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1. Introduction

During the past eighty years, there has been an enduring interest in multivariate statistical inference with incomplete
data. Wilks [ 1] was one of the earliest contributors to this area of research, the subsequent literature has been voluminous,
and we refer to Little and Rubin [2] for an extensive treatment of the field.

In this paper, we consider problems in inference with multivariate, d-dimensional data, drawn from a normal population.
We suppose that the data are composed of N mutually independent observations consisting of a random sample of n
complete observations on all d = p + g characteristics and an additional N — n incomplete observations on the last g
characteristics only. We write the data in the form

Xl X2 n ( 1.1 )

Y Y, Yo) Yor1 Yoo -0 Yn ’
where each Xj is p x 1, each Y; is g x 1, the complete observations (X/, Yj’)/, forj = 1,...,n, are drawn from Ng(u, X), a
multivariate normal population with mean vector g and covariance matrix X, and the incomplete data ;,j = n+1, ..., N,
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are observations on the last q characteristics of the same population. The data in (1.1) are called two-step monotone, and have
been widely studied; cf. Anderson [3], Bhargava [4], Morrison [5], Eaton and Kariya [6], and Hao and Krishnamoorthy [7].

Given a sample (1.1) from the population Ny(, X), it is well-known that closed-form expressions for & and X, the
maximum likelihood estimators of u and X, may be obtained by factoring the likelihood function into a product of likelihoods
with non-overlapping sets of parameters; consequently, explicit expressions for various likelihood ratio test statistics
may be obtained. We refer to Anderson [3], Little and Rubin [2], Anderson and Olkin [8], and Jinadasa and Tracy [9] for
derivations of the explicit formulas for & and X; Bhargava [4,10], Eaton and Kariya [6], and Andersson and Perlman [11-13]
for other aspects of inference with missing data in which factorization of the likelihood function plays a crucial role;
and Morrison [5], Giguére and Styan [14], Little and Rubin [2], Kanda and Fujikoshi [15], for results on the moments and
asymptotic distributions of i and X. A

In the literature on inference for w and ¥, it is noticeable that the exact distributions of & and ¥ were unknown. This
problem is basic to inference with incomplete data when large samples are infeasible or impractical such as: in sociological
research, where subjects have transient lifestyles and cannot be contacted for further data collection after relocation to new
addresses; in panel surveys, where subjects may be available for only part of the study; and in astronomy, where monotone
incomplete data arise in the classification of galaxies (Lang [16]). It is noticeable that the area of monotone incomplete
multivariate normal inference is not well-endowed with the range of explicit formulas appearing in Anderson [17],
Eaton [18], and Muirhead [19]. Thus, this paper initiates a program of research on inference for ¢ and X, where n and
N are fixed, with the goal of deriving explicit results analogous to those existing in the classical complete case. Here, we
concentrate on inference for g, and the companion paper [20] is dedicated primarily to inference for X. A synopsis of our
results is as follows.

We provide in Section 2 some preliminary results needed in the sequel. In Section 3, we derive a stochastic representation
for the exact distribution of . Then, generalizing results of Morrison [5], we apply the stochastic representation to deduce
formulas for all marginal central moments of i1, . . ., fip1q, the components of i.

In Section 4 we list some properties of 3, taken from [20], that are needed to analyze the distribution of T2, an analog of
Hotelling’s statistic. In Section 5, we obtain the asymptotic distribution of T2 and inequalities for its distribution function; by
means of these results, lower and upper bounds may be obtained for the confidence levels of ellipsoidal confidence regions
obtained for g through T?2. Finally, in Section 6, we derive an upper bound on the supremum distance between the density
and distribution functions of 7t and g, a normal approximation to A.

Throughout this paper and the companion article [20], we assume that data are missing completely at random, i.e., that
missingness depends neither on the nature nor the values of the data. Indeed, it is noted in [7, p. 397], that the explicit
expression (4.1) for the full matrix X requires such an assumption. For further details on this issue in a broader context,
see [2, Egs. (6.13), (6.14)].

2. Preliminary results

Throughout the paper, we write all vectors and matrices in boldface type. We denote by 0 any zero vector or matrix, the
dimension of which will be clear from the context, and we denote the identity matrix of order d by I;. We write A > 0 to
denote that a matrix A is positive definite (symmetric), and we write A > B to mean that A — B is positive semidefinite.

Let M be ap x g matrix, C and Dbe p x p and q x q positive definite (symmetric) matrices, respectively, and denote by
C ® D the Kronecker product of C and D.If A4, ..., A, are the eigenvalues of C, denote by C'/? the positive definite square
root of C whose eigenvalues are A)/%, ..., A,/* [19, p. 588, infra Theorem A9.3], and denote by C~'/2 the inverse of C1/2,

Following [19, p. 79], we say that a p x g random matrix B, has a multivariate normal distribution, denoted By, ~
N(M, C ® D), if the probability density function of By is

1
(27) 72|~ |D| P/ exp [—EUC_](BQ —~M)D"'(By; — M)/} :

B, € RP*4, As noted in [19, p. 79], this distribution is related to the classical multivariate normal distribution as follows:

Let T be a rectangular matrix with columns £, .. ., t,, and define the vector vec(T) as
4
vec(T) = | :
t

Then By; ~ N(M, C ® D) is equivalent to vec(B},) ~ Npg(vec(M’), C ® D).
Lemma 2.1. Let B;; ~ N(0,C ® D), A > 0beq x q, and u € RP. Then
Eexp(—u'B;,D"'AD"'B,,u) = |I, + 2(u/Cu)AD ™| /2, (2.1)

Proof. Because B;; ~ N(0, C®D), equivalently, vec(B},) ~ Npq(0, C®D), then it follows that D“/ZB/lzu ~ Ng(0, (u'Cu)ly).
Hence,
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D ?B,uu'B;,D~"/* = (D"V/?B\,u)(D"/*B,,u) = (W' Cu)W,
where W ~ W, (1, I;), a Wishart distribution with 1 degree of freedom. Then, (2.1) follows from the well-known formula
for the moment-generating function of the Wishart distribution. O

Suppose that W ~ Wy(a, A), a Wishart distribution, wherea > d — 1and A > 0,i.e, W isad x d positive definite
random matrix with density function

1
204/2 | A|9/2 Ty(a/2)
W > 0, where

d 1
T4(a) = pi@-1/4 EF <a — 50~ 1)) ;

Re(a) > (d — 1)/2, is the multivariate gamma function [19, p. 62].
We will need some well-known properties of the Wishart distribution. For ease of exposition, we collect together these
properties. In stating these results, we partition the matrices W and A into p and q rows and columns, i.e.,

Wy Wy A Ap
w = N A= 5
(W21 sz) (A21 Ao
where Wy and Aqy are p X p, Wi, = W, and Aj; = A}, are p x g, and W, and Ay, are g x q. We set Wy, =
Wi — W12W2’21W21 and define A 1., similarly.

