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The prediction of blasting vibration characteristic parameters is very important to evaluate the situations of blasting 
vibration damage. Blasting vibration of rock mass is affected by lots of characteristics, such as charging parameter,
rock type and geological topography. The characteristics should be comprehensively considered in order to accurately 
predict the blasting vibration. Based on training and testing 93 sets of measured data in an open-pit mine, Support 
Vector Machine (SVM) and Random Forest (RF) methods are applied to predict the peak particle velocity (PPV),
first dominant frequency and duration time of first dominant frequency of blasting vibration. The other 15 groups of 
measured data are tested as forecast samples, of which the predicted results are consistent with the measured ones.
Results show that the prediction accuracies of SVM and RF models were acceptable. The average error rate of SVM 
is lower than results using RF, and the weight of factors is determined using RF. It is a new approach to predict 
destructive effect on housing under blasting vibration using SVM and RF, which can be applied to practical 
engineering.
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Abstract

1. Introduction

The blasting is a main means to excavate soil and rock in mining, transportation and hydroelectric 
projects. It will cause vibration which may be a hazard to the nearby buildings. How to accurately analyze 
and predict the rules of peak particle velocity (PPV), and then optimize the blasting design and 
construction, is a main method to decrease the damage caused by blasting vibration. At present, the 
prediction of the blasting vibration is widely calculated using regression analysis by Sadaovsk formula 
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according to monitoring data. The vibration velocity then could be predicted based on the regressed 
formula [1~2]. However, only two factors, charging amount and explosive distance, are taken into 
account in the formula. Thus usually it can not provide considerable accuracy in predicting vibration 
velocity. Because blasting vibration is not only affected by blasting parameters such as charging amount, 
delay time, explosive distance, but has something to do with geological conditions like elevation 
difference caused by geological topography, rock properties and structure of rock mass, etc[3~4]. There is 
a complicated nonlinear relationship between blasting vibration and these parameters, so it is difficult to 
utilize one empirical equation to embrace all these factors.

The methods to prediction on blasting vibration are of two types. One begins with forecasting 
blasting vibration characteristics such as amplitude, main frequency and duration time. Then safety status 
of construction can be judged by blasting vibration safety criteria and blasting vibration can be controlled 
at the end. This is the main method applied by most researchers. The other one predicts safety status of 
construction directly according to blasting parameters, site conditions, features of protected constructions 
and expert’s knowledge. Both methods require large amount of test data.

The empirical formula adopted in the first method to predict vibration magnitude is called Sadaovsk 
formula and its transformed formula. Through a great deal of practical monitoring and by regression 
analysis method to attain values of empirical factors, it aims to predict the PPV caused by blasting 
vibration. Due to too many factors affecting blasting vibration, the first method provides a poor accuracy 
in prediction. Lately, a number of researchers applied neural network model to predict vibration velocity 
and it achieved a good result. In Papers [5~7], charge amount and explosive distance are regarded as input 
data in a neural network model to predict the blasting vibration. The result shows that network prediction 
has a high accuracy than empirical formula prediction. In Ref [8], charge amount, explosive distance and 
elevation are regarded as input data and fuzzy neural network model is established. The model predicts 
blasting vibration in HeShan iron mine, with an average error of 5.58% to the actual value. In paper [9],
maximum charge amount at one time, total charge amount, delay time, explosive distance, elevation, 
duration time are regarded as input data and BP neural network model is established. Comparing the 
empirical data and the predicted data, it is showed that the predicted data is closer to actual data. In paper 
[10], diameters of blast hole, numbers of blast hole, horizontal and vertical explosive distance are 
regarded as input data and BP neural network is established. With predicting the PPV on the ground, it 
proves that it has a more accuracy than traditional regression statistics.

Besides the blasting conditions, the second method refers to many other affected factors like 
protected target, and involves more uncertainties. Based on rough neural network, Shi [12] established a 
predicting model to housing under blasting vibration. Dong [13] used Fisher discriminative models to 
predict surface mining vibration damage to masonry structure. Both of them achieved a good application.

It is inevitable to eliminate the negative sides caused by blasting vibration. Before blasting much 
importance should be attached to predict blasting vibration and measures should be taken to protect the 
relevant target. In most cases, the protected target is close to blasting source, so more accuracy of blasting 
vibration at close range is needed. It asks us to put forward a more creative and effective method to 
predict blasting vibration. The method should have more predicting accuracy, reflect the fact affected by 
various factors and predict main frequency and duration time of blasting vibration. Support Vector
Machine(SVM) and Random Forest(RF) were advanced and effective method for predictions. The paper 
takes blasting vibration on a practical copper mine for example. SVM and RF were used to predict
blasting characteristics, and the predicted results were compared and analyzed.
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2. Methodologies 

2.1  Review of SVM 

Support vector machine (SVM) is a new study method based on statistics theory. It is a machine 
learning theory frame and general way, established on a set of finite samples. Practical problems such as 
small sample, nonlinear analysis, local minimum points, can be solved by SVM. The basic conception is 
that through some pre-selected nonlinear reflection input data is reflected into a high dimensioned space 
in which the optimal classification hyper-plane is formed [13].

As to function fitting problems of SVM, it is actually a problem to fit data{ , }i ix y , (i=1,2,…,n), 
n

ix R∈ iy R∈ with function ( )f x w x b= • + . So according to SVM theory fitting problems function is 
given as 

1
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Where C is penalty factor, showing the penalty degree to samples of excessive error ε ; ( )i jK x x is 

kernel function, solving calculation problems of high dimension skillfully with introducing kernel 
functions. Kernel functions at present are mainly:
(1)  Linear kernel :

( , )K x y x y= •                                                                                                                                     （4）

(2) Polynomial kernel:

( , ) [( ) 1]dK x y x y= • +      ( 1,2, )d =                                                                                                 （5）

(3) Radial primary kernel function:
2

2
( , ) exp[ ]

x y
K x y

σ
− −

=                                                                                                              （6）

(4) Two layer neural kernel:
( , ) tanh[ ( ) ]K x y a x y δ= • −                                                                                                             （7）

2.2 Review of RF for regression [15]

Random forests for regression are formed by growing trees depending on a random vectorΘ such 
that the tree predictor h(x,Θ ) takes on numerical values as opposed to class labels. The output values are 
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numerical and we assume that the training set is independently drawn from the distribution of the random 
vector Y,X. The mean-squared generalization error for any numerical predictor h(x) is

2
, ( ( ))X YE Y h X−                                                                                                                                  (8)

The random forest predictor is formed by taking the average over k of the trees {h(x, kΘ )}.Similarly 

to the classification case, the following holds:
Theorem 1. As the number of trees in the forest goes to infinity, almost surrely,

( )2 2
, ,( ( , )) ( , )) .X Y k k X Y kE Y a vh X E Y E h XΘ− Θ → − Θ                                                           (9)

Proof: see Appendix I in Ref[15].

Denote the right hand side of (12) as PE∗ (forest)—the generalization error of the forest. Define the 
average generalization error of a tree as:

( ) ( )( )2

,PE ,X Ytree E E Y h X∗
Θ= − Θ

Theorem 2. Assume that for allΘ , EY = XE h(X,Θ ). Then

( ) ( )PE PEforest tree∗ ∗≤
where ρ. is the weighted correlation between the residuals Y− h(X,Θ )and Y − h(X,Θ ) where , ′Θ Θ
are independent.

Proof:

( ) ( )( ) 2

,PE ,X Yforst E E Y h X∗
Θ = − Θ                

                ( )( ) ( )( ), , ,X YE E E Y h X Y h X′Θ Θ ′= − Θ − Θ                                                   (10)

The term on the right in (10) is a covariance and can be written as:

( ) ( ) ( ) ( )( )2
( , ) /E E sd sd E sdρ ρ′Θ Θ Θ′ ′= Θ Θ Θ Θ Θ                                                             (11)

Then

( ) ( )( ) ( )2
PE PEforst E sd treeρ ρ∗ ∗

Θ= Θ ≤
Theorem (2) pinpoints the requirements for accurate regression forests—low correlation between 
residuals and low error trees. The random forest decreases the average error of the trees employed by the 

factor ρ The randomization employed needs to aim at low correlation.

3. SVM and RF models of blasting vibration characteristics prediction

3.1 Determination of model input factors
Excavation of rock mass by blasting comprises of two processes - releasing of explosive energy and 

movement of surrounding rock and soil. The effect on rock and soil can be regarded as wave mechanics 
process that can be treated as stress wave spreading in the medium and disturbing to the medium. After a 
comprehensive consideration, maximum amount of charge at one time (kg), total amount of charge(kg), 
horizontal distance(m), elevation difference(m),  front row resistance line(m), presplit penetration 
ratio(%), integrity coefficient, angel of minimum resistance line to measured point, detonation 
velocity(m/s) are chosen as differentiating factors, presented as X1(kg), X2(kg), X3 (m), X4 (m), X5(m), X6

（%）, X7, X8(
o), X9（m/s),respectively. The characteristic parameters to predict blasting vibration are 
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PPV, first dominant frequency and first dominant frequency duration time, presented as Y1(cm/s), Y2 (Hz), 
Y3 (ms) , respectively.
3.2 Determination of model 

Input parameters should compromise all main factors affecting the blasting vibration. The input 
parameters are listed below: 1）charging amount at one time； 2) total charging amount; 3）horizontal 
distance; 4) elevation difference；5) resistance line；6) presplit blasting effect；7) rock mass structure; 
8) comparative distance between measured point and explosive region；9) explosive type. The output 
parameters are PPV、first dominant frequency and duration time first dominant frequency of blasting 
vibration. Structure of SVM and RF models is illustrated as Fig.1.

X3

X4

X5

X6

X7

X2

X1

X8

Y1

Y2

Y3

X9

X3

X4

X5

X6

X7

X2

X1

X8

Y1

Y2

Y3

X9

Fig.1 SVM and RF models for predicting blasting vibration characteristic parameters

4.   Practical applications and discussions

The established SVM and RF models were applied to predict characteristic parameters of blasting 
vibration in a copper mine in China. 108 groups were achieved on the spot from Ref[12], of which 93 
groups(see Appendix) were constructed as training sample model and the other 15 groups are used to 
inspect the rationality of testing model. Factors of testing samples include maximum amount of 
charge(kg), total amount of charge (kg), horizontal distance(m), elevation difference(m), front row 
resistance line(m), presplit penetration ratio(%), integrity coefficient, angel of minimum resistance line to 
measured point(°), and detonation velocity(m/s) , as listed in Table 1.

PPV, first dominant frequency and duration time of first dominant frequency were predicted by
established models of SVM and RF, and the results were listed in Table 2. It can be seen from the table 
that the predicted value and measured value obtained from SVM and RF are of relative low comparative 
error. Comparative errors of SVM and RF were listed in Table 3. Results show that: except a few 
samples with high error, the majority comparative errors are within the reasonable range. The result 
proves that the established models were reasonable and reliable. To see the comparison more clearly, 
illustrate values of PPV, first dominant frequency and duration time of first dominant frequency , shown 
as Figs.2, 3, and 4. Weight parameters for all factors were listed in Table 3. 
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Table 1 Measured data of test model 
NO. X1

(kg)
X2

(kg)
X3

(m)
X4

(m)
X5

(m)
X6

（%）
X7 X8

(o)
X9

（m/s)
Y1

(cm/s)
Y2

(Hz)
Y3

(ms)
1 350 1050 114.7 16.8 5 80 0.38 160 2800 0.417 26.5 195
2 370 2150 70.3 42 7 0 0.73 180 4200 4.754 48.6 985

3 370 2150 101.2 54 7 0 0.56 115 4200 1.554 49.5 790

4 494 3952 122.6 62.1 5 0 0.32 120 2800 0.608 41.7 610

5 730 4380 115.7 50.9 6 50 0.42 180 4200 1.597 25.3 635

6 840 5660 214.7 75.1 6 0 0.52 120 4200 0.218 38.4 890

7 890 1800 72.1 42.0 5 100 0.73 80 4200 3.194 39.2 345

8 890 1800 53.2 30 5 100 0.65 50 4200 2.389 41.6 415

9 1090 5450 231.9 30.0 5 100 0.72 90 4200 0.496 27.8 650

10 1290 3870 177.6 73.0 6 0 0.56 180 4200 1.102 40.4 415

11 1410 6780 189.9 64.0 5 0 0.51 180 4200 1.047 38.3 985

12 1636 4980 125.1 42.2 4 0 0.55 180 4200 2.124 40.6 830

13 1790 5370 393.1 98.0 4 60 0.71 50 2800 0.302 16.2 505

14 1850 8500 68.5 30.0 6 0 0.50 180 2800 3.880 40.6 1380

15 2180 4360 226.9 106.0 5 0 0.46 60 4200 0.498 26.8 565

Table 2 The predicted results using SVM and RF 

NO.

Results by SVM Results by RF
Y1 Y2 Y3 Y1 Y2 Y3

(cm/s) (Hz) (ms) (cm/s) (Hz) (ms)

1 0.74 23.9 406.84093 0.6896 34.46 412.52
2 3.2 45 1135.7527 1.8421 44 686.58
3 1.79 44.1 1034.607 1.4343 43.513 554.47
4 0.37 40.3 682.56488 0.7654 39.279 694.4
5 1.4 31.7 779.92653 1.4421 35.054 864.35
6 0.21 35.5 903.97768 0.9184 35.703 848.05
7 2.16 40 359.93863 1.8214 39.729 385.25
8 2.4 39.5 362.82871 1.7412 40.173 405.77
9 0.6 26.9 530.81646 0.5504 26.478 563.25

10 0.95 41 579.34102 0.9753 38.18 646.75
11 1.26 36.2 855.2419 1.1382 33.745 937.82
12 2.3 39.1 755.98129 1.4428 36.302 828.2
13 0.66 21 661.40232 0.5196 20.417 610.13
14 3.24 38.9 1242.3775 3.397 37.902 1180.1

15 0.94 27.3 613.2206 0.7617 28.778 625.22
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Table 3 The difference errors of predicted results

NO.

RF SVM
Y1 Y2 Y3 Y1 Y2 Y3

(%) (%) (%) (%) (%) (%)
1 -0.65381 -0.30038 -1.11547 -0.77458 0.098113 -1.08636 
2 0.612519 0.094643 0.302961 0.326883 0.074074 -0.15305 
3 0.077031 0.120949 0.298143 -0.15187 0.109091 -0.30963 
4 -0.25884 0.058058 -0.13836 0.391447 0.033573 -0.11896 
5 0.096976 -0.38553 -0.36118 0.123356 -0.25296 -0.22823 
6 -3.21272 0.070247 0.047135 0.036697 0.075521 -0.01571 
7 0.429741 -0.01349 -0.11667 0.323732 -0.02041 -0.0433 
8 0.271153 0.034303 0.022249 -0.0046 0.050481 0.125714 
9 -0.10964 0.047542 0.133462 -0.20968 0.032374 0.183359 

10 0.114997 0.054957 -0.55843 0.137931 -0.01485 -0.396 
11 -0.08711 0.118921 0.047902 -0.20344 0.05483 0.131734 
12 0.320723 0.105874 0.002169 -0.08286 0.036946 0.089179 
13 -0.72057 -0.26032 -0.20818 -1.18543 -0.2963 -0.30971 
14 0.124496 0.066458 0.144831 0.164948 0.041872 0.099726 
15 -0.52952 -0.0738 -0.10658 -0.88755 -0.01866 -0.08535 
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Fig.2 Comparison of measured and predicted data of PPV
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Fig.4 Comparison of measured and predicted data of duration time(DTFD)

Table 4 Weight parameters of RF model
Influenced

factors
Weight parameters Influenced

factors
Weight parameters

Y1 Y2 Y3 Y1 Y2 Y3

X1 4.9590 3.7934 3.6872 X6 4.0503 3.127 3.3257
X2 3.3465 4.5766 7.2648 X7 4.0716 3.5561 3.0757
X3 6.6132 6.6906 3.9349 X8 2.6242 3.6809 3.8785
X4 3.7361 4.1566 2.8287 X9 2.3972 2.6542 2.9377
X5 3.1226 3.9732 3.6174

5. Conclusions

Nine discriminating factors are selected as influence factors. The predicted models for the blasting 
vibrations characteristics including PPV, first dominant frequency and duration time first dominant 
frequency are established based on the SVM and RF theory. The established models were applied to 
predict blasting vibration characteristics in a copper mine. 93 groups of measured data are trained and 
tested. The other 15 groups of measured data are tested as forecast samples. The study shows that the 
SVM and RF models have a low predicted error ratio. And the average predicted error ratio of SVM is 
lower than the results by RF. However, the RF can give the weight parameters of all factors, and the SVM 
has not this function. Therefore, the reasonable combination of  SVM and RF to predict destructive effect 
on housing under blasting vibration is a scientific way, which can be applied to practical engineering.
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Appendix: 93 groups of samples from Ref[12].
TableⅠ 93 groups of samples

NO. X1

(kg)
X2

(kg)
X3

(m)
X4

(m)
X5

(m)
X6

（%）
X7 X8

(o)
X9

（m/s)
Y1

(cm/s)
Y2

(Hz)
Y3

(ms)

1 160 1440 125.3 52.3 5 0 0.42 180 2800 0.343 42.3 395
2 312 3120 311.9 42 7 0 0.72 180 4200 0.753 32.9 860
3 312 3120 389.4 108 7 0 0.7 180 4200 0.572 25.3 810
4 312 3120 362.3 86 7 0 0.7 180 4200 1.214 27.8 1080
5 312 3120 199.2 30 7 0 0.73 180 4200 2.148 41.6 1110
6 350 1050 143.5 52.3 5 50 0.48 180 2800 0.609 25.6 210
7 400 3600 110.6 16.8 6 0 0.38 160 4200 0.898 41.5 1155
8 550 4400 89.5 42.0 5 90 0.73 180 2800 1.279 41 765
9 380 1550 162.4 73 4 90 0.3 40 2800 0.102 23.7 185
10 380 1550 147.8 62 4 90 0.35 60 2800 0.201 24.1 205
11 380 1550 104.9 28.6 4 90 0.41 60 2800 0.463 30.1 215
12 380 1550 336.2 58.9 5 80 0.48 55 2800 0.101 25.6 190
13 390 2730 120.9 46.9 4 100 0.3 40 2800 0.143 27.6 620
14 390 2730 69.9 53.9 6 100 0.65 180 4200 0.394 44.1 715
15 390 2730 50.4 30 6 100 0.65 180 4200 0.126 45.6 630
16 390 2730 137.8 63.1 5 80 0.51 55 2800 0.318 36.1 660
17 390 2730 63.3 27.6 5 80 0.53 55 2800 0.657 40.1 765
18 400 3600 47.1 16.9 6 0 0.41 160 4200 5.371 43.5 1225
19 400 3600 137.9 52.3 6 0 0.41 160 4200 0.815 41.8 1150
20 456 1860 284.1 85.3 6 0 0.52 180 2800 0.368 36 260
21 460 4600 443.6 108 7 0 0.75 180 2800 0.510 19.7 790
22 460 4600 363.3 42 7 0 0.75 180 2800 0.476 25.1 730
23 460 2760 323.6 30 6 0 0.65 150 2800 0.203 31.1 665
24 460 2760 313.2 86 6 0 0.65 150 2800 0.391 31.8 685
25 468 936 85.3 54 6 0 0.65 120 2800 2.486 51.1 165
26 468 936 75.5 30 6 0 0.78 180 2800 3.35 51.1 180
27 494 3952 66.7 28.6 5 0 0.55 180 2800 3.029 42.6 1020
28 494 3952 183.2 28.9 5 0 0.32 120 2800 0.105 39.1 680
29 494 1482 170.4 46.9 5 0 0.49 130 2800 0.195 42.7 155
30 494 1482 132.5 63.1 5 0 0.49 130 2800 0.413 46.2 165
31 494 5434 149.2 73.3 6 0 0.55 180 2800 0.923 44.9 1150
32 494 5434 96.4 27.6 6 0 0.58 180 2800 1.413 47.7 1260
33 494 1482 81.5 51.9 5 0 0.46 90 2800 0.806 48.6 285
34 494 1482 80.2 27.6 5 0 0.48 90 2800 0.598 48.4 285
35 507 7650 193.5 53 5 0 0.65 0 2800 0.106 40.8 1100
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Continue TableⅠ 93 groups of samples
NO. X1

(kg)
X2

(kg)
X3

(m)
X4

(m)
X5

(m)
X6

（%）
X7 X8

(o)
X9

（m/s)
Y1

(cm/s)
Y2

(Hz)
Y3

(ms)

36 507 7650 235.2 86 5 0 0.68 0 2800 0.196 25.6 1120
37 507 7650 332.3 86 5 0 0.75 40 2800 0.292 25.6 1385
38 532 6084 73 40 6 0 0.53 180 4200 2.372 48.2 1535
39 532 6084 124.2 73 6 0 0.51 180 4200 1.442 46.5 1125
40 550 4400 123.4 53.9 5 90 0.65 180 2800 1.562 37.6 785
41 550 4400 97.4 55.1 5 90 0.75 180 2800 1.425 39.6 750
42 646 8395 121.4 53 6 0 0.73 180 4200 3.55 45.1 1655
43 646 8395 121.7 53 6 0 0.65 150 4200 2.45 45 1550
44 646 1950 58.2 27.6 5 0 0.46 0 4200 1.4 49.6 350
45 646 1950 111.3 63.1 5 0 0.44 0 4200 0.347 46.6 325
46 730 4380 74.5 28.6 6 50 0.35 160 4200 1.912 29.6 815
47 770 3080 138.2 30 6 0 0.67 60 2800 1.365 43.7 725
48 770 3080 175.9 30 6 0 0.65 60 2800 0.243 41.8 650
49 770 3080 76.2 30 6 0 0.76 90 2800 4.631 48.9 885
50 840 5660 119.9 62.9 5 0 0.4 180 4200 1.809 38.9 1050
51 1160 4640 185.7 62.1 4 100 0.42 160 2800 0.108 20.6 680
52 890 1800 88.8 54 5 100 0.65 50 4200 2.542 39.8 310
53 890 1800 103.7 54 5 100 0.71 70 4200 2.316 38.6 310
54 1012 3036 92.3 42 4 0 0.63 0 2800 1.554 43.3 465
55 1012 3036 326.6 98 4 0 0.63 0 2800 0.160 23.5 385
56 1090 5450 391.5 86 5 100 0.65 90 4200 0.375 19.5 465
57 1090 5450 253.1 53 5 100 0.7 90 4200 0.395 26.8 510
58 1090 5450 297 30 5 100 0.7 90 4200 0.390 22.1 515
59 1160 4640 142.8 28.65 4 100 0.43 160 2800 0.363 21.7 720
60 1160 4640 116.6 63.1 4 100 0.42 180 2800 1.029 22.6 785
61 1160 2320 325.1 96 6 0 0.35 160 2800 0.176 20.1 295
62 1180 7080 151.5 30 6 70 0.68 180 4200 0.777 32.1 985
63 1180 7080 91.2 54 6 70 0.72 180 4200 3.093 37.1 1255
64 1180 7080 76.6 30 6 70 0.72 180 4200 3.406 38.6 1320
65 1180 7080 132.5 41.5 6 0 0.55 180 4200 1.523 39 1130
66 1250 5100 207.4 85.1 5 0 0.38 180 4200 1.025 23.1 730
67 1250 5100 137.1 40.1 5 0 0.38 180 4200 1.388 24.6 785c
68 1250 5100 242.8 102.4 6 0 0.53 180 4200 0.587 35.5 635
69 1250 5100 188.5 75.1 6 0 0.54 180 4200 0.621 39.8 685
70 1290 3870 227.5 106 6 0 0.51 180 4200 0.670 37.2 395
71 1290 3870 140.6 40 6 0 0.58 180 4200 1.936 42 425
72 1410 6780 79.4 30 5 0 0.53 180 4200 2.69 46.3 1135
73 1490 3100 444.3 99 5 80 0.68 180 4200 0.476 14.3 285
74 1490 3100 364.4 42 5 80 0.71 180 4200 0.349 17.5 260
75 1490 3100 316.9 86 5 80 0.71 180 4200 0.598 19.8 315
76 1540 2350 240.9 86 6 100 0.7 0 2800 0.167 21.2 145
77 1540 2350 195.3 53.0 6 100 0.72 0 2800 0.128 24.3 145
78 1636 4980 224.3 109.3 4 0 0.51 180 4200 1.409 34.3 785
79 1660 8300 175.6 85 4 0 0.53 60 2800 0.445 35.48 1010
80 1790 5370 314.8 42 4 60 0.75 50 2800 0.713 17.9 630
81 1790 5370 205.2 30 4 60 0.75 50 2800 0.908 23.3 685
82 1800 9000 93.7 6 6 0 0.56 180 2800 4.094 39.6 1300
83 1800 9000 134.3 64 6 0 0.53 180 2800 2.913 37.5 1280
84 1850 8500 150.6 30 6 0 0.42 180 2800 0.987 34.5 920
85 2180 4360 159.7 73 5 0 0.48 60 4200 0.825 28.7 610
86 2180 4360 108.2 40 5 0 0.51 60 4200 1.132 33.3 685
87 3080 5600 274.6 50.9 5 0 0.36 180 2800 0.63 16.5 680
88 3080 5600 241.7 28.6 5 0 0.36 180 2800 0.621 18.6 685
89 3080 5600 127.5 63.1 6 0 0.45 110 2800 1.207 27.3 755
90 3080 5600 189.8 90.4 6 0 0.42 110 2800 0.784 25.3 710
91 3080 5600 94.9 46.9 6 0 0.46 110 2800 1.705 30.6 785
92 5590 6370 92.3 28.6 6 0 0.48 180 2800 5.093 23.1 1220
93 5590 6370 148.8 62.1 6 0 0.31 120 2800 3.228 21.3 1120


