
EISEVIER Theoretical Computer Science 152 (1995) 171-217

Theoretical
Computer Science

Fundamental Study

A calculus of stochastic systems for the specification,
simulation, and hidden state estimation of

mixed stochastic/nonstochastic systems

Albert BenvenisteaT *, Bernard C. Levyb, Eric Fabrea, Paul Le Guernica

a IRISA-INRIA. Campus Universitaire de Beaulieu, 35042 Rennes Cedex. France
b Department of Electrical and Computer Engineering, University of Cal$ornia, Davis, CA 95616, USA

Received November 1993; revised October 1994
Communicated by J. Sifakis

Abstract

In this paper, we consider mixed systems containing both stochastic and nonstochastic’
components. To compose such systems, we introduce a general combinator which allows the
specification of an arbitrary mixed system in terms of elementary components of only two types.
Thus, systems are obtained hierarchically, by composing subsystems, where each subsystem can
be viewed as an “increment” in the decomposition of the full system. The resulting mixed
stochastic system specifications are generally not “executable”, since they do not necessarily
permit the incremental simulation of the system variables. Such a simulation requires compiling
the dependency relations existing between the system variables. Another issue involves finding
the most likely internal states of a stochastic system from a set of observations. We provide
a small set of primitives for transforming mixed systems, which allows the solution of the two
problems of incremental simulation and estimation of stochastic systems within a common
framework. The complete model is called CSS (a Calculus of Stochastic Systems), and is
implemented by the SIG language, derived from the SIGNAL synchronous language. Our results
are applicable to pattern recognition problems formulated in terms of Markov random fields or
hidden Markov models (HMMs), and to the automatic generation of diagnostic systems for
industrial plants starting from their risk analysis.

* Corresponding author. E-mail addresses: {benveniste,fabre,leguernic}@irisa.fr, levy@ece.ucdavis.edu.
1 Throughout this paper, we use the word “nonstochastic” to refer to systems which have no random part.
In control science or statistics, such systems would be called “deterministic” as opposed to “stochastic”;

however this name would be misleading in computer science, where “deterministic” vs. “nondeterministic”
has a totally different meaning. This is why we decided to use the word “nonstochastic” here.

0304-3975/95/%09.50 0 1995-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(94)00295-9

172 A. Benveniste et al. J Tlieoretical Computer Science 152 (1995) I?l- 217

Contents

1. Introduction and motivation 172
2. CSS and the SIG mini-language 176

2.1. Issues in mixed systems composition. 176
2.2. css 177
2.3. The SIG mini-language 178

3. Simulation. 184
3.1. Compressing the random part of a system 184
3.2. Two primitives. 186
3.3. Properties of the primitives 187
3.4. Incremental system simulation 189
3.5. The SIG simulation compiler 194

4. Estimation. 196
4.1. Maximum-likelihood compression of randoms 197
4.2. A framework for estimation, and two primitives. 198
4.3. Properties of the primitives 199

4.4. Incremental estimation. ... 201
4.5. The SIG estimation compiler. 203

5. Discussion and conclusions .. 205
Appendix A. Proof of Theorem 3.2 under Assumption A.1 207

Appendix B. Proof of formula (3.7) and Lemma 3.1 under Assumption A.1 209
Appendix C. Proof of Lemma 3.2 under Assumption A.1. 210

Appendix D. Proof of Theorem 3.2, formula (3.7), and Lemmas 3.1 and 3.2 in the general case ... 211
Appendix E. Examples of compound system compilation. 213
Acknowledgements. .. 216
References. ... 216

1. Introduction and motivation

This paper proposes a general framework for the specification and use of probabil-

istic models in applications of large computational complexity. To serve as reference

in our subsequent discussion, we now describe several real applications which either

employ, or could benefit from the use of probabilistic methods.

l Queuing networks, performance evaluation, and risk analysis typically require a num-

ber of tools for the specification and simulation of systems, and to compute

statistics of interest. The modeling and simulation tasks usually require modular

models, which are often variations of stochastic Petri nets [36]. The computation of

statistics relies on the underlying Markov chain associated to the Petri net speci-

fication.

l Pattern recognition applications, depending on whether they focus on one-dimen-

sional signals, such as for speech recognition, or multidimensional ones, as in image

analysis and understanding, frequently rely on hidden Markov models (HMMs)

[30] or Markov random fields [lo, 123. Both classes of models have proved quite

successful in their respective application areas. In particular, the best speech

recognition systems currently available are based on HMMs. The nonintrusive

appliance load monitoring problem described recently in [16] represents another

A. Benveniste et al. / Theoretical Computer Science 1.52 (1995) 171- 217 173

interesting pattern recognition problem, where one seeks to determine which
appliances switch on and off in an individual household, based on measurements of
the total load power. In this context, appliances can be modeled in terms of
communicating stochastic automata.

l Model based monitoring and diagnostics procedures for complex systems rely often
on a blend of statistical approaches [2] for numerical systems, and symbolic
techniques of artificial intelligence for systems of a combinatorial nature. However,
somewhat surprisingly, while models play a significant role in the development of
monitoring schemes, risk analysis considerations are usually not included. Risk
analysis is mainly used to assess the safety margins of designs, but does not seem to
enter the synthesis of on-line monitoring and diagnostics systems, even though such
an inclusion would be highly beneficial.

Such applications require the following functions:
l System specification is a first issue for complex systems. Because most of the

applications we have described, such as load appliance monitoring, or the monitor-
ing and diagnostics of large-scale systems, involve a mixture of random and
nonrandom phenomena, a mixed stochastic/nonstochastic form of modeling is
desirable. Several other key features that would need not be included are modular-
ity, i.e., the ability to specify large subsystems from small interacting modules, ease
of modification, and the possibility to reuse subsystems in new applications.

l The ability to simulate systems, as well as evaluate statistics of interest is also
a necessity. Again, modularity would be desirable in this context, although it may
be less critical than for system specification. As for simulation, an important
challenge is thefast simulation ofrare events of interest, such as for fault-tolerance
applications.

l Pattern recognition and diagnostics applications require the estimation of hidden
quantities of interest, such as spoken words in speech recognition, appliance loads
for the nonintrusive appliance load monitoring application, or the origin and
assessment of faults in failure diagnostics. Modularity would again be welcome in
this context.
There exists a vast literature on the application of statistics and probability to the

modeling, estimation, identification [34], and diagnostics [2] of dynamical systems.
Unfortunately, modularity issues are almost never addressed by either statisticians or
control engineers, and as a consequence, probabilistic and statistical techniques are
used only rarely in the analysis of large scale systems (except in the area of perfor-
mance evaluation, see below).

Stochastic Petri net models [24, 361 are often used to specify stochastic systems, in
applications such as queuing networks with synchronization, or fault-tolerance stud-
ies. They are commonly employed to evaluate statistics of interest in performance
evaluation. However, such computations rely on the underlying Markov chain of the
Petri net model, so that Petri nets by themselves do not simplify the computation of
statistics. In [27,28], however, particular structures of the transition matrix asso-
ciated to certain Markov chains are used to decompose the statistical analysis of the

174 A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171-217

system under consideration. Clearly, many real applications have been tackled by
employing approaches developed within the Petri net community, and software
products are available.

In a different area, probabilistic communicating process algebras and related logics
have been studied in theoretical computer science [14,19,35]. The common approach
to such studies consists in enriching with probability available models of communicat-
ing process algebras, such as CCS, CSP, etc., and related kinds of temporal logics
[l, 13,173. Expressive power and system equivalence are analyzed, as well as the
decidability of related logics. These approaches benefit from the fundamental ad-
vances achieved by this community to handle modularity, communication, and
interaction between processes. However, to our knowledge, no real application has
been reported based on such approaches, and no service is really provided beyond
modeling.

This paper proposes a new and flexible form of calculus, called CSS, for the
specijcation, simulation, and hidden state estimation of mixed stochasticlnonstochastic
systems. The model of mixed stochastic/nonstochastic systems that we employ is
introduced in Section 2.2. Mixed stochastic/nonstochastic systems interact via a single
combinator that we call the composition and denote by “ I”. The combination of mixed
systems with 1 yields again mixed systems, and 1 is both associative and com-
mutative. When applied to purely nonstochastic systems, the composition operator 1

behaves like the conjunction of systems of relations in mathematics. The shared
variables of the two systems provide the only mechanism for system interaction. On
the other hand, when two purely probabilistic systems with no shared variables are
combined, we obtain two statistically independent systems. Also, combining a purely
stochastic system with a purely nonstochastic one, viewed as a constraint, gives the
conditional distribution of the original stochastic system, given that the constraint is
satisfied; this provides a very simple mechanism to specify conditional distributions.
The combination of purely nonstochastic and stochastic building blocks with I allows
the specification of arbitrary mixed systems. A concrete syntax based on the SIG
minilanguage is provided to implement the operations of CSS. Note that we restrict
our attention here to systems with only a finite number of variables. Dynamical
systems, i.e., systems defined over infinite index sets, have been examined in [3], and
their study raises a number of technical issues that will be tackled elsewhere. Also,
throughout the paper, only finitely ualued variables are considered. Although our
results hold in more general situations, such as for the case of linear Gaussian systems
which is examined in detail in [23], a precise description of such cases will not be
attempted here.

Section 3 examines the simulation of mixed stochastic/nonstochastic systems. Simu-
lation is operational in nature. In contrast, the system specification provided by CSS is
nonoperational, since it relies on relations. We are therefore confronted with the issue
of converting a system specification into a simulation. Since many of the applications
we have in mind are of a real time nature, we would like to perform simulations
incrementally, in order to ensure their efficiency. For instance, Markov chains or

A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171- 217 115

stochastic automata are naturally simulated by using the Kolmogorov chain rule, so
that states are generated incrementally. The Bayes rule p(x, y) = p(y 1 x)p(x) provides
a way to simulate incrementally the random variables (X, Y) with joint distribution
p(x, y). We only need to draw X according to the distribution p(x) and then, for
X given, draw Y based on the conditional distribution p(yl X). We generalize the
notions of marginal and conditional distributions to mixed systems, and use them to
extend Bayes rule to these systems. The primitives implementing the marginal and
conditional are introduced in SIG and are used to derive graph transformation rules
which can be used to convert a compound system to an equivalent form which admits
an incremental simulation.

The maximum-likelihood (ML) estimation of mixed stochastic/nonstochastic sys-
tems is considered in Section 4. Consider a triple (X, Y, Z) of random variables, where
Z is observed, and the two unknown random variables X and Y admit the conditional
distribution p(x, y 1 z). The ML estimate, also known as the maximum a posteriori
(MAP) estimate, of (X, Y) given Z is given by (a, 9) = argmax,, ,, p(x, y (z). To find
these estimates incrementally, we can first compute the so-called “generalized likeli-
hood” function pu(x I z) = max,p(x, y I z). Next, compute the conditional likelihood
p&y I x, z) = p(x, y I z)/pY(x I z) of Y given X and Z, so that the following factorization
holds: p(x, y) = p9(y(x)p&). Then, the desired ML estimates can be generated
sequentially from 52 = arg max, p&x I z) and 9 = arg max,, pg(y I i, z). This incremen-
tal estimation procedure, which is called the Viterbi algorithm in the HMM literature
[ll, 303, just corresponds to a simple case of dynamic programming. We extend the
notions of generalized likelihood and conditional likelihood, which now take the form
of primitives, to mixed systems, and show that the above dynamic programming
procedure can be generalized accordingly. These primitives are implemented in SIG,
and we demonstrate how simple graph manipulations can be used to convert the given
system to a form which can be incrementally estimated. In fact, the graph transforma-
tions applied for both simulation and estimation turn out to be identical.

