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a b s t r a c t

We consider problems in finite-sample inference with two-step, monotone incomplete
data drawn from Nd(µ,6), a multivariate normal population with meanµ and covariance
matrix 6. We derive a stochastic representation for the exact distribution of µ̂, the
maximum likelihood estimator of µ. We obtain ellipsoidal confidence regions for µ
through T 2, a generalization of Hotelling’s statistic. We derive the asymptotic distribution
of, and probability inequalities for, T 2 under various assumptions on the sizes of the
complete and incomplete samples. Further, we establish an upper bound for the supremum
distance between the probability density functions of µ̂ and µ̃, a normal approximation
to µ̂.
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1. Introduction

During the past eighty years, there has been an enduring interest in multivariate statistical inference with incomplete
data. Wilks [1] was one of the earliest contributors to this area of research, the subsequent literature has been voluminous,
and we refer to Little and Rubin [2] for an extensive treatment of the field.
In this paper, we consider problems in inferencewithmultivariate, d-dimensional data, drawn from a normal population.

We suppose that the data are composed of N mutually independent observations consisting of a random sample of n
complete observations on all d = p + q characteristics and an additional N − n incomplete observations on the last q
characteristics only. We write the data in the form(

X1
Y1

) (
X2
Y2

)
· · ·

(
Xn
Yn

)
Yn+1 Yn+2 · · · YN

, (1.1)

where each Xj is p × 1, each Yj is q × 1, the complete observations (X ′j , Y
′

j )
′, for j = 1, . . . , n, are drawn from Nd(µ,6), a

multivariate normal population with mean vectorµ and covariance matrix6, and the incomplete data Yj, j = n+1, . . . ,N ,
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are observations on the last q characteristics of the same population. The data in (1.1) are called two-stepmonotone, and have
been widely studied; cf. Anderson [3], Bhargava [4], Morrison [5], Eaton and Kariya [6], and Hao and Krishnamoorthy [7].
Given a sample (1.1) from the population Nd(µ,6), it is well-known that closed-form expressions for µ̂ and 6̂, the

maximum likelihood estimators ofµ and6,maybe obtainedby factoring the likelihood function into a product of likelihoods
with non-overlapping sets of parameters; consequently, explicit expressions for various likelihood ratio test statistics
may be obtained. We refer to Anderson [3], Little and Rubin [2], Anderson and Olkin [8], and Jinadasa and Tracy [9] for
derivations of the explicit formulas for µ̂ and 6̂; Bhargava [4,10], Eaton and Kariya [6], and Andersson and Perlman [11–13]
for other aspects of inference with missing data in which factorization of the likelihood function plays a crucial role;
and Morrison [5], Giguère and Styan [14], Little and Rubin [2], Kanda and Fujikoshi [15], for results on the moments and
asymptotic distributions of µ̂ and 6̂.
In the literature on inference for µ and 6, it is noticeable that the exact distributions of µ̂ and 6̂ were unknown. This

problem is basic to inference with incomplete data when large samples are infeasible or impractical such as: in sociological
research, where subjects have transient lifestyles and cannot be contacted for further data collection after relocation to new
addresses; in panel surveys, where subjects may be available for only part of the study; and in astronomy, where monotone
incomplete data arise in the classification of galaxies (Lang [16]). It is noticeable that the area of monotone incomplete
multivariate normal inference is not well-endowed with the range of explicit formulas appearing in Anderson [17],
Eaton [18], and Muirhead [19]. Thus, this paper initiates a program of research on inference for µ and 6, where n and
N are fixed, with the goal of deriving explicit results analogous to those existing in the classical complete case. Here, we
concentrate on inference for µ, and the companion paper [20] is dedicated primarily to inference for 6. A synopsis of our
results is as follows.
We provide in Section 2 some preliminary results needed in the sequel. In Section 3,we derive a stochastic representation

for the exact distribution of µ̂. Then, generalizing results of Morrison [5], we apply the stochastic representation to deduce
formulas for all marginal central moments of µ̂1, . . . , µ̂p+q, the components of µ̂.
In Section 4 we list some properties of 6̂, taken from [20], that are needed to analyze the distribution of T 2, an analog of

Hotelling’s statistic. In Section 5, we obtain the asymptotic distribution of T 2 and inequalities for its distribution function; by
means of these results, lower and upper bounds may be obtained for the confidence levels of ellipsoidal confidence regions
obtained for µ through T 2. Finally, in Section 6, we derive an upper bound on the supremum distance between the density
and distribution functions of µ̂ and µ̃, a normal approximation to µ̂.
Throughout this paper and the companion article [20], we assume that data are missing completely at random, i.e., that

missingness depends neither on the nature nor the values of the data. Indeed, it is noted in [7, p. 397], that the explicit
expression (4.1) for the full matrix 6̂ requires such an assumption. For further details on this issue in a broader context,
see [2, Eqs. (6.13), (6.14)].

2. Preliminary results

Throughout the paper, we write all vectors and matrices in boldface type. We denote by 0 any zero vector or matrix, the
dimension of which will be clear from the context, and we denote the identity matrix of order d by Id. We write A > 0 to
denote that a matrix A is positive definite (symmetric), and we write A ≥ B to mean that A− B is positive semidefinite.
LetM be a p× qmatrix, C and D be p× p and q× q positive definite (symmetric) matrices, respectively, and denote by

C ⊗ D the Kronecker product of C and D. If λ1, . . . , λp are the eigenvalues of C , denote by C1/2 the positive definite square
root of C whose eigenvalues are λ1/21 , . . . , λ

1/2
p [19, p. 588, infra Theorem A9.3], and denote by C−1/2 the inverse of C1/2.

Following [19, p. 79], we say that a p × q random matrix B12 has a multivariate normal distribution, denoted B12 ∼
N(M, C ⊗ D), if the probability density function of B12 is

(2π)−pq/2|C |−q/2|D|−p/2 exp
[
−
1
2
tr C−1(B12 −M)D−1(B12 −M)′

]
,

B12 ∈ Rp×q. As noted in [19, p. 79], this distribution is related to the classical multivariate normal distribution as follows:
Let T be a rectangular matrix with columns t1, . . . , tr , and define the vector vec(T ) as

vec(T ) =

t1
...
tr

 .
Then B12 ∼ N(M, C ⊗ D) is equivalent to vec(B′12) ∼ Npq(vec(M

′), C ⊗ D).

Lemma 2.1. Let B12 ∼ N(0, C ⊗ D),3 ≥ 0 be q× q, and u ∈ Rp. Then

E exp(−u′B12D−13D−1B′12u) = |Iq + 2(u
′Cu)3D−1|−1/2. (2.1)

Proof. BecauseB12 ∼ N(0, C⊗D), equivalently, vec(B′12) ∼ Npq(0, C⊗D), then it follows thatD−1/2B′12u ∼ Nq(0, (u
′Cu)Iq).

Hence,
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D−1/2B′12uu
′B12D−1/2 ≡ (D−1/2B′12u)(D

−1/2B′12u)
′ L
= (u′Cu)W ,

whereW ∼ Wq(1, Iq), a Wishart distribution with 1 degree of freedom. Then, (2.1) follows from the well-known formula
for the moment-generating function of the Wishart distribution. �

Suppose thatW ∼ Wd(a,3), a Wishart distribution, where a > d − 1 and 3 > 0, i.e.,W is a d × d positive definite
randommatrix with density function

1
2ad/2 |3|a/2 0d(a/2)

|W |
1
2 a−

1
2 (d+1) exp

(
−
1
2
tr3−1W

)
, (2.2)

W > 0, where

0d(a) = πd(d−1)/4
d∏
j=1

0

(
a−

1
2
(j− 1)

)
,

Re(a) > (d− 1)/2, is the multivariate gamma function [19, p. 62].
We will need some well-known properties of the Wishart distribution. For ease of exposition, we collect together these

properties. In stating these results, we partition the matricesW and3 into p and q rows and columns, i.e.,

W =
(
W11 W12
W21 W22

)
, 3 =

(
311 312
321 322

)
,

where W11 and 311 are p × p, W12 = W ′21 and 312 = 3′21 are p × q, and W22 and 322 are q × q. We set W11·2 =

W11 −W12W−122 W21 and define311·2 similarly.

Proposition 2.2 ([17, pp. 142–143, 262], [18, pp. 310–312], [19, pp. 93–96, 117]). Suppose that W ∼ Wd(a,3). Then,
(i) W11·2 and {W12,W22} are mutually independent, andW11·2 ∼ Wp(a− d+ p,311·2).
(ii) W12|W22 ∼ N(3123−122W22,311·2 ⊗W22).
(iii) If 312 = 0 thenW11·2,W22, andW12W−122 W21 are mutually independent, andW12W−122 W21 ∼ Wp(d− p,311·2).
(iv) For k ≤ d, if M is a k × d matrix of rank k then (MW−1M ′)−1 ∼ Wk(a − d + k, (M3−1M ′)−1). In particular,

if Y is a d × 1 random vector which is independent of W and satisfies P(Y = 0) = 0 then Y is independent of
Y ′3−1Y/Y ′W−1Y ∼ χ2a−d+1.