1
|W| 292D exp <_5tm—lw) , (2.2)

Proposition 2.2 ([17, pp. 142-143, 262], [18, pp. 310-312], [19, pp. 93-96, 117]). Suppose that W ~ Wy(a, A). Then,
(i) Wiy and {Wsy, Wy} are mutually independent, and Wi, ~ Wp(a — d 4 p, A1)
(ii) Wia|Wa ~ N(A12A5,) Was, Ajio @ Way).
(iii) If A1z = O then Wiy.5, Wyy, and Wy, W,,,' Wy, are mutually independent, and Wi, W, Wa ~ W, (d — p, A112).
(iv) For k < d, if M is a k x d matrix of rank k then (MW ~'M')"! ~ W(a — d + k, (MA~'M’)~"). In particular,
if Yisad x 1random vector which is independent of W and satisfies P(Y = 0) = O then Y is independent of
YAT'Y/ YWY ~ x2

Lemma 2.3. Suppose that B ~ Wy(n — 1,1) and t € C, where Re(t) > 0. Then

1
Ell, + tB~'|7"* = Eexp (—Eth]Qz) , (2.3)

where Q ~ anfq, Q ~ quy and Q; and Q, are mutually independent. In addition, if C is a q x q positive semidefinite random
matrix that is independent of B then, for t € R,

E|l, — 2itCB™'|7"? = Eexp(itQ; 'V'CV), (2.4)

where V.~ Ny (0, I), Qy, and C are mutually independent.
Proof. LetV ~ N,(0, I;), so that V¥V’ ~ W,(1, I;), and let V be independent of B. By the formula for the moment-generating
function of a Wishart matrix, E|I + tB™'|~'/2 = E exp(—3tV'B~'V). By Proposition 2.2(iv), V'V/V'B'V ~ x2_; also,
V'V /V'B~'V is independent of V, so we may write V'B~'V in the form
_ — _ L —

VB'V = (WV'V/VB'V) V'V =0Q,'Q,,

where Q; = V'V/V'B~'V,Q, = V'V ~ xZ2,and Q; and Q, are independent. This establishes (2.3).
The proof of (2.4) is similar. Note that
E|l, — 2itCB~'|7"? = Eexp(itV'c'/?B~'C'/?V)
= E exp(it(C'?V)B~'(C'?V)). (2.5)

By Proposition 2.2(iv),
_(crvy«c'ryy v'cv 5
- (Cl/ZV)/B—l(Cl/ZV) T v/Cl\2B-1cl/2y Xn—q
and Q; is independent of V and C. Therefore

V'cv
V/Cc1/2B-1c1/2y

and in conjunction with (2.5), we now have (2.4). O

1

-1
V,C1/2871C1/2V — ( ) V/CV é V/CV/Q]_17
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3. The distribution of &t

11 Zi2
X1 I
p and g, respectively, and X4, X1, = X, and X,; are of order p X p, p x g, and q x g, respectively. We assume throughout
that n > q + 2 to ensure that all means and variances are finite and that all integrals encountered later are absolutely
convergent. We will use the notation T = n/N for the proportion of data which are complete; and we denote 1 — t by 7, so
that T = (N — n)/N is the proportion of incomplete observations.

Define sample means

We partition g and X in conformity with (1.1), writing u = (Z;) and X = ( ) where u, and u, are of dimensions

(3.1)
B 1 N . 1
PN
Jj=n+1 j=1
and the corresponding matrices of sums of squares and products by
n n
An=)Y X—X)X-X). Ap=A,=> X-X)(Y,—Y),
=1 =1
! ! (3.2)

n N
Apn=Y =YD - Y, Apy=) ¥-Y)(¥—-Y).
=1 =1

By Anderson [3] (cf. Morrison [5], Anderson and Olkin [8], Jinadasa and Tracy [9]), the maximum likelihood estimator of u
isgt = (g;) where
By =X —TApAy,, (Y1 - Yy), =Y. (3.3)

The estimator i, is sometimes called the regression estimator of w, [21, p. 594]; this terminology stems from a well-known
procedure in sampling theory in which additional observations on a subset of variables are used to improve estimation of a

parameter.
Introduce the matrix
1 _ _ 1
*(Zn - Tzlzzzz]Zm) —Xp
=1n N
L b)) ! X
N2 N 22
1 T Y12 0
_N’HE( 0o o) (3.4)

where we have applied the standard notation X1, = 11 — X12 ):2_21 ¥o1.
Here and throughout the paper, we use the notation “R; £ R,” whenever two random entities Ry and R, have the same

e e . . . . £
probability distribution. If R; is a statistic that depends on a sample size N, then we use the notation “R; — R, asN — co”
to denote that Ry converges in distribution to R, as N — oo. If Ry and R, are real-valued random variables, then we write

L £
“R; > Ry” or “Ry < Ry”if P(R; > t) > P(R, > t) forall t € R.

Theorem 3.1. The maximum likelihood estimator Ji satisfies the stochastic representation

z 12 rc1)2

~ T

siwn (G) (557) >
1

where Vi ~ Np4(0, £2), V, ~ Ny(0,1,), Q1 ~ Xr%—q’ Q ~ qu, and Vi, Q1, Qy, and V; are mutually independent. Further, i,
and Jt, are mutually independent if and only if X1, = 0.

The representation (3.5) will be seen later to provide fundamental insight into the probabilistic behavior of & and
inference about p.

We remark that the appearance of stochastic representations in the context of monotone samples is not new; in testing
that, in a monotone sample from a normal population, missingness is completely at random, Little [22] proposed a test
statistic and derived a stochastic representation for its null distribution.

The asymptotic distribution of it for large values of N or n can also be deduced from (3.5). For instance, if n is fixed and

1 210"2 g), a singular matrix, hence v/n(it; — f;) X ):}{,ZZ(VH + 4/Q2/Q;V,) where Vi and V,

are independent, identically distributed N, (0, I,,) vectors. We also obtain the following result from (3.5).

N — oothen 2 — n~
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Corollary 3.2. Supposen, N — oo withn/N — §,0 < 6 < 1. Then
o~ L — X 2 0
\/N(M—IL)—)NHq(oy):-I-((S 1—1)< })] 0))

Proof. Asn — oo, note that Q,/Q; ~ qu/anfq — 0, almost surely. Also, from (3.4), as n/N — §, Cov(\/ﬁvl) =N —
T+GT-1) (zlol'z g) . Hence the result follows. O

We shall also derive from (3.5) some properties of the moments of %. Throughout, we use the notation (a); = a(a +
1)---(a+j— 1), wherej =0,1,2, ..., for the shifted factorial; we denote by 1, and iy, the rth components of u, and
1L, respectively, and by E (71, — t1,)¥ the kth central moment of 7z;,. The following results generalize from the case in which
p = 1results of Morrison [5].

Corollary 3.3. (i) All odd central moments of fi1, are zero. In particular, Ji is unbiased.
(ii) For n > q + 2, the covariance matrix of I is

- 1 —-2)t

(iii) Denote by wj and (X11.2); the (i, j)th entries of $2 and 11, respectively. Then the even central moments of i1, are
S )
N k) < [k (39, . (7 j
E(f@yr — pin)* = )0 | - G ) (3.7)
r r k' FZO ] (_%(n _ q) + 1)] m n T
fork < (n—q)/2.If k> (n — q)/2 then E(f11, — p1,)?* does not exist.

We note that the unbiasedness, and the odd central moments, of & can be derived from (3.3) and the sampling
distributions of the means and covariance matrices appearing there; see Kanda and Fujikoshi [15], and Fujisawa [23].

Proof of Theorem 3.1. We shall establish this result through an analysis of ¢, the characteristic function of i, simplifying
expressions for ¢ until we recognize that we have obtained the characteristic function of the right-hand side of (3.5).
Because t = 1 — 7 = n/N then, by (3.1),

ﬁl = )_( — fAlZAz_zlyn(Yl — ?2), ﬁz = Y = ‘L'Yl + ‘E?z

Fort = (g) € RPH9, the joint characteristic function of I = (%;) is

b(t) = EeltiP1 57
= Eexp[i (}X — Tt{ARAS, (Y1 — Ya) + T6Y; + T Y5)
= E exp[i (t;X + (18, — TA;, Apt)'Y1 + T(t; + Ay, Ant)'Ys)].
Observe that

- -\ /
A Ap S (Xi— X\ (X —X

= - -] ~W, -1,
<A21 Az Z Y-Y ) \Y,—-Y, pran = 1.5),

j=1

X A1 A v ; .
and also that (1—,1), <A21 Azz,n)' and Y, are mutually independent; therefore

¢(t) = E[AlzaAZZ,n]E{)_(,l_ﬁ) exp [l(t;x + (th — ‘L_'Az_zl,nAﬂtl),Y])] El_fz exp [I'L_'(tz +A2_2{HA2]I])/?2] .

X

Because (1—(1) ~ Np4q(n, n'E)and Y, ~ Ng(p,, (N — n)~'X,,) then, on applying the usual formula for the characteristic

function of the multivariate normal distribution and simplifying the algebraic expressions, we obtain
o(t) = exp | itip, +it,p —it’z t, | exp —lt’): t —ltt/): t
1™1 212 2N2222 2n1111 n2211
1._ _ _ 1_ _
X E{A12~,A22,n] exp |:_2nTt{Alezzl,nEZZAZZl,nAﬂt] —+ n”{AlZAzz],nZZItl} . (38)

By Proposition 22(1), (11)Y A12|A22,n ~ N(Z1222_21A22,n, Y12 ® AZZ,n) and A22,n ~ Wq(n -1, 222). Making the
transformation from A, to Bj; = App — 21222_21A22,n, we have Byz|Azn ~ N(O, X112 ® Ay ). After a lengthy, but
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straightforward, calculation, we find that the expectation in (3.8) equals
1_ _ 1 - -
exp [%rt;zlzzz;zmn] Eay, , EiB151Az,. ) €XD [—%rtgslezzfnzzzAzz{anzn} . (3.9)

Applying (2.1) with C = X412, D = Apnp A = Xy, andu = (%/Zn)l/ztl, the inner expectation in (3.9) is seen to

equal |Iq + n*]f(t{zn.zt])EzzAz_zlm 71/2; inserting this result in (3.9), substituting the outcome in (3.8), and simplifying

the resulting expression, we obtain

|71/2

, 1 1= _
B(t) = exp (u/u - 5t/@t) Epyy o |lg + 07 T (41 Z10100) A5, : (3.10)

where £ is defined in (3.4). Because Ay, ~ Wg(n — 1, ;) then By, = ):2_21/2A22,n):2_21/2 ~ Wy (n — 1, I); therefore, by
(2.3) of Lemma 2.3, the expectation in (3.10) equals

Eg, g + ' T(t;Z1128)Bs, | % = Eexp (—7Q; 'Q t; Zq1.2t1/2n) (3.11)

where Q; ~ erfq and Q; ~ X; are mutually independent. Substituting (3.11) in (3.10), we have

1
B(t) = exp (it’u - 5t’SZt> Eexp (—7Q; 'Qx tZ112t1/2n)

Eexp (it (n + V1)) exp (—7Q; 'Q t; 11281 /2n) , (3.12)
where V; ~ N,,4(0, £2) independently of Q; and Q,. Furthermore, by writing

Eexp (—7Q; ' Qo £ Z112t1/2n) = Eexp (i(fQ;lqz/n)”2 t{):}{?zvz) ,

where V, ~ N, (0, I,) independently of V3, Q;, and Q,, and substituting this latter result in (3.12), we obtain (3.5).
Finally, note that by (3.5), i; and &, are independent if and only if V;; and Vi, are independent, equivalently, £ is
block-diagonal. However, by (3.4), £ is block-diagonal if and only if X1, = 0. O

Remark 3.4. As an application of Theorem 3.1, we consider the problem of deriving a 100(1 — «)% confidence interval for
a linear combination v'u, where v € RP* is specified. Writing v = (3;) where v; € RP and v, € RY, it follows from (3.5)
that

V(L — 1) Z 0V + (2Q/nQ) v 15 Vs, (3.13)

To obtain an approximate confidence interval for v’ u, we approximate the distribution of v’ (it — ut) by a normal distribution,
N(0, 62), where 6% = Var(v'it). By (3.6) and (3.13),
1 n—2)t
92 = —vXp + ¥V;ZH.291.
N nmn—q—2)
Using the approximation v (& — ) = N(O, 62), we obtain an approximate 100(1 — «)% confidence interval for v'u as
VL F 2420, Where z,, > is the usual percentage point of the standard normal distribution, and

~ (1 n—2)7T < 12
0=—-vEv+ —FVTyv |

N nn—q-—2)
where the estimators ¥ and ’)51142 are defined in (4.1). To obtain a rigorous bound on the error in the above normal
approximation, we apply the arguments in Section 6 and deduce that if f; and f, are the density functions of v'(i — p)
and N(0, 92), respectively, then there exists a universal constant C > 0 such that sup,.z |f;(t) — f2(t)] < C V11201

Proof of Corollary 3.3. In the case of (i), denote by w1, Vi, and (E}{?ZVQ)T the rth components of uq, V4, and Z}{?ZVZ,
respectively. By (3.5),

o~ oL —
A — i = Vir + (Q/nQ) (215 Va)r- (3.14)

Because the distributions of V; and V, are symmetric about 0 then &1, — (1, £ — (1 — m1r), so it follows that all odd
moments of Zi1, — 1, are equal to zero. In particular, E(fi1,) = w1, for all r; therefore ft is unbiased.
The proof of (ii) follows directly from (3.5).
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To establish (iii), we apply the binomial theorem to (3.14). Noting that the odd moments of V7, and (z}{?zvz), are zero,
we obtain

. : 2j
E(fyr — )™ Z( ) @MV de ((1hvr)

Because V;, ~ N(O, w,;) and ():}{_zzvz), ~ N(0, (Z11.2);r) then

Evlz(k_J) (Zk 2]) wk—j
r m
(k —j)1 2k
and

j 2
E ((Z%_zzvz)r> 7 = (;]2)1 (Z112)m) -

By standard calculations, E(Q3) = 2/(1¢); and

. (L ) i< (n—
EQ) = (1)J/Z< S—o+1) . ifj<®-q/2,

j
00, ifj > (n—q)/2.
Combining these results and simplifying the resulting sum, we obtain (3.7).
Finally, E(ji1, — p1,)?* diverges for k > (n — q)/2 because E(Qf("_‘n/z) diverges. O

4. Some properties of b

In this section, we list some properties of 3 that are needed in Section 5. The proofs of these properties all are provided
in the companion paper [20].
By Anderson [3] or Anderson and Olkin [8] (cf. Morrison [5], Giguére and Styan [ 14]), the maximum likelihood estimator

of TisT = @; i”) where, in the notation of (3.2),

—~ 1 _ 1 _ _
= E(An — A12A221,,1A21) + ﬁAlezzlynAzz,NAz;_nAn,

s o 1 _

=3, = NAQAZ;’"AZZN, (4.1)
S = 24

22 — N 22,N -

Proposition 4.1 ([20, Proposition 3.1]). Define A11.2n = A11 — Alez_zl,nAﬂ,

N
B, = Z Y; — o) (Y; — Y2,

Jj=n+1

B, = nz(Y; — Vo)(Y; — Yy,
and B = B, + B,. Then

s _(An Aqp - (Ai2n O ApAy,, 0\ (B B\ (A} Ay 0
nz_r(A21 Am>+r< 0 0)—1—1( 0 1,)\B B o 1) (4.2)

where (g; A’Zfﬂ) ~ Wpyq(n—1, X) and B ~ Wy (N —n, ;) are mutually independent. Moreover, Ny, ~ Wy(N—1, Z).

We will also need some results on the matrix F-distribution. A ¢ x q random matrix F > 0 is said to have a matrix

F-distribution with degrees of freedom (a, b), denoted F ~ Fflqz, if F £ B'2AB 2, where A ~ Wy (a, Z3,) and

B ~ Wq(b, X5,) are mutually independent. Necessarily, we require b > g — 1 to ensure that B is nonsingular, almost
surely. If both a, b > q — 1 then F is nonsingular, almost surely, and its density function is

Iy ((a+ b)/2) IF |—a—j(q+l)/2 I, + F| @2,
[q(a/2)Tq(b/2)
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F > 0.1t is well-known [19, pp. 312-313] that if A ~ Wy(a, X,,) and B ~ Wy (b, X»,) are independent witha, b > q — 1
then both A'/>B~'A"/ and B~"/>AB~"/% have the F) distribution; also, if F ~ F.) then F~! ~ F{"". Note that for g = 1, the
notation Féq is a slight departure from the notation for the classical F-distribution, for F“b = x; /Xb

Proposition 4.2 ([20, Propositions 3.2, 3.4]). Suppose that X1, = 0. Then
(i) Azz n A11.2.n, A12A22 2A21, By, X, Yy, and Y, are mutually independent. Also, B, and Y are independent.
(ii) 211 has a stochastic representation,

-1/2 £ 1/2

1
RS D W+ Wl/z( +F)W, (4.3)

where Wy ~ W,(n —q — 1,1,), W, ~ W,(q, I), F ~ F,f) n.n—qip—1- and Wi, Wa, and F are mutually independent.

Let O(q) denote the group of g x q orthogonal matrices. The Haar measure on O(q) is the unique probability distribution
on O(q) that is invariant under the two-sided action of O(q). For p < q, denote by S, 4 the Stiefel manifold of all p x q matrices
H; such that HiH; = I,. It is well-known [19, p. 67] that there exists on S, ; a unique probability distribution which is
left-invariant under O(p) and right-invariant under O(q); we refer to this distribution as the uniform distribution on Sp 4.

Let H € O(q) be a random matrix which is distributed according to Haar measure. Expressing H in the form H = (g;)
where H; € S,  then H; is uniformly distributed on S, 4. Conversely, given a uniformly distributed H; € S, 4, we may

complete H; to form a random g x q orthogonal matrix H = (Z;) having the Haar measure on 0(q).

Lemma 4.3 ([20, Lemma 3.3]). Let p < q, F ~ Fff’l),, H, be uniformly distributed on S, 4, and F and H; be independent. Then

Hl FH/ F(p)

a.b—q-tp- Furthermore, H,FH; £ F14, the principal p x p submatrix of F.

. . o o1 . . .
We also have a stochastic representation for X1, X,, , the estimated regression matrix.

Theorem 4.4 ([20, Theorem 3.6]). For arbitrary X1,

S o1 L — — -
0%, = 2%y + 2 AWK E,)

where W and K are independent, W ~ W,(n — q+p — 1,1,), and K ~ N(0, I, ® I,). In particular, flzfg; is an unbiased
estimator of $1,%;,', and

12 <o-1 — S o1 — —-1/2
2P C0E,, — EnE)EnGnE, — EnZy) 5y ~ P

q.n—q+p-1- (44)

By reparametrizing the space of positive definite matrices [ 18, Proposition 8.7], we may write

s (L, A\ (Ayw O\(IL 0
E_(o 1q>(o Ap)\Ay 1) (4.5)

This defines the positive definite symmetric matrix A = (%; 212

called the partial Iwasawa coordinates of 3 [23]. Inverting (4.5), we obtain

271_< I, 0) A7 o <1p _le)
—An L)\ o Aa,)/\0 L

—( A _An A12
= -1
A21A11 Azz +A21A11 A12
Therefore the correspondence between Aand ¥ is one-to-one, with inverse transformation

Y11= A+ ApApnAs, Y12 = ApAn, X = Ay,
where, by (4.1),

) and the set of submatrices {An, Au, Azz} are also

o~

-~ 1
A =22 = HAll-Z,nv
-~ ~ o o -
A=Ay =33, =ApAy,,. (4.6)

-~ =~ 1
Ay =Xy = —Ann.
22 2 = 2N
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5. Ellipsoidal confidence regions for u

The problem of testing Hp : 0 = fty against Hy : i # pgo,where i is a specified vector, has been studied extensively for
data of the form (1.1). Bhargava [4,10] obtained the likelihood ratio statistic for testing Hy against H, and derived a stochastic
representation for the corresponding null distribution; Morrison and Bhoj [24] studied the power of the likelihood ratio
test; Eaton and Kariya [6] obtained invariant tests under data structures more general than (1.1); and Krishnamoorthy and
Pannala [25] provided alternatives to the likelihood ratio test.

On the other hand, confidence regions for g have received less attention. Krishnamoorthy and Pannala [26] noted that
the likelihood ratio criterion leads to confidence regions which are non-ellipsoidal in shape and raised the problem of
constructing ellipsoidal confidence regions for u. This problem calls for a generalization of Hotelling’s T2-statistic for the
case in which the data have monotone structure (1.1). Following [26], we study the statistic

T = (& — )/ Cov(@) ™" (& — p, (5.1)
where, by (3.6),

oA l"‘ (n - Z)f f]].z 0

Cov(p) = NZ + 7}1(“ P ( 0 0) (5.2)

is the maximum likelihood estimator of Cov(j). Krishnamoorthy and Pannala [26] derived F-approximations to T2 via
the method of moments and used simulations to illustrate that (5.1) has good power properties in comparison with the
likelihood ratio test statistic.

A more profound motivation for the T2-statistic in (5.1) is to be found in the results of Eaton and Kariya [6, p. 657]. They
prove that the problem of testing Hy : 4 = 0 against H, : p # 0 is invariant under a certain group of transformations and
that a maximal invariant parameter is the pair (y11.2, y22), where

yirz = (g — T12Z5) 1) T, (0 — Z12 350 1), Vo = 1y E5 .

Therefore, in performing inference for g, it is natural to utilize the corresponding maximum likelihood estimator (¥11.2, 722),
where

~ D N PO N P ~ PSSR

Virz = (0 — Z12Zo; 1) T11, (1 — 12295 Wy), Va2 = Wy Xy My. (5.3)
By a well-known identity [17, p. 63, Exercise 2.54],

WE = (1 — Z12Z5) 1) T3 (0 — Z12Z0) 1) + #5205 1y, (5.4)
ie, y112 + y22 = WX . Therefore ﬁ/fflﬁ is the sum of the maximum likelihood estimators of the maximal invariant
parameters. On replacing X by Cov(f) to adjust standard errors, we see that T> may be viewed as a modification of the
maximum likelihood estimator ;1. + 7.

We turn now to the distribution of (5.1). A consequence of a result of Romer [27, Proposition 3.2.2] is that the T?-statistic
(5.1) is invariant under the data transformation

—-1/2 -1
X\, (Zn2 91/2 L =Xy ) (X—m , j=1,....n,
Y 0oz, 0 I Yi— 1, (5.5)

Y, — 2,7 (Y —ny), j=n+1,...,N,
which transforms the original data into a two-step, monotone incomplete sample from the Np,4(0, I,4) population.
Therefore, in establishing any result on the distribution of the T?-statistic (5.1) we shall assume, without loss of generality that
p=0and X = I,
Introduce the notation

14 (n—2)Nt (5.6)
YT T =g ‘
then, by (5.2),
o 5 _ T2 0\ _ (Tu+(—DTiua Tp
NCov(n) =X+ (y — 1) ( 0 0) = < S, 5
Applying a well-known formula (see [17, p. 638]) for inverting a partitioned matrix, we obtain
—1F a1 —15-1 ~1, (0 0
N 'Cov(ip)" =y X +(0—-y7) 1. (5.7)
0 x,

5.1. The asymptotic distribution of the T?-statistic

Proposition 5.1. If n, N — oo withn/N — & € (0, 1] then T? 5 Xoiq:
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Proof. Without loss of generality, we assume that 4 = 0 and X = I,,,,. Then, by the Law of Large Numbers, ™! (ﬁ; A/Z]22n>

and N~1Ay, y each converge to I,.q4; hence, by (4.1), 3 - I, 4, almost surely. Therefore, by (5.2),
0
NCoV(@) = Iyyg + (67" — 1) (0 0)

almost surely. Then, the result follows from Corollary 3.2 and an application of Slutsky’s theorem to '/Z/C/o\v(ﬁ)*]ﬁ =
3 — -1 .
(VNR) (NCov(m)) (VNp). O

Next, we consider the case in which N — oo and n is fixed. By (3.6),

o~ n—2 2112 0
Cov(p) — Y ( 0 0).
This asymptotic value of Cov(ir) indicates that large-N inference for u, should be performed entirely with g, and such may
be done in a straightforward manner using the exact distribution: W(ﬁz — y) ~ Ng(0, Xp,). As regards inference for 4,
we utilize its corresponding Hotelling’s T?-statistic, T12 = (U; — ,Ll)f&/(ﬁl)*l (1 — ;). Under translations of the data,
ie,Xi > Xj—py,j=1,...,nandY; > Y; — u,,j = 1,..., N, the statistic T? is invariant; therefore its distribution does
not depend on . However, le is not invariant under all transformations of the form (5.5) and therefore its distribution is
dependent on X. Thus, we derive the limiting distribution of le assuming that X5 = 0.

Theorem 5.2. Suppose that N — o0, n is fixed, and X1, = 0. Then,

nin—gq-—2 2
T2 5 U ) X" 14 %), (5.8)
2
n—2 anq Xn—q

where all chi-squared random variables above are mutually independent. Further, if both n,N — oo with n/N — 0 then
2
T; —> Xp
Proof. We suppose, without loss of generality, that 4 = 0 and X = I, 4. By (5.2),
— 1~

Cov(®,) = T+ s, =t 4213
Cov = =
1 N 11 N 11-2 N 11 N 11-

By (4.1), N‘lfn — 0, almost surely and by (5.6), (y — 1)/N — (n — 2)/n(n — q — 2) as N — oo. Therefore, it suffices to

find the limiting distribution ofu,1 1 u1
Ajp A

Because {X,Y;,Y,} and (Az] Ay n

71l{A11, A1z, Ay} ~ Ny(0, 07 (I, + TA12A5)). Therefore, for t € R,

) are mutually independent then it follows from (3.3) that for every N,

oy T I PO
Eexp(itw A, It;) = Eexp (1t trA, Mlﬂ])
= El, — 2itn A, (I, + TA Az [~ V2.
As noted in the proof of Theorem 3.1, nZn = Ay120 ~ Wp(n —q — 1,1, and Ku and 212 are mutually independent.

Applying (2.4) of Lemma 2.3, we obtain

PR DY o -~ o~ -1/2
Eexp(itm) Ay, y) = E |, — 2itQ;" (I, + A1z Az)|

= Eexp (itQ; 'Vy (I, + leZKZI)VZ) )

where Q; ~ V, ~ Np(0, I), and Q; and V, are mutually independent. Noting that T — 1asN — oo, it follows that

Xit—p—q»
ﬁ;K;ﬂﬁ] £ Q; 'Vy(, + F)V,, where F = A A, is independent of Q; and V.

Apply the polar coordinates decomposition V, = Q,’°U, where Q, = VJV, and U = V,/(V}V5)"/2. Because V, ~
N, (0, I,) then Q, ~ sz; U is uniformly distributed on SP~!, the unit sphere in R?; and Q, and V, are mutually independent.
?l:en |f/2/(1p+F)v2 = QU'(I,+F)U = Q;(1+U'FU).By (4.4).F ~F?)__ and,bylemma4.3,U'FU ~F{) , = x2/x>.

erefore,

2 2 2
el L X £ X X
lL/lAlllLl_>Q11Q2<l+ zq>= 2p (1+ 2q>’

n—q Xn—p—q Xn—q

where all four chi-square variables are mutually independent, so the proof of (5.8) is complete.
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As regards the case in which n, N — oo with n/N — 0, it follows from the Central Limit Theorem and (3.5) that
n'2 @, £ V> ~ N, (0, I)). Also, by applying the Law of Large Numbers to (4.1) and by (5.2), we obtain n fo\v(ﬁ]) — I,
almost surely. Therefore, as n, N — oo with n/N — 0, T2 = (n"/2fi;)' (n Cov(ji,)) " (n"/*fi;) £ vz vy ~ Xy O
Remark 5.3. For the case in which X is block-diagonal, n is fixed, and N is large, we can derive from the previous result a
stochastic inequality for le. By (5.8), that limiting random variable clearly is stochastically greater than

nn—q—2) X,
n—2 X,f_p_q

)

a multiple of an F-distributed random variable. Therefore, in that case, for t > 0,
nn—q—2 >
p(rn—a-2) zxp <t
n=2  Xipg

n—=2)n—p—q)
P<F”’"7”7" = Thn—q-2p t)’

and this provides an upper bound on the large-N distribution of le.

lim P(T? < t)
N—oo

IA

5.2. Probability inequalities for the T2-statistic

We now study the small-sample behavior of the T2-statistic, deriving probability inequalities which lead to conservative
confidence levels for ellipsoidal confidence regions for w. We begin by deriving an upper bound on the distribution function
of T for the case in which both n and N are fixed.

Proposition 5.4. For t > 0, P(T? <t) <P (Fgn_q < (N — q)t/Nq).
Proof. Without loss of generality, we assume that 4 = 0 and X = I, 4. By (5.7) and (5.11), we have

—~ __4,_N/O 0 Ny —1) [0 0 0 0
V@' == et )+ ) =N( o)
y \0 X )4 0 %, 0 %,

°C ~ a1~ . . . . . . . .
therefore T2 > N [,L/ZEZ;[LZ, and then the conclusion follows from the distribution of the classical Hotelling’s T2-statistic.
O

In contrast to the preceding upper bound, the derivation of a lower bound on the distribution function of the T?-statistic
requires much greater effort. We shall prove the following result.

Theorem 5.5. For t > 0,

2 2—1% @ & 12012 | =1/201/2\°
P(T §t)zP(Nn Q1<]+Q5)+Q5<T Q2 +22Q)") =), (5.9)

where Q1 ~ %2, 0 Q2 ~ %7 Qs ~ xZ2, Qu ~ X3, Qs ~ x3,and Qi, ... ., Qs are mutually independent.

Remark 5.6. In practice, the right-hand side of (5.9) can be calculated by numerical simulation, and this is simpler than
simulating the distribution of T2 directly from its definition.

Lemma 5.7. Define the modified T?-statistic,
-1
~ ~ A A ~
T>=N@ —p) (A“ A 12 ) (JL— ). (5.10)
21 22,n
Then T < NT2.
Proof. By (5.7),

. Ne: Ny—1)/0 0
Cov(@) ' = -3 '+ Ny =1 ( —1) )
Y 14

Also, by [17, p. 63, Exercise 2.54],

s (0 0 (5.11)
=\lo =) :
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where the ordering is in the sense of positive semidefiniteness; therefore

— N~_ N(y —1)~_ ~
Cov(@) '< -3 '+ LE o NE
Y 14

By (4.2),

§>1 Ay Ap ) _ 1 (A Ap

—n \Ax Axp, N \A21 Axnn)’
therefore,
1
-1 Ay Ap
) N
<A21 A n)

Consequently,

-1
— A A
= (G ar)

and then the conclusion follows immediately. O

Proof of Theorem 5.5. Because we are analyzing the distribution of T2, which does not depend on u or X, we assume,

~. o£L ~.
without loss of generality, that g = 0 and ¥ = I,,. As shown in Lemma 5.7, T> < NT?; therefore T? < NT?, so it suffices
to derive a lower bound on the distribution function of T2.
We apply to (5.10) the quadratic identity (5.4), obtaining

NT'T? = (1 — A12Azz ) An 2, (g — AlZAz_zl,nﬁz) + /Iilez_zl.nﬁz-
By (3.3), i; — A12A2_2 oy = X — A12A2_2,,,Y1 and Ji, = Y; therefore
NTIT2 = (X — ApAy, Y)'ATL, (X — ApAy) Y + YA, Y.

Recall that Aj12, ~ Wpyq(n — q — 1, I,4,) and is independent of {X, Y;, Y2, A1, Az, 5} (see Proposition 4.2(i)). Hence, by
Proposition 2.2(iv),

(X —ApA Y1) (X —ApA YY)
0, = 1287 0 11 128230 11 ’VX,f—p—qv (5.12)
X - A12A22 YAy ), X — ApA, YY)

and Q; is independent of X — A12A2’2,n?1. Therefore
4t L o1, EPRC L 1 g 1o
NT'T? Z Q' (X — ApAy, Y1) (X — ApAy,) Y1) + YA, Y,

where Q; is independent of {)_( Y., Y5, Ap, Ao}

By Proposition 2.2(ii), A12|A2., ~ N(0,I, ® Ay ). Let B, = A12A22 o » S0 that By|A n ~ N(0, I, ® I); because this
conditional distribution does not depend on Ay; then By, also is independent of Ay, . Therefore, conditional on (Y1, Axnl,
the random vector X — A]ZA22 nY1 =X — 812A22 N Y1, viewed as a linear function of X and Bj,, is multivariate normally
distributed with conditional mean

E(X — BioAy, Y1 [{Y1, Ay n}) = E(X) — E(B12)Ay, ) Y1 = 0,

and, with € = Az;f Y: Y’AZ;,/1 , the corresponding conditional covariance matrix is

Cov(X) + E(B1Ay, 1 Y1Y{A, 12 B, (Y1, Apn)

= n"'I, + E(B12CB, |{Y1, Asz.n})-

Cov(X — Blzﬁgz,n ?1|{?17A22,n})

Because By; ~ N(0,I, ® I,), it is straightforward to show that E(B1;CB},) = (tr O)I,; therefore, Cov(X — BuA;;,{]Zl_/l
Y1, A ) = (17! + V1AL YD,
Having shown that X — Bqu_zl’{f]_(l |{1_(1,A22,n} ~ Np(0, n~ '+ ‘?{A;;,n‘_(l)lp)' we obtain
X - 312A2_21,{12?1)/()_( — 3121“2_21,{,21_’1)“1?1, Axn} = (”71 +Y; 1Ay n?I)QZ (5.13)

where Q; ~ X; independently of{fl, Ay n}.
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By the Cauchy-Schwarz inequality,
YA Y = (tY; + TY)) Ay (TY) + TY5)
= (c(FAZ, )" + 2087, ) 1)’ (5.1
therefore
@

1

~y L - - - — -4 =
NTIT? < = (7" + V1A, ) + (T(Y[A, YD) + T(VA5,) ¥2)/2)2 (5.15)

Denote by Amax (A3, ) the largest eigenvalue of Ay, ; by the definition of Amax (A3, ), we have Y/A2) Y; < Amax (A3 ) Y/Y;
forj = 1, 2. On applying these inequalities to (5.15), and noting that Amax(Az_;n) = 1/Amin(A22.n), Where Amin(Az2,5) is the

smallest eigenvalue of A,, ,,, we obtain

- iy - 2
Q, (n_1 Y)Y ) (T(Y[Y)2 + T(Y;Y5)12)

N2
Q] )\min (AZZ,n) )\min (A22,n)

Because ¥; ~ Ny (0, n~'I,) then Y|¥; = n~'Q; where Q; ~ xZ; similarly, Y;¥, £ (N — n)~1Q, where Q4 ~ xZ. Therefore

~, L
N7'T? <n

2
T]/ZQ1/2+.El/2Q41/2
Y- >+( : ) 516

)\min(AZZ,n) N)\min(AZZ,n)

Finally, we obtain a stochastic lower bound on Anin (A22 »). Forany t > 0, itis simple to see that the inequality {Amin (A22.n) >
t} is equivalent to {A,, , > tl;}. Therefore, applying the density function (2.2) of Ay, , ~ Wy(n — 1, I;), we obtain

/ |W|=9-2)/2 exp (—3tr W)
wer, 20 D92T((n—1)/2)
—q— 1
_ e—qt/z/ |W + tIq|(n q-2)/2 exp (—itl‘W)
w>0 21=042T ((n — 1)/2)
where the latter equality is obtained by making the transformation W — W + tl,. Because n > q + 2 then |W +

tly|"972/2 > |W|™=9=2/2 for allW > 0 and t > 0; applying this inequality to the integrand above, then the remaining
integral equals 1.

:
Therefore P(Amin(A2.n) > t) > e %2 forallt > 0, hence Amin(Azn) > g 'Qs, where Qs ~ x7; equivalently,

1

P(Amin(AZZ,n) > t)

’

£
1/Xmin(A22.n) < qQ5’1. Substituting this result in (5.16), we obtain

L o~ L Ni

2 ENP SN 2 (1 + &) + (r”ZQ;/Z + f”ij/z)
Q Qs Qs

The proof of (5.9) is now complete. O

2

Similar to Theorem 5.5, we can also obtain a lower bound for the distribution of the maximum likelihood statistic
Y112 + Y22 in(5.3).

Theorem 5.8. For t > 0,

2
P+ 7w =02 P (2 (1492 + & (20 + 220)") <), (517)
Q Qs Qs
where Qq, ..., Qs are as in Theorem 5.5.

Proof. Romer [27] has proved that the statistic 3;1., + 7, is invariant under the transformation (5.5), and therefore the
distribution of this statistic is not dependent on u or X. Hence, without loss of generality, we assume that 4 = 0 and
Z = Ip+q-

By (5.3),(3.3) and (4.2),

V12 + Vo2 = n(X — ApAy, Y1)'AL, (X — ApAy,) Y1) + NY' (A, +B) 'Y,
and A11.2.5, B, and {)_(, Y;, Yy, Ap, Ay, »} are mutually independent. Proceeding as at (5.12)- (5.13), we obtain

~ ~ £ Q a1l G - 1y
Yz + ¥ = a(l +nY{Ay, Y1) + NY' (A, +B)"'Y,
1

where Q; ~ anfpfq, Q ~ sz; and Q, @y, Y1, Yo, Az_zl,nv and B are mutually independent. Because Ay, + B > Axn,
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(in the positive semidefinite sense) then (Ay , + B)~! < Az_zl,nv and therefore ?’(Azz,n +B)lY < ?’Az_zl’n?. Applying the
Cauchy-Schwartz inequality at (5.14), we obtain

~ ~ £ Q a1l G a1l G — oAl O 2
Vitz + 7 < a(1 +nY[A5 Y1) + N (T(Y[A, YD) 4+ T(V,A5,) ¥2) /)"
1
To complete the proof, we apply the same arguments as at infra (5.14), and thereby obtain the inequality (5.17). O
6. A normal approximation to 7t

It would be useful to approximate the distribution of @ by a normal distribution for, in data analysis, such an
approximation would make the distribution theory tractable. One approximation arises from discarding the last term in
(3.5), sothat ;i ~ Np1q(p, £2). A second, and more accurate, normal approximation is L~ Np1q(p, £2), where 2 = Cov(ir)
is given in (3.6). Both approximations are easy to apply and are accurate if t ~ 1. However, the second approximation
is generally more accurate because it utilizes information arising from the second term in the expression for it; in (3.3),
whereas the first approximation discards that information. Therefore, we restrict our attention to the second approximation.

To quantify the accuracy of this approximation, we obtain an upper bound on the supremum, or L*°, distance between
the density and distribution functions of ft and its approximator. This will be done by applying an extension of the classical
Esseen inequality.

Proposition 6.1. For k = 1, 2, let Vi, ~ Ny(v, Ay). Denote by fi(-) the density function of Vi and let A = A1 — A,. Then there
exists an absolute constant Cy such that

d(d + 3) C, O\ @+2/@+3)
sup |fi(®) — HL(®)| < G )1/ (d _;_] 2> (tr A2)1/2+3) (6.1)

xeRd

Proof. The characteristic function of Vj is ¢ (t) = exp(it'v — %t/Akt), t € RY. Therefore, by the elementary inequality,
le=® —e~®| < |a — b|,a, b > 0, which is a consequence of the Taylor expansion of e~¢, t > 0, we have

|p1(t) — go(t)] = |elf (e T A1E/2 _ e=t'A2t/2y)

— |e—t/A<1t/2 _ e—t/Azt/zl

IA

1
5|t’At| < (trAHV2t't,

where the last inequality follows from the Cauchy-Schwarz inequality. It follows that, for hq, ..., hy > 0,

hy hq 1 hy hq
/ f lp1(t) — P (0)|dt f(trAz)”Z/ / t'tdt
—hy —hg 2 —hy —hg
d

2 -1
= 5= (@A) Phy - ha(hl + - 4 h).
On applying Theorem 3.1 of Roussas [28], we obtain

IA

hy hy
sup |fi(®) — HL(®)| < co<h;‘+-~-+h;1>+<2n)‘d/h fh lp1() — ¢ (0)|dt
- —Nd

xeRd
< Co(hy'+ -+ +hg") + Cihy - hg(h} + - - - + h}), (6.2)
where C; = w~4(tr A?)/2/6, and (j is an absolute positive constant, i.e., not dependent on d, fi, or f». It is simple to show
that (6.2), as a function of hq, ..., hy > 0, is minimized at (ho, ..., hg), where hy = (Co/(d + 2)C;)/“*® and therefore

(6.2) has minimum value d(C; hg” + Cohgl). Simplifying this expression for the minimum value, we obtain (6.1). O

We now obtain a bound for the L°-distance between f; and f, the density functions of & and its normal approximation
B~ Npiq(pe, Cov(p)).

Theorem 6.2. There exists a positive constant Cp 4 » such that

1/2(p+q+3)

sup [fﬁ(x) _fil(x” = Cp,q,n (‘E tr 2;%1,2) (6.3)

XcRP+4

Proof. Denote by Q the random variable (7Q,/nQ;)"/? in (3.5); then,

—~ Y12 O
u|Q~Np+q(u,sz+Q2< 0 0))

Because fL ~ Npiq(, Cov()) then, by (6.1), the L*°-distance between f3q, the conditional density of & given Q, and f
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satisfies

P+9P+q+3) G 201
su X ~(X)] < tr A /2(p+q+3)’
sup fao® ~ i@ < “e oo (g ) A

where
Aq = Cov(@IQ) — Cov(j) = (Q* — EQ ))(2“2 g)

Noting that fz (%) = Eqfajq (%) for all x € R, we have
sup |fa®) — fa®)| = sup [E(faio®) — fa(®)|

XERPH4 XcRP+4

sup Elfaio(®) — fa(®)]

XcRPHI

< Gqtr Z%1A2)1/2<”+q+3)E|Q2 — E(QY)| /et

IA

where C, 4 is the constant in (6.4). By Jensen’s inequality,
E[Q? — E(Q)|VPH) = E(IQ* — E(Q)[*) /2P
< (E1Q* — E(Q))FH+) = (var(@?) V2.
Because Var(Q?) = n~'tVar(Q,/Q;) and
Var(Q:/Qi) = E@Q)EQ;?) — (E(QEWQ; )’
_ 2q _ q
n—q—2)(n—q-4 (M—q—-2)7
then we obtain (6.3) with C, 4. = (n7'Var(Q/Qy))/2?+43¢, .. O

2

Corollary 6.3. For tq, ..., 4 q > 0,

P(ﬁ{m, wl < }) ((j]{m,-—uns;q})

j=1
Further,

p+q 1 p+q t p+q 5 1 3
P [T — wil < t<} > 20| ———|-1| -G, G | Ftrx7,,) /20t
D{ j j 2 ]11 2 Var(uj) p.g.n jl;[ j 11-2

Proof. Let R denote the rectangle [—t1/2, t1/2] X -+ - X [—tp1q/2, tp+q/2]. Then

p+q 1 p+q 1
P U — uil < =t _p i — il < =t
]l:]l {|N} :u]| =5 ]} |,:1| {“1«1 MJ| =5 ]}

(fa® — fa(®)) dx
R

- / 1 (%) — f (3
R

= Ifa — fiilloo VOI(R).
Then (6.5) follows from (6.3) and the fact that Vol(R) = ]_[jp;q tj. Next, by (6.5),

p+q 1 p+q 1 p+q - . ,
P m :“Lj — uil < th} >P m {|Mj_ﬂj| < Et]} — Cpqun l_[[] (Ttr¥i,,) 12(+a+3)

j=1 j=1 j=1

Because i — i ~ N,14(0, Cov(g)) then, by an inequality of Sidak [29],

p+q 1 p+q 1
p m{Wj il =g = 1:[1’ (|Mj -l = 2%‘)

i) |

Substituting this lower bound at (6.7), we obtain (6.6). O

P+
= Gpgn (1_[ tj) (Ttr 23, 204+,
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(6.4)

(6.5)
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Remark 6.4. For a given data set, we may apply (6.6) to obtain an estimated lower bound on the confidence level of
simultaneous confidence intervals for w1, ..., ip+q. Replacing each unknown parameter on the right-hand side of (6.6)
by its corresponding maximum likelihood estimator, we obtain

p+q — p+q ~
I [2@ (tj/z,/Var(uj)> - 1} — Gan | [ [ 65) GtrEy, )20,

j=1 =1
which is an estimated lower bound on the confidence level.

We can also obtain bounds on the supremum distance between the cumulative distribution functions of & and . In
the case of lower-orthant unbounded rectangles, we may apply the results of Sadikova [30] and Gamkrelidze [31] on
generalizations of Esseen’s inequality to derive an analog for cumulative distribution functions of Proposition 6.1. As an
indication of these results, we state without proof an analog of Proposition 6.1 for distribution functions for the case in
which d = 2. As before, suppose that Vi, ~ Ny (v, Ak) k = 1, 2, and denote by F, the distribution function of V. Further, let

A(k) denote the (i, j)th element of A, and define Ap = 5 L(Ay + diag(Ap)).
Proposition 6.5. There exist constants c1, ¢; > 0 such that, for T > 0,

1|4, . ~  ~
sup |F1 (%) —B(®)| < — | ST sinh(| A [T?)(tr (A — Az)?)!2

xeR2

L o ot (P maxa a5)) — cosh (12 min(a. 41)

(A(U (2))T2

2
ro (3140 — a2 ) T4 er .
j=1

By applying this result to & and ji, we obtain an analog of Theorem 6.2 for the case in whichp = q = 1.
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