Finally, Section 5 contains some conclusions and perspectives.
It was not until recently, through discussions with A.P. Dempster, that we became

aware that the work reported in this paper is in fact closely related to the
Dempster-Shafer theory of belief functions [7, 8, 321 and belief networks [21,25,26,
333 in statistics and artificial intelligence. Although our work has independent origins,
several aspects are common with belief network theories. First, like the Demp-
ster-Shafer model of belief functions, the mixed systems we consider are not fully
probabilized, and combine both random and unknown types of uncertainties. How-
ever, while the Dempster-Shafer approach relies on an axiomatic different from
probability theory, we achieve comparable results by blending probabilistic methods
with constraint analysis. The composition we employ for building complex systems
from simpler ones takes a form analog to Dempster’s “product-intersection” rule [S]
for combining belief functions. Also, our incremental simulation scheme is similar in
nature to the fusion/propagation mechanism of [25,26]. However, there exists an
important difference between the partly directed, partly undirected graphs that we use

176 A. Benveniste et al. / Theoretical Computer Science I52 (1995) 171-217

to compile the dependency relations existing between the variables of a compound
system, and the standard viewpoint of artificial intelligence, where directed branches
encode “subjective causality.” Our graphs encode “objective causality” according to
the terminology of [25], since they are used to “direct and activate the datajow in the
computations . . .” [25]. In addition, while artificial intelligence emphasizes Bayesian
estimation, we show that similar ideas can be applied to the solution of ML estimation
problems. Finally, the practical implementation of our model has the syntactic form of
a data flow programming language, which differs from the network formalism of
artificial intelligence.

2. CSS and the SIG mini-language

The CSS model relies on a formal definition of mixed stochastic/nonstochastic
systems, which is used to express the composition rule I. To motivate our choice of
combinator 1, we first discuss several problems arising in the composition of mixed
stochastic/nonstochastic models.

2.1. Issues in mixed systems composition

As noted in the introduction, the first requirement for the combinator 1 is that,
when applied to purely nonstochastic systems, it must behave as the conjunction of
constraints (or, equivalently, as the intersection of legal behaviors). Let us examine
this requirement in the context of automata. Fig. 1 illustrates the problem one faces
when attempting to extend the usual product of automata to the class of stochastic

? II
0 4 6

label
>

Fig. 1. Combining stochastic automata Ignore temporarily the symbols within curved rectangles. Then the
product of two automata is just the shuffle product of their associated infinite strings of symbols. This

clearly satisfies our requirement concerning the intersection of behaviors. Next, take into account the
transition probabilities appearing within the curved rectangles, so that we are now considering two
interacting stochastic automata. Question 1: how would you define the composition of these two automata?

A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171- 217 111

Fig. 2. Mixed stochastic/nonstochastic systems. The figure shows a system, where transitions from the state

on the left are governed by probabilities, but transitions from the state on the right are just nondeterminis-

tic, i.e., unspecified. Question 2: in the language (ay*by*)*, which events would you view as random, or as

nondeterministic (unspecified)? Next, let us make the labels a and b more concrete by assuming they

represent the actions of generating two random variables X and Y, respectively, with values in a finite

alphabet. Then, set Z =f(X, Y) for some functionf with values in a finite alphabet, and assume we hide

a, b, X, Y, while keeping only y. Z visible. Question 3: in the language (Zy*Zy*)*; what events would you
view as random, or as nondeterministic (unspecified)?

automata. Next, consider Fig. 2. It illustrates the difficulties arising in the description
of mixed stochastic/nonstochastic systems. Suppose that instead of considering ele-
mentary events, such as state transitions, we seek to characterize more complex ones,
such as complete behaviors. It becomes difficult to understand the status of such
events. Should they be viewed as random, or just as nondeterministic? Also what are
the consequences of the fact that certain variables are hidden? This is a natural
consequence of modularity, since variables describing the inner interaction of subsys-
tems are not visible when considering a large system.

Thus there is no doubt that a naive extension of nonstochastic composition will not
work properly. Indeed, although the CCS composition rule has been extended to
a probabilistic context by Jonsson et al. [lS], it can only model specific systems but
not general ones. Also, CCS composition does not perform the intersection of
behaviors, and raises difficult questions of bisimulation.

On the other hand, the difficulties we have highlighted, concerning the nature of
complex events or behaviors in mixed stochastic/nonstochastic system, together with
the presence of hidden variables, were the motivation, in Dempster-Shafer and related
theories, for the development of new axioms to define and manipulate events in large
complex systems. Having demonstrated the need for a careful look at system composi-
tion, we now proceed with the introduction of the CSS model.

2.2. css

Model of mixed stochasticfnonstochastic systems

The mixed systems we consider are described by a quadruple

?I = (X, CA w, P>> (2.1)

178 A. Benveniste et al. / Theoretical Computer Science I52 (1995) 171-217

Fig. 3. A system in CSS. The outer box is the external boundary of the system, thus only X is visible from

outside for further interaction.

where
x = {X,, . ..) X,} denotes a finite set of variables whose values are written as
x = (Xi, . ..) xP). The variables are the observable objects of our model. The domain
of each variable Xi is denoted as Vxi, so that the domain of the vector X can be
expressed as Vx = ni Vx,.
w = (Wl,.*., W,) denotes a finite set of random variables or simply randoms for
short. Values of Wj are written as Wj, and we refer to the complete set of values
w = (WI, . ..) wq) as a random experiment. The domain of Wi (resp. W) is denoted by
I’, (resp. VW); in this article we assume W is finite. Randoms are hidden, i.e., not
visible from outside the system. The reason for this property will become clear
below. W models the random part of the system, so that if W is empty, the system is
completely nonstochastic.
p constitutes an unnormalized probability distribution’ for W. Specifically, we only
require p 2 0 and 0 < C,,,p(w) <co.

52 denotes a relation on the pair (X, W). We shall sometimes write it more explicitly
as sZ(X1, X,; WI, W,).

A system rr = {X, 52, W, p} is observable only through its variables. Randoms cannot
be seen, but transfer their behavior to the system variables X through the relation Q.
In doing so, some predicates over the variables become random, namely those which
are completely expressible in terms of W. In the purely nonstochastic case, we may
consider that Vw consists of a single point Wtriv, with R(wtriv) = 1 and p(o) = 0. Our
notion of system is depicted in Fig. 3.

The unique system for which X = 8 is called NIL. Finally, given an arbitrary system
z = (X, Q, W, p>, the system obtained by replacing its distribution p by a uniform one,

say equal to one, is denoted by FLAT(Z) A {X, Sz, W, l}.

‘Handling unnormalized distributions may seem unusual, but has several advantages. It simplifies the

definition of the composition 1 and the specification of conditional probabilities, and significantly decreases

the computational cost of incremental simulation and estimation. Furthermore for many applications
where the space VW has a very large cardinality, such as for the study of Markov random fields in statistical
mechanics [20,29,31], the computation of the normalizing constant (the partition function) which trans-

forms p into a true probability is often unnecessary.

A. Benvenisie et al. / Theoretical Computer Science 152 (1995) 171-217 119

Examples. (1) The above mixed systems contain as a subclass purely nonstochastic
systems described by a set of relations, without any randoms. Another subclass
corresponds to purely stochastic systems, for which we have X = W, and where the
relation Q is defined by Xi = W’i for all i, so that all randoms are observed as variables.

(2) A system n= {(Xi, X2), W, 0, P>, with Q:f(X,, X,) = W for some functionf,
is a system with two variables. For instance, take Xi + X2 = W. In this case, each
variable Xi cannot be viewed as random since its probability distribution is not
defined, but the sum X1 + X2 is random. For a general function5 not all predicates
on (X,, Y,) are random, only those which involvef(X,, X,).

(3) For a system

rr = {X, (WI, W,), 8, p} with Sz: X =f(WI, W,). (2.2)

wherefis a noninjective function, the variable X is random. However, becausefis not
injective, there are “too many” randoms; for instance, iffdepends only on WI, we can
remove W,. This operation, called “compression”, is described in Sections 3.1 and 4.1.

(4) The class of linear Gaussian mixed stochastic/nonstochastic systems of the form
E Y = AX + B W was studied in detail in [23]. For such systems, E, A, B are matrices
of suitable dimensions, W is a Gaussian random vector with zero mean and unit
covariance matrix, and the variables correspond to the vector pair (X, Y).

Our model of mixed systems is closely related to the one employed by Dempster
and Shafer [7, 8,321 to formulate their theory of belief functions. Like the systems
examined here, Dempster’s belief functions are specified by a quadruple consisting of
a probability space (Vw, p), which is not directly visible, and a pair (Vx, r) formed by
a set of system configurations, and a mapping r associating to each element w E Vw,
a set T(w) c Vx. For our model, the set-valued mapping r is specified implicitly by
the relation Sz, which associates to each random w the set

T(w) = {x: s2(x; w)} (2.3)

of variables x which, together with w, satisfy the relation a.
Let us examine the modeling implications of the mixed system specification

rc = {X, 52, W, p}. First, observe that by eliminating the randoms W from the relation
Sz, we obtain a family of hard constraints for the variables {Xi, . . . , X,}. These
constraints are often called “parity checks” in the failure detection literature [2]. The
subset V: of Vx satisfying the constraints can be used to test the validity of the model
71, by checking whether the visible variables belong to this set.

Next, we note that each set B E VW of random experiments admits the prior
probability

P(B) = CweBPb)

CwP(W) *
(2.4)

Eliminating the variables X from the relation Sz yields hard constraints that must be
satisfied by the randoms {WI, . . . , W,}. Let I$ be the set of w’s satisfying these

180 A. Benveniste et al. / Theoretical Computer Science I52 (1995) 171-217

constraints. The posterior probability on the randoms, given the set Vg of allowable

configurations, takes the form

P”(B) =
c WEB n I’,~(~) = P(B n f’$) = P(B, V~)

c WE VGP(W) P(G)
W’ (2.5)

The posterior probability Pn is the result of the interaction of the relation Sz with the

prior distribution p in the system specification z = {X, s2, W, p}. Unfortunately, this

new probability cannot be transferred to the variables X because, since 52 is a relation,

the sets T(w) specified by (2.3) are not singletons, and may not be disjoints for different

w’s. This is just a manifestation of the fact that, because projection is a monotonic

operator on sets, but not additive, projecting a probability from one space to another

does not yield a probability, but a different object, called a Choquet capacity [6]. On

V,, this capacity provides a partial probabilistic knowledge which was described by

Dempster [7, S] in terms of upper and lower probabilities for the subsets of V,. These

upper and lower probabilities provide bounds describing the limits of our information

concerning predicates of the X variables. In this paper, instead of adopting the

Dempster-Shafer upper/lower probability framework, we shall remain within the

realm of standard probability theory by considering exclusively probabilities over the

set VW of randoms.

The “ 1” system combinator
The composition of mixed systems can be performed in the same manner as the

combination of belief functions described in [7]. The main aspect of the combination

operation is that different systems are allowed to share common variables, which

describe their interaction, but not randoms. In other words, randoms are always

private, and do not play a role in the combination of systems. For two systems

71i = {Xi, Szi, Wi, Pi} with i = 1,2, the combinator 7~1) 712 = {X, s2, W, P} is defined as

x=xluxz, (2.6a)

w=wlxwz, (2.6b)

P(W) = P(W1, w*) = Pl (Wl) x P2(%), (2.6~)

Q=SZ1AQ,, (2.6d)

where Qr A Q2 denotes the conjunction of relations sZl and Rz, which is the usual way

of defining systems of equations in mathematics. Expressions (2.6a) and (2.6b) indicate,

respectively, that variables may be shared, but not randoms.

