) and

\[
E(Q_2^{-j}) = \begin{cases} (-1)^j / 2^j \left(\frac{1}{2} (n - q) + 1 \right) & \text{if } j < (n - q)/2, \\ \infty & \text{if } j \geq (n - q)/2.
\end{cases}
\]

Combining these results and simplifying the resulting sum, we obtain (3.7).

Finally, \(E(\hat{\mu}_{1r} - \mu_{1r})^{2k} \) diverges for \(k \geq (n - q)/2 \) because \(E(Q_2^{-(n-q)/2}) \) diverges. \(\square \)

4. Some properties of \(\hat{\Sigma} \)

In this section, we list some properties of \(\hat{\Sigma} \) that are needed in Section 5. The proofs of these properties all are provided in the companion paper [20].

By Anderson [3] or Anderson and Olkin [8] (cf. Morrison [5], Giguère and Styan [14]), the maximum likelihood estimator of \(\Sigma \) is \(\hat{\Sigma} = \hat{\Sigma}_{11} \hat{\Sigma}_{12} \hat{\Sigma}_{22} \) where, in the notation of (3.2),

\[
\begin{align*}
\hat{\Sigma}_{11} &= \frac{1}{n} \left(A_{11} - A_{12} A_{22,n}^{-1} A_{21} \right) + \frac{1}{N} A_{12} A_{22,n}^{-1} A_{22,n} A_{22,n}^{-1} A_{21}, \\
\hat{\Sigma}_{12} &= \hat{\Sigma}_{21}' = \frac{1}{n} A_{12} A_{22,n}^{-1} A_{22,n}, \\
\hat{\Sigma}_{22} &= \frac{1}{N} A_{22,n}.
\end{align*}
\]

(4.1)

Proposition 4.1 ([20, Proposition 3.1]). Define \(A_{112,n} = A_{11} - A_{12} A_{22,n}^{-1} A_{21} \).

\[
B_1 = \sum_{j=n+1}^{N} (Y_j - \bar{Y}_2)(Y_j - \bar{Y}_2)',
\]

\[
B_2 = \frac{n}{\hat{\tau}} (\bar{Y}_1 - \bar{Y}_2)(\bar{Y}_1 - \bar{Y}_2)',
\]

and \(B = B_1 + B_2 \). Then

\[
n \hat{\Sigma} = \hat{\tau} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22,n} \end{pmatrix} + \hat{\tau} \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22,n} \end{pmatrix} + \hat{\tau} \begin{pmatrix} A_{12} A_{22,n}^{-1} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} B & B \\ B & B \end{pmatrix} \begin{pmatrix} A_{22,n}^{-1} & 0 \\ 0 & 1 \end{pmatrix},
\]

(4.2)

where \(A_{11} A_{22,n} A_{12} A_{22,n}^{-1} A_{21} \sim W_p + q(n - 1, \Sigma) \) and \(B \sim W_q(N - n, \Sigma_{22}) \) are mutually independent. Moreover, \(N \hat{\Sigma}_{22} \sim W_q(N - 1, \Sigma_{22}) \).

We will also need some results on the matrix F-distribution. A \(q \times q \) random matrix \(F \geq 0 \) is said to have a matrix F-distribution with degrees of freedom \((a, b)\), denoted \(F \sim F_{a,b}^q \), if \(F \preceq B^{-1/2} A B^{-1/2} \), where \(A \sim W_q(a, \Sigma_{22}) \) and \(B \sim W_q(b, \Sigma_{22}) \) are mutually independent. Necessarily, we require \(b > q - 1 \) to ensure that \(B \) is nonsingular, almost surely. If both \(a, b > q - 1 \) then \(F \) is nonsingular, almost surely, and its density function is

\[
\frac{\Gamma_q ((a + b)/2) \Gamma_q ((a/2)) \Gamma_q ((b/2))}{\Gamma_q (a/2) \Gamma_q (b/2) \Gamma_q ((a+b)/2)} |F| \left(1 + \frac{q}{a+b} \right)^{-(a+b)/2}.
\]
\(F > 0 \). It is well-known [19, pp. 312–313] that if \(A \sim W_q(a, \Sigma_{22}) \) and \(B \sim W_q(b, \Sigma_{22}) \) are independent with \(a, b > q - 1 \) then both \(A^{1/2}B^{-1}A^{1/2} \) and \(B^{-1/2}AB^{-1/2} \) have the \(F_{a,b} \) distribution; also, if \(F \sim F_{a,b} \) then \(F^{-1} \sim F_{b,a} \). Note that for \(q = 1 \), the notation \(F_{a,b}^{(q)} \) is a slight departure from the notation for the classical F-distribution, for \(F_{a,b}^{(1)} \equiv \chi^2_a / \chi^2_b \).

Proposition 4.2 ([20, Propositions 3.2, 3.4]). Suppose that \(\Sigma_{12} = 0 \). Then

(i) \(A_{22,n}, A_{11,2,n}, A_{12}^{-1}A_{22,n}, A_{21}, B_1, X, Y_1, \) and \(\hat{Y}_2 \) are mutually independent. Also, \(B_2 \) and \(\hat{Y} \) are independent.

(ii) \(\hat{\Sigma}_{11} \) has a stochastic representation,

\[
\hat{\Sigma}_{11}^{-1/2} \hat{\Sigma}_{11} \hat{\Sigma}_{11}^{-1/2} \leq \frac{1}{n} W_1 + \frac{1}{N} W_2^{1/2} (I_p + F) W_2^{1/2},
\]

where \(W_1 \sim W_p(n - q - 1, I_p) \), \(W_2 \sim W_p(q, I_p) \), \(F \sim F_{n-p,n-q+p-1} \), and \(W_1, W_2, \) and \(F \) are mutually independent.

Let \(Q \) denote the group of \(q \times q \) orthogonal matrices. The Haar measure on \(O(q) \) is the unique probability distribution on \(Q \) that is invariant under the two-sided action of \(O(q) \). For \(p \leq q \), denote by \(S_{p,q} \) the Stiefel manifold of all \(p \times q \) matrices \(H_1 \) such that \(H_1 H_1^T = I_p \). It is well-known [19, p. 67] that there exists on \(S_{p,q} \) a unique probability distribution which is left-invariant under \(O(p) \) and right-invariant under \(O(q) \); we refer to this distribution as the uniform distribution on \(S_{p,q} \).

Let \(H \in O(q) \) be a random matrix which is distributed according to Haar measure. Expressing \(H \) in the form \(H = \left(\begin{array}{c|c} H_1 & H_2 \\ \hline H_3 & H_4 \end{array} \right) \) where \(H_1 \in S_{p,q} \) then \(H_1 \) is uniformly distributed on \(S_{p,q} \). Conversely, given a uniformly distributed \(H_1 \in S_{p,q} \), we may complete \(H_1 \) to form a random \(q \times q \) orthogonal matrix \(H = \left(\begin{array}{c|c} H_1 & H_2 \\ \hline H_3 & H_4 \end{array} \right) \) having the Haar measure on \(O(q) \).

Lemma 4.3 ([20, Lemma 3.3]). Let \(p \leq q, F \sim F_{a,b}^{(p)} \), \(H_1 \) be uniformly distributed on \(S_{p,q} \), and \(F \) and \(H_1 \) be independent. Then \(H_1 F H_1^T \sim F_{a,b}^{(p)} \). Furthermore, \(H_1 F H_1^T \leq F_{11} \), the principal \(p \times p \) submatrix of \(F \).

We also have a stochastic representation for \(\hat{\Sigma}_{12} \hat{\Sigma}_{22}^{-1} \), the estimated regression matrix.