Lemma 2.3. Suppose that B ∼ Wq(n− 1, Iq) and t ∈ C, where Re(t) ≥ 0. Then

E|Iq + tB−1|−1/2 = E exp
(
−
1
2
tQ−11 Q2

)
, (2.3)

where Q1 ∼ χ2n−q, Q2 ∼ χ
2
q , and Q1 and Q2 are mutually independent. In addition, if C is a q × q positive semidefinite random

matrix that is independent of B then, for t ∈ R,

E|Iq − 2itCB−1|−1/2 = E exp(itQ−11 V ′CV ), (2.4)

where V ∼ Nq(0, Iq), Q1, and C are mutually independent.
Proof. LetV ∼ Nq(0, Iq), so thatVV ′ ∼ Wq(1, Iq), and letV be independent of B. By the formula for themoment-generating
function of a Wishart matrix, E|Iq + tB−1|−1/2 = E exp(− 12 tV

′B−1V ). By Proposition 2.2(iv), V ′V/V ′B−1V ∼ χ2n−q; also,
V ′V/V ′B−1V is independent of V , so we may write V ′B−1V in the form

V ′B−1V = (V ′V/V ′B−1V )−1V ′V L
= Q−11 Q2,

where Q1 = V ′V/V ′B−1V , Q2 = V ′V ∼ χ2q , and Q1 and Q2 are independent. This establishes (2.3).
The proof of (2.4) is similar. Note that

E|Iq − 2itCB−1|−1/2 = E exp(itV ′C1/2B−1C1/2V )

= E exp(it(C1/2V )′B−1(C1/2V )). (2.5)

By Proposition 2.2(iv),

Q1 =
(C1/2V )′(C1/2V )

(C1/2V )′B−1(C1/2V )
=

V ′CV
V ′C1/2B−1C1/2V

∼ χ2n−q

and Q1 is independent of V and C . Therefore

V ′C1/2B−1C1/2V =
(

V ′CV
V ′C1/2B−1C1/2V

)−1
V ′CV L

= V ′CV/Q−11 ,

and in conjunction with (2.5), we now have (2.4). �
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3. The distribution of µ̂

Wepartitionµ and6 in conformitywith (1.1),writingµ =
(
µ1
µ2

)
and6 =

(
611 612
621 622

)
whereµ1 andµ2 are of dimensions

p and q, respectively, and611,612 = 6′21, and622 are of order p× p, p× q, and q× q, respectively. We assume throughout
that n > q + 2 to ensure that all means and variances are finite and that all integrals encountered later are absolutely
convergent. We will use the notation τ = n/N for the proportion of data which are complete; and we denote 1− τ by τ̄ , so
that τ̄ = (N − n)/N is the proportion of incomplete observations.
Define sample means

X̄ =
1
n

n∑
j=1

Xj, Ȳ1 =
1
n

n∑
j=1

Yj,

Ȳ2 =
1

N − n

N∑
j=n+1

Yj, Ȳ =
1
N

N∑
j=1

Yj,

(3.1)

and the corresponding matrices of sums of squares and products by

A11 =
n∑
j=1

(Xj − X̄)(Xj − X̄)′, A12 = A′21 =
n∑
j=1

(Xj − X̄)(Yj − Ȳ1)′,

A22,n =
n∑
j=1

(Yj − Ȳ1)(Yj − Ȳ1)′, A22,N =
N∑
j=1

(Yj − Ȳ )(Yj − Ȳ )′.

(3.2)

By Anderson [3] (cf. Morrison [5], Anderson and Olkin [8], Jinadasa and Tracy [9]), the maximum likelihood estimator of µ
is µ̂ =

(
µ̂1
µ̂2

)
, where

µ̂1 = X̄ − τ̄A12A−122,n(Ȳ1 − Ȳ2), µ̂2 = Ȳ . (3.3)
The estimator µ̂1 is sometimes called the regression estimator ofµ1 [21, p. 594]; this terminology stems from a well-known
procedure in sampling theory in which additional observations on a subset of variables are used to improve estimation of a
parameter.
Introduce the matrix

Ω =

1n
(
611 − τ̄6126

−1
22 621

) 1
N
612

1
N
621

1
N
622


=
1
N
6+

τ̄

n

(
611·2 0
0 0

)
, (3.4)

where we have applied the standard notation 611·2 = 611 − 6126−122 621.
Here and throughout the paper, we use the notation ‘‘R1

L
= R2’’ whenever two random entities R1 and R2 have the same

probability distribution. If R1 is a statistic that depends on a sample size N , then we use the notation ‘‘R1
L
→ R2 as N →∞’’

to denote that R1 converges in distribution to R2 as N → ∞. If R1 and R2 are real-valued random variables, then we write

‘‘R1
L
≥ R2’’ or ‘‘R2

L
≤ R1’’ if P(R1 ≥ t) ≥ P(R2 ≥ t) for all t ∈ R.

Theorem 3.1. The maximum likelihood estimator µ̂ satisfies the stochastic representation

µ̂
L
= µ+ V1 +

(
τ̄Q2
nQ1

)1/2 (
6
1/2
11·2V2
0

)
, (3.5)

where V1 ∼ Np+q(0,Ω), V2 ∼ Np(0, Ip), Q1 ∼ χ2n−q, Q2 ∼ χ
2
q , and V1, Q1, Q2, and V2 are mutually independent. Further, µ̂1

and µ̂2 are mutually independent if and only if 612 = 0.
The representation (3.5) will be seen later to provide fundamental insight into the probabilistic behavior of µ̂ and

inference about µ.
We remark that the appearance of stochastic representations in the context of monotone samples is not new; in testing

that, in a monotone sample from a normal population, missingness is completely at random, Little [22] proposed a test
statistic and derived a stochastic representation for its null distribution.
The asymptotic distribution of µ̂ for large values of N or n can also be deduced from (3.5). For instance, if n is fixed and

N → ∞ then Ω → n−1
(
611·2 0

0 0

)
, a singular matrix, hence

√
n(µ̂1 − µ1)

L
→ 6

1/2
11·2(Ṽ11 +

√
Q2/Q1V2) where Ṽ11 and V2

are independent, identically distributed Np(0, Ip) vectors. We also obtain the following result from (3.5).
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Corollary 3.2. Suppose n,N →∞ with n/N → δ, 0 < δ ≤ 1. Then

√
N(µ̂− µ)

L
→ Np+q

(
0,6+ (δ−1 − 1)

(
611·2 0
0 0

))
.

Proof. As n → ∞, note that Q2/Q1 ∼ χ2q /χ
2
n−q → 0, almost surely. Also, from (3.4), as n/N → δ, Cov(

√
NV1) = NΩ →

6+ (δ−1 − 1)
(
611·2 0

0 0

)
. Hence the result follows. �

We shall also derive from (3.5) some properties of the moments of µ̂. Throughout, we use the notation (a)j = a(a +
1) · · · (a + j − 1), where j = 0, 1, 2, . . . , for the shifted factorial; we denote by µ1r and µ̂1r the rth components of µ1 and
µ̂1, respectively, and by E(µ̂1r−µ1r)k the kth centralmoment of µ̂1r . The following results generalize from the case inwhich
p = 1 results of Morrison [5].

Corollary 3.3. (i) All odd central moments of µ̂1r are zero. In particular, µ̂ is unbiased.
(ii) For n > q+ 2, the covariance matrix of µ̂ is

Cov(µ̂) =
1
N
6+

(n− 2)τ̄
n(n− q− 2)

(
611·2 0
0 0

)
. (3.6)

(iii) Denote by ωij and (611·2)ij the (i, j)th entries of Ω and 611·2, respectively. Then the even central moments of µ̂1r are

E(µ̂1r − µ1r)2k =
(2k)!
k!

k∑
j=0

(
k
j

)
(−1)j

( 1
2q
)
j(

−
1
2 (n− q)+ 1

)
j

ωk−jrr

(
τ̄

n
(611·2)rr

)j
, (3.7)

for k < (n− q)/2. If k ≥ (n− q)/2 then E(µ̂1r − µ1r)2k does not exist.

We note that the unbiasedness, and the odd central moments, of µ̂ can be derived from (3.3) and the sampling
distributions of the means and covariance matrices appearing there; see Kanda and Fujikoshi [15], and Fujisawa [23].

Proof of Theorem 3.1. We shall establish this result through an analysis of φ, the characteristic function of µ̂, simplifying
expressions for φ until we recognize that we have obtained the characteristic function of the right-hand side of (3.5).
Because τ = 1− τ̄ = n/N then, by (3.1),

µ̂1 = X̄ − τ̄A12A−122,n(Ȳ1 − Ȳ2), µ̂2 = Ȳ = τ Ȳ1 + τ̄ Ȳ2.

For t =
(
t1
t2

)
∈ Rp+q, the joint characteristic function of µ̂ =

(
µ̂1
µ̂2

)
is

φ(t) = Eei(t
′
1µ̂1+t

′
2µ̂2)

= E exp
[
i
(
t ′1X̄ − τ̄ t

′

1A12A
−1
22,n(Ȳ1 − Ȳ2)+ τ t ′2Ȳ1 + τ̄ t

′

2Ȳ2
)]

= E exp
[
i
(
t ′1X̄ + (τ t2 − τ̄A

−1
22,nA21t1)

′Ȳ1 + τ̄ (t2 + A−122,nA21t1)
′Ȳ2
)]
.