The identities (2.6a)-(2.6d) show that the systems interact only through their shared

variables. The NIL system is a neutral element for the combinator “ I”. Our notion of

composition is illustrated in Fig. 4.

Examples. (1) Consider two systems rCi = {Xi, ni, Wi, Pi> with i = 1, 2, where 7~1 is

purely stochastic, so that Xl and WI have same cardinality and Ql : Xl = WI, . . . , X, =

A. Benvenisre et ai. / Theoretical Computer Science 152 (1995) 171- 217 181

*1 72

x X w2

Pl(Wl) fh fb P2CW2)

I x2

I I I
Xl x x2

Fig. 4. The 1 composition. We consider two systems rc 1, n2 sharing the visible variable X, but not X1, X2.
The first picture illustrates how interaction occurs, and the second one shows its result.

W,, and 7z2 is purely nonstochastic, i.e., W2 = 0, with the nontrivial relation sZ2.
Assume also that XI = X2. Then, it is easy to check that n1 1 x2 = {Xl, (Sz, A a,),

WI, p1). The combined system nl 1 z2 has still the feature that randoms are visible
through the variables, since sZ1 :X1 = IV,, X, = IV,. However, the variables
x 1, . .., X, behave now according to the conditional distribution p? of p1 based on the
constraint Q2. Thus the composition 1 provides a simple mechanism for specifying
conditional probabilities, which will be used extensively in the SIG examples presented

below.

(2) Let ni = {xi7 Qi7 wi, Pi>, with i = 1,2, be two systems which do not interact, so

that X1 n X2 = 0. Then, in the combination 7c1 I n2, the randoms WI and W, are
independent.3

2.3. The SIG mini-language

We now proceed to describe a syntax, in the form of the langage SIG, which
implements both the modeling format and composition rule of CSS.

3According to the “maximum entropy principle” [31], among all joint distributions p(wl, w2) with

prescribed marginals pl(wl) and p2(w2), the one which maximizes the entropy is given by pl(wl) x pz(w2),
in which case the two components are independent.

182 A. Benveniste et al. / Theoretical Computer Science I.52 (1995) 17I- 217

The primitives of SIG
The SIG language has the following primitives:

(i) Nxl,xp).
(ii) potential U(x1 , . . . , xp>,

(iii) PI Q.
They admit the following informal interpretation:

(i) R(x1, xp) specifies a relation among the variables xl, . . . , xp. The corres-
ponding system in the sense of (2.1) admits the xi’s as variables, has no randoms, and
52 is the relation El. Thus, R(x1, . . . , xp) is a purely nonstochastic system.

(ii) potential U(x1, . . . , xp), where U is a function taking values over the line
(-co, + co], specifies random variables with unnormalized joint distribution

exp - U(xI,x.). (2.7)

The corresponding system in the sense of (2.1) has xl, . . . , xp as variables, its randoms
w = (WI,..., W,) have the distribution exp - U(wI, w,), and s1 relates variables
and randoms via the relations xl = WI, xp= W,. Thus, potential U(x1, . . . , xp) is
a purely stochastic system.

(iii) P 1 Q denotes the application of the “ I” combinator to systems P and Q.

Specifying systems with SIG

A system in the sense of CSS and definition (2.1) can be declared as shown below,
where we omit variable type declarations of the form “integer”, etc:

system PI =

{ variable U(X, Y, Z } 96 declaration of variables

(1 potential U(X, Y> % distribution of (X, Y>

1 Z=f<X, Y) % constraint on (X, Y, Z>

I)
end

Several examples of SIG programs are now presented. The program

system LINEAR= (real, E, A, B) % declaration of pwamf3tW3

{ variable X, Y, U }
< I potential <U**2s>/2 96 gaussian noise

I E*Y=A*X+B*U 96 constraint on (X, Y, U>

I)
end

specifies a “linear observation” E Y = AX + BU of the form introduced and studied in
detail in [23]. To generate a HMM of the type discussed in 123,301, we cam employ
the following program:

A. Benveniste et al. / Theoretical Computer Science 152 (1995) I71- 217 183

system HMM-0 = (integer N)

{variable XIil i=O to N, YIi] i=l to N)

< I x101=0
1 loopi=l toN

(I potential U(X[i-11, XIil)

I potentialV(X[i-11, XIil, YIil)

I)
end

I)
end

The first constraint fixes the initial condition, and the loop statement specifies the joint

distribution of the internal states Xi and outputs Yi. The resulting system HMM-0 is

a HMM with state X and output Y. It has 0 for initial state, and its state transitions

and outputs are specified by the interactions U and V, so that

p(‘%xN. yl, -.., yN) x &(%)exP - 5 [u(Xi- 1, xi) •t- v(Xi- 1, Xi, Yi)l, (2.8)
i=l

where CC denotes “proportional to”, and 6,(x) = 1 if x = 0, = 0 otherwise. If we want
to consider the same HMM given that the J%IU~ condition X [Nl =X-MAX also holds,
one needs only to add the final constraint to the previous SIG program, thus yielding

system HMM = (integer N)

{variable X[il i=O to N, YIil i=l to N}

(I XIOl=O

I X[Nl=X_MAX

Iloopi=l toN

<I potential U(X[i-11, XIil)

I potentialV(X[i-11, XIil, YIil)

I)
end

I)
end

To explain the interest of this simple trick, suppose X models the occupation level of
a buffer, which behaves according to HMM-0. Assume X-MAX corresponds to
a critical level, and we want to know the conditional distribution of the buffer
evolution given that level X-MAX is reached at instant N. Then we only need to
include the conditioning event X[Nl=X_MAX as an additional constraint in our
original program H.M&_0 in order to obtain the desired behavior HMM. This
mechanism can be employed whenever one seeks to concentrate on the set of
experiments satisfying a condition of interest. Note for example that a common
technique of risk analysis involves tracking cascades of events leading to a specific
failure.

184 A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171- 217

3. Simulation

We now turn to the simulation of mixed systems. Simulation is operational in
nature. In contrast, the system specification provided by CSS relies on relations, which
are intrinsically nonoperational. This raises the issue of converting a system specifica-
tion into an equivalent simulation. In this context, since we naturally wish to generate
efficient simulations, we restrict our attention to incremental simulations. For instance,
Markov chains or stochastic automata can be simulated incrementally by employing
the Kolmogorov chain rule to generate the states one at a time. Such a feature is
obviously mandatory for real-time applications.

Consider a pair (X, Y) of standard random variables with joint distribution p(x, y).

These two random variables can be simulated incrementally by employing the
following procedure.

(1) Compute the marginal

P(X) = Cp(x, Y)
Y

(3.1)

of p with respect to X.
(2) Compute the conditional distribution p(ylx) = p(x, y)/p(x) of Y given X, so

that we obtain the following factorization, also known as Bayes rule:

P(% Y) = P(Y I x)p(x). (3.2)

(3) Draw X at random following the marginal p(x), and then, for a given X, draw
Y at random according to the conditional distribution p(y 1 X).

We now generalize this technique to the case of mixed systems.

3.1. Compressing the random part of a system

Since the randoms are hidden, only their visible effect upon the system variables is
of interest. But as we have already seen in example (2.2), the domain VW of all randoms
may include too many details. For example, consider a pair (W1, IV,) and assume that
IV, is visible but not W,. The corresponding CSS model has a single variable Xi and
constraint X1 = WI. Since W, is unneeded, it can be removed from the original
system by computing the compressed distribution pcD(wl) = Cw2p(w1, wz), which for
this simple case reduces to the marginal distribution with respect to wl. This is just an
elementary case of the compression operation we now introduce.

To a system Z, we can associate the following equivalence relation between
randoms:

w wnw’ iff Vx:L?(x; w) 0 L?(x, w’), (3.3)

which just indicates that two randoms w and w’ are equivalent if they cannot be
distinguished by the variables. Accordingly, a set B E VW is visible through the

A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171-217

variables if and only if it satisfies the property

WEB =- w'EB.
w’ -zw

185

(3.4)

It is natural to restrict p to the sets of randoms satisfying this condition. Note in this
respect that the family W of all sets B satisfying condition (3.4) forms a a-algebra,
since it is closed under intersection and complementation, and contains the empty set.
Hence, in order to characterize the random behavior of the system 71, we only need to
specify the conditional probability P(.I W) of P given W. This can be accomplished
by constructing what we shall call the compression TC,, of n. The compression is
obtained from rr and the equivalence relation -II in the following manner.

(1) First we compress the set VW of random experiments by retaining only the
equivalence classes of the relation -II. Thus, an experiment w belongs to an equiva-
lence class w,, , and the set of all equivalence classes forms the compressed domain V,,.

(2) Compress the relation Q accordingly, by setting

G?,,(x; w,,) A sZ(x; w) for w E w,,. (3Sa)

(3) Finally, to each equivalence class w,, of randoms, we assign the probability

PC&~,) 4 1 P(W). (3.5b)
WEW,O

Two systems IT and rc’ admitting the same compressed form are said to be equiva-
lent, which is denoted as

7L E rr’.

Since the procedure employed to compress a system does not
behavior as seen from the variables, we have the following result.

(3.6)

affect its external

Theorem 3.1. rf71i = {Xi, ni, Wi, pi}, i = 1, 2, are equivalent in the sense 0f(3.6), they
cannot be distinguished under simulation. In particular, they have

(1) the same variables: X1 = X,;
(2) the same parity checks: Vi,’ = V$;
(3) the probability spaces { V$i, Wi, pi} are isomorphic, so that there exists a one-to-

one map 4fiom the a-algebra WI onto Wz such that V B1 E WI, P,(+(B,)) = P,(B,).
In addition, equivalence = is a congruence, which means that, ij’xi = n: for i = 1, 2,

then (xl 1 n2) z (7~; In;).

The second statement is a direct consequence of the fact that, to get the compressed
form of (rri 1 nz), one can also (1) compress each xi separately, (2) take the composition
of the resulting compressed forms, and finally (3) re-compress the result. The property

7C = FLAT(X) 1 X, (3.7)

186 A. Benveniste et al. / Theoreiical Computer Science 152 (1995) 171-217

which is proved in Appendices B and D, is a straightforward consequence of the

notion of system equivalence. This identity generalizes to mixed systems the idem-

potence of composition property rc 1 TC = x of purely nonstochastic systems.

Although the factorization (3.2) cannot be extended directly to mixed stochas-

tic/nonstochastic systems, by employing Theorem 3.1, we develop below a general

procedure for decomposing an arbitrary mixed system rt into marginal and condi-

tional components which extends the factorization (3.2) of standard probability

distributions. This decomposition will provide the key element required for incremen-

tal system simulation.

3.2. Two primitives

Consider a system x = (X, 0, W, p> and a subset of variables X’ c X. The concepts

of marginal and conditional distributions can be extended to mixed systems by

constructing the marginal and conditional systems

MARGINX(TT) and GWENX(~),

which will be denoted more compactly as

9x(n) and 9x(n),

respectively, where Y represents here a mnemonic for Yimulation.

The marginal. It consists of eliminating from rr the variables not in x’, which gives

MARGIN&C) = c&&C) = {x’, s2’, w, p}, (3.8)

where L?’ denotes the relation obtained by employing the existential qualifier 3 to

eliminate from 52 the variables not in X’, so that

U(x’; w) A 3 x” : Q((x’, XI’); w). (3.9)

Note that neither the set of randoms W nor the distribution p are changed by this

construction, which involves only tracking the effect of the projection of X onto X’ in

the relation Sz. An interesting use of the marginal is depicted in Fig. 5.