Theorem 4.4 ([20, Theorem 3.6]). For arbitrary \(\Sigma_{12} \),

\[
\hat{\Sigma}_{12} \hat{\Sigma}_{22}^{-1} \leq \Sigma_{12} \Sigma_{22}^{-1} + \frac{1}{N} W_1 \hat{\Sigma}_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1/2},
\]

where \(W \) and \(K \) are independent, \(W \sim W_p(n - q + p - 1, I_p) \), and \(K \sim N(0, I_p \otimes I_q) \). In particular, \(\hat{\Sigma}_{12} \hat{\Sigma}_{22}^{-1} \) is an unbiased estimator of \(\Sigma_{12} \Sigma_{22}^{-1} \), and

\[
\Sigma_{11,2}^{-1/2} (\hat{\Sigma}_{12} \hat{\Sigma}_{22}^{-1} - \Sigma_{12} \Sigma_{22}^{-1}) \Sigma_{22} (\hat{\Sigma}_{12} \hat{\Sigma}_{22}^{-1} - \Sigma_{12} \Sigma_{22}^{-1})^{-1/2} \Sigma_{11,2}^{-1/2} \sim F_{q,n-q+p-1}^{(p)}.
\]

By reparametrizing the space of positive definite matrices [18, Proposition 8.7], we may write

\[
\hat{\Sigma} = \left(\begin{array}{cc|c} I_p & \hat{\Delta}_{12} & I_q \\ \hline 0 & \hat{\Delta}_{11} & 0 \\ \hline \hat{\Delta}_{21} & 0 & I_q \end{array} \right) \left(\begin{array}{c|c} I_p & 0 \\ \hline 0 & I_q \end{array} \right) = \left(\begin{array}{c|c} I_p & \hat{\Delta}_{12} \\ \hline \hat{\Delta}_{21} & I_q \end{array} \right).
\]

This defines the positive definite symmetric matrix \(\hat{\Delta} = \left(\begin{array}{c|c} \hat{\Delta}_{11} & \hat{\Delta}_{12} \\ \hline \hat{\Delta}_{21} & \hat{\Delta}_{22} \end{array} \right) \), and the set of submatrices \(\hat{\Delta}_{11}, \hat{\Delta}_{12}, \hat{\Delta}_{22} \) are also called the partial Iwasawa coordinates of \(\hat{\Sigma} \) [23]. Inverting (4.5), we obtain

\[
\hat{\Sigma}^{-1} = \left(\begin{array}{c|c} I_p & 0 \\ \hline -\hat{\Delta}_{21} & I_q \end{array} \right) \left(\begin{array}{c|c} I_p & 0 \\ \hline 0 & \hat{\Delta}_{11}^{-1} \hat{\Delta}_{22} \end{array} \right) \left(\begin{array}{c|c} I_p & -\hat{\Delta}_{12} \\ \hline 0 & I_q \end{array} \right)
\]

\[
= \left(\begin{array}{c|c} I_p & 0 \\ \hline -\hat{\Delta}_{21} \hat{\Delta}_{11}^{-1} \hat{\Delta}_{12} & I_q \end{array} \right).
\]

Therefore the correspondence between \(\hat{\Delta} \) and \(\hat{\Sigma} \) is one-to-one, with inverse transformation

\[
\hat{\Sigma}_{11} = \hat{\Delta}_{11} + \hat{\Delta}_{12} \hat{\Delta}_{22} \hat{\Delta}_{21}, \quad \hat{\Sigma}_{12} = \hat{\Delta}_{12} \hat{\Delta}_{22}, \quad \hat{\Sigma}_{22} = \hat{\Delta}_{22},
\]

where, by (4.1),

\[
\hat{\Delta}_{11} = \hat{\Delta}_{11,2} = \frac{1}{n} A_{11,2,\cdot},
\]

\[
\hat{\Delta}_{12} = \hat{\Delta}_{12} = \hat{\Sigma}_{12} \hat{\Sigma}_{22}^{-1} = A_{12} A_{22,\cdot},
\]

\[
\hat{\Delta}_{22} = \hat{\Sigma}_{22} = \frac{1}{N} A_{22,\cdot}.
\]
5. Ellipsoidal confidence regions for \(\mu \)

The problem of testing \(H_0 : \mu = \mu_0 \) against \(H_0 : \mu \neq \mu_0 \), where \(\mu_0 \) is a specified vector, has been studied extensively for data of the form (1.1). Bhargava [4,10] obtained the likelihood ratio statistic for testing \(H_0 \) against \(H_0 \) and derived a stochastic representation for the corresponding null distribution; Morrison and Bhoj [24] studied the power of the likelihood ratio test; Eaton and Kariya [6] obtained invariant tests under data structures more general than (1.1); and Krishnamoorthy and Pannala [25] provided alternatives to the likelihood ratio test.

On the other hand, confidence regions for \(\mu \) have received less attention. Krishnamoorthy and Pannala [26] noted that the likelihood ratio criterion leads to confidence regions which are non-ellipsoidal in shape and raised the problem of constructing ellipsoidal confidence regions for \(\mu \). This problem calls for a generalization of Hotelling’s \(T^2 \)-statistic for the case in which the data have monotone structure (1.1). Following [26], we study the statistic

\[
T^2 = (\hat{\mu} - \mu) \hat{\Sigma}^{-1} (\hat{\mu} - \mu),
\]

where, by (3.6),

\[
\hat{\Sigma} := \frac{1}{N} \hat{\Sigma} + \frac{(n-2)\bar{r}}{n(n-q-2)} \begin{pmatrix} \hat{\Sigma}_{11} & 0 \\ 0 & 0 \end{pmatrix}
\]

is the maximum likelihood estimator of \(\Sigma \). Krishnamoorthy and Pannala [26] derived F-approximations to \(T^2 \) via the method of moments and used simulations to illustrate that (5.1) has good power properties in comparison with the likelihood ratio test statistic.

A more profound motivation for the \(T^2 \)-statistic in (5.1) is to be found in the results of Eaton and Kariya [6, p. 657]. They prove that the problem of testing \(H_0 : \mu = 0 \) against \(H_0 : \mu \neq 0 \) is invariant under a certain group of transformations and that a maximal invariant parameter is the pair \((\gamma_{11.2}, \gamma_{22})\), where

\[
\gamma_{11.2} := (\mu_1 - \hat{\Sigma}_{12} \hat{\Sigma}_{22}^{-1} \mu_2) / \hat{\Sigma}_{11.2} (\mu_1 - \hat{\Sigma}_{12} \hat{\Sigma}_{22}^{-1} \mu_2), \quad \gamma_{22} := \mu_2 \hat{\Sigma}_{22}^{-1} \mu_2.
\]

Therefore, in performing inference for \(\mu \), it is natural to utilize the corresponding maximum likelihood estimator \((\hat{\gamma}_{11.2}, \hat{\gamma}_{22})\), where

\[
\hat{\gamma}_{11.2} := (\hat{\mu}_1 - \hat{\Sigma}_{12} \hat{\Sigma}_{22}^{-1} \hat{\mu}_2) / \hat{\Sigma}_{11.2} (\hat{\mu}_1 - \hat{\Sigma}_{12} \hat{\Sigma}_{22}^{-1} \hat{\mu}_2), \quad \hat{\gamma}_{22} := \hat{\mu}_2 \hat{\Sigma}_{22}^{-1} \hat{\mu}_2.
\]

By a well-known identity [17, p. 63, Exercise 2.54],

\[
\mu' \Sigma^{-1} \mu = (\mu_1 - \Sigma_{12} \Sigma_{22}^{-1} \mu_2) / \Sigma_{11.2} (\mu_1 - \Sigma_{12} \Sigma_{22}^{-1} \mu_2) + \mu_2' \Sigma_{22}^{-1} \mu_2,
\]

i.e., \(\gamma_{11.2} + \gamma_{22} = \mu' \Sigma^{-1} \mu \). Therefore \(\hat{\mu}' \hat{\Sigma}^{-1} \hat{\mu} \) is the sum of the maximum likelihood estimators of the maximal invariant parameters. On replacing \(\hat{\Sigma} \) by \(\hat{\Sigma} \) to adjust standard errors, we see that \(T^2 \) may be viewed as a modification of the maximum likelihood estimator \(\hat{\gamma}_{11.2} + \hat{\gamma}_{22} \).