Observe that(
A11 A12
A21 A22,n

)
≡

n∑
j=1

(
Xj − X̄
Yj − Ȳ1

)(
Xj − X̄
Yj − Ȳ1

)′
∼ Wp+q(n− 1,6),

and also that
(

X̄
Ȳ1

)
,
(
A11 A12
A21 A22,n

)
, and Ȳ2 are mutually independent; therefore

φ(t) = E{A12,A22,n}E{X̄,Ȳ1} exp
[
i(t ′1X̄ + (τ t2 − τ̄A

−1
22,nA21t1)

′Ȳ1)
]
EȲ2 exp

[
iτ̄ (t2 + A−122,nA21t1)

′Ȳ2
]
.

Because
(

X̄
Ȳ1

)
∼ Np+q(µ, n−16) and Ȳ2 ∼ Nq(µ2, (N − n)−1622) then, on applying the usual formula for the characteristic

function of the multivariate normal distribution and simplifying the algebraic expressions, we obtain

φ(t) = exp
(
it ′1µ1 + it

′

2µ2 −
1
2N

t ′2622t2

)
exp

(
−
1
2n

t ′1611t1 −
1
n
τ t ′2621t1

)
× E{A12,A22,n} exp

[
−
1
2n
τ̄ t ′1A12A

−1
22,n622A

−1
22,nA21t1 +

1
n
τ̄ t ′1A12A

−1
22,n621t1

]
. (3.8)

By Proposition 2.2(i), (ii), A12|A22,n ∼ N(6126−122 A22,n,611·2 ⊗ A22,n) and A22,n ∼ Wq(n − 1,622). Making the
transformation from A12 to B12 = A12 − 6126

−1
22 A22,n, we have B12|A22,n ∼ N(0,611·2 ⊗ A22,n). After a lengthy, but
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straightforward, calculation, we find that the expectation in (3.8) equals

exp
[
1
2n
τ̄ t ′16126

−1
22 621t1

]
EA22,n E{B12|A22,n} exp

[
−
1
2n
τ̄ t ′1B12A

−1
22,n622A

−1
22,nB

′

12t1

]
. (3.9)

Applying (2.1) with C = 611·2, D = A22,n, 3 = 622, and u = (τ̄ /2n)1/2t1, the inner expectation in (3.9) is seen to
equal

∣∣Iq + n−1τ̄ (t ′1611·2t1)622A−122,n∣∣−1/2; inserting this result in (3.9), substituting the outcome in (3.8), and simplifying
the resulting expression, we obtain

φ(t) = exp
(
it ′µ−

1
2
t ′Ωt

)
EA22,n

∣∣Iq + n−1τ̄ (t ′1611·2t1)622A−122,n∣∣−1/2 , (3.10)

where Ω is defined in (3.4). Because A22,n ∼ Wq(n − 1,622) then B22 := 6
−1/2
22 A22,n6

−1/2
22 ∼ Wq(n − 1, Iq); therefore, by

(2.3) of Lemma 2.3, the expectation in (3.10) equals

EB22 |Iq + n
−1τ̄ (t ′1611·2t1)B

−1
22 |
−1/2
= E exp

(
−τ̄Q−11 Q2 t

′

1611·2t1/2n
)
, (3.11)

where Q1 ∼ χ2n−q and Q2 ∼ χ
2
q are mutually independent. Substituting (3.11) in (3.10), we have

φ(t) = exp
(
it ′µ−

1
2
t ′Ωt

)
E exp

(
−τ̄Q−11 Q2 t

′

1611·2t1/2n
)

= E exp
(
it ′(µ+ V1)

)
exp

(
−τ̄Q−11 Q2 t

′

1611·2t1/2n
)
, (3.12)

where V1 ∼ Np+q(0,Ω) independently of Q1 and Q2. Furthermore, by writing

E exp
(
−τ̄Q−11 Q2 t

′

1611·2t1/2n
)
= E exp

(
i(τ̄Q−11 Q2/n)

1/2 t ′16
1/2
11·2V2

)
,

where V2 ∼ Np(0, Ip) independently of V1, Q1, and Q2, and substituting this latter result in (3.12), we obtain (3.5).
Finally, note that by (3.5), µ̂1 and µ̂2 are independent if and only if V11 and V12 are independent, equivalently, Ω is

block-diagonal. However, by (3.4),Ω is block-diagonal if and only if 612 = 0. �

Remark 3.4. As an application of Theorem 3.1, we consider the problem of deriving a 100(1− α)% confidence interval for
a linear combination ν′µ, where ν ∈ Rp+q is specified. Writing ν =

(
ν1
ν2

)
where ν1 ∈ Rp and ν2 ∈ Rq, it follows from (3.5)

that

ν′(µ̂− µ)
L
= ν′V1 + (τ̄Q2/nQ1)1/2ν′16

1/2
11·2V2. (3.13)

To obtain an approximate confidence interval for ν′µ, we approximate the distribution of ν′(µ̂−µ) by a normal distribution,
N(0, θ2), where θ2 = Var(ν′µ̂). By (3.6) and (3.13),

θ2 =
1
N
ν′6ν +

(n− 2)τ̄
n(n− q− 2)

ν′1611·2ν1.

Using the approximation ν′(µ̂ − µ) ≈ N(0, θ2), we obtain an approximate 100(1 − α)% confidence interval for ν′µ as
ν′µ̂∓ zα/2θ̂ , where zα/2 is the usual percentage point of the standard normal distribution, and

θ̂ =

(
1
N
ν′6̂ν +

(n− 2)τ̄
n(n− q− 2)

ν′16̂11·2ν1

)1/2
,

where the estimators 6̂ and 6̂11·2 are defined in (4.1). To obtain a rigorous bound on the error in the above normal
approximation, we apply the arguments in Section 6 and deduce that if f1 and f2 are the density functions of ν′(µ̂ − µ)
and N(0, θ2), respectively, then there exists a universal constant C > 0 such that supt∈R |f1(t)− f2(t)| ≤ C ν′1611·2ν1.

Proof of Corollary 3.3. In the case of (i), denote by µ1r , V1r , and (6
1/2
11·2V2)r the rth components of µ1, V1, and 6

1/2
11·2V2,

respectively. By (3.5),

µ̂1r − µ1r
L
= V1r + (τ̄Q2/nQ1)1/2(6

1/2
11·2V2)r . (3.14)

Because the distributions of V1 and V2 are symmetric about 0 then µ̂1r − µ1r
L
= −(µ̂1r − µ1r), so it follows that all odd

moments of µ̂1r − µ1r are equal to zero. In particular, E(µ̂1r) = µ1r for all r; therefore µ̂ is unbiased.
The proof of (ii) follows directly from (3.5).
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To establish (iii), we apply the binomial theorem to (3.14). Noting that the odd moments of V1r and (6
1/2
11·2V2)r are zero,

we obtain

E(µ̂1r − µ1r)2k = E
k∑
j=0

(
2k
2j

)
(τ̄ /n)jV 2(k−j)1r Q j2Q

−j
1

(
(6
1/2
11·2V2)r

)2j
.

Because V1r ∼ N(0, ωrr) and (6
1/2
11·2V2)r ∼ N(0, (611·2)rr) then

EV 2(k−j)1r =
(2k− 2j)!
(k− j)! 2k−j

ωk−jrr

and

E
(
(6
1/2
11·2V2)r

)2j
=
(2j)!
j! 2j

((611·2)rr)
j .

By standard calculations, E(Q j2) = 2
j( 12q)j and

E(Q−j1 ) =

(−1)j/2j
(
−
1
2
(n− q)+ 1

)
j
, if j < (n− q)/2,

∞, if j ≥ (n− q)/2.

Combining these results and simplifying the resulting sum, we obtain (3.7).
Finally, E(µ̂1r − µ1r)2k diverges for k ≥ (n− q)/2 because E(Q

−(n−q)/2
1 ) diverges. �

4. Some properties of 6̂

In this section, we list some properties of 6̂ that are needed in Section 5. The proofs of these properties all are provided
in the companion paper [20].
By Anderson [3] or Anderson and Olkin [8] (cf. Morrison [5], Giguère and Styan [14]), the maximum likelihood estimator

of 6 is 6̂ =
(
6̂11 6̂12
6̂21 6̂22

)
where, in the notation of (3.2),

6̂11 =
1
n
(A11 − A12A−122,nA21)+

1
N
A12A−122,nA22,NA

−1
22,nA21,

6̂12 = 6̂
′

21 =
1
N
A12A−122,nA22,N ,

6̂22 =
1
N
A22,N .

(4.1)

Proposition 4.1 ([20, Proposition 3.1]). Define A11·2,n = A11 − A12A−122,nA21,

B1 =
N∑

j=n+1

(Yj − Ȳ2)(Yj − Ȳ2)′,

B2 = nτ̄ (Ȳ1 − Ȳ2)(Ȳ1 − Ȳ2)′,

and B = B1 + B2. Then

n6̂ = τ
(
A11 A12
A21 A22,n

)
+ τ̄

(
A11·2,n 0

0 0

)
+ τ

(
A12A−122,n 0

0 Iq

)(
B B
B B

)(
A−122,nA21 0

0 Iq

)
, (4.2)

where
(
A11 A12
A21 A22,n

)
∼ Wp+q(n−1,6) and B ∼ Wq(N−n,622) aremutually independent. Moreover, N6̂22 ∼ Wq(N−1,622).

We will also need some results on the matrix F-distribution. A q × q random matrix F ≥ 0 is said to have a matrix
F-distribution with degrees of freedom (a, b), denoted F ∼ F(q)a,b, if F

L
= B−1/2AB−1/2, where A ∼ Wq(a,622) and

B ∼ Wq(b,622) are mutually independent. Necessarily, we require b > q − 1 to ensure that B is nonsingular, almost
surely. If both a, b > q− 1 then F is nonsingular, almost surely, and its density function is

0q ((a+ b)/2)
0q(a/2)0q(b/2)

|F |
1
2 a−

1
2 (q+1)/2 |Iq + F |−(a+b)/2,
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F > 0. It is well-known [19, pp. 312–313] that if A ∼ Wq(a,622) and B ∼ Wq(b,622) are independent with a, b > q − 1
then both A1/2B−1A1/2 and B−1/2AB−1/2 have the F(q)a,b distribution; also, if F ∼ F

(q)
a,b then F

−1
∼ F(q)b,a. Note that for q = 1, the

notation F(q)a,b is a slight departure from the notation for the classical F-distribution, for F
(1)
a,b ≡ χ

2
a /χ

2
b .

Proposition 4.2 ([20, Propositions 3.2, 3.4]). Suppose that 612 = 0. Then
(i) A22,n, A11·2,n, A12A−122,nA21, B1, X̄ , Ȳ1, and Ȳ2 are mutually independent. Also, B2 and Ȳ are independent.
(ii) 6̂11 has a stochastic representation,

6
−1/2
11 6̂116

−1/2
11

L
=
1
n
W1 +

1
N
W 1/2
2

(
Ip + F

)
W 1/2
2 , (4.3)

whereW1 ∼ Wp(n− q− 1, Ip),W2 ∼ Wp(q, Ip), F ∼ F
(p)
N−n,n−q+p−1, andW1,W2, and F are mutually independent.

Let O(q) denote the group of q× q orthogonal matrices. The Haar measure on O(q) is the unique probability distribution
on O(q) that is invariant under the two-sided action of O(q). For p ≤ q, denote by Sp,q the Stiefel manifold of all p×qmatrices
H1 such that H1H ′1 = Ip. It is well-known [19, p. 67] that there exists on Sp,q a unique probability distribution which is
left-invariant under O(p) and right-invariant under O(q); we refer to this distribution as the uniform distribution on Sp,q.

Let H ∈ O(q) be a random matrix which is distributed according to Haar measure. Expressing H in the form H =
(
H1
H2

)
where H1 ∈ Sp,q then H1 is uniformly distributed on Sp,q. Conversely, given a uniformly distributed H1 ∈ Sp,q, we may
complete H1 to form a random q× q orthogonal matrix H =

(
H1
H2

)
having the Haar measure on O(q).

Lemma 4.3 ([20, Lemma 3.3]). Let p ≤ q, F ∼ F(q)a,b, H1 be uniformly distributed on Sp,q, and F and H1 be independent. Then

H1FH ′1 ∼ F
(p)
a,b−q+p. Furthermore, H1FH

′

1
L
= F11, the principal p× p submatrix of F .

We also have a stochastic representation for 6̂126̂
−1
22 , the estimated regression matrix.

Theorem 4.4 ([20, Theorem 3.6]). For arbitrary 612,

6̂126̂
−1
22

L
= 6126

−1
22 + 6

1/2
11·2W

−1/2K6−1/222 ,

whereW and K are independent,W ∼ Wp(n − q + p − 1, Ip), and K ∼ N(0, Ip ⊗ Iq). In particular, 6̂126̂
−1
22 is an unbiased

estimator of 6126−122 , and

6
−1/2
11·2 (6̂126̂

−1
22 − 6126

−1
22 )622(6̂126̂

−1
22 − 6126

−1
22 )
′6
−1/2
11·2 ∼ F

(p)
q,n−q+p−1. (4.4)

By reparametrizing the space of positive definite matrices [18, Proposition 8.7], we may write

6̂ =

(
Ip 1̂12
0 Iq

)(
1̂11 0
0 1̂22

)(
Ip 0
1̂21 Iq

)
. (4.5)

This defines the positive definite symmetric matrix 1̂ =
(
1̂11 1̂12
1̂21 1̂22

)
, and the set of submatrices {1̂11, 1̂12, 1̂22} are also

called the partial Iwasawa coordinates of 6̂ [23]. Inverting (4.5), we obtain

6̂
−1
=

(
Ip 0
−1̂21 Iq

)(
1̂
−1
11 0
0 1̂

−1
22

)(
Ip −1̂12
0 Iq

)

=

(
1̂
−1
11 −1̂

−1
11 1̂12

−1̂211̂
−1
11 1̂

−1
22 + 1̂211̂

−1
11 1̂12

)
.

Therefore the correspondence between 1̂ and 6̂ is one-to-one, with inverse transformation

6̂11 = 1̂11 + 1̂121̂221̂21, 6̂12 = 1̂121̂22, 6̂22 = 1̂22,

where, by (4.1),

1̂11 = 6̂11·2 =
1
n
A11·2,n,

1̂12 = 1̂
′

21 = 6̂126̂
−1
22 = A12A−122,n,

1̂22 = 6̂22 =
1
N
A22,N .

(4.6)



W.-Y.Chang, D.St.P. Richards / Journal of Multivariate Analysis 100 (2009) 1883–1899 1891

5. Ellipsoidal confidence regions for µ

The problem of testing H0 : µ = µ0 against Ha : µ 6= µ0,whereµ0 is a specified vector, has been studied extensively for
data of the form (1.1). Bhargava [4,10] obtained the likelihood ratio statistic for testingH0 againstHa and derived a stochastic
representation for the corresponding null distribution; Morrison and Bhoj [24] studied the power of the likelihood ratio
test; Eaton and Kariya [6] obtained invariant tests under data structures more general than (1.1); and Krishnamoorthy and
Pannala [25] provided alternatives to the likelihood ratio test.
On the other hand, confidence regions for µ have received less attention. Krishnamoorthy and Pannala [26] noted that

the likelihood ratio criterion leads to confidence regions which are non-ellipsoidal in shape and raised the problem of
constructing ellipsoidal confidence regions for µ. This problem calls for a generalization of Hotelling’s T 2-statistic for the
case in which the data have monotone structure (1.1). Following [26], we study the statistic

T 2 = (µ̂− µ)′Ĉov(µ̂)−1(µ̂− µ), (5.1)
where, by (3.6),

Ĉov(µ̂) =
1
N
6̂+

(n− 2)τ̄
n(n− q− 2)

(
6̂11·2 0
0 0

)
(5.2)

is the maximum likelihood estimator of Cov(µ̂). Krishnamoorthy and Pannala [26] derived F-approximations to T 2 via
the method of moments and used simulations to illustrate that (5.1) has good power properties in comparison with the
likelihood ratio test statistic.
A more profound motivation for the T 2-statistic in (5.1) is to be found in the results of Eaton and Kariya [6, p. 657]. They

prove that the problem of testing H0 : µ = 0 against Ha : µ 6= 0 is invariant under a certain group of transformations and
that a maximal invariant parameter is the pair (γ11·2, γ22), where

γ11·2 := (µ1 − 6126
−1
22 µ2)

′6−111·2(µ1 − 6126
−1
22 µ2), γ22 := µ

′

26
−1
22 µ2.

Therefore, in performing inference forµ, it is natural to utilize the correspondingmaximum likelihood estimator (γ̂11·2, γ̂22),
where

γ̂11·2 := (µ̂1 − 6̂126̂
−1
22 µ̂2)

′6̂
−1
11·2(µ̂1 − 6̂126̂

−1
22 µ̂2), γ̂22 := µ̂

′

26̂
−1
22 µ̂2. (5.3)

By a well-known identity [17, p. 63, Exercise 2.54],

µ′6−1µ = (µ1 − 6126
−1
22 µ2)

′6−111·2(µ1 − 6126
−1
22 µ2)+ µ

′

26
−1
22 µ2, (5.4)

i.e., γ11·2 + γ22 ≡ µ′6−1µ. Therefore µ̂′6̂
−1
µ̂ is the sum of the maximum likelihood estimators of the maximal invariant

parameters. On replacing 6̂ by Ĉov(µ̂) to adjust standard errors, we see that T 2 may be viewed as a modification of the
maximum likelihood estimator γ̂11·2 + γ̂22.
We turn now to the distribution of (5.1). A consequence of a result of Romer [27, Proposition 3.2.2] is that the T 2-statistic

(5.1) is invariant under the data transformation(
Xj
Yj

)
→

(
6
−1/2
11·2 0
0 6

−1/2
22

)(
Ip −6126−122
0 Iq

)(
Xj − µ1
Yj − µ2

)
, j = 1, . . . , n,

Yj → 6
−1/2
22 (Yj − µ2), j = n+ 1, . . . ,N,

(5.5)

which transforms the original data into a two-step, monotone incomplete sample from the Np+q(0, Ip+q) population.
Therefore, in establishing any result on the distribution of the T 2-statistic (5.1) we shall assume, without loss of generality that
µ = 0 and 6 = Ip+q.
Introduce the notation

γ = 1+
(n− 2)N τ̄
n(n− q− 2)

; (5.6)

then, by (5.2),

N Ĉov(µ̂) = 6̂+ (γ − 1)
(
6̂11·2 0
0 0

)
=

(
6̂11 + (γ − 1)6̂11·2 6̂12

6̂21 6̂22

)
.

Applying a well-known formula (see [17, p. 638]) for inverting a partitioned matrix, we obtain

N−1Ĉov(µ̂)−1 = γ−16̂−1 + (1− γ−1)
(
0 0
0 6̂

−1
22

)
. (5.7)

5.1. The asymptotic distribution of the T 2-statistic

Proposition 5.1. If n,N →∞ with n/N → δ ∈ (0, 1] then T 2
L
→ χ2p+q.
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Proof. Without loss of generality, we assume thatµ = 0 and6 = Ip+q. Then, by the Law of Large Numbers, n−1
(
A11 A12
A21 A22,n

)
and N−1A22,N each converge to Ip+q; hence, by (4.1), 6̂→ Ip+q, almost surely. Therefore, by (5.2),

N Ĉov(µ̂)→ Ip+q + (δ−1 − 1)
(
Ip 0
0 0

)
,

almost surely. Then, the result follows from Corollary 3.2 and an application of Slutsky’s theorem to µ̂′Ĉov(µ̂)−1µ̂ ≡
(
√
Nµ̂)′

(
N Ĉov(µ̂)

)−1
(
√
Nµ̂). �

Next, we consider the case in which N →∞ and n is fixed. By (3.6),

Cov(µ̂)→
n− 2

n(n− q− 2)

(
611·2 0
0 0

)
.

This asymptotic value of Cov(µ̂) indicates that large-N inference forµ2 should be performed entirely with µ̂2, and suchmay
be done in a straightforward manner using the exact distribution:

√
N(µ̂2 −µ2) ∼ Nq(0,622). As regards inference forµ1,

we utilize its corresponding Hotelling’s T 2-statistic, T 21 = (µ̂1 − µ1)
′Ĉov(µ̂1)−1(µ̂1 − µ1). Under translations of the data,

i.e., Xj → Xj − µ1, j = 1, . . . , n and Yj → Yj − µ2, j = 1, . . . ,N , the statistic T 21 is invariant; therefore its distribution does
not depend on µ. However, T 21 is not invariant under all transformations of the form (5.5) and therefore its distribution is
dependent on 6. Thus, we derive the limiting distribution of T 21 assuming that 612 = 0.

Theorem 5.2. Suppose that N →∞, n is fixed, and 612 = 0. Then,

T 21
L
→
n(n− q− 2)
n− 2

χ2p

χ2n−p−q

(
1+

χ2q

χ2n−q

)
, (5.8)

where all chi-squared random variables above are mutually independent. Further, if both n,N → ∞ with n/N → 0 then
T 21

L
→ χ2p .

Proof. We suppose, without loss of generality, that µ = 0 and 6 = Ip+q. By (5.2),

Ĉov(µ̂1) =
1
N
6̂11 +

γ − 1
N

6̂11·2 =
1
N
6̂11 +

γ − 1
N

1̂11.

By (4.1), N−16̂11 → 0, almost surely and, by (5.6), (γ − 1)/N → (n− 2)/n(n− q− 2) as N →∞. Therefore, it suffices to
find the limiting distribution of µ̂′11̂

−1
11 µ̂1.

Because {X̄, Ȳ1, Ȳ2} and
(
A11 A12
A21 A22,n

)
are mutually independent then it follows from (3.3) that for every N ,

µ̂1|{A11,A12,A22,n} ∼ Np(0, n−1(Ip + τ̄ 1̂121̂21)). Therefore, for t ∈ R,

E exp(itµ̂′11̂
−1
11 µ̂1) = E exp

(
it tr 1̂

−1
11 µ̂1µ̂

′

1

)
= E|Ip − 2itn−11̂

−1
11 (Ip + τ̄ 1̂121̂21)|

−1/2.

As noted in the proof of Theorem 3.1, n1̂11 = A11·2,n ∼ Wp(n − q − 1, Ip), and 1̂11 and 1̂12 are mutually independent.
Applying (2.4) of Lemma 2.3, we obtain

E exp(itµ̂′11̂
−1
11 µ̂1) = E

∣∣Ip − 2itQ−11 (
Ip + 1̂121̂21

)∣∣−1/2
≡ E exp

(
itQ−11 V ′2(Ip + τ̄ 1̂121̂21)V2

)
,

where Q1 ∼ χ2n−p−q, V2 ∼ Np(0, Ip), and Q1 and V2 are mutually independent. Noting that τ̄ → 1 as N →∞, it follows that

µ̂′11̂
−1
11 µ̂1

L
→ Q−11 V ′2(Ip + F)V2, where F = 1̂121̂21 is independent of Q1 and V2.

Apply the polar coordinates decomposition V2 = Q
1/2
2 U , where Q2 = V ′2V2 and U = V2/(V ′2V2)

1/2. Because V2 ∼
Np(0, Ip) then Q2 ∼ χ2p ; U is uniformly distributed on S

p−1, the unit sphere in Rp; and Q2 and V2 are mutually independent.

ThenV ′2(Ip+F)V2
L
= Q2U ′(Ip+F)U = Q2(1+U ′FU). By (4.4), F ∼ F(p)q,n−q+p−1 and, by Lemma4.3,U

′FU ∼ F (1)q,n−q ≡ χ2q /χ
2
n−q.

Therefore,

µ̂′11̂
−1
11 µ̂1

L
→ Q−11 Q2

(
1+

χ2q

χ2n−q

)
L
=

χ2p

χ2n−p−q

(
1+

χ2q

χ2n−q

)
,

where all four chi-square variables are mutually independent, so the proof of (5.8) is complete.
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As regards the case in which n,N → ∞ with n/N → 0, it follows from the Central Limit Theorem and (3.5) that
n1/2µ̂1

L
→ V2 ∼ Np(0, Ip). Also, by applying the Law of Large Numbers to (4.1) and by (5.2), we obtain n Ĉov(µ̂1) → Ip,

almost surely. Therefore, as n,N →∞with n/N → 0, T 21 ≡ (n
1/2µ̂1)

′(n Ĉov(µ̂1))−1(n1/2µ̂1)
L
→ V ′26

−1
11·2V2 ∼ χ

2
p . �

Remark 5.3. For the case in which 6 is block-diagonal, n is fixed, and N is large, we can derive from the previous result a
stochastic inequality for T 21 . By (5.8), that limiting random variable clearly is stochastically greater than

n(n− q− 2)
n− 2

χ2p

χ2n−p−q
,

a multiple of an F-distributed random variable. Therefore, in that case, for t ≥ 0,

lim
N→∞

P(T 21 ≤ t) ≤ P

(
n(n− q− 2)
n− 2

χ2p

χ2n−p−q
≤ t

)

= P
(
Fp,n−p−q ≤

(n− 2)(n− p− q)
n(n− q− 2)p

t
)
,

and this provides an upper bound on the large-N distribution of T 21 .

5.2. Probability inequalities for the T 2-statistic

We now study the small-sample behavior of the T 2-statistic, deriving probability inequalities which lead to conservative
confidence levels for ellipsoidal confidence regions forµ. We begin by deriving an upper bound on the distribution function
of T 2 for the case in which both n and N are fixed.

Proposition 5.4. For t ≥ 0, P(T 2 ≤ t) ≤ P
(
Fq,N−q ≤ (N − q)t/Nq

)
.

Proof. Without loss of generality, we assume that µ = 0 and 6 = Ip+q. By (5.7) and (5.11), we have

Ĉov(µ̂)−1 ≥
N
γ

(
0 0
0 6̂

−1
22

)
+
N(γ − 1)

γ

(
0 0
0 6̂

−1
22

)
= N

(
0 0
0 6̂

−1
22

)
;

therefore T 2
L
≥ Nµ̂′26̂

−1
22 µ̂2, and then the conclusion follows from the distribution of the classical Hotelling’s T

2-statistic.
�

In contrast to the preceding upper bound, the derivation of a lower bound on the distribution function of the T 2-statistic
requires much greater effort. We shall prove the following result.

Theorem 5.5. For t ≥ 0,

P(T 2 ≤ t) ≥ P
(
N2n−1

Q2
Q1

(
1+

qQ3
Q5

)
+
Nq
Q5

(
τ 1/2Q 1/23 + τ̄

1/2Q 1/24
)2
≤ t

)
, (5.9)

where Q1 ∼ χ2n−p−q, Q2 ∼ χ
2
p , Q3 ∼ χ

2
q , Q4 ∼ χ

2
q , Q5 ∼ χ

2
2 , and Q1, . . . ,Q5 are mutually independent.

Remark 5.6. In practice, the right-hand side of (5.9) can be calculated by numerical simulation, and this is simpler than
simulating the distribution of T 2 directly from its definition.

Lemma 5.7. Define the modified T 2-statistic,

T̃ 2 = N(µ̂− µ)′
(
A11 A12
A21 A22,n

)−1
(µ̂− µ). (5.10)

Then T 2 ≤ NT̃ 2.

Proof. By (5.7),

Ĉov(µ̂)−1 =
N
γ
6̂
−1
+
N(γ − 1)

γ

(
0 0
0 6̂

−1
22

)
.

Also, by [17, p. 63, Exercise 2.54],

6̂
−1
≥

(
0 0
0 6̂

−1
22

)
, (5.11)
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where the ordering is in the sense of positive semidefiniteness; therefore

Ĉov(µ̂)−1 ≤
N
γ
6̂
−1
+
N(γ − 1)

γ
6̂
−1
= N6̂−1.

By (4.2),

6̂ ≥
1
n
τ

(
A11 A12
A21 A22,n

)
=
1
N

(
A11 A12
A21 A22,n

)
,

therefore,

6̂
−1
≤ N

(
A11 A12
A21 A22,n

)−1
.

Consequently,

Ĉov(µ̂)−1 ≤ N2
(
A11 A12
A21 A22,n

)−1
,

and then the conclusion follows immediately. �

Proof of Theorem 5.5. Because we are analyzing the distribution of T 2, which does not depend on µ or 6, we assume,

without loss of generality, that µ = 0 and 6 = Ip+q. As shown in Lemma 5.7, T 2 ≤ NT̃ 2; therefore T 2
L
≤ NT̃ 2, so it suffices

to derive a lower bound on the distribution function of T̃ 2.
We apply to (5.10) the quadratic identity (5.4), obtaining

N−1T̃ 2 = (µ̂1 − A12A−122,nµ̂2)
′A−111·2,n(µ̂1 − A12A−122,nµ̂2)+ µ̂

′

2A
−1
22,nµ̂2.

By (3.3), µ̂1 − A12A−122,nµ̂2 = X̄ − A12A−122,nȲ1 and µ̂2 = Ȳ ; therefore

N−1T̃ 2 = (X̄ − A12A−122,nȲ1)
′A−111·2,n(X̄ − A12A−122,nȲ1)+ Ȳ ′A−122,nȲ .

Recall that A11·2,n ∼ Wp+q(n − q − 1, Ip+q) and is independent of {X̄, Ȳ1, Ȳ2,A12,A22,n} (see Proposition 4.2(i)). Hence, by
Proposition 2.2(iv),

Q1 ≡
(X̄ − A12A−122,nȲ1)

′(X̄ − A12A−122,nȲ1)

(X̄ − A12A−122,nȲ1)′A
−1
11·2,n(X̄ − A12A−122,nȲ1)

∼ χ2n−p−q, (5.12)

and Q1 is independent of X̄ − A12A−122,nȲ1. Therefore

N−1T̃ 2 L
= Q−11 (X̄ − A12A−122,nȲ1)

′(X̄ − A12A−122,nȲ1)+ Ȳ ′A−122,nȲ ,

where Q1 is independent of {X̄, Ȳ1, Ȳ2,A12,A22,n}.
By Proposition 2.2(ii), A12|A22,n ∼ N(0, Ip ⊗ A22,n). Let B12 = A12A

−1/2
22,n , so that B12|A22,n ∼ N(0, Ip ⊗ Iq); because this

conditional distribution does not depend on A22,n then B12 also is independent of A22,n. Therefore, conditional on {Ȳ1,A22,n},
the random vector X̄ − A12A−122,nȲ1 = X̄ − B12A

−1/2
22,n Ȳ1, viewed as a linear function of X̄ and B12, is multivariate normally

distributed with conditional mean

E(X̄ − B12A
−1/2
22,n Ȳ1|{Ȳ1,A22,n}) = E(X̄)− E(B12)A

−1/2
22,n Ȳ1 = 0,

and, with C = A−1/222,n Ȳ1Ȳ ′1A
−1/2
22,n , the corresponding conditional covariance matrix is

Cov(X̄ − B12A
−1/2
22,n Ȳ1|{Ȳ1,A22,n}) = Cov(X̄)+ E(B12A

−1/2
22,n Ȳ1Ȳ ′1A

−1/2
22,n B′12|{Ȳ1,A22,n})

= n−1Ip + E(B12CB′12|{Ȳ1,A22,n}).

Because B12 ∼ N(0, Ip ⊗ Iq), it is straightforward to show that E(B12CB′12) = (tr C)Ip; therefore, Cov(X̄ − B12A
−1/2
22,n Ȳ1

|{Ȳ1,A22,n}) = (n−1 + Ȳ ′1A
−1
22,nȲ1)Ip.

Having shown that X̄ − B12A
−1/2
22,n Ȳ1|{Ȳ1,A22,n} ∼ Np(0, (n−1 + Ȳ ′1A

−1
22,nȲ1)Ip), we obtain

(X̄ − B12A
−1/2
22,n Ȳ1)′(X̄ − B12A

−1/2
22,n Ȳ1)|{Ȳ1,A22,n}

L
= (n−1 + Ȳ ′1A

−1
22,nȲ1)Q2, (5.13)

where Q2 ∼ χ2p independently of {Ȳ1,A22,n}.
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By the Cauchy–Schwarz inequality,

Ȳ ′A−122,nȲ ≡ (τ Ȳ1 + τ̄ Ȳ2)
′A−122,n(τ Ȳ1 + τ̄ Ȳ2)

≤
(
τ(Ȳ ′1A

−1
22,nȲ1)

1/2
+ τ̄ (Ȳ ′2A

−1
22,nȲ2)

1/2)2
; (5.14)

therefore

N−1T̃ 2
L
≤
Q2
Q1
(n−1 + Ȳ ′1A

−1
22,nȲ1)+ (τ (Ȳ

′

1A
−1
22,nȲ1)

1/2
+ τ̄ (Ȳ ′2A

−1
22,nȲ2)

1/2)2. (5.15)

Denote by λmax(A−122,n) the largest eigenvalue of A
−1
22,n; by the definition of λmax(A

−1
22,n), we have Y

′

j A
−1
22,nYj ≤ λmax(A

−1
22,n) Y

′

j Yj
for j = 1, 2. On applying these inequalities to (5.15), and noting that λmax(A−122,n) = 1/λmin(A22,n), where λmin(A22,n) is the
smallest eigenvalue of A22,n, we obtain

N−1T̃ 2
L
≤
Q2
Q1

(
n−1 +

Ȳ ′1Ȳ1
λmin(A22,n)

)
+

(
τ(Ȳ ′1Ȳ1)

1/2
+ τ̄ (Ȳ ′2Ȳ2)

1/2
)2

λmin(A22,n)
.

Because Ȳ1 ∼ Nq(0, n−1Iq) then Ȳ ′1Ȳ1
L
= n−1Q3 where Q3 ∼ χ2q ; similarly, Ȳ

′

2Ȳ2
L
= (N − n)−1Q4 where Q4 ∼ χ2q . Therefore

N−1T̃ 2
L
≤ n−1

Q2
Q1

(
1+

Q3
λmin(A22,n)

)
+

(
τ 1/2Q 1/23 + τ̄

1/2Q 1/24
)2

Nλmin(A22,n)
. (5.16)

Finally, we obtain a stochastic lower bound on λmin(A22,n). For any t ≥ 0, it is simple to see that the inequality {λmin(A22,n) >
t} is equivalent to {A22,n > tIq}. Therefore, applying the density function (2.2) of A22,n ∼ Wq(n− 1, Iq), we obtain

P(λmin(A22,n) > t) =
∫
W>tIq

|W |(n−q−2)/2 exp
(
−
1
2 trW

)
2(n−1)q/20q((n− 1)/2)

dW

= e−qt/2
∫
W>0

|W + tIq|(n−q−2)/2 exp
(
−
1
2 trW

)
2(n−1)q/20q((n− 1)/2)

dW ,

where the latter equality is obtained by making the transformation W → W + tIq. Because n > q + 2 then |W +
tIq|(n−q−2)/2 ≥ |W |(n−q−2)/2 for allW > 0 and t ≥ 0; applying this inequality to the integrand above, then the remaining
integral equals 1.

Therefore P(λmin(A22,n) > t) ≥ e−qt/2 for all t ≥ 0, hence λmin(A22,n)
L
≥ q−1Q5, where Q5 ∼ χ22 ; equivalently,

1/λmin(A22,n)
L
≤ qQ−15 . Substituting this result in (5.16), we obtain

T 2
L
≤ NT̃ 2

L
≤ N2n−1

Q2
Q1

(
1+

qQ3
Q5

)
+
Nq
Q5

(
τ 1/2Q 1/23 + τ̄

1/2Q 1/24
)2
.

The proof of (5.9) is now complete. �

Similar to Theorem 5.5, we can also obtain a lower bound for the distribution of the maximum likelihood statistic
γ̂11·2 + γ̂22 in (5.3).

Theorem 5.8. For t ≥ 0,

P(γ̂11·2 + γ̂22 ≤ t) ≥ P
(
Q2
Q1

(
1+

qQ3
Q5

)
+
q
Q5

(
τ 1/2Q 1/23 + τ̄

1/2Q 1/24
)2
≤ t

)
, (5.17)

where Q1, . . . ,Q5 are as in Theorem 5.5.

Proof. Romer [27] has proved that the statistic γ̂11·2 + γ̂22 is invariant under the transformation (5.5), and therefore the
distribution of this statistic is not dependent on µ or 6. Hence, without loss of generality, we assume that µ = 0 and
6 = Ip+q.
By (5.3), (3.3) and (4.2),

γ̂11·2 + γ̂22 = n(X̄ − A12A−122,nȲ1)
′A−111·2,n(X̄ − A12A−122,nȲ1)+ NȲ

′(A22,n + B)−1Ȳ ,

and A11·2,n, B, and {X̄, Ȳ1, Ȳ2,A12,A22,n} are mutually independent. Proceeding as at (5.12)– (5.13), we obtain

γ̂11·2 + γ̂22
L
=
Q2
Q1
(1+ nȲ ′1A

−1
22,nȲ1)+ NȲ

′(A22,n + B)−1Ȳ ,

where Q1 ∼ χ2n−p−q, Q2 ∼ χ2p ; and Q1, Q2, Ȳ1, Ȳ2, A
−1
22,n, and B are mutually independent. Because A22,n + B ≥ A22,n
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(in the positive semidefinite sense) then (A22,n + B)−1 ≤ A−122,n, and therefore Ȳ
′(A22,n + B)−1Ȳ ≤ Ȳ ′A−122,nȲ . Applying the

Cauchy–Schwartz inequality at (5.14), we obtain

γ̂11·2 + γ̂22
L
≤
Q2
Q1
(1+ nȲ ′1A

−1
22,nȲ1)+ N

(
τ(Ȳ ′1A

−1
22,nȲ1)

1/2
+ τ̄ (Ȳ ′2A

−1
22,nȲ2)

1/2)2 .
To complete the proof, we apply the same arguments as at infra (5.14), and thereby obtain the inequality (5.17). �

6. A normal approximation to µ̂

It would be useful to approximate the distribution of µ̂ by a normal distribution for, in data analysis, such an
approximation would make the distribution theory tractable. One approximation arises from discarding the last term in
(3.5), so that µ̂ ≈ Np+q(µ,Ω). A second, and more accurate, normal approximation is µ̂ ≈ Np+q(µ, Ω̃), where Ω̃ = Cov(µ̂)
is given in (3.6). Both approximations are easy to apply and are accurate if τ ' 1. However, the second approximation
is generally more accurate because it utilizes information arising from the second term in the expression for µ̂1 in (3.3),
whereas the first approximation discards that information. Therefore, we restrict our attention to the second approximation.
To quantify the accuracy of this approximation, we obtain an upper bound on the supremum, or L∞, distance between

the density and distribution functions of µ̂ and its approximator. This will be done by applying an extension of the classical
Esseen inequality.

Proposition 6.1. For k = 1, 2, let Vk ∼ Nd(ν,3k). Denote by fk(·) the density function of Vk and let 3 = 31 −32. Then there
exists an absolute constant C0 such that

sup
x∈Rd
|f1(x)− f2(x)| ≤

d(d+ 3)
(6πd)1/(d+3)

(
C0
d+ 2

)(d+2)/(d+3)
(tr32)1/2(d+3). (6.1)

Proof. The characteristic function of Vk is φk(t) = exp(it ′ν − 1
2 t
′3kt), t ∈ Rd. Therefore, by the elementary inequality,

|e−a − e−b| ≤ |a− b|, a, b ≥ 0, which is a consequence of the Taylor expansion of e−t , t > 0, we have

|φ1(t)− φ2(t)| = |eit
′ν(e−t

′31t/2 − e−t
′32t/2)|

= |e−t
′31t/2 − e−t

′32t/2|

≤
1
2
|t ′3t| ≤ (tr32)1/2t ′t,

where the last inequality follows from the Cauchy–Schwarz inequality. It follows that, for h1, . . . , hd > 0,∫ h1

−h1
· · ·

∫ hd

−hd
|φ1(t)− φ2(t)|dt ≤

1
2
(tr32)1/2

∫ h1

−h1
· · ·

∫ hd

−hd
t ′tdt

=
2d−1

3
(tr32)1/2h1 · · · hd(h21 + · · · + h

2
d).

On applying Theorem 3.1 of Roussas [28], we obtain

sup
x∈Rd
|f1(x)− f2(x)| ≤ C0(h−11 + · · · + h

−1
d )+ (2π)

−d
∫ h1

−h1
· · ·

∫ hd

−hd
|φ1(t)− φ2(t)|dt

≤ C0(h−11 + · · · + h
−1
d )+ C1h1 · · · hd(h

2
1 + · · · + h

2
d), (6.2)

where C1 = π−d(tr32)1/2/6, and C0 is an absolute positive constant, i.e., not dependent on d, f1, or f2. It is simple to show
that (6.2), as a function of h1, . . . , hd > 0, is minimized at (h0, . . . , h0), where h0 = (C0/(d + 2)C1)1/(d+3), and therefore
(6.2) has minimum value d(C1hd+20 + C0h

−1
0 ). Simplifying this expression for the minimum value, we obtain (6.1). �

We now obtain a bound for the L∞-distance between fµ̂ and fµ̃, the density functions of µ̂ and its normal approximation
µ̃ ∼ Np+q(µ, Cov(µ̂)).

Theorem 6.2. There exists a positive constant Cp,q,n such that

sup
x∈Rp+q

|fµ̂(x)− fµ̃(x)| ≤ Cp,q,n
(
τ̄ tr6211·2

)1/2(p+q+3)
. (6.3)

Proof. Denote by Q the random variable (τ̄Q2/nQ1)1/2 in (3.5); then,

µ̂|Q ∼ Np+q

(
µ,Ω+ Q 2

(
611·2 0
0 0

))
.

Because µ̃ ∼ Np+q(µ, Cov(µ̂)) then, by (6.1), the L∞-distance between fµ̂|Q , the conditional density of µ̂ given Q , and fµ̃
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satisfies

sup
x∈Rp+q

|fµ̂|Q (x)− fµ̃(x)| ≤
(p+ q)(p+ q+ 3)
(6πp+q)1/(p+q+3)

(
C0

p+ q+ 2

)
(tr32Q )

1/2(p+q+3), (6.4)

where

3Q = Cov(µ̂|Q )− Cov(µ̃) =
(
Q 2 − E(Q 2)

) (611·2 0
0 0

)
.

Noting that fµ̂(x) = EQ fµ̂|Q (x) for all x ∈ Rp+q, we have

sup
x∈Rp+q

|fµ̂(x)− fµ̃(x)| = sup
x∈Rp+q

|E(fµ̂|Q (x)− fµ̃(x))|

≤ sup
x∈Rp+q

E|fµ̂|Q (x)− fµ̃(x)|

≤ Cp,q(tr6211·2)
1/2(p+q+3)E|Q 2 − E(Q 2)|1/(p+q+3),

where Cp,q is the constant in (6.4). By Jensen’s inequality,

E|Q 2 − E(Q 2)|1/(p+q+3) ≡ E(|Q 2 − E(Q 2)|2)1/2(p+q+3)

≤ (E|Q 2 − E(Q 2)|2)1/2(p+q+3) = (Var(Q 2))1/2(p+q+3).

Because Var(Q 2) = n−1τ̄Var(Q2/Q1) and

Var(Q2/Q1) = E(Q 22 )E(Q
−2
1 )− (E(Q2)E(Q−11 ))2

=
2q

(n− q− 2)(n− q− 4)
−

q2

(n− q− 2)2
,

then we obtain (6.3) with Cp,q,n = (n−1Var(Q2/Q1))1/2(p+q+3)Cp,q. �

Corollary 6.3. For t1, . . . , tp+q > 0,∣∣∣∣∣P
(
p+q⋂
j=1

{
|µ̂j − µj| ≤

1
2
tj

})
− P

(
p+q⋂
j=1

{
|µ̃j − µj| ≤

1
2
tj

})∣∣∣∣∣ ≤ Cp,q,n
(
p+q∏
j=1

tj

)
(τ̄ tr6211·2)

1/2(p+q+3). (6.5)

Further,

P

(
p+q⋂
j=1

{
|µ̂j − µj| ≤

1
2
tj

})
≥

p+q∏
j=1

[
2Φ

(
tj

2
√
Var(µ̂j)

)
− 1

]
− Cp,q,n

(
p+q∏
j=1

tj

)
(τ̄ tr6211·2)

1/2(p+q+3). (6.6)

Proof. LetR denote the rectangle [−t1/2, t1/2] × · · · × [−tp+q/2, tp+q/2]. Then∣∣∣∣∣P
(
p+q⋂
j=1

{
|µ̂j − µj| ≤

1
2
tj

})
− P

(
p+q⋂
j=1

{
|µ̃j − µj| ≤

1
2
tj

})∣∣∣∣∣ =
∣∣∣∣∫

R

(
fµ̂(x)− fµ̃(x)

)
dx
∣∣∣∣

≤

∫
R

|fµ̂(x)− fµ̃(x)|dx

≤ ‖fµ̂ − fµ̃‖∞ Vol(R).

Then (6.5) follows from (6.3) and the fact that Vol(R) =
∏p+q
j=1 tj. Next, by (6.5),

P

(
p+q⋂
j=1

{
|µ̂j − µj| ≤

1
2
tj

})
≥ P

(
p+q⋂
j=1

{
|µ̃j − µj| ≤

1
2
tj

})
− Cp,q,n

(
p+q∏
j=1

tj

)
(τ̄ tr 6̂211·2)

1/2(p+q+3). (6.7)

Because µ̃− µ ∼ Np+q(0, Cov(µ̂)) then, by an inequality of Šidák [29],

P

(
p+q⋂
j=1

{|µ̃j − µj| ≤
1
2
tj}

)
≥

p+q∏
j=1

P
(
|µ̃j − µj| ≤

1
2
tj

)

=

p+q∏
j=1

[
2Φ

(
tj

2
√
Var(µ̂j)

)
− 1

]
.

Substituting this lower bound at (6.7), we obtain (6.6). �
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Remark 6.4. For a given data set, we may apply (6.6) to obtain an estimated lower bound on the confidence level of
simultaneous confidence intervals for µ1, . . . , µp+q. Replacing each unknown parameter on the right-hand side of (6.6)
by its corresponding maximum likelihood estimator, we obtain

p+q∏
j=1

[
2Φ

(
tj/2

√
V̂ar(µ̂j)

)
− 1

]
− Cp,q,n

(
p+q∏
j=1

tj

)
(τ̄ tr 6̂211·2)

1/2(p+q+3),

which is an estimated lower bound on the confidence level.

We can also obtain bounds on the supremum distance between the cumulative distribution functions of µ̂ and µ̃. In
the case of lower-orthant unbounded rectangles, we may apply the results of Sadikova [30] and Gamkrelidze [31] on
generalizations of Esseen’s inequality to derive an analog for cumulative distribution functions of Proposition 6.1. As an
indication of these results, we state without proof an analog of Proposition 6.1 for distribution functions for the case in
which d = 2. As before, suppose that Vk ∼ N2(ν,3k), k = 1, 2, and denote by Fk the distribution function of Vk. Further, let
Λ
(k)
ij denote the (i, j)th element of3k and define 3̃k =

1
2 (3k + diag(3k)).

Proposition 6.5. There exist constants c1, c2 > 0 such that, for T > 0,

sup
x∈R2
|F1(x)− F2(x)| ≤

1
π2

4
3
T 2 sinh(|Λ(1)12 |T

2)(tr (3̃1 − 3̃2)2)1/2

+ 16
cosh

(
T 2max(Λ(1)12 ,Λ

(2)
12 )
)
− cosh

(
T 2min(Λ(1)12 ,Λ

(2)
12 )
)

(Λ
(1)
12 +Λ

(2)
12 )T 2


+ c1

(
2∑
j=1

|Λ
(1)
jj −Λ

(2)
jj |

)
T + c2T−1.

By applying this result to µ̂ and µ̃, we obtain an analog of Theorem 6.2 for the case in which p = q = 1.

Acknowledgments

Steven Arnold, in providing references to the literature and holding discussions on all aspects of the results derived here,
was a veritable fountain of knowledge for Richards as this manuscript was being prepared; consequently, the authors are
deeply grateful to Professor Arnold for his constant encouragement and advice. The authors also are very grateful to the
referees and to Megan Romer for valuable comments on earlier versions of this article. The second author was supported in
part by National Science Foundation grants DMS-0705210 and DMS-0112069.

References

[1] S.S. Wilks, Moments and distributions of estimates of population parameters from fragmentary samples, Ann. Math. Statist. 3 (1932) 163–195.
[2] R.J.A. Little, D.B. Rubin, Statistical Analysis With Missing Data, second edition, Wiley, Hoboken, NJ, 2002.
[3] T.W. Anderson, Maximum likelihood estimators for a multivariate normal distribution when some observations are missing, J. Amer. Statist. Assoc.
52 (1957) 200–203.

[4] R. Bhargava, Multivariate tests of hypotheses with incomplete data, Technical Report No. 3, Applied Math. and Statistics Laboratories, Stanford
University, Stanford, CA, 1962.

[5] D.F. Morrison, Expectations and variances of maximum likelihood estimates of the multivariate normal distribution parameters with missing data,
J. Amer. Statist. Assoc. 66 (1971) 602–604.

[6] M.L. Eaton, T. Kariya, Multivariate tests with incomplete data, Ann. Statist. 11 (1983) 654–665.
[7] J. Hao, K. Krishnamoorthy, Inferences on a normal covariance matrix and generalized variance with monotone missing data, J. Multivariate Anal. 78
(2001) 62–82.

[8] T.W. Anderson, I. Olkin, Maximum likelihood estimation of the parameters of a multivariate normal distribution, Linear Algebra Appl. 70 (1985)
147–171.

[9] K.G. Jinadasa, D.S. Tracy, Maximum likelihood estimation formultivariate normal distributionwithmonotone sample, Comm. Statist. TheoryMethods
21 (1992) 41–50.

[10] R.P. Bhargava, Some one-sample hypothesis testing problems when there is a monotone sample from a multivariate normal population, Ann. Inst.
Statist. Math. 27 (1975) 327–339.

[11] S.A. Andersson, M.D. Perlman, Lattice-ordered conditional independence models for missing data, Statist. Probab. Lett. 12 (1991) 465–486.
[12] S.A. Andersson, M.D. Perlman, Unbiasedness of the likelihood ratio test for lattice conditional independence models, J. Multivariate Anal. 53 (1995)

1–17.
[13] S.A. Andersson, M.D. Perlman, Testing lattice conditional independence models, J. Multivariate Anal. 53 (1995) 18–38.
[14] M.A. Giguère, G.P.H. Styan,Multivariate normal estimationwithmissing data on several variates, in: Trans. Seventh Prague Conference on Information

Theory, Statistical Decision Functions, Academia, Prague, 1978, pp. 129–139.
[15] T. Kanda, Y. Fujikoshi, Some basic properties of the MLE’s for a multivariate normal distribution with monotone missing data, Am. J. Math. Manage.

Sci. 18 (1998) 161–190.
[16] K.R. Lang, Astrophysical Formulae: Volume II: Space, Time, Matter and Cosmology, third edition, Springer, New York, 2006.



W.-Y.Chang, D.St.P. Richards / Journal of Multivariate Analysis 100 (2009) 1883–1899 1899

[17] T.W. Anderson, An Introduction to Multivariate Statistical Analysis, third edition, Wiley, New York, 2003.
[18] M.L. Eaton, Multivariate Statistics: A Vector Space Approach, Wiley, New York, 1983.
[19] R.J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley, New York, 1982.
[20] W.-Y. Chang, D.St.P. Richards, Finite-sample inference withmonotone incomplete multivariate normal data, II, J. Multivariate Anal. (2009) (submitted

for publication).
[21] R.J.A. Little, Inference about means from incomplete multivariate data, Biometrika 63 (1976) 593–604.
[22] R.J.A. Little, A test of missing completely at random for multivariate data with missing values, J. Amer. Statist. Assoc. 83 (1988) 1198–1202.
[23] H. Fujisawa, A note on the maximum likelihood estimators for multivariate normal distribution with monotone data, Comm. Statist. Theory Methods

24 (1995) 1377–1382.
[24] D.F. Morrison, D.S. Bhoj, Power of the likelihood ratio test on the mean vector of the multivariate normal distribution with missing observations,

Biometrika 60 (1973) 365–368.
[25] K. Krishnamoorthy, M.K. Pannala, Some simple test procedures for normal mean vector with incomplete data, Ann. Inst. Statist. Math. 50 (1998)

531–542.
[26] K. Krishnamoorthy, M.K. Pannala, Confidence estimation of a normal mean vector with incomplete data, Canad. J. Statist. 27 (1999) 395–407.
[27] M.M. Romer, The statistical analysis of monotone incomplete multivariate normal data, Doctoral Dissertation, Penn State University, 2009.
[28] G.G. Roussas, An Esseen-type inequality for probability density functions, with an application, Statist. Probab. Lett. 51 (2001) 397–408; Statist.

Probab. Lett. 54 (2001) 449 (erratum).
[29] Z. Šidák, Rectangular confidence regions for the means of multivariate normal distributions, J. Amer. Statist. Assoc. 62 (1967) 626–633.
[30] S.M. Sadikova, Two-dimensional analogs of an inequality of Esseen and their application to the central limit theorem, Theory Probab. Appl. 11 (1966)

325–335.
[31] N.G. Gamkrelidze, A multidimensional generalization of Esseen’s inequality for distribution functions, Theory Probab. Appl. 22 (1977) 877–880.


	Finite-sample inference with monotone incomplete multivariate normal data, I
	Introduction
	Preliminary results
	The distribution of  
	Some properties of  
	Ellipsoidal confidence regions for  μ 
	The asymptotic distribution of the  T2 -statistic
	Probability inequalities for the  T2 -statistic

	A normal approximation to  
	Acknowledgments
	References