The conditional. The conditional system has the structure

GIVENx(71) = Y&Z) = {x, Q, w, P”}, (3.10a)

where the distribution p” is selected such that the factorization

7C GE MARGIN&t) 1 GIVENy(71) = g&C) I~~(7.C) (3.10b)

holds. Note that the relation E indicates that both sides have the same compressed

form. The decomposition (3.10b) represents the extension to mixed systems of the

A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171-217 187

ml 1x2

P(W) x PC%)

W1 w2

Rl A Q2

I I I

Xl X2

Fig. 5. Hiding via the marginal. This is a continuation of Fig. 4. We consider again the system A, 17~~ and
hide X in its interior. In Fig. 4, the interaction between n1 and n2 was carried by the shared variable X only.
Since X is now hidden, we have an example of modeling systems interaction through a hidden regression
variable.

factorization (3.2) of a probability distribution into marginal and conditional
components. A procedure for constructing YY(n) is presented in Appendices A and D,
where we prove the following result.

Theorem 3.2. There exists a system 9x(x) with the structure (3.1Oa), and such that
(3.10b) is satisjied.

Although the particular construction of 9x((x) we provide in Appendices A and
D guarantees uniqueness up to equivalence, we do not know whether the solution of
factorization equation (3.10b) for a system of the form (3.1Oa) is unique up to
equivalence.

Notation. In the following, it will be convenient to extend the definitions of gz(n)
and Yz(n) to the case where Z is not necessarily a subset of the variables X of 71, by
denoting

Pz(4 4 gz n x(n), Yz(4 e yz n x(4. (3.11)

3.3. Properties of the primitives

The operations that we have just introduced admit a number of properties which
will be employed extensively in the sequel. They are collected in the following lemma,
which is proved in Appendices B and D.

188 A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171-217

Lemma 3.1. The marginal and conditional primitives satisfy the following propertiex4

71 = Y&c) 1 Y&c), (3.12)

9s~~’ o g&C) = 9~ o y&C) = FLAT o &+C), (3.13)

% o % v z(n) = Pz(79, (3.14)

YY ” z(7d” Yz(4 = YY ” z(x), (3.15)
- _

.spx,(R I%) = 711 I ~Xl(Q)> (3.16)

where in (3.16) XI denotes the set of variables of 7~~.

Note that (3.12) corresponds to the requirement (3.10b) for the conditional; also,
= and = symbols have been carefully used in this lemma. Identity (3.13) indicates
that be successively applying the marginal and conditional primitives to a system, we
obtain a flat distribution. Expression (3.14) shows that the marginal g(.) behaves like
a projection, and (3.15) represents the dual property satisfied by the conditional.

Systems with no shared variables have no interaction, and involve independent
families of randoms. Hence if n1 and n2 have no shared variables, in order to simulate
the composition 7~~ 1 7c2, we only need to simulate 7r1 and xZ separately. This corres-
ponds to the easiest, but trivial, case of incremental simulation. But our discussion at
the beginning of this section indicates that incremental simulation can be performed
under more general circumstances. Specifically, the reason why the factorization (3.2)
allows the simulation of first X followed by Y is that combining p(y (x) with p(x) does
not modify the behavior of X. In other words, p(y 1 x) represents totally new informa-
tion with no bearing on X. This feature leads us to introduce the notion of innovation
which extends to mixed systems the familiar concept of innovations process in filtering
and detection theory.

Definition 3.1 (Innovation). Let 71i and Xi, i = 1,2, be two systems and their variables.
If Y denotes an arbitrary set of variables, the system 7~~ is said to be a Y-innovation of
x1, which we denote as

if
_

9x, ” Y o YY(%) I ~Yh) = YY(Z1). (3.17)

For the special case when Y is empty, we just say that 7~ is an innooation of x1, which
is written as 7c2 I 7c1.

4fi g(x) denotes the composition of maps f(g(x)).

A. Benueniste et af. J Theoretical Computer Science 152 (1995j 171-217 189

Thus, rr2 represents a Y-innovation of rci if composing yv(rrz) with yv(nr) does
not modify yv(rci). In particular, when Y is empty, this means that, to simulate
n1 I rc2, we can equivalently first simulate rc 1, and then, having the outcome of this first
partial simulation, subsequently simulate 7~. Thus a pictorial view of property
7c2 JLv rtr could be that, given Y, the interaction between rcr and rcz is oriented from nr
to rcz. This graphical view of innovations will be extensively used in the sequel, in
particular for the examples of Section 3.5.

From the above definition and comments it is clear that the relations lLv and ii are
not commutative. Also the selection of the conditioning set Y affects strongly whether
a system constitutes an innovation of another. For example, if Xi n Xz E Y, the two
relations rci 1v rrnz and rrz lLv rci hold trivially. The concept of innovation will form the
basis for the derivation of compilation rules for decomposing a system into an ordered
sequence of subsystems which can be simulated in accordance of this order. The
compilation rules will rely on the following properties of innovations, which are
proved in Appendices C and D.

Lemma 3.2. Given an arbitrary system TC, and a subset X’ of its variables, we have

9x44 y %+4 (3.18)

i.e., the conditional innovates with respect to the marginal. Furthermore, if rc2 ALy zl, i.e.,
7~ is a Y-innovation of x1, the following identities hold:

9X,” YWY(%)l~Yh)) = YYh), (3.19)

~Yhl%) = ~Yh)I~YW, (3.20)
- - _
~Y(%i%) = ~Yh)l~YW, (3.21)

3.4. Incremental system simulation

Consider now a compound system of the form

7C= Iislzi9 (3.22)

where I denotes a finite index set. We seek to develop an incremental simulation
procedure for such a system, so as to be able to evaluate progressively the porbabili-
ties of complex events.

Graphical representation. Let rri and rc2 be two systems admitting a nonempty set
X of common variables. For these two systems, we employ the graphical notation

rc-X-7r2 if
7c2 is not an innovation of n,, and

n, is not an innovation of 7r2.

Similarly, we write

n, + X + rc2 if
7r2 is an innovation of rrl, but

7r, is not an innovation of n2.

(3.23a)

(3.23b)

190 A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171- 217

and

7c1crXtt7r2 if
nZ is an innovation of rcl and

7r1 is an innovation of rc2.
(3.23~)

Obviously, it is rather uncommon that two systems should be mutual innovations,
and still share common variables. However, this situation may occur in certain
instances, such as when n, = rc2 = rc with 7~ nonstochastic, since in this case the
composition rule z In s 7~ implies rc is its own innovation.

Next, consider each pair (xi, nj) of components of the compound system rr given by
(3.22). If ni and ~j share common variables, we say they are neighbors and draw
a branch between them. The choice of branch orientation or the lack thereof depends
on which of the three cases (3.23a)-(3.23c) holds. In this manner, we generate
a bipartite graph, where systems and variables alternate, which we call the execution
graph of rc, and denote by

EXECGRAPH(X).

This graph has the effect of visualizing all the statistical dependency relations existing
between the variables of subsystems xi, iel.

It is worth noting that graphs of a similar nature have been introduced recently by
a number of authors under the name of influence diagrams, or belief networks, to
perform local computations on large networks of interconnected conditional prob-
ability distributions [21, 25, 261 or belief functions [9, 331. Such networks, as well as
the execution of graphs described above, find their root in the standard graphical
representation of Markov random fields in terms of cliques of neighbors [20].
However, while the graphs of Markov random fields are undirected, like the branches
produced in (3.23a), the goal of belief networks is to perform local computations in
a causal manner, which as will be shown below, requires a directed acyclic graph. At
this stage, the execution graph associated to a compound system 7~ of the form (3.22) is
in general partly undirected, and partly directed. Our objective is now to develop
compilation rules for transforming this graph into a directed one.

Graph compilation. The structure of the execution graph of a compound system
provides all the information required to determine whether this system can be
simulated incrementally, as shown by the following result.

Lemma 3.3. Consider a partition I = J u J” with J n J” = 8, for which we write

zJ= ljdnj> n? = IjcJ’nj,

XJ = set of private variables of xJ,

Xy = set of private variables of IT;,

8X = set of shared variables of 7cJ and 7~5.

A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171-217 191

(1) We have
_ - -

9x,(n) = 9x,(% I ~PaXM)).

(2) Under the stronger assumption

(3.24)

xJ -+ ax + n; or 7tJ++axt,n;, (3.25)

identity (3.24) reduces to

9x,(n) = ox,, (3.26)

which indicates that to simulate the variables XJ of the compound system TC, we only need
to simulate the subsystem xJ.

Proof. We first prove (1). By using the decomposition (3.12) for rc; with X’ = 8X, and
observing that Yax(rc;) is an X,-innovation of rcJ 1 gax(n;), we get

9x,(n) = 9x,(% 16)
- -

= .4px,h I ~dx(e) I ~“ax(4))
- -

= .4px,(% I .4odXM)) I ~x,“~4pdx(~~), (3.27)

where the last equality is due to property (3.21) of innovations. Next, using successive-
ly properties (3.14) and (3.13) of primitives, and noting the system 7$ has no variables
in XJ, we obtain

- - -
~x,“~axM) = ~XJO~X, ” ax”~x,u axM)

= 9x, 0 FLAT 0 &(?Z;) = NIL, (3.28)

which together with (3.27), proves (3.24).
We now derive part (2) of the lemma. Under assumption (3.25), property (3.19) of

innovations implies

~x,(Q I %x(6)) = ~x,h),

which proves (2). q

(3.29)

Based on the above lemma, we can readily determine from the execution graph of
a compound system rc whether this system can be simulated incrementally, i.e., if
simulating sequentially the successive (ordered) components yields a simulation of the
compound system. This notion is now formalized (we use Theorem 3.1 in formulating
this definition).

Definition 3.2 (Incremental simulation). A compound system 71 = I ie1 Iti is said to
admit an incremental simulation if there exists a total order < on I such that the
simulation of rr can be performed as follows. Denote by Xi the set of visible variables of
component Ki. Then for all i,, EZ, once actual values of the variables in Ui<i,Xi are
given, the variables of Xi, can be drawn using BiO only.

192 A. Benveniste et al. / Theoretical Computer Science I52 (1995) 171- 217

Theorem 3.3. A compound system TT of the form (3.22) admits an incremental simulation

if and only if EXECGRAPH(~) is an acyclic directed graph.

This means that this graph contains no undirected branch of the form (3.23a), and

no directed cycle. When determining whether the graph contains cycles, all bidirec-

tional branches of the form (3.23~) can be used as “wild cards” whose orientation can

be selected so as to break potential cycles.

Proof of Theorem 3.3. An important property of a directed graph is that it is

acyclic if and only if we can define a total order < on its vertices which is

compatible with the orientation of its branches (see [15, p. 2003). Consequently,

if EXECGRAPH(Z) is a directed acyclic graph, we can reorder its components r<

in such a way that for all pairs (71i, nj) which are connected by a branch of the form

(3.23b), we have i< j. Then, according to part (2) of Lemma 3.3, the system rc can be

simulated incrementally by generating its components 71i sequentially, for increasing

values of i.

Conversely, suppose EXECGRAPH(Z) contains either an undirected branch of the

form (3.23a) or a cycle. Then we can find a partition of rc such that rc_, and rcs are linked

by an undirected branch. When EXECGRAPH(Z) contains a cycle, such a partition is

generated by letting the cycle straddle nJ and its complement. Then, EXECGRAPH(X)

contains both branches going from nJ to rc;, and viceversa, so that when all the

subsystems of nJ and its complement are aggregated, the branches going in opposite

directions between zJ and rc; collapse into an undirected branch of the form (3.23a).