We turn now to the distribution of (5.1). A consequence of a result of Romer [27, Proposition 3.2.2] is that the \(T^2 \)-statistic (5.1) is invariant under the data transformation

\[
\begin{pmatrix} X_j \\ Y_j \end{pmatrix} \rightarrow \begin{pmatrix} \Sigma_{11}^{1/2} & 0 \\ 0 & \Sigma_{22}^{1/2} \end{pmatrix} \begin{pmatrix} I_n & -\Sigma_{12} \Sigma_{22}^{-1} \\ I_n & 0 \end{pmatrix} \begin{pmatrix} X_j - \mu_1 \\ Y_j - \mu_2 \end{pmatrix}, \quad j = 1, \ldots, n,
\]

\[
Y_j \rightarrow \Sigma_{22}^{1/2} (Y_j - \mu_2), \quad j = n + 1, \ldots, N,
\]

which transforms the original data into a two-step, monotone incomplete sample from the \(N_{p+q}(0, I_{p+q}) \) population. Therefore, in establishing any result on the distribution of the \(T^2 \)-statistic (5.1) we shall assume, without loss of generality that \(\mu = 0 \) and \(\Sigma = I_{p+q} \).

Introduce the notation

\[
\gamma = 1 + \frac{(n-2)\bar{r}}{n(n-q-2)}.
\]

then, by (5.2),

\[
N \hat{\Sigma} = \hat{\Sigma} + (\gamma - 1) \begin{pmatrix} \hat{\Sigma}_{11} & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \hat{\Sigma}_{11} & (\gamma - 1) \hat{\Sigma}_{11.2} \\ \hat{\Sigma}_{21} & \hat{\Sigma}_{22} \end{pmatrix}.
\]

Applying a well-known formula (see [17, p. 638]) for inverting a partitioned matrix, we obtain

\[
N^{-1} \hat{\Sigma}^{-1} = \gamma^{-1} \hat{\Sigma}^{-1} + (1 - \gamma^{-1}) \begin{pmatrix} 0 & 0 \\ 0 & \hat{\Sigma}_{22}^{-1} \end{pmatrix}.
\]

5.1. The asymptotic distribution of the \(T^2 \)-statistic

Proposition 5.1. If \(n, N \to \infty \) with \(n/N \to \delta \in (0, 1] \) then \(T^2 \xrightarrow{\mu} \chi^2_{p+q} \).
Proof. Without loss of generality, we assume that \(\mu = 0 \) and \(\Sigma = I_{p+q} \). Then, by the Law of Large Numbers, \(n^{-1} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22,n} \end{pmatrix} \) and \(n^{-1} A_{22,n} \) each converge to \(I_{p+q} \); hence, by (4.1), \(\Sigma \to I_{p+q} \), almost surely. Therefore, by (5.2),

\[
N \text{Cov}(\hat{\mu}) \to I_{p+q} + (\delta^{-1} - 1) \begin{pmatrix} I_p & 0 \\ 0 & 0 \end{pmatrix},
\]

almost surely. Then, the result follows from Corollary 3.2 and an application of Slutsky’s theorem to \(\hat{\mu}^\top \text{Cov}(\hat{\mu})^{-1} \hat{\mu} \equiv (\sqrt{N} \hat{\mu})^\top \left(N \text{Cov}(\hat{\mu}) \right)^{-1} (\sqrt{N} \hat{\mu}) \). □

Next, we consider the case in which \(N \to \infty \) and \(n \) is fixed. By (3.6),

\[
\text{Cov}(\hat{\mu}) \to \frac{n-2}{n(n-q-2)} \begin{pmatrix} \Sigma_{11} & 0 \\ 0 & 0 \end{pmatrix}.
\]

This asymptotic value of \(\text{Cov}(\hat{\mu}) \) indicates that large-\(N \) inference for \(\mu_2 \) should be performed entirely with \(\hat{\mu}_2 \), and such may be done in a straightforward manner using the exact distribution: \(\sqrt{N} \hat{\mu}_2 \sim N_0(0, \Sigma_{22}) \). As regards inference for \(\mu_1 \), we utilize its corresponding Hotelling’s \(T^2 \)-statistic, \(T_1^2 = (\hat{\mu}_1 - \mu_1)^\top \text{Cov}(\hat{\mu}_1)^{-1} (\hat{\mu}_1 - \mu_1) \). Under translations of the data, i.e., \(X_j \to X_j - \mu_1, j = 1, \ldots, n \) and \(Y_j \to Y_j - \mu_2, j = 1, \ldots, n \), the statistic \(T_1^2 \) is invariant; therefore its distribution does not depend on \(\mu \). However, \(T_1^2 \) is not invariant under all transformations of the form (5.5) and therefore its distribution is dependent on \(\Sigma \). Thus, we derive the limiting distribution of \(T_1^2 \) assuming that \(\Sigma_{12} = 0 \).

Theorem 5.2. Suppose that \(N \to \infty \), \(n \) is fixed, and \(\Sigma_{12} = 0 \). Then,

\[
T_1^2 \sim \frac{n(n-q-2)}{n-2} \frac{X_p^2}{X_{n-p-q}^2} \left(1 + \frac{X_q^2}{X_{n-q}^2} \right),
\]

where all chi-squared random variables above are mutually independent. Further, if both \(n, N \to \infty \) with \(n/N \to 0 \) then \(T_1^2 \sim X_p^2 \).

Proof. We suppose, without loss of generality, that \(\mu = 0 \) and \(\Sigma = I_{p+q} \). By (5.2),

\[
\text{Cov}(\hat{\mu}_1) = \frac{1}{N} \Sigma_{11} + \frac{\gamma - 1}{N} \Sigma_{112} = \frac{1}{N} \tilde{\Sigma}_{11} + \frac{\gamma - 1}{N} \Delta_{11}.
\]

By (4.1), \(n^{-1} \tilde{\Sigma}_{11} \to 0 \), almost surely and, by (5.6), \((\gamma - 1)/N \to (n - 2)/(n(n - q - 2)) \) as \(N \to \infty \). Therefore, it suffices to find the limiting distribution of \(\tilde{\Sigma}_{11}^{-1} \hat{\mu}_1 \).

Because \(\{X, Y_1, Y_2\} \) and \(\{A_{11}, A_{12}, A_{22,n}\} \) are mutually independent then it follows from (3.3) that for every \(N \), \(\hat{\mu}_1 | A_{11}, A_{12}, A_{22,n} \sim N_p(0, n^{-1}(I_p + \bar{\Delta}_{21}) \Delta_{21}) \). Therefore, for \(t \in \mathbb{R} \),

\[
E \exp(it \hat{\mu}_1^\top \Delta_{11}^{-1} \hat{\mu}_1) = E \exp \left(i \text{ tr } \Delta_{11}^{-1} \hat{\mu}_1^\top \hat{\mu}_1 \right)
\]

\[
= E |I_p - 2itn^{-1} \Delta_{11}^{-1}(I_p + \bar{\Delta}_{21})|^{-1/2}.
\]

As noted in the proof of Theorem 3.1, \(n \Delta_{11} = A_{11,n} \sim W_p(n-q-1, I_p) \), and \(\hat{\Delta}_{11} \) and \(\hat{\Delta}_{12} \) are mutually independent. Applying (2.4) of Lemma 2.3, we obtain

\[
E \exp(it \hat{\mu}_1^\top \Delta_{11}^{-1} \hat{\mu}_1) = E |I_p - 2itn^{-1} \Delta_{11}^{-1}(I_p + \hat{\Delta}_{21})|^{-1/2}
\]

\[
= E \exp \left(itQ_1^{-1}V_1(I_p + \hat{\Delta}_{21})V_2 \right).
\]

where \(Q_1 \sim \chi^2_{n-p-q} \), \(V_1 \sim N_p(0, I_p) \), and \(Q_1 \) and \(V_2 \) are mutually independent. Noting that \(t \to 1 \) as \(N \to \infty \), it follows that

\[
\hat{\Delta}_{11}^{-1} \hat{\mu}_1 \overset{d}{\to} Q_1^{-1}V_1(I_p + F)V_2,
\]

where \(F = \hat{\Delta}_{21} \Delta_{21}^{-1} \) is independent of \(Q_1 \) and \(V_2 \).

Apply the polar coordinates decomposition \(V_2 = Q_{22}^{1/2} U \), where \(Q_{22} = V_1^1 V_2 \) and \(U = V_2/(V_1^1 V_2)^{1/2} \). Because \(V_2 \sim N_p(0, I_p) \) then \(Q_2 \sim \chi^2_p \), \(U \) is uniformly distributed on \(S^{p-1} \), the unit sphere in \(\mathbb{R}^p \); and \(Q_1 \) and \(V_2 \) are mutually independent. Then \(V_1(I_p + F)V_2 \overset{d}{=} Q_1 U(I_p + F)U = Q_1 (1 + U^T F U) \). By (4.4), \(F \sim F_{q,n-p,q+p-1} \) and, by Lemma 4.3, \(U^T F U \sim F_{q,n-q}^{(1)} \). Therefore,

\[
\hat{\Delta}_{11}^{-1} \hat{\mu}_1 \overset{d}{\to} Q_1^{-1}Q_2 \left(1 + \frac{\chi^2_p}{\chi^2_{n-p-q}} \right) \overset{d}{=} \frac{\chi^2_p}{\chi^2_{n-p-q}} \left(1 + \frac{\chi^2_q}{\chi^2_{n-q}} \right),
\]

where all four chi-square variables are mutually independent, so the proof of (5.8) is complete.
As regards the case in which \(n, N \to \infty \) with \(n/N \to 0 \), it follows from the Central Limit Theorem and (3.5) that \(n^{1/2} \hat{\mu}_1 \overset{d}{\to} V_1 \sim \mathcal{N}_p(0, I_p) \). Also, by applying the Law of Large Numbers to (4.1) and by (5.2), we obtain \(n \mathcal{Cov}(\hat{\mu}_1) \to I_p \), almost surely. Therefore, as \(n, N \to \infty \) with \(n/N \to 0 \), \(T^2_1 \equiv (n^{1/2} \hat{\mu}_1)'(n \mathcal{Cov}(\hat{\mu}_1))^{-1}(n^{1/2} \hat{\mu}_1) \overset{d}{\to} V_1 \Sigma^{-1}_{11.2} V_2 \sim \chi^2_p \).

Remark 5.3. For the case in which \(\Sigma \) is block-diagonal, \(n \) is fixed, and \(N \) is large, we can derive from the previous result a stochastic inequality for \(T^2_1 \). By (5.8), that limiting random variable clearly is stochastically greater than

\[
\frac{n(n - q - 2)}{n - 2} \frac{\chi^2_p}{\chi^2_{n-p-q}},
\]

a multiple of an \(F \)-distributed random variable. Therefore, in that case, for \(t \geq 0 \),

\[
\lim_{N \to \infty} P(T^2_1 \leq t) \leq P \left(\frac{n(n - q - 2)}{n - 2} \frac{\chi^2_p}{\chi^2_{n-p-q}} \leq t \right) = P \left(F_{p,n-p-q} \leq \frac{(n - 2)(n - p - q)}{n(n - q - 2)p} t \right),
\]

and this provides an upper bound on the large-\(N \) distribution of \(T^2_1 \).

5.2. Probability inequalities for the \(T^2 \)-statistic

We now study the small-sample behavior of the \(T^2 \)-statistic, deriving probability inequalities which lead to conservative confidence levels for ellipsoidal confidence regions for \(\mu \). We begin by deriving an upper bound on the distribution function of \(T^2 \) for the case in which both \(n \) and \(N \) are fixed.

Proposition 5.4. For \(t \geq 0 \), \(P(T^2 \leq t) \leq P \left(F_{q,N-q} \leq (N - q)t/Nq \right) \).

Proof. Without loss of generality, we assume that \(\mu = 0 \) and \(\Sigma = I_{p+q} \). By (5.7) and (5.11), we have

\[
\mathcal{Cov}(\hat{\mu})^{-1} \geq \frac{N}{\gamma} \begin{pmatrix} 0 & 0 \\ 0 & \hat{\Sigma}_{22}^{-1} \end{pmatrix} + \frac{N(\gamma - 1)}{\gamma} \begin{pmatrix} 0 & 0 \\ 0 & \hat{\Sigma}_{22}^{-1} \end{pmatrix} = N \begin{pmatrix} 0 & 0 \\ 0 & \hat{\Sigma}_{22}^{-1} \end{pmatrix},
\]

therefore \(T^2 \geq N\hat{\mu}'\hat{\Sigma}^{-1}_{22} \hat{\mu} \), and then the conclusion follows from the distribution of the classical Hotelling’s \(T^2 \)-statistic.

In contrast to the preceding upper bound, the derivation of a lower bound on the distribution function of the \(T^2 \)-statistic requires much greater effort. We shall prove the following result.

Theorem 5.5. For \(t \geq 0 \),

\[
P(T^2 \leq t) \geq P \left(N^2 n^{-1} \frac{Q_2}{Q_1} \left(1 + \frac{qQ_3}{Q_5} \right) + \frac{Nq}{Q_5} \left(t^{1/2} Q_3^{1/2} + t^{1/2} Q_4^{1/2} \right)^2 \leq t \right),
\]

where \(Q_1 \sim \chi^2_{n-p-q} \), \(Q_2 \sim \chi^2_p \), \(Q_3 \sim \chi^2_Q \), \(Q_4 \sim \chi^2_Q \), \(Q_5 \sim \chi^2_2 \), and \(Q_1, \ldots, Q_5 \) are mutually independent.

Remark 5.6. In practice, the right-hand side of (5.9) can be calculated by numerical simulation, and this is simpler than simulating the distribution of \(T^2 \) directly from its definition.

** Lemma 5.7.** Define the modified \(T^2 \)-statistic,

\[
\tilde{T}^2 = N(\hat{\mu} - \mu)' \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22,n} \end{pmatrix}^{-1}(\hat{\mu} - \mu).
\]

Then \(T^2 \leq N\tilde{T}^2 \).

Proof. By (5.7),

\[
\mathcal{Cov}(\hat{\mu})^{-1} = \frac{N}{\gamma} \hat{\Sigma}^{-1}_{22} + \frac{N(\gamma - 1)}{\gamma} \begin{pmatrix} 0 & 0 \\ 0 & \hat{\Sigma}_{22}^{-1} \end{pmatrix}.
\]

Also, by [17, p. 63, Exercise 2.54],

\[
\hat{\Sigma}^{-1} \geq \begin{pmatrix} 0 & 0 \\ 0 & \hat{\Sigma}_{22}^{-1} \end{pmatrix},
\]

(5.11)
where the ordering is in the sense of positive semidefiniteness; therefore
\[
\widehat{\text{Cov}}(\widehat{\mu})^{-1} \leq \frac{N}{\gamma} \Sigma^{-1} + \frac{N(\gamma - 1)}{\gamma} \Sigma^{-1} = N \Sigma^{-1}.
\]

By (4.2),
\[
\Sigma \geq \frac{1}{\tilde{r}} \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22,n} \end{array} \right) = \frac{1}{N} \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22,n} \end{array} \right),
\]
therefore,
\[
\Sigma^{-1} \leq N \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22,n} \end{array} \right)^{-1}.
\]

Consequently,
\[
\widehat{\text{Cov}}(\widehat{\mu})^{-1} \leq N^2 \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22,n} \end{array} \right)^{-1},
\]
and then the conclusion follows immediately. \(\square\)

Proof of Theorem 5.5. Because we are analyzing the distribution of \(T^2\), which does not depend on \(\mu\) or \(\Sigma\), we assume, without loss of generality, that \(\mu = 0\) and \(\Sigma = I_{n+q}\). As shown in Lemma 5.7, \(T^2 \leq \tilde{T}^2\); therefore \(T^2 \leq \tilde{T}^2\), so it suffices to derive a lower bound on the distribution function of \(\tilde{T}^2\).

We apply to (5.10) the quadratic identity (5.4), obtaining
\[
N^{-1/2} = (\tilde{\mu}_1 - A_{12}A_{12,12}^{-1}\tilde{\mu}_2)'A_{12,12}^{-1}(\tilde{\mu}_1 - A_{12}A_{12,12}^{-1}\tilde{\mu}_2) + \tilde{\mu}_1'A_{12,12}^{-1}\tilde{\mu}_2.
\]

By (3.3), \(\tilde{\mu}_1 - A_{12}A_{12,12}^{-1}\tilde{\mu}_2 = \tilde{X} - A_{12}A_{12,12}^{-1}\tilde{Y}_1\) and \(\tilde{\mu}_2 = \tilde{Y}\); therefore
\[
N^{-1/2} = (\tilde{X} - A_{12}A_{12,12}^{-1}\tilde{Y}_1)'A_{12,12}^{-1}(\tilde{X} - A_{12}A_{12,12}^{-1}\tilde{Y}_1) + \tilde{Y}_1'A_{12,12}^{-1}\tilde{Y}.
\]

Recall that \(A_{11,12} \sim W_{p+q}(n - q - 1, I_{p+q})\) and is independent of \((\tilde{X}, \tilde{Y}_1, \tilde{Y}_2, A_{12}, A_{22,n})\) (see Proposition 4.2(i)). Hence, by Proposition 2.2(iv),
\[
Q_1 := \frac{(\tilde{X} - A_{12}A_{12,12}^{-1}\tilde{Y}_1)'(\tilde{X} - A_{12}A_{12,12}^{-1}\tilde{Y}_1)}{(\tilde{X} - A_{12}A_{12,12}^{-1}\tilde{Y}_1)'A_{12,12}^{-1}(\tilde{X} - A_{12}A_{12,12}^{-1}\tilde{Y}_1) + \tilde{Y}_1'A_{12,12}^{-1}\tilde{Y}} \sim \chi^2_{n-p-q}.
\]

and \(Q_1\) is independent of \(\tilde{X} - A_{12}A_{12,12}^{-1}\tilde{Y}_1\). Therefore
\[
N^{-1/2} \leq Q_1^{-1} \left(\tilde{X} - A_{12}A_{12,12}^{-1}\tilde{Y}_1 \right)' \left(\tilde{X} - A_{12}A_{12,12}^{-1}\tilde{Y}_1 \right) + \tilde{Y}_1'A_{12,12}^{-1}\tilde{Y},
\]
where \(Q_1\) is independent of \((\tilde{X}, \tilde{Y}_1, \tilde{Y}_2, A_{12}, A_{22,n})\).

By Proposition 2.2(ii), \(A_{12}A_{12,12}^{-1} \sim N(0, I_p \otimes A_{22,n})\). Let \(B_{12} = A_{12,12}^{-1/2}\), so that \(B_{12}A_{22,n} \sim N(0, I_p \otimes I_q)\); because this conditional distribution does not depend on \(A_{22,n}\), then \(B_{12}\) also is independent of \(A_{22,n}\). Therefore, conditional on \((\tilde{Y}_1, A_{22,n})\), the random vector \(\tilde{X} - A_{12}A_{12,12}^{-1}\tilde{Y}_1 = \tilde{X} - B_{12}A_{22,n}^{-1}\tilde{Y}_1\), viewed as a linear function of \(\tilde{X}\) and \(B_{12}\), is multivariate normally distributed with conditional mean
\[
E(\tilde{X} - B_{12}A_{22,n}^{-1/2}\tilde{Y}_1 | (\tilde{Y}_1, A_{22,n})) = E(\tilde{X}) - E(B_{12})A_{22,n}^{-1/2}\tilde{Y}_1 = 0,
\]
and, with \(C = A_{22,n}^{-1/2}\tilde{Y}_1\tilde{Y}_1'A_{22,n}^{-1/2}\), the corresponding conditional covariance matrix is
\[
\text{Cov}(\tilde{X} - B_{12}A_{22,n}^{-1/2}\tilde{Y}_1 | (\tilde{Y}_1, A_{22,n})) = \text{Cov}(\tilde{X}) + E(B_{12}A_{22,n}^{-1/2}\tilde{Y}_1\tilde{Y}_1'A_{22,n}^{-1/2}B_{12}' | (\tilde{Y}_1, A_{22,n}))
\]
\[
= n^{-1}I_p + E(B_{12}CB_{12}' | (\tilde{Y}_1, A_{22,n})).
\]

Because \(B_{12} \sim N(0, I_p \otimes I_q)\), it is straightforward to show that \(E(B_{12}CB_{12}') = (\text{tr} C)I_p\); therefore, \(\text{Cov}(\tilde{X} - B_{12}A_{22,n}^{-1/2}\tilde{Y}_1 | (\tilde{Y}_1, A_{22,n})) = (n^{-1} + \tilde{Y}_1'A_{22,n}^{-1}\tilde{Y}_1)I_p\).

Having shown that \(\tilde{X} - B_{12}A_{22,n}^{-1/2}\tilde{Y}_1 \sim N_p(0, (n^{-1} + \tilde{Y}_1'A_{22,n}^{-1}\tilde{Y}_1)I_p)\), we obtain
\[
(\tilde{X} - B_{12}A_{22,n}^{-1/2}\tilde{Y}_1)'(\tilde{X} - B_{12}A_{22,n}^{-1/2}\tilde{Y}_1) | (\tilde{Y}_1, A_{22,n}) \sim (n^{-1} + \tilde{Y}_1'A_{22,n}^{-1}\tilde{Y}_1)Q_2,
\]
where \(Q_2 \sim \chi^2_p\) independently of \((\tilde{Y}_1, A_{22,n})\).
By the Cauchy–Schwarz inequality,
\[
\tilde{Y}^2_{A_{22,n}^{-1}} \tilde{Y} = (\tau \tilde{Y}_1 + \tau \tilde{Y}_2)^2 A_{22,n}^{-1} (\tau \tilde{Y}_1 + \tau \tilde{Y}_2)
\leq (\tau (\tilde{Y}_1, A_{22,n}^{-1} \tilde{Y}_1)^{1/2} + \tau (\tilde{Y}_2, A_{22,n}^{-1} \tilde{Y}_2)^{1/2})^2 ;
\]
therefore
\[
N^{-1} \tilde{T}_2^2 \leq \frac{Q_2}{Q_1} (n^{-1} + \tilde{Y}_1^2 A_{22,n}^{-1} \tilde{Y}_1 + (\tau (\tilde{Y}_1^2, A_{22,n}^{-1} \tilde{Y}_1)^{1/2} + \tau (\tilde{Y}_2^2, A_{22,n}^{-1} \tilde{Y}_2)^{1/2})^2).
\]
Denote by \(\lambda_{\text{max}}(A_{22,n}^{-1})\) the largest eigenvalue of \(A_{22,n}^{-1}\); by the definition of \(\lambda_{\text{max}}(A_{22,n}^{-1})\), we have \(Y_j' A_{22,n}^{-1} Y_j \leq \lambda_{\text{max}}(A_{22,n}^{-1}) Y_j' Y_j\) for \(j = 1, 2\). On applying these inequalities to (5.15), and noting that \(\lambda_{\text{max}}(A_{22,n}^{-1}) = 1/\lambda_{\text{min}}(A_{22,n})\), where \(\lambda_{\text{min}}(A_{22,n})\) is the smallest eigenvalue of \(A_{22,n}\), we obtain
\[
N^{-1} \tilde{T}_2^2 \leq \frac{Q_2}{Q_1} (n^{-1} + \tilde{Y}_1^2 A_{22,n}^{-1} \tilde{Y}_1 + (\tau (\tilde{Y}_1^2, A_{22,n}^{-1} \tilde{Y}_1)^{1/2} + \tau (\tilde{Y}_2^2, A_{22,n}^{-1} \tilde{Y}_2)^{1/2})^2).
\]
Because \(\tilde{Y}_1 \sim N(q_1, n^{-1} I_q)\) then \(\tilde{Y}_1' \tilde{Y}_1 = n^{-1} Q_3\) where \(Q_3 \sim \chi^2_q\); similarly, \(\tilde{Y}_2' \tilde{Y}_2 = (N - n)^{-1} Q_4\) where \(Q_4 \sim \chi^2_q\). Therefore
\[
N^{-1} \tilde{T}_2^2 \leq \frac{Q_2}{Q_1} (1 + \frac{Q_3}{\lambda_{\text{min}}(A_{22,n})}) + \frac{Nq_4}{Q_3} (\tau^{1/2} Q_3^{1/2} + \tau^{1/2} Q_4^{1/2})^2 .
\]
Finally, we obtain a stochastic lower bound on \(\lambda_{\text{min}}(A_{22,n})\). For any \(t \geq 0\), it is simple to see that the inequality \(\{\lambda_{\text{min}}(A_{22,n}) > t\} = 0\) is equivalent to \(\{A_{22,n} > t I_q\}\). Therefore, applying the density function (2.2) of \(A_{22,n} \sim W_q(n - 1, I_q)\), we obtain
\[
P(\lambda_{\text{min}}(A_{22,n}) > t) = \int_{W > tI_q} \frac{|W|^{(n-2)/2} \exp \left(-\frac{1}{2} \text{tr} W \right)}{2^{(n-1)/2}(\pi)^{(n-1)/2}} dW
\]
where the latter equality is obtained by making the transformation \(W \rightarrow W + tI_q\). Because \(n > q + 2\) then \(|W + tI_q|^{(n-2)/2} > |W|^{(n-2)/2}\) for all \(W > 0\) and \(t \geq 0\); applying this inequality to the integrand above, then the remaining integral equals 1.

Therefore \(P(\lambda_{\text{min}}(A_{22,n}) > t) \geq e^{-qt/2}\) for all \(t \geq 0\), hence \(\lambda_{\text{min}}(A_{22,n}) \leq q^{-1} Q_5\), where \(Q_5 \sim \chi^2_q\); equivalently, \(1/\lambda_{\text{min}}(A_{22,n}) \leq q Q_5^{-1}\). Substituting this result in (5.16), we obtain
\[
T^2 \leq N^2 \tilde{T}_2^2 \leq N^2 n^{-1} \frac{Q_2}{Q_1} \left(1 + \frac{Q_3}{Q_5}\right) + \frac{Nq_4}{Q_3} \left(\tau^{1/2} Q_3^{1/2} + \tau^{1/2} Q_4^{1/2}\right)^2.
\]
The proof of (5.9) is now complete. \(\Box\)

Similar to Theorem 5.5, we can also obtain a lower bound for the distribution of the maximum likelihood statistic \(\tilde{\gamma}_{11.2} + \tilde{\gamma}_{22}\) in (5.3).

Theorem 5.8. For \(t \geq 0\),
\[
P(\tilde{\gamma}_{11.2} + \tilde{\gamma}_{22} \leq t) \geq \left(1 + \frac{q Q_3}{Q_5}\right)^{1/2} \left(\tau^{1/2} Q_3^{1/2} + \tau^{1/2} Q_4^{1/2}\right)^2 \leq t ,
\]
where \(Q_1, \ldots, Q_5\) are as in Theorem 5.5.

Proof. Romer [27] has proved that the statistic \(\tilde{\gamma}_{11.2} + \tilde{\gamma}_{22}\) is invariant under the transformation (5.5), and therefore the distribution of this statistic is not dependent on \(\mu\) or \(\Sigma\). Hence, without loss of generality, we assume that \(\mu = 0\) and \(\Sigma = I_{p + q}\).

By (5.3), (3.3) and (4.2),
\[
\tilde{\gamma}_{11.2} + \tilde{\gamma}_{22} = n(\tilde{X} - A_{11,2} A_{11,2}^{-1} \tilde{Y}_1) A_{11,2,2}^{-1} (\tilde{X} - A_{11,2} A_{11,2}^{-1} \tilde{Y}_1) + N \tilde{Y} (A_{22,n} + B)^{-1} \tilde{Y},
\]
and \(A_{11,2,2,2}, B\), and \(\tilde{X}, \tilde{Y}_1, \tilde{Y}_2, A_{11,2}, A_{22,n}\) are mutually independent. Proceeding as at (5.12)–(5.13), we obtain
\[
\tilde{\gamma}_{11.2} + \tilde{\gamma}_{22} \leq \frac{Q_2}{Q_1} (1 + \frac{n \tilde{Y}_1 A_{22,n}^{-1} \tilde{Y}_1} + N \tilde{Y} (A_{22,n} + B)^{-1} \tilde{Y},
\]
where \(Q_1 \sim \chi^2_n - p - q, Q_2 \sim \chi^2_p\); and \(Q_1, Q_2, \tilde{Y}_1, \tilde{Y}_2, A_{22,n}^{-1},\) and \(B\) are mutually independent. Because \(A_{22,n} + B \geq A_{22,n}\)
The characteristic function of $\mathbf{A}_{22,n} + B$ is $\mathbf{A}_{22,n}^{-1}$, and therefore $\mathbf{Y}(\mathbf{A}_{22,n} + B)^{-1}\mathbf{Y} \leq \mathbf{Y}\mathbf{A}_{22,n}^{-1}\mathbf{Y}$. Applying the Cauchy–Schwarz inequality at (5.14), we obtain

$$\hat{\gamma}_{11} + \hat{\gamma}_{22} \leq \frac{Q_2}{Q_1} (1 + n\hat{\mathbf{Y}}(\mathbf{A}_{22,n}^{-1}\hat{\mathbf{Y}}_1) + N (\tau(\hat{\mathbf{Y}}(\mathbf{A}_{22,n}^{-1}\hat{\mathbf{Y}}_1))^{1/2} + \hat{\mathbf{Y}}(\mathbf{A}_{22,n}^{-1}\hat{\mathbf{Y}}_2))^{1/2})^2.$$

To complete the proof, we apply the same arguments as at *infra* (5.14), and thereby obtain the inequality (5.17).

6. A normal approximation to $\hat{\mu}$

It would be useful to approximate the distribution of $\hat{\mu}$ by a normal distribution for, in data analysis, such an approximation would make the distribution theory tractable. One approximation arises from discarding the last term in (3.5), so that $\hat{\mu} \sim N_{p+q}(\mu, \hat{\Omega})$. A second, and more accurate, normal approximation is $\hat{\mu} \sim N_{p+q}(\mu, \hat{\Omega})$, where $\hat{\Omega} = \text{Cov}(\hat{\mu})$ is given in (3.6). Both approximations are easy to apply and are accurate if $\tau \simeq 1$. However, the second approximation is generally more accurate because it utilizes information arising from the second term in the expression for $\hat{\mu}$ in (3.3), whereas the first approximation discards that information. Therefore, we restrict our attention to the second approximation.

To quantify the accuracy of this approximation, we obtain an upper bound on the supremum, or L^∞, distance between the density and distribution functions of $\hat{\mu}$ and its approximator. This will be done by applying an extension of the classical Esseen inequality.

Proposition 6.1. For $k = 1, 2$, let $V_k \sim N_{d}(\nu, \Lambda_k)$. Denote by $f_k(\cdot)$ the density function of V_k and let $\Lambda = \Lambda_1 - \Lambda_2$. Then there exists an absolute constant C_0 such that

$$\sup_{x \in \mathbb{R}^d} |f_1(x) - f_2(x)| \leq \frac{d}{(6\pi^d)^{1/(d+3)} \left(\frac{C_0}{d+2} \right)^{(d+2)/(d+3)}} \left(\text{tr} \Lambda^2 \right)^{1/(d+3)}.$$

Proof. The characteristic function of V_k is $\phi_k(t) = \exp(it'\nu - \frac{1}{2}t'\Lambda_k t)$, $t \in \mathbb{R}^d$. Therefore, by the elementary inequality, $|e^{-a} - e^{-b}| \leq |a - b|$, $a, b \geq 0$, which is a consequence of the Taylor expansion of e^{-t}, $t > 0$, we have

$$|\phi_1(t) - \phi_2(t)| = |e^{it'\nu}(e^{-t'\Lambda_1 t} - e^{-t'\Lambda_2 t})|$$

$$= |e^{-t'\Lambda_1 t} - e^{-t'\Lambda_2 t}| \leq \frac{1}{2} |t'\Lambda t| \leq (\text{tr} \Lambda^2)^{1/2} |t'|.$$

where the last inequality follows from the Cauchy–Schwarz inequality. It follows that, for $h_1, \ldots, h_d > 0$,

$$\int_{-h_1}^{h_1} \cdots \int_{-h_d}^{h_d} |\phi_1(t) - \phi_2(t)| dt \leq \frac{1}{2} (\text{tr} \Lambda^2)^{1/2} \int_{-h_1}^{h_1} \cdots \int_{-h_d}^{h_d} |t'| dt$$

$$= \frac{2^{d-1}}{3} (\text{tr} \Lambda^2)^{1/2} h_1 \cdots h_d (h_1^2 + \cdots + h_d^2).$$

On applying Theorem 3.1 of Roussas [28], we obtain

$$\sup_{x \in \mathbb{R}^d} |f_1(x) - f_2(x)| \leq C_0 (h_1^{-1} + \cdots + h_d^{-1}) + (2\pi)^{-d} \int_{-h_1}^{h_1} \cdots \int_{-h_d}^{h_d} |\phi_1(t) - \phi_2(t)| dt$$

$$\leq C_0 (h_1^{-1} + \cdots + h_d^{-1}) + C_1 h_1 \cdots h_d (h_1^2 + \cdots + h_d^2),$$

where $C_1 = \pi^{-d} (\text{tr} \Lambda^2)^{1/2} / 6$, and C_0 is an absolute positive constant, i.e., not dependent on d, f_1, or f_2. It is simple to show that (6.2), as a function of $h_1, \ldots, h_d > 0$, is minimized at (h_0, \ldots, h_0), where $h_0 = (C_0/(d + 2)C_1)^{1/(d+3)}$, and therefore (6.2) has minimum value $d(C_1 h_0^{-2} + C_0 h_0^{-1})$. Simplifying this expression for the minimum value, we obtain (6.1).

We now obtain a bound for the L^∞-distance between f_μ and f_μ, the density functions of $\hat{\mu}$ and its normal approximation $\hat{\mu} \sim N_{p+q}(\mu, \text{Cov}(\hat{\mu}))$.

Theorem 6.2. There exists a positive constant $C_{p,q,n}$ such that

$$\sup_{x \in \mathbb{R}^{p+q}} |f_\mu(x) - f_\mu(x)| \leq C_{p,q,n} \left(\tau \text{ tr} \Sigma_{11}^2 \right)^{1/(p+q+3)}.$$

Proof. Denote by Q the random variable $(\tilde{T}Q_2/nQ_1)^{1/2}$ in (3.5); then,

$$\hat{\mu} | Q \sim N_{p+q}(\mu, \Omega + Q^2 \left(\Sigma_{11}^2 \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right)).$$

Because $\tilde{\mu} \sim N_{p+q}(\mu, \text{Cov}(\tilde{\mu}))$ then, by (6.1), the L^∞-distance between $f_\mu|Q$, the conditional density of $\hat{\mu}$ given Q, and f_μ.
satisfies
\[
\sup_{x \in \mathbb{R}^{p+q}} \left| f_{\hat{\mu}}(x) - f_{\hat{\mu}}(x) \right| \leq \left(p + q \right) \left(p + q + 3 \right) \left(\frac{C_0}{p + q + 2} \right) \left(\text{tr} \Lambda_0^2 \right)^{1/2(p+q+3)},
\]
where
\[
\Lambda_0 = \text{Cov}(\hat{\mu}|Q) - \text{Cov}(\hat{\mu}) = \left(Q^2 - E(Q^2) \right) \begin{pmatrix} \Sigma_{11.2} & 0 \\ 0 & 0 \end{pmatrix}.
\]
Noting that \(f_{\hat{\mu}}(x) = E_0 f_{\hat{\mu}}(x) \) for all \(x \in \mathbb{R}^{p+q} \), we have
\[
\sup_{x \in \mathbb{R}^{p+q}} \left| f_{\hat{\mu}}(x) - f_{\hat{\mu}}(x) \right| = \sup_{x \in \mathbb{R}^{p+q}} E(f_{\hat{\mu}}(x) - f_{\hat{\mu}}(x)) \\
\leq \sup_{x \in \mathbb{R}^{p+q}} E(f_{\hat{\mu}}(x) - f_{\hat{\mu}}(x)) \\
\leq C_{p,q} \left(\text{tr} \Sigma_{11.2} \right)^{1/2(p+q+3)} E|Q^2 - E(Q^2)|^{1/2(p+q+3)},
\]
where \(C_{p,q} \) is the constant in (6.4). By Jensen's inequality,
\[
E|Q^2 - E(Q^2)|^{1/2(p+q+3)} \equiv E(\|Q^2 - E(Q^2)\|^{2(p+q+3)}) \\
\leq (\text{Var}(Q^2))^{1/2(p+q+3)}.
\]
Because \(\text{Var}(Q^2) = n^{-1} \hat{\tau} \text{Var}(Q_2/Q_1) \) and
\[
\text{Var}(Q_2/Q_1) = E(Q_2^2)E(Q_1^{-2}) - (E(Q_2)E(Q_1^{-1}))^2 \\
= \frac{2q}{(n - q - 2)(n - q - 4)} - \frac{q^2}{(n - q - 2)^2},
\]
then we obtain (6.3) with \(C_{p,q,n} = (n^{-1} \text{Var}(Q_2/Q_1))^{1/2(p+q+3)} C_{p,q} \).

Corollary 6.3. For \(t_1, \ldots, t_{p+q} > 0 \),
\[
P \left(\bigcap_{j=1}^{p+q} \left\{ |\hat{\mu}_j - \mu_j| \leq \frac{t_j}{2} \right\} \right) = P \left(\bigcap_{j=1}^{p+q} \left\{ |\hat{\mu}_j - \mu_j| \leq \frac{t_j}{2} \right\} \right) \leq C_{p,q,n} \left(\prod_{j=1}^{p+q} t_j \right) \left(\hat{\tau} \text{tr} \Sigma_{11.2} \right)^{1/2(p+q+3)}.
\]

Further,
\[
P \left(\bigcap_{j=1}^{p+q} \left\{ |\hat{\mu}_j - \mu_j| \leq \frac{t_j}{2} \right\} \right) \geq P \left(\bigcap_{j=1}^{p+q} \left\{ |\hat{\mu}_j - \mu_j| \leq \frac{t_j}{2} \right\} \right) \geq 2 \Phi \left(\frac{t_j}{2 \sqrt{\text{Var}(\hat{\mu}_j)}} \right) - 1 - C_{p,q,n} \left(\prod_{j=1}^{p+q} t_j \right) \left(\hat{\tau} \text{tr} \Sigma_{11.2} \right)^{1/2(p+q+3)}.
\]

Proof. Let \(\mathcal{R} \) denote the rectangle \([-t_1/2, t_1/2] \times \cdots \times [-t_{p+q}/2, t_{p+q}/2] \). Then
\[
P \left(\bigcap_{j=1}^{p+q} \left\{ |\hat{\mu}_j - \mu_j| \leq \frac{t_j}{2} \right\} \right) \leq P \left(\bigcap_{j=1}^{p+q} \left\{ |\hat{\mu}_j - \mu_j| \leq \frac{t_j}{2} \right\} \right) = \left| \int_{\mathcal{R}} (f_{\hat{\mu}}(x) - f_{\hat{\mu}}(x)) \, dx \right| \\
\leq \int_{\mathcal{R}} |f_{\hat{\mu}}(x) - f_{\hat{\mu}}(x)| \, dx \\
\leq \left\| f_{\hat{\mu}} - f_{\hat{\mu}} \right\|_{\infty} \text{Vol}(\mathcal{R}).
\]
Then (6.5) follows from (6.3) and the fact that \(\text{Vol}(\mathcal{R}) = \prod_{j=1}^{p+q} t_j \). Next, by (6.5),
\[
P \left(\bigcap_{j=1}^{p+q} \left\{ |\hat{\mu}_j - \mu_j| \leq \frac{t_j}{2} \right\} \right) \geq P \left(\bigcap_{j=1}^{p+q} \left\{ |\hat{\mu}_j - \mu_j| \leq \frac{t_j}{2} \right\} \right) - C_{p,q,n} \left(\prod_{j=1}^{p+q} t_j \right) \left(\hat{\tau} \text{tr} \Sigma_{11.2} \right)^{1/2(p+q+3)}.
\]

Because \(\hat{\mu} - \mu \sim N_{p+q}(0, \text{Cov}(\hat{\mu})) \) then, by an inequality of Šidák [29],
\[
P \left(\bigcap_{j=1}^{p+q} \left\{ |\hat{\mu}_j - \mu_j| \leq \frac{t_j}{2} \right\} \right) \geq \prod_{j=1}^{p+q} P \left(|\hat{\mu}_j - \mu_j| \leq \frac{t_j}{2} \right) \\
= \prod_{j=1}^{p+q} \left[2 \Phi \left(\frac{t_j}{2 \sqrt{\text{Var}(\hat{\mu}_j)}} \right) - 1 \right].
\]
Substituting this lower bound at (6.7), we obtain (6.6). \(\square \)
Remark 6.4. For a given data set, we may apply (6.6) to obtain an estimated lower bound on the confidence level of simultaneous confidence intervals for \(\mu_1, \ldots, \mu_{p+q} \). Replacing each unknown parameter on the right-hand side of (6.6) by its corresponding maximum likelihood estimator, we obtain
\[
\prod_{j=1}^{p+q} \left[2\Phi \left(t_j/2, \sqrt{\text{Var}(\hat{\mu}_j)} \right) - 1 \right] - C_{p,q,n} \left(\prod_{j=1}^{p+q} t_j \right) \left(\tau \Sigma_{11}^{2} \right)^{1/2(p+q+3)},
\]
which is an estimated lower bound on the confidence level.

We can also obtain bounds on the supremum distance between the cumulative distribution functions of \(\hat{\mu} \) and \(\tilde{\mu} \). In the case of lower-orthant unbounded rectangles, we may apply the results of Sadikova [30] and Gamkrelidze [31] on generalizations of Esseen’s inequality to derive an analog for cumulative distribution functions of Proposition 6.1. As an indication of these results, we state without proof an analog of Proposition 6.1 for distribution functions for the case in which \(d = 2 \). As before, suppose that \(V_k \sim N(\mu, \Sigma) \), \(k = 1, 2 \), and denote by \(F_k \) the distribution function of \(V_k \). Further, let \(A_{ij}^{(k)} \) denote the \((i,j)\)th element of \(\Lambda_k \) and define \(\tilde{\Lambda}_k = \frac{1}{2}(\Lambda_k + \text{diag}(\Lambda_k)) \).

Proposition 6.5. There exist constants \(c_1 \), \(c_2 > 0 \) such that, for \(T > 0 \),
\[
\sup_{x \in \mathbb{R}^2} |F_1(x) - F_2(x)| \leq \frac{1}{16} \left[\frac{4}{3} T^2 \sinh(|A_{12}^{(1)}| T^2) \left(\text{tr} (\tilde{\Lambda}_1 - \tilde{\Lambda}_2)^2 \right)^{1/2} \right. \\
+ \cosh \left(T^2 \max(A_{12}^{(1)}, A_{12}^{(2)}) \right) - \cosh \left(T^2 \min(A_{12}^{(1)}, A_{12}^{(2)}) \right) \\
\left. + \frac{1}{16} \left(\sum_{j=1}^2 |A_{jj}^{(1)} - A_{jj}^{(2)}| \right) T + c_2 T^{-1} \right].
\]

By applying this result to \(\hat{\mu} \) and \(\tilde{\mu} \), we obtain an analog of Theorem 6.2 for the case in which \(p = q = 1 \).

Acknowledgments

Steven Arnold, in providing references to the literature and holding discussions on all aspects of the results derived here, was a veritable fountain of knowledge for Richards as this manuscript was being prepared; consequently, the authors are deeply grateful to Professor Arnold for his constant encouragement and advice. The authors also are very grateful to the referees and to Megan Romer for valuable comments on earlier versions of this article. The second author was supported in part by National Science Foundation grants DMS-0705210 and DMS-0112069.

References