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Abstract 

Industrial manufacturing has started focusing on the topic of energy efficiency already some years ago. Nowadays, even machine 
controls are equipped with possibilities to switch the machine into energy saving modes or even to shut it down entirely based on 
fixed time intervals or manually. The developed combination and modification of state-based consumption modeling with graph-
based optimization theory enables the control to choose the energy-optimal state sequence for given unproductive times. The 
approach is presented in detail and its saving potential is demonstrated by a usage scenario from an industrial setup. 
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1. Introduction 

Industrial manufacturing has started focusing on the 
topic of energy efficiency already some years ago. The 
driving factors are rising energy costs [1], growing 
shortage of natural resources, green behavior for a 
corporate image, or ISO 14001 certification [2]. 

Duflou et al. [3] give an overview of saving strategies 
in manufacturing. Using energy-efficient components, 
such as electric drives or speed-controlled pumps is state 
of the art in new machine tools [4], and can reduce the 
components standby energy by up to 65% [3]. By 
optimizing process parameters, process power 
consumption can be significantly reduced (case study 
with reduction by 66%) [5]. Through energy optimal 
planning (i.e. machine tool selection) reductions in the 
area of 8.5% are possible [6]. Another lever of energy 
efficiency is to reduce the energy consumption during 
unproductive times while taking into account 
technological constraints such as the necessity to warm-
up the machine to ensure production tolerances. 
Nowadays, machine controls are equipped with 
possibilities to switch the machine into energy-saving 
modes or even to shut it down entirely [7-8]. However, 
the logic to reach these saving modes during 

unproductive times is either based on fixed time 
intervals or the functionality is available on the 

manually. So the energy-optimal setup regarding the 
actual duration of planned or unplanned unproductive 
times (e.g. setup or break times) is not considered. This 
leads to the open issue on how these time intervals can 
automatically be spent with lowest possible energy 
consumption. 

In previous publications of the research group 
ECOMATION, a state-based consumption modeling 
approach [9], a framework for the factory-wide energy 
consumption control of machine tools [10] and an 
approach for an automated provision and exchange of 
energy information [11] have been introduced. The 
paper presents the newly developed consumption graph-
based energy optimization approach to reducing the 
energy consumption during planned or unplanned 
unproductive times. The approach applies the above 
mentioned results and takes into account the relevant 
optimization constraints.  

The paper starts with an overview of the developed 
approach and its objectives in Section 2, followed by the 
optimization constraints to consider for an applied 
optimization of a mac . 
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general, the state of research in energy consumption 
modeling and a graph-based optimization theory are 
shown in Section 4. The developed consumption graph-
based optimization approach is presented in detail in 
Section 5. Its prototypical implementation is described in 
Section 6, and the paper is summarized with a short 
conclusion in Section 7. 

2. Overview of the approach and optimization 
objectives 

In industrial manufacturing, the state trajectory, 
which in this context means the switching of operating 
states, is commanded either by the worker directly at the 
machine control or by messages from the production 
planning and control (PPC) layer. The only operating 
state that should be considered compulsory during an 
operating state optimization is the production state, 
highlighted in red in the operating state trajectory in Fig 
1. But there always exist multiple planned or unplanned 
unproductive times. These times, marked as production 
interruptions in the upper part of Fig 1, yield an energy-
saving potential that is most commonly not fully 
exploited in the field. When the machine control is to 
reach a desired operating state, there are often multiple 
ways to reach this state, so the energy-optimal trajectory 
should be picked. When the PPC sends a message to the 
machine controls, that production will be suspended for 
a given period of time, the machine control should 
bridge this time with the least possible energy 
consumption but should be ready to operate when the 
time period is over. This also applies to the situation 
when the worker enters a probable timeframe for a 

the exact duration of an interruption is not clear, but 
supposed to be long, the machine control should reach 
its energy-optimal state on a trajectory with minimal 
energy consumption. The machine control should ensure 
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Fig. 1. Consumption graph-based energy optimization approach 

that each time period is spent in the most energy- 
efficient state or on the most energy-efficient state 
trajectory. Consequently, there exist the following three 
objectives:  
 reaching the desired state with energy-minimal 

operating state switches, 
 reaching the desired state within a given time window 

on energy-minimal operating state trajectories, 
 spending a given time period (e.g. maintenance) with 

the lowest possible energy consumption. 
 
The approach (see Fig 1) detailed in the following 

reaches those objectives with respect to optimization 
constraints and with the application and modification of 
state-based consumption models and of graph-based 
optimization theory. 

3. Relevant optimization constraints 

The operation of machine tools has constraints that 
have to be met. The most obvious constraint is time. The 
compulsory production state has to be reached within a 
fixed, given time period. Switching between operating 
states takes a certain amount of time. To meet the 
defined production tolerances, the machine tool has to 
maintain a certain temperature range during production. 
When the machine tool remains in non-productive 
operating states its temperature level drops. Prior to 
resuming production, the required temperature level has 
to be reached through a warm-up, most commonly 
through a predefined control program. This fact 
constrains the trajectories that can be traveled on a given 
operating state graph depending on the time spent in 
some of the operating states.  

Further constraints are the minimal and maximum 
times the machine control can spend in a given operating 
state or if a predefined remaining period is not possible 
at all. 

4. State of research in energy consumption analysis, 
modeling and graph-based optimization theory 

Energy consumption metering, monitoring [12] and 
modeling [13] are the means to analyze the energy 
efficiency of machine tools. The first step towards 
consumption reduction is the analysis of the power 
consumption of machine tools. 

4.1. Consumption analysis of machine tools 

As described by Dietmair et al. [14] and Li et al. [15], 
the permanent load or fixed energy consumption has a 
considerable share of the total energy consumption of 
machine tools. The power consumption depends on the 
operating state of the machine tool and of the sub-states 
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of components, such as the coolant pump, the hydraulic 
pressure pump or cooling devices etc. [14]. Case studies 
by the research group ECOMATION have shown, that 
machine tools in industrial setups - in production lines 
and also with independent machine tools - are most 
commonly not switched off during unproductive times 
within shifts or during shift changes. Of course not every 
machine tool in the field is equipped with state of the art 
controls and equipment, simply because the average 
machine tool in the German industry is about 15-20 
years old. The mentioned time periods of remaining in 
an idle state yield high power consumption without any 
productive value adding.  

4.2. Consumption modeling of machine tools 

In the context of ECOMATION, Verl et al. [9] show 
that a state-based modeling approach (see Fig 2) for 
calculating the power consumption of a machine tool 
based on its operating state trajectory is applicable on 
the machine control and on higher factory levels. Its 
simplest application would be to analyze the mean 
power consumption for each relevant component and 
define in which state it is active. 

A theoretical approach to model this behavior as a 
graph with states and transitions was presented by 
Dietmair et al. [14] and slightly modified by Schmitt et 
al. [16]. The modification of Schmitt et al. [16] changed 
the management of state transitions in a way, that the 
transition itself costs energy instead of this transition 
energy being consumed by the state. Their focus lies on 
operations performed on the machine instead of the 
operational behavior of the machine itself. In both 
approaches, the energetic state graph of machine tools is 
mathematically described as tuples of states and 
transitions. 

 
Fig. 2. State-based energy consumption model applied from [9] 

Equation (1) gives the mathematical definition from 
Dietmair et al [14], in which Ti is the transition from 
state Sn to Sm, which is enabled by the logic expression 
C.  

min,,,,, SnTransmni ttCSST  (1) 

The transition takes the time tTrans and can only be 
started when the graph has previously remained in state 
Sn for the time tSn,min.  

4.3. Graph-based optimization theory 

In part, the solution for the mentioned optimization 
problems is the use of search algorithms on graphs. A 
graph G as defined in equation 2 consists of a set of 
vertices or nodes V and a set of edges E. For each edge a 
weight w is defined which stands for the cost or distance 
to overcome the edge. In the context of energy 
consumption optimization these costs are power input or 
energy consumption and time. 

EVG ,  (2) 

The algorithm described by E.W. Dijkstra in 1959 
[17] finds either the shortest path between a start and end 
node or the shortest paths between a start and all other 
nodes of a graph. Fig 3 shows a state graph with nodes 
S, A, B, C and D. The arrows represent edges and the 
numbers at the edges represent their weights. The A*-
Algorithm [17] extends the Dijkstra-algorithm by using 
heuristics; it finds a path from a start node to an end 
node with a continuous estimate of the shortest 
distances. During their execution, both algorithms 
constantly calculate and compare previously calculated 
distances from the start node to the other nodes in the 
graph. For the result of the algorithms on a state graph 
see Fig 3, in which S is the start node, and the green, 
solid arrows show the shortest path from S to every other 
node of the graph. For the mentioned optimization 
problems, the algorithms can be stopped, when the most 
energy-efficient (shortest) path from the initial operating 
state to the desired operating state has been determined. 

In order to apply these algorithms, the graphs have to 
be represented on the computer of the machine control, 
which can be done in multiple ways:  

The adjacency matrix for graph G with n vertices is n 
x n by size and each entry aij gives the weight for the 
edge from node i to j or is zero if there is no edge. The 
incidence matrix for a graph G with n vertices and e 
edges is n x e by size and each entry bij expresses 
whether an edge j leaves (value 1) or enters (value -1) 
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Fig. 3. State graph (shortest path as solid green line resulting from 
Dijkstra or A*-algorithm) 
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node i or if there is no edge (value 0). 

The previously described representations are static 
and useful for dense graphs, but not flexible towards 
changing numbers of edges or nodes. Storing sparse 
graphs as adjacency lists enables graph modifications. 
The adjacency list representation for the graph G 
consists of a field with a list for each node in the graph. 
Each list contains all nodes that the node it represents 
has an edge to.  

5. The developed consumption graph-based energy 
optimization approach 

Fig 1 shows the structure, inputs and outputs of the 
consumption graph-based energy optimization approach. 
Based on the knowledge or at least an approximation of 
the duration of production interruptions and in 
combination with the state-based consumption modeling 
approach, the previously mentioned objectives are 
reachable by means of graph- or state-based 
optimization theories respectively. For the optimization, 
the following three problems can be deducted.    
Reaching a desired operating state on a state trajectory 
optimized for 
 one criterion (e.g. either minimal time or minimal 

energy consumption), 
 one criterion, but in the meantime staying within the 

boundary of another condition, 
 one criterion and exactly fulfilling a supplementary 

condition. 

5.1. Graph representation of energy consumption 
models 

To apply the optimization theory on the energy 
consumption reduction of machine tools, the energy 
consumption model has to be defined as graph. Due to 
the fact that - in contrast to the sole graph theory - the 
machine tool can remain within states, the graph 

is not identical to a common state graph. Fig 4 shows a 
consumption graph with five operating states for a 
milling machine. The operating states with a solid line 
are states in which it can spend time, whereas the 
operating states with dashed lines are not meant to 
remain in. The operating states in the energy 
consumption graph in Fig 4 are defined by a mean power 
input in Kilowatts. The colors of the states define their 
type. Red indicates the compulsory production state in 
which the machine control cannot remain except during 
production. The yellow state warm-up is not meant to 
remain in, except to bring the machine tool to the 
necessary temperature level. States the machine can 
spend non-productive times in are indicated in green. 
The arrows or edges show possible state transitions, 
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Fig. 4. Consumption graph to optimize the bridging of non-productive 
time between two sets of production 

executed through control inputs. The numbers on the 
edges indicate the times that it takes to enter or leave 
each operating state. Shown in the graph are neither the 
time constraints that are applicable when remaining in an 
operating state, e.g. the duration of the warm-up, nor the 
energy cost for a state transition. Equation 3 shows the 
time-based adjacency matrix for the graph in Fig 4 with 
times in seconds. The energy cost for the state transitions 
is given in the energy based adjacency matrix in 
Kilowatts in Equation 4. The constant power 
consumption in each state is given in Kilowatts in vector 
p in Equation 5. 
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With this state graph representation, the energy cost 
and the needed time for a given state trajectory can be 
computed. Modified optimization theory can be applied 
to the energy consumption graph for an energy-optimal 
operation during non-productive times. 
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5.2. Graph-based energy consumption optimization 

The first mentioned optimization problem, reaching a 
desired state on an optimal path, can be solved with the 
direct application of either the Dijkstra or the A*- 
algorithm. As an example, to reach the production state 
(No. 5 in Fig 4) from the off state (No. 1), it is obvious 
that the state trajectory covers states 1, 2 and 5. The 
sequence 1, 2 ,4 and 5 would be another possibility for 
the task, but it is clearly less efficient from either a time- 
or energy-focused point of view. Depending on the 
temperature constraint though, it might be the only 
sequence to reach the required production tolerances, 
depending on the preconditions:  
 time spent in the off state, 
 temperature level of the machine tool, 
 temperature requirements for production. 

To reach the compulsory or desired operating state 
with least possible energy consumption within a given 
time period, the optimization algorithms have to be 
modified. The approach is divided into two parts. Firstly, 
the energy based graph (see Equation 4) is used to define 
the trajectory from the current operating state to the 
destination state with lowest possible energy 
consumption. With the time-based graph (see Equation 
3) it is then checked whether the resulting state 
trajectory stays within the given time period. If this is 
the case, the solution has been found. If this is not the 
case, the second lowest energy consumption trajectory is 
checked for the time constraint and so on. To shorten 
this process, it could be checked first, if a trajectory 
exists in the time-based graph that meets the time 
requirements. 

When the machine tool is currently processing a work 
piece (see operating state No. 5 in Fig 4) and the 
machine control receives the message, that when the 
work piece is done, there will be a production 
interruption for a given time period, this time period has 
to be spent with the lowest possible energy consumption, 
as mentioned before. The only change to an operating 
state that is compulsory is the one right before the expiry 
of the time period to reach the production state. The 
states or state trajectories in between are free to choose 
with respect to the constraints mentioned. To formulate 
the problem to be solved with modified graph-based 
theory, it is clear, that the start state and the desired 
destination state are equal and in this case it is the 
operating state production. Logically, this state has to be 
split temporarily into two states, as shown in Fig 4, one 
for the currently active production and one for the next 
production period that has to be reached in time. The 
consumption graph-based energy optimization has to 
find an energy-optimal path from state 5 current 
production to state  (see Fig 4) for the 
given time period. It defines which states should be 

reached and in which states the machine control has to 
remain and for how long. 

The first task of the optimization algorithm is the 
calculation of the reachability of each single operating 
state and its distance (duration and energy cost) from the 
production state and vice versa. The results of this 

 
from the production state to each operating state and 
back. Equation 6 shows the resulting vector dprod for the 
graph from Fig 4, in which each entry j gives the path 
length over state j 4). For 
example dprod shows that it takes a minimum of 123 
seconds to enter the energy-saving mode (ESM) between 
two sets of production. This leads to the conclusion that 
for breaks longer than 123 seconds some waiting time 
could be spend in ESM. 

031232327prodd  (6) 

The optimal path for a given time period is found by 
calculating the overall energy consumption for the state 
trajectories when remaining in either states 1, 2 or 3. 
Apart from the sole reachability, it has to be taken into 
account whether the machine has to undergo a warm-up 
process after remaining in the off state. There might be 
occasions, when it is cheaper to restart the machine 
earlier and remain in the ready state instead of warming 
it up.  

The output of the optimization is the state trajectory 
with the switching signals at the given instants of time. 
The actual switching of operating states has to be 
executed by the machine control, as described by 
Schlechtendahl et al. [10]. 

6. Prototypical implementation 

For the prototypical implementation the consumption 
graph-based energy optimizer and a 
consumption graph have been implemented in c# on the 
control s operating system.  

Fig 5 shows the main power supply of a milling 
machine during shop floor manufacturing. The lower 
part of Fig 5 represents the operating states, in this case 
only the states ready  and production  are reached. It 
can be seen, that there are multiple periods without 
production in which the power intake averages at about 
2,1 kW compared to about 5 kW during the machining 
process, but without value adding. Within those time 
periods, energy consumption reduction methods should 
be applied.  

For the given scenario measured in industrial 
manufacturing, the result of the developed optimization 
approach is an optimized state trajectory. The 
comparison between this optimized state trajectory and 
the common, original state trajectory is shown in the 
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Fig. 5. Optimized state trajectory for analyzed milling machine 

lower part of Fig 5. Clearly it can be seen, that the 
state ready  remains active for the shortest breaks, 
longer breaks can use the ESM and the machine can be 
off during the longest breaks. When the break lasts a 
certain time, the machine has to undergo the previously 
mentioned warm-up. During the analyzed two shift 
period of 16 hours total, the presented strategy leads to a 
reduction of the energy consumption of about 5 percent.  

7. Conclusion 

Unproductive times during manufacturing yield a 
high potential for energy consumption reduction of 
machine tools. Nowadays, energy saving modes are 
available on machine controls with different charac-
teristics, but the switching to these states has to be 
performed either manually or in fixed time periods. The 
developed consumption graph-based energy optimi-
zation approach corrects this disadvantage and enables 
the energy-optimal spending of unproductive times. As 
the approach is based on mathematical representations, it 
is universally valid and adaptable through graph 
representation. The constraints enforced by the focus on 
the production process are observed by the algorithms. 
Without compromising the actual production process the 
presented optimization approach saves about 5 percent 
energy for the presented case study. This saving 
potential can be added as an additional measure to the 
saving effects stated in [3], [5] and [6] to increase the 
overall energy consumption reduction in manufacturing. 
Further work will enhance the optimizer, broaden its 
usage perspective and take into account the mentioned 
constraints with higher detail. 
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