Thus, according to part (1) of Lemma 3.3, in order simulate the variables XJ of rc, we

must solve a fixed point equation of the form (3.24), which prohibits incremental

simulation. 0

As a side remark, note that fixed-point equations of the form (3.24) can be solved

iteratively by employing stochastic relaxation methods such as the Metropolis algo-

rithm or the Gibbs sampler [12]. However, such schemes fall outside the scope of the

incremental simulation procedures described here.

Next, since most compound systems of the form (3.22) usually give rise to execution

graphs which contain either undirected branches or cycles, it is of interest to develop

transformation/compilation rules, which when applied to a given system rc, will yield

a new system which can be incrementally simulated. In doing so, we restrict our

attention to transformations which preserve the local connectivity of EXECGRAPH(Z).

Otherwise, we could always aggregate all the subsystems pi and their variables into

the full rc system which contains only one increment, and thus admits a trivial, but

uninteresting, incremental simulation. Consequently, we require for the time being

that the transformations applied to rc should preserve the structure of the interaction

graph obtained by removing all branch orientations from EXECGRAPH(~L), as well as

the variables Xi of the subsystems forming its vertices.

A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171- 217 193

Theorem 3.4. Given a compound system TC whose interaction graph forms a tree, we can
transform TT into an equivalent system x’ such that EXECGRAPH@‘) is a directed tree, and

is thus amenable to incremental simulation.

Proof. Since the interaction graph of rc forms a tree, the index set I admits a natural
distance, where for i, j E I, d(i, j) = k if the unique path linking xi to nj has k branches.
Select now an arbitrary node iO E Z as the root of the tree. A partial order can be
defined over Z by considering the distance of i to i,,. Thus we write i< j if i is closer to iO

than j. Consider the following rules:
Rule 1: Select i E I, and let i_ be the unique neighbor of i such that i_ Xi, i.e., i_

denotes the parent of i. If 71i and 71i_ share variables, and 7Ci is not already an
innovation of xi_, then factor xi as

71i E gXi_(zi) I yXi_(71i)9 (3.30)

otherwise do nothing. Here, Xi_ denotes the set of variables of xi_.
Rule 2: If the factorization (3.30) has been performed, reorganize the compound

system rc by rewriting

71i- l?ri E 7Ci_ 17Cj

with

(3.3 la)

4_ ’ 71i_ I gXi_(ni)~ ?Ti ’ 5@Xi_(7Ci). (3.31b)

This reorganization clearly preserves the structure of the interaction graph of rc, as
well as the variables of subsystems rt_ and rti.

The index set I can be ordered so that successive indices i are nonincreasing with
respect to the partial order <. By successively applying Rules 1 and 2 to this sequence,
we find that once the transformation (3.31a) and (3.31b) has been applied to node i, the
new system rr’ includes the branch

I 71i_ + Xi_,i + 7rj (3.32)

in its execution graph, where Xi_, i represents the set of shared variables of rc_ and ni.
Then when Rules 1 and 2 are subsequently applied to system n:_j, n:_ may change,
but the orientation of the branch (3.32) remains the same. Thus, to transform the given
tree into a fully oriented tree, we need to apply the rules only once at each node of the
tree, by moving gradually from its extremities towards its root iO, so that the
complexity of the compilation procedure is proportional to the cardinality of I. Note
that in the above procedure, the choice of root i0 is completely arbitrary. 0

Unfortunately, the above result does not tell us what to do for systems whose
interaction graph is not a tree. For such systems, we can always transform the
interaction graph of 71 into a tree by aggregating some of its vertices. Such an
aggregation has the effect of regrouping the subsystems rti of rc into larger clumps. In
doing so, it is desirable to keep the number of aggregations to a minimum, as well as to

194 A. Benveniste et al. 1 Theoretical Computer Science 152 (1995) 171-217

ensure that the structure of the resulting tree does not depend on the order in which
aggregations are performed. A simple solution to this problem was presented in [21]
(see also [37, Ch. 121) for the case of triangulated graphs. Recall that a graph is
triangulated if it does not include chordless cycles. This solution relies on the fact that
if a graph is triangulated, the hypergraph formed by its maximum cliques is acyclic.
A hypergraph differs from a graph by the fact that its “edges” are actually subsets of
the vertex set. Also, the cliques of a graph are sets of mutual neighbors, and a clique is
said to be maximal if it is not contained in another clique. Consequently, given
a compound system 71 whose interaction graph is triangulated, to aggregate it into
a tree, we need only to find its maximum cliques, and aggregate together the
corresponding subsystems. Note that a given subsystem ni may belong to several
maximum cliques, and thus will be aggregated into several clumps. The resulting
aggregated graph forms a tree, to which we can then apply the compilation procedure
of Theorem 3.4. When the interaction graph of n is not triangulated, we can always
triangulate it by adding branches. However, the new branches must be selected
judiciously, since different branch fill-in strategies may lead to triangulated graphs
with different numbers of cliques, and cliques of different sizes.

The application of the compilation rules and aggregation scheme we have just
described are illustrated in Appendix E by considering two examples, one for which
the interaction graph forms a tree, and one where it contains a cycle.

3.5. The SIG simulation compiler

We now implement the marginal and conditional primitives in the SIG language,
and use them to incrementally simulate compound systems. Let SYSTEM denote
a system and X, Y be two of its variables. The two operators

extract X, Y in SYSTEM

given X, Y SYSTEM

denote, respectively, the marginal Y -x, v (SYSTEM) and conditional 9x, v(SYSTEM).
To illustrate the application of these operators, we consider the HMM example. As

a first step, examine the system

system HMM-inc = (integer N)

{variableX[i]i=OtoN,Y[i]i=ltoN}

(I xt01=0
(loopi=ltoN

(1 given X[i-1] potential U(X[i-11, X[i])
1 givenX[i-11, X[i] potentialV(X[i-11, X[il, Y[il)

I)
end

I)
end.

A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171-217 195

Since only “given . . . potential . . . ” statements are used, the SIG program
HMM_inc admits the execution graph

x0 + x0,x1 + Xl + x1,x2 + x2 ZN-1 + XN-l,xN + nN

1 1
. . .

L

01 02 ON

where the subsystems appearing in the graph are defined by

PI li] ::=givenXli-11 potentia.IUCXli-11,Xlil)

SIGMA ii1 ::=givenXli-11, X[i] potentiaIVoIli-11, Xlil, Ylil)

(3.33)

Since this execution graph is an oriented tree, according to Theorem 3.3, we can
simulate HMM_~C “on-line” for increasing values of the index i. On the other hand,
this is not the case if we consider the original I-IMM program, even if it contains only
given.. . statements, because of the presence of the two-point boundary-value condi-
tion

<I x101=0
1 X[N] =X-MAX

I>.

In fact, the execution graph of HMM takes the form

no - x0, xi - 711 - xi, x2 - 7c2 nN-l - XN-1, XN - nN

I I
. . .

I (3.34)

Cl 62 ON

It is a nonoriented tree, which can be transformed into a directed one by employing
the two compilation rules described in the proof of Theorem 3.4. The algorithm
proceeds in two phases: we first apply the rules to the vertical branches of the tree,
which model the HMM observations, and then perform a right to left sweep over the
horizontal branches, which model the Markov chain dynamics.

(1) Applying Rule 1, the potent&l V(X [i- 11, X lil, Y [il) can be decomposed as
follows, where c=) means = :

potential V(X[i-11, Xlil, Y[il>

<=)

(1 extractX[i-11, Xlil inpotentiaJV(xli-11, Xlil, Ylil)
1 givenX[i-11, Xlil potentialVcX[i-11, Xlil, Ylil)

I 1.

For each index i, the subsystem

SIGMA[i] ::=givenX[i-11, X[i] potentiaIV(X[i-11, X[i], Y[i])

is an innovation with respect to all other subsystems, and is executable as soon as
Xii- l] and X [i] have been simulated.

196 A. Benveniste et al. 1 Theoretical Computer Science 152 (1995) 171-217

(2) Applying Rule 2, define

PI[i] ::=(I extract X[i-11, X[i] in potential V(X[i-11, Xb], Ybl)

1 potentiallJcX[i-11, X[il)

I).

where the boundary constraints X [Ol = 0 and X [N] =X-MAX need also to be included

for i= 1 and i=N, respectively.

(3) Recursively, for i decreasing from N to 1,

(a) apply Rule 1 and decompose

PI[il(=)((extract X[i-11 inPI[il
I given X [i- l] PI [i]

I>;

(b) apply Rule 2 and redefine

PI [i] ::=(I givenX[i-11 PI[i]

I>

PI[i-1] ::=(I extract X[i-11 inPI[il

I PI[i-l]

I>.

The resulting system is equivalent to the original one, and has the execution graph

(3.33), so that it is ready for simulation.

4. Estimation

Consider a pair (X, Y) of random variables with joint distribution p(x, y). The

maximum likelihood estimate of (X, Y) is given by

(i, j) A arg max p(x, y).

X.Y
(4.1)

When the pair (X, Y) is unknown, but we observe a third variable 2, the ML estimate

of (X, Y) given Z, which is sometimes called the maximum a posteriori (MAP)

estimate, is obtained by replacing p(x, y) by p(x, ylz) in the above expression. This

estimate can be generated incrementally by employing the following procedure:

(1) Compute the generalized likelihood

~96) A max P(X, Y)
Y

(4.2)

of X based on p.

A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171- 217 197

(2) Compute the conditional likelihood p9(y 1 x) 4i p(x, y)/pu(x) of Y given X, so
that the following factorization holds:

P(X9 Y) = P&Y I X)P&).

Note that this factorization differs from the Bayes rule appearing in (3.2).
(3) Find j? = arg max, p&x), and then select E = arg maxy py(y Ii). The estimated

pair (a, 9) coincides with (4.1).
The above incremental estimation procedure is just a simple form of dynamic

programming, which is also called the Viterbi algorithm in the HMM literature
[11,303. We now generalize this technique to mixed systems. The approach we follow
parallels the one employed to extend Bayes rule to mixed systems for the simulation
case.

4.1, Maximum-likelihood compression of randoms

We modify the notion of compression introduced in Section 3.1 to account for the
fact that while the marginal probability (3.1) was obtained from the distribution p(x, y)

by performing a summation over y, the generalized likelihood (4.2) requires a maximi-

zation over y. To track the effect of this change, we examine again the simple example
consisting of a pair (WI, W,) of randoms, where WI is completely visible through
a variable X, = WI, but W, has no effect on the variables. To eliminate W,, we can
replace it by its ML estimate GZ, thus yielding the new distribution pML-co(wl) =

max,l p(wl , w2) = p(wl , 8,) for the remaining random WI. The procedure employed
to reduce the original system to the quadruple (X1,X1 = WI, puL_co(wl), WI)

represents an elementary case of the maximum likelihood compression procedure
described below.

Given a system rc and the equivalence relation -Z introduced in (4.4), we obtain the
ML-compression of a system n as follows:

(1) Compress the set VW of random experiments by retaining only the equivalence
classes w,, for the relation wn.

(2) Compress the relation s2 accordingly, by setting

Q,,(x; w,,) 4 Q(x; w) for WEW,,. (4.4)

(3) Assign to each equivalence class w,, the generalized likelihood

PML-co(~co) A swap. (4.5)

Two systems rc and n’ having the same ML-compressed form are said to be
ML-equivalent, which is written as

7L =zl?. (4.6)

Note that, while compression and ML-compression are difirent operations, any
system which is compressed is also ML-compressed, and vice versa, since compression

198 A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171-217

is a feature of the relation 52, not of p. The notion of ML-equivalence motivates the

following result.

Theorem 4.1. If Zi = (Xi, Q, Wi, pi>, i = 1, 2 are ML-equivalent in the sense of (4.6),
they cannot be distinguished under estimation, so that they have

(1) the same variables: X1 = X2;
(2) the same parity checks: V$; = Vg;;
(3) the same generalized likelihoods p&_,, i = 1, 2.

Remark. Since most of the properties of the marginal and conditional primitives

derived in the previous section are of an algebraic nature, they remain valid if we

replace the “1” operation by a “max”, i.e., as we perform ML-compressions instead of

compressions. Consequently, our earlier incremental simulation results can be

adapted with little effort to the incremental estimation case.

4.2. A framework for estimation, and two primitives

Consider a system rc = {X, Q, W, p}, and a partition

X=YuZ

of the system variables X into observations Y and unknowns Z. We seek to

(1) estimate the unknowns from the observations, and

(2) determine how likely the observations are by replacing the unknowns by their

estimated values.

In the following, when considering a system 71, we shall specify how its variables are

partitioned into observations and unknowns by denoting

7c = {(Y, Z), Q, W, P}.

For such a system, if Z’ c Z denotes a subset of its unknowns, we now construct the

generalized likelihood and conditional likelihood systems

ESTIMATES and KNOWING&K),

which will also be denoted more compactly as

-
gz(x) and bz(rc),

where the symbol 6’ is employed here as a mnemonic for gstimation.

The generalized likelihood. It consists of eliminating from r~ the unknowns not in Z’,
which yields

ESTIMATE&n)= &&)= ((Y,z'),Q',w,p), 14.7)

A. Benveniste et al. J Theoretical Computer Science 152 (1995) 171-217 199

where 52’ denotes the relation obtained by using the existential quantifier 3 to
eliminate from Q the unknowns not in Z’, so that

sz’(y,z’;w)P ~z”:52((y,z’,z”);w). (4.8)

Note that neither the randoms W nor the distribution p are changed by this construc-
tion, which involves only tracking the effect of the projection of Z onto Z’ in the
relation 52. Note also that, at this point, there is no difference between 8(.) and g(.),
since we have #z(n) = gp, v z(n).

The conditional likelihood. It is uniquely specified by requiring it should have the
structure

KNOWING&) = 8&) = {(Y, z), 52, w, jf’}, (4.9a)

where p” is selected such that the factorization

71 = 0 &(K) I82’(7c) (4.9b)

holds. Recall that Ed indicates that both sides have the same ML-compressed form.
Note that &z(n) modifies only the distribution p. The factorization (4.9b) extends to
mixed systems, the factorization (4.3) of a probability distribution into generalized and
conditional likelihoods. Finally, observe that since G and E Y are different equiva-
lence relations, the primitives Y(.) and 8(.) are different.

Notation. In the following, it will be convenient to extend the definition of ~?u(rc) and
b”(rc) to the case where the set U is not included in Z, by denoting

8”(X) 4 &J n z($T), &u(n) p 8, n z(n). (4.10)

4.3. Properties of the primitives

The generalized likelihood and conditional likelihood primitives admit a number of
properties which are collected in the following lemma. Its proof, as well as that of
almost all the results of this section, is omitted, since as observed at the end of Section
4.1, it involves only replacing summations by maximizations in the results of the
previous section.

Lemma 4.1. The generalized likelihood and conditional likelihood primitives satisfy the
identities:

7c =z C&,(72) 1 b&c),
- -

8~ o &,(7C) = 8~ o &z’(n) = FLAT o &(n),

az o &J ” z(n) = fz($,

gu ” z o &z(n) = Ju ” ZW,
- -
&Z,(% 1712) = 711 I bz1(712)v

where in (4.15) Zi denotes the set of unknowns of x1.

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

200 A. Benveniste et al. / Theoretical Computer Science I52 (1995) 171-217

Note that (4.11) is just a restatement of the factorization requirement (4.9b) for the
conditional likelihood. Identity (4.12) indicates that by successively applying the
generalized likelihood and conditional likelihood primitives, we obtain a flat distribu-
tion. Expression (4.13) shows that the generalized likelihood 8(.) behaves like a pro-
jection, and (4.14) represents the dual property satisfied by the conditional likelihood.

Systems with no shared variables have no interaction, and involve independent
families of randoms. Hence if nl and x2 have no shared variables, in order to estimate
the composition rci 1 rc2, we only need to estimate ni and rrZ separately. This corres-
ponds to the easiest, but trivial, case of incremental simulation. But our discussion at
the beginning of this section shows that incremental estimation can be performed
under weaker assumptions. The key feature of the factorization (4.3) which makes it
possible to estimate X first, and they Y, is that combining p&y(x) with p&x) does not
modify the estimate of X. This remark naturally leads to the notion of ML-innovation
we introduce now.

Definition 4.1 (ML-innouation). Let ni and Ziy i = 1, 2, denote two systems and their
unknowns. If U denotes an arbitrary set of variables, 7~~ is said to be a U-ML-

innovation of rcl, which we denote as

if

#z, ” uO~u(%)l bu(Jrn,) -28u(%). (4.16)

If U is empty, we just say that x2 is a ML-innovation of x1, which we write rc2 JLZ nl.
Thus, rc2 represents a U-ML-innovation of rcl if composing tpu(~,) with bu(nl)

does not modify bu(~,)
Note again that the relations lL$ and Is are not commutative, and are not

identical to the innovations Yu and Y, respectively. Also, if we select the condition-
ing set U such that Z1 n Zz c U, then both x1 lL<7r2 and xZILg rcz JLgrcl hold. In
other words, as soon as all the unknowns coupling two systems are specified, these
systems become innovations for each other. We now state without proof several of the
properties of ML-innovations.

Lemma 4.2. Given a system TC and a subset Z’ of its unknowns, we have

b~(n)JL-LPf.Fz+r).

Also, lj- z2 1: nI, the following identities are satisjied:

&, ” u(bu(%) I 6uh)I = ~LJ(n1)7

J&I I %I -u~uh) I ~&A
_ - _

B&I In) -Y~uh) I mu.

(4.17)

(4.18)

(4.19)

(4.20)

A. Benveniste et al. / Theoretical Computer Science 152 (1995) V-217 201

4.4. Incremental estimation

We consider a compound system of the form (3.22) and wish to estimate its
variables incrementally.

Graphical representation. Let xl and x2 be two systems admitting a common set
Z of unknowns. For these two systems, we employ the graphical notation

z,~Z~nZ if
7c2 is not an ML-innovation of x1, and

?tI is not an ML-innovation of 7r2.
(4.21a)

Similarly

a
7cI 5 Z + 7r2 if

7c2 is an ML-innovation of q, but

x1 is not an ML-innovation of 7c2,
(4.21b)

and

Y I
7c1ttZo7z2 if

n2 is an ML-innovation of q, and

z1 is an ML-innovation of 7~~.
(4.21~)

Now, consider each pair (ni, nj) of subsystems of the given compound system
7~ = 1 iEIXi. When the two subsystems ni and x, share variables we say they are
neighbors and draw a branch between them, which is oriented according to which of
the three cases (4.21a)-(4.21c) applies. Collecting all branches generated in this
manner yields a bipartite graph where unknowns and systems alternate, which we call
the estimation graph of z, and denote by

ESTIMGRAPH (n).

Graph compilation. The estimation graph plays a key role in the incremental
estimation of compound systems, as indicated by the following results.

Lemma 4.3. Consider a partition I = J u J” with J n J” = 8, and denote

71J = I jdKj3 n? = Ije.lcnj,

ZJ = set of private unknowns of x5,

Z; = set of private unknowns of 7~5,

aZ = set of shared unknowns of nJ and 7~;.

(1) We have
- - - -

&z,(n) = gZ,hJ 1 &a~@;)) 1 FLAT’ 6;).

(2) Under the stronger assumption

identity (4.22) reduces to
- - -

gz,(‘C) = gZ,kJ) 1 FLAT ’ b(6),

(4.22)

(4.23)

(4.24)

202 A. Benveniste et al. / Theoretical Computer Science 152 (1995) I7I- 217

which indicates that, to estimate the variables ZJ of the compound system rt, only the
subsystem nJ is needed.5

Proof. We only derive part (l), since it requires introducing a small modification in
the proof of Lemma 3.3, where the simulation form of the above result is presented.
Employing the decomposition (4.11) of 715 with Z’ = i?Z, and using the fact that
J~z(K~) is a ZJ-ML-innovation for rcJ 1 #dz(xS), we get

G,(n) = &,(R I 6)
- -

= JZ,oG I ac?Z(G) I ~8ZM))
- - -

= Jz,bb I ~az(e)) I ~Z,“~dZw), (4.25)

where the last equality is due to property (4.20) of innovations. Next, using success-
ively properties (4.13) and (4.12) of primitives, and noting ~5 has no unknowns in ZJ,

we find
- -

Jz, o 8az(~;) = Jz, o 62, ” JZ o bz, ” dZM)

= c&,0 FLAT 0 &&;) = FLAT 0 &7C;), (4.26)

which is where a difference appears with respect to Lemma 3.3. Together with (4.25),
this identity proves (4.22). The proof of part (2) is the same as for the simulation
case. 0

Theorem 4.2. Consider a compound system n oftheform (3.22).
(1) II admits an incremental estimation tf and only zf ESTIMGRAPH(~) is an acyclic

directed graph.
(2) If the interaction graph obtained by removing all branch orientations from ESTIM-

GRAPH(R) forms a tree, rt can be transformed into an equivalent system 7~’ such that
EXECGRAPH(~) is a directed tree, which can therefore be incrementally estimated.

When determining whether the graph contains cycles, all bidirectional branches of
the form (4.21~) can be used as “wild cards” whose orientation is selected so as to
break potential cycles.

Proof of Theorem 4.2. Parts (1) and (2) are proved in the same manner as Theorems
3.3 and 3.4, respectively. We include a description of the procedure employed to
convert a system represented by a tree into one which is represented by a directed tree,
since this scheme will be implemented in SIG. Again, since the interaction graph of rc is
a tree, we select an arbitrary root i,, on this tree, and use the distance between nodes

‘The second factor FLAT 0 dP(ni) is irrelevant for the estimation problem, since it only contains the parity
checks of the observations.

A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171-217 203

and the root to specify a partial order on the index set I, where i <j if i is closer to i,,
than j. The transformation relies again on the following rules:

Rule 1: Select iEl, and let i_ be the unique neighbor of i such that i_ < i, i.e., i_

denotes the parent of i. If xi and ni_ share variables, and 71i is not already an
innovation of xi_, then factor xi as

ni E #Z,_ tni) I &Z,_ tni)5 (4.27)

otherwise do nothing. Here, Zi_ denotes the set of unknowns of Zi_.
Rule 2: If the factorization (4.27) has been performed, reorganize the compound

system n by rewriting

(4.28a)

with

’ xi- ’ ni- I ~Zi_(xi)~ ?l(’ dZ,_(7Ti). (4.28b)

The index set I can be ordered so that successive indices i are nonincreasing with
respect to the partial order <. By successively applying Rules 1 and 2 to this sequence,
we find that once the transformation (4.28a) and (4.28b) has been applied to node i, the
new system rr’ includes the branch

7C_ z Zi_,i 5 7t; (4.29)

in its execution graph, where Zi_, i represents the set of shared unknowns of 7tf_ and
71:. Then when Rules 1 and 2 are subsequently applied to system rc_ , nf_ may change,
but the orientation of the branch (4.29) remains the same. Thus, to transform the given
tree into a fully oriented tree, we need to apply the rules orly once at each node of the
tree, by moving from its extremities towards its root i,,, so that the complexity of the
compilation procedure is proportional to the cardinality of I. 0

4.5. The SIG estimation compiler

We now implement in SIG the generalized and conditional likelihood primitives and
use them to perform incremental simulation. If SYSTEM denotes a system and X, Y are
two of its variables, the two operators

estimate X, Y in SYSTEM
knowing X, Y estimate SYSTEM

represent, respectively, the {X, Y}-generalized likelihood c?~,~(SYSTEM) and {X, Y}-
conditional likelihood ~?x, y(SYSTEM). If X, Y are the only two unknowns of interest
in the system, only the operator estimate X, Y in SYSTEM needs to be employed. On
the other hand, if we seek to estimate other variables given X, Y and the observed
data, we need also to make use of knowing X, Y estima&e SYSTEM.

204 A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171-217

The application of these two operators can be illustrated by studying the HMM

example. As a first step, consider the modified program

system HMM = (integer N)

{variable X[i] i=O to N, Y[i] i=l to N

obsemred Y lil i= 1 to N } % declaration of observations

<I x101=0
1 X[N] =X-MAX

lloopi=l toN

(1 potential UcXli-11, Xlil)

lpot.entialV(X[i-l],X[i],Y[i])

I)
end

I)
end,

where we have introduced the new information that the Y’s are observed, but not the
other variables. When estimation problems are considered, this information needs to

be supplied as part of a system specification. The estimation graph of HMM is given by

J 9 Y _Y Y Y
710 - x(-J, x1 - 7c1 - x1, x2 - 712 XN-1 -xN-l,xN-XN

19 I2 . . . I2 (4.30)

01 02 fJN

It is a nonoriented tree, which can be converted into a directed one by applying the

two compilation rules introduced in the proof of Theorem 4.2. The algorithm pro-

ceeds in two stages: we first apply the rules to the vertical branches of the tree, which

model the HMM observations, and then process from right to left the horizontal

branches, which model the Markov chain transitions.

(1) Applying Rule 1, the potential V(X li- 11, X lil, Y lil) can be decomposed as

follows, where c=)L means E-Y,

potential V(X[i- 11, Xlil, Y lil>

<=)L

(1 estimate X[i-11, Xlil in potential V(Xli-11, Xlil, Ylil)

I knowing X[i-11, X[i] estimate potential V(Xli-11, Xlil, Ylil)

I)

For each index i, the subsystem

knowing X[i- 11, Xlil estimate potential V(X [i- 11, Xlil, Ylil)

is an ML-innovation with respect to all other subsystems.

(2) Applying Rule 2, define

PI[i] :: =<I estimate X[i-11, Xli] in potential V(Xli-11, Xlil, Ylil)

I potential U(Xli-11, Xlil)

II

A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171-217 205

where the boundary constraints X [O] = 0 and X [N] =X-MAX need also to be included
for i=l and i=N, respectively.

(3) Recursively, for i decreasing from N to 1,

(a) Apply Rule 1 and decompose

PI [il (=)L (1 estimate X [i - 1 I in PI [il

1 knowing X[i- 11 estimate PI [il

I)

(b) Apply Rule 2 and redefine

PI[i] ::=(I knowingX[i-1] estimatePI[il

I)

PI[i-l]::=(IestimateX[i-11 inPI[i]

I PIIi- 11

I)

The resulting system is equivalent to the original one, and its estimation graph

is an oriented tree, so that it is amenable to recursive estimation.
The above ML estimation procedure for hidden Markov models corresponds in

fact to a reverse form of the standard Viterbi algorithm [30], which in addition to the
right to left compilation sweep performed above includes a backtracking phase, where
the most likely hidden state trajectory is generated recursively, starting from the
extimate of X 101, and using the estimate of X [i- 11 and the system Flfil to generate the
estimate of X [il. This algorithm is discussed in further detail in [23], where it is shown
to admit the same high-level program as the Rauch-Tung-Striebel double-sweep
smoother of linear Gaussian state-space models. Obviously, since the HMM model is
fully reversible, the right to left compilation procedure employed here could be
replaced by a left to right sweep, which would yield the standard version of the Viterbi
algorithm. The advantage of our choice of compilation direction is that it highlights
the close analogy existing between simulation and estimation.

5. Discussion and conclusions

We have introduced the CSS model and associated SIG minilanguage for describing

stochastic/nonstochastic systems. CSS is a relational model where systems are defined
by relations and unnormalized probability densities. This feature has several advant-
ages. First, it makes the definition of the composition operation “ I” relatively easy.

206 A. Benvenisre et al. / Theoretical Computer Science I52 (1995) 171-217

Second, it provides us with a simple mechanism for specifying the conditional
behavior of a system given that certain constraints are satisfied, which has the
potential to be very useful when tracking cascades of events leading to system failures.

However, the system specification provided by CSS is generally not executable, i.e.,
it does not readily lead to a system implementation. To convert it to a form which can
be simulated, we rely on a compilation, which examines the dependency relations,
both nonstochastic and statistical, existing between the system variables. This compi-
lation employs two operations. The marginal L?‘(.) and conditional 9’(.) extend to
mixed systems the standard marginal and conditional probability distributions of
fully probabilized systems. With their help, we were able to introduce the notion of
innovation, whereby rc’ is an innovation of n if, roughly speaking, 7~’ does not influence
n in the composition rc 1 d, but rc may influence rc’, so that the interaction between
rc and rc’ is oriented, and n: 1 rc’ is amenable to incremental simulation. In general,
systems interact in a nonoriented way. When the interaction graph of a system forms
a tree, we have presented rules which can be used to convert the tree into a directed
one while preserving equivalence of the compound system. In combination with the
results of [21] for aggregating a triangulated graph into a tree, these rules can be used
to compile arbitrary interaction graphs. A SIG implementation of the compilation
rules was presented. Finally, it turns out that our simulation results can be adapted,
with minor modifications, to the hidden state estimation of mixed systems. We only
need to replace the g(.) and Y(.) operations by z(.) and b(.), which simply amounts
to replacing summations by maximizations while performing randoms compressions.
Since the 1 and max operations have similar properties (they are both commutative
and associative), this makes it easy to convert simulation results to estimation, and
vice versa.

Although CSS is obviously related to the theory of belief functions and belief
networks developed in [7, 8, 32, 331, it differs from it in several respects. First, as
mentioned earlier, unlike the Dempster-Shafer approach which relies on upper and
lower probabilities in the space Vx of visible variables, we keep track of probability
distributions on the random configurations. Second, through the introduction of the
concept of innovation, which does not appear in the belief networks literature, CSS
provides concrete solutions to basic problems such as mixed system simulation and
estimation. To our knowledge, no other approach offers this range of facilities.

The research presented here can be extended in several directions.
l It would be of interest to extend our results to the case of mixed system whose

variables and/or randoms take values in continuous domains. The main difficulty
in attempting such a generalization is that all operations we perform must be
implementable in a finite number of steps. This means that an algebraic mechanism
must be available for eliminating variables within relations, and all probability
densities, including those generated by randoms compression, must be finitely
parametrized. These two conditions are generally not satisfied, but they do hold for
the case of linear relations and Gaussian distributions which is studied in detail in
[23]. In fact, it turns out that for the linear-Gaussian case, the two primitives g(.)

A. Benveniste et al. / Theoretical Computer Science IS2 (1995) 171- 217 207

and 8(.) are identical, as well as the two primitives Y(.) and &‘(.). Furthermore, the
primitives can be implemented efficiently with standard matrix analysis methods.

l A second issue concerns the simulation or estimation of compound systems whose
interaction graph is not a tree. The incremental simulation and estimation tech-
niques developed here do not apply to such graphs. Although we can always resort
to aggregation to convert a graph into a tree, this may not be the best way to
proceed, since aggregation can produce very coarse aggregates. An alternative
approach would consist of formulating simulation and estimation in terms of fixed
point equations, for which we could then use iterative stochastic relaxation
methods of the type employed in statistical mechanics.

l A third issue involves the introduction of two features currently missing from CSS,
namely the specification of timing information and the ability to define mixed
systems over infinite time intervals. These two features are already present in the
previously introduced SIGN&U language [3], which represents an extension of the
SIGNAL synchronous real-time language [4,5,22]. The SIGNalea language general-
izes stochastic B&hi automata, Petri nets, and our SIG minilanguage. But the
mathematical foundations of SIGN&XI in [3] are somewhat shaky and estimation is
not included. Thus, generalizing CSS to SIGN&W is a high priority task, particularly
since SIGN&U is currently under implementation.

l Finally, our results need to be tested on real applications. Two applications of
StciNalea are now under consideration. The first one involves the implementation
for Electricte de France of the nonintrusive appliance load monitoring scheme
proposed in [16], which presents strong similarities with speech recognition, and
for which Viterbi-style estimation algorithms are expected to be successful. A sec-
ond potential application in the area of power generation concerns the design of
a monitoring and diagnostic system from its risk analysis description. In this
context, we would like to determine whether our relational model, because of its
ability to track cascades of events leading to specific failures, presents advantages
for risk analysis.

Appendix A. Proof of Theorem 3.2 under Assumption A.1

Several results of our paper are derived in two stages, first by proving them under
the assumption shown below, which is later removed in Appendix D to obtain
a general derivation.

Assumption AS. The system 7~ is such that, for each x, there is at most one w satisfying
relation Q(x; w).

Recall that two systems are equivalent if they have the same compressed form.
Thus, we can assume without loss of generality that n is compressed, so that the
factorization (3.10b) requires that II should be identical to the system obtained by

208 A. Benveniste et al. 1 Theoretical Computer Science 152 (1995) 171-217

compressing gx(rc), combining it with 9x(n), and then compressing the combina-

tion.

(1) We first compute the compressed form n’ = {xl, sz’, W’, p’} of gx(rr). We have

Q’(x’; w) = 3 x” : Q((x’, 2’); w), W)

so that w1 -n,~2 iff

VX’, 3x;‘:Lq(x’, ix;‘); WI) .e- 3x;‘: Q((x’, x;‘); wz). 64.2)

Then, if w’ denotes an equivalence class of the relation -nr, the compressed form of

p assigns to w’ the probability

P’(W’) = c P(U), (A.3)
vcw’

and the compressed relation 0’ is given by

B(x’, w’) = sz’(x’, w) for w E w’. (A.4)

The summation appearing in (A.3) illustrates why the system gx(rc) can be viewed as

a “marginal” of rr with respect to the variables X’.

(2) Assume now that Yx(rc) has the form (3.10a), where the distribution p” still

needs to be selected. Let us compute it A 9x(n) 19x(n). The resulting system

ii: = {X, fi, $9, P} satisfies

*=Wxw, (A.5a)

ji(w’, w) = p’(w’) x p”(W) (ASb)

and

ii((xJ, x”); (w’, w)) = Q(x’; w’(w)) A Q((x’, x”); w), (A.5c)

where w’(w) is the equivalence class containing w. This is where we have used the

assumption that for each x, there exists at most one w satisfying relation sZ(x, w); this

implies that w’ must be the equivalence class containing w. Compressing (A.5c) yields

again s2: the random (w, w’) with w E w’ is redundant and can be compressed as

w alone.

(3) To prove that the requirement (3.10b) uniquely specifies p”, note that by

equating p(w) to expression (A.5b) for P(w, w’(w)), we obtain

p”(W) = P(W)

C”EW+v)P(+
64.6)

which uniquely defines p”. This expression generalizes to mixed systems the factoriz-

ation (3.2) of standard probability distributions.

This proves our claim under Assumption A.l.

A. Benveniste et al. / Theoretical Computer Science 152 (1995) 171-217 209

Appendix B. Proof of formula (3.7) and Lemma 3.1 under Assumption A.1

Identity (3.7) is in fact trivially satisfied under Assumption A.l. To derive (3.13),
observe from (A.6) that if the equivalence classes w’ are singletons, then V w, p”(w) = 1.
Given a system 7c = {X, 52, W, p}, this implies that the conditional with respect to
all its variables satisfies 9x(n) = {X, L!, W, l} = FLAT(X). Thus 9’~. 0 gpx’(rr) =
FLATO 9x(n). Applying now the primitives in reverse order, consider first
9x(n) = (X, Q, W, p”) where p” is given by (A.6). Taking the marginal of this system
with respect to X’ and compressing the result yields the system {X’, Q’, W, p’}, where
52’ is obtained by eliminating from s2 the variables not in X’, and p’ is obtained by
compressing p” accordingly. Using expression (A.6) for p”, this gives

p’(w’) = 1 p”(W) = 1,
WEW’

(B-1)

which proves the second part of (3.13).
Property (3.14) is just a consequence of the fact that taking the marginal of a system

with respect to a set of variables requires only to project s2 on the desired variables
and the system randoms. To prove (3.15), we assume that rc is compressed and
Y u Z G X. We only need to show that the probability distributions satisfy the chain
rule (3.15). In doing so, we denote by w’(w, Z) the equivalence class containing the
random w when the equivalence relation (A.2) is specified with respect to the set Z, i.e.,
we compute the marginal of rc with respect to Z. According to (A.6), the distribution of
~Z(X) is given by

Pw9 =
P(W)

CVEW’(W,Z)P(~)’
03.2)

But the equivalence class w’(w, Z) is the union of equivalence classes u’(u, Y u Z)
generated by applying (A.2) to the larger set of variables Y u Z. Hence, the distribu-

tionp~,~~~(~)of~y,z 0 Yz(n) can be expressed as

P~“z~z(w)=
P!iw

C"W+v,Y" z,PD)

P(W) 1
=

c DE w’(w, Z) P(U)
X

1 P(U)
vew’(w, Y " Z)

Cuev’(v,Z)P(u)

P(W)

=c VEW’(W, Y " Z)P(U)
= P? ” z(w), (B.3)

which proves (3.15).
To derive (3.16), it is convenient not to compress systems when computing mar-

ginals or composing systems. The two systems appearing on both sides of (3.16) can be

210 A. Benveniste et al. / Theoretical Computer Science 1.52 (1995) 171- 217

denoted, respectively, as

9x,(% I x2) = {X’, fi, w’, P’>,

7cr 1 ~x,(rL2) = {X”, ti’, W”, p”}.

Clearly, we have X’ = X” = X1 and W’ = w” = WI x W1. Next, applying the com-
position rule (2.6d) and the definition (3.9) of a marginal and decomposing
x1 = (Z1, x,) and x2 = (xc, &) into their shared component x, and private ones, we

get

~((&,x,);(w,,w,)) = 3~‘z:SZl((x”l,x,);wl)AS22((x,,f,);wz)

= 52,(X1;wl)A3x’?:522((x,,12);wz)

= Q”(X1; (WI 3 WI). (f3.4)

Finally, the equality of the distributions p’ and p” follows from the fact that they are
both obtained by summing p2 over the private randoms of 7r2, where the summation is
performed either after or before composition with rcl, which does not change the
resulting distribution.

Appendix C. Proof of Lemma 3.2 under Assumption A.1

To prove (3.18) we find, by combining property (3.13) of the primitives with the
composition rule (3.7) for a system and its FLAT version, that

9x 0 Yx(7c) 1 L&+c) = P&L), (C.1)

which according to (3.17) shows that the conditional 9x(~) forms an innovation for
the marginal 9x(n).

Let now 7r2 be a Y-innovation of rcl, so that (3.17) holds. Substituting this

expression inside property (3.16) of primitives yields

9x, “Y(~Y(~Z)I~Yh)) = %,” YO%L,” Y0~Y(~2)I~Y(~I)9

= ~Yh), (C.2)

which proves (3.19).
To derive (3.20), we use the factorization (3.12) to write

Xl I x2 = 76’ I YYb2)

with

(C.3a)

- -
rc’p ~Y~~~~I.spY~~2~I~Y~~1~. (C.3b)

A. Benveniste ei al. / Theoretical Computer Science IS2 (1995) 171- 217 211

Then, the fact that rc2 is a Y-innovation of rci implies 5@v(~) is an innovation of n’. To
see this, note that

71’ I pox, ” Y “YY(n2)= ~Y~~,~I~Y~~2~l~~Y~~~~I~4px, “Y0~Yb2))

= ~~hK9’~(712)l~~h) (by (3.17))

= x’. (C.4)

Consequently, by applying (3.19), we find

PY “x,~~~Y~~~~l~Y~~2~l~Y~~~~~l~Y~~2~~= ~Y(~1)I.FIY(~2)l~Y(~1). (C.5)

But gy(rrl) is an innovation of gv(nl) I gy(7c2), so that applying again (3.19) gives

.4PY((~Y(R1)l~Y(~2)l~Y(~1)) = ~YhWY(~2)~ F-3)

which, together with (CS), proves (3.21). Identity (3.20) for the conditional follows
from the one we have just derived for the marginal, since the constraints are not
affected by the conditional, and the normalization factors of the densities are obtained
directly from those of the marginals. This proves the result.

Appendix D. Proof of Theorem 3.2, formula (3.7), and Lemmas 3.1 and 3.2

in the general case

Consider now an arbitrary system rc = {X, Q, W, p}. We can associate to rc an
augmented system

ii= {X u W,Qr\S5,W,p}, (D.la)

with

W = (I&, ‘.., w,>, (DSb)

52”:Wj= Wj forl<j<q, (D.lc)

which satisfies Assumption A.l. The system E is obtained from rr just by making the
randoms Wj directly visible from the outside through the introduction of the addi-
tional variables Wj. Note that we have

71 = 9x($. (D.2)

Proof of Theorem 3.2. We can apply Theorem 3.2 to il. This yields

E = 9x(??) I Y&i) = 3$&E) 15+&c), (D-3)

since X’ c X and the formulas involving the marginal p(.) alone are trivially true
without Assumption A.l. Next, since E satisfies Assumption A.l, we can apply (3.18)
and (3.21). Together with (D.2), this gives

7c = ~x(7r)l~x~~x(Iz), (D.4)

212 A. Benveniste et al. / Theoretical Computer Science 152 (199.5) 171-217

which has the form (3.10b) provided we identify

9x(x) 4 9x 0 Yx(j?). (D.5)

According to the construction of Appendix A, the system 9x(E) has the structure

.4px(i2) = {X u w, Q A 5, w, p”}, (W

with

P(W)

p”(w) = c”wqw~Pw
(D.7)

where W(w) denotes the equivalence class containing w for the equivalence relation

associated to the projection of Sz A fi onto X’. However, because this projection

eliminates entirely the variables W, it coincides with the projection of Q on X’, so that

W(w) = w’(w), where w’(w) is the equivalence class containing w for the equivalence

relation (A.l). Then, when we perform the marginal of 9x(E) with respect to X, the

variable set X u @‘is projected onto X, and the relation Q A n” reduces to 52 alone, so

that the resulting system 9’x(rc) has the structure (3.10a), where p”(w) obeys (A.6).

Thus, the procedure employed to generate the conditional 9x(n) does not depend on

whether rr satisfies Assumption A.1 or not.

Proof of formula (3.7). We start from the identity

?2 E ?21 FLAT@) (W

for the system 71. Since this formula implies that FLAT(%) is an innovation of 2, we can

apply (3.21), which yields

7C = 7-CIpx” FLAT(%)= 7Cl FLAT(X), (D.9)

where the equality gxo FLAT(%) = FLAT(X) is due to the fact that the projection of

CL! A fi onto X coincides with that of ft alone.

Proof of Lemma 3.1. The proof of formulas (3.14) and (3.16) given in Appendix B does

not use Assumption A. 1. Thus we only have to extend (3.13) and (3.15). First, we apply

(3.13) to kc, which gives

9x o 9x(7?) = $+4px, 0 9x@) = FLAT 0 ~&C). (D.lO)

But, .J?x(it) = 9x(n). Then, using (D.5), we have

9x 0 Yx(E) = 9x 0 9x 0 9x+?) = 9x 0 9x(7$ (D.11)

which, together with (D.lO), proves (3.13). To prove (3.15), we can assume without loss

of generality that W n (Y u Z) = 0. Then, as before, we note that (3.15) holds for i&

so that

YY v z"Yz($ = YY" zm. (D.12)

A. Benveniste et al. 1 Theoretical Computer Science 152 (1995) 171-217 213

Since W n (Y u Z) = 8, we have Yz(rr) = Yz(it). Using this remark, applying 9x()

to both sides of (D.12), and using (DS), gives (3.15) for an arbitrary rc.

Proof of Lemma 3.2. The proof given in Appendix C does not use Assumption A.l.

Appendix E. Examples of compound system compilation

To illustrate the rules developed in Theorem 3.4 for transforming a compound

system into an executable one, we consider two examples. The first example is

depicted in Fig. 6. This figure should be read like ordinary text, from left to right, and

from top to bottom. Each subfigure will be designated by its row and column indices,

so that (3,2) refers to the subfigure appearing in the third row and second column. The

subfigure (1,1) represents the execution graph of a compound system rc = 1 isI Xi. Each

vertex of the graph corresponds to a subsystem ni. Since the graph is a tree, the

compilation procedure of Theorem 3.4 is applicable. The first step consists in selecting

a root node, which is shown in subfigure (1,2), where the precedence relationship

existing between parent nodes and their children is used to orient the tree. The root

node is the one from which all arrows originate. All extremities of the tree are

represented by black patches in subfigure (2, 1). The remaining subfigures illustrate

the application of Rules 1 and 2 of Theorem 3.4 to bring rc to executable form. As we

go from subfigure (2, 1) to (2,2), the following changes occur:

l Three patches move from grey to black. Let nj be the subsystem corresponding to

such a patch, and let nil and Zi, be the subsystems represented by the two patches

adjacent to i which switch from back to white.

l When a patch i = il, i2 goes from black to white, the following operations are

performed.

(1) We factor ni = Px,,j(ni) 1 Yxi,j(~i); where nj is the unique neighbor of rti on the

tree, and Xi,j denotes the shared variables of ~j and 71i.

(2) The local subsystem at i is replaced by ~xi,j(~i).

l As the patch j goes from grey to black, its local subsystem is replaced by

The subfigures (2, 1) to (4,2) describe the successive application of Rules 1,2 to the

tree. The final subfigure (4, 2) represents a compound system rc’ = I isI 7~; which is

equivalent to the original system, but such that EXECGRAPH(Z’) is a directed tree, and

thus executable.

The above compilation procedure can be interpreted as follows. Suppose each

patch represents a person collecting information in a hierarchical organization. After

gathering the desired information, each individual writes a detailed report for per-

sonal use, and forwards a synthetic memo to his/her superior. The superior merges

his/her own information with the synthetic memos of his/her subordinates, but in

214 A. Benveniste et al. J Theoretical Computer Science 152 (1995) 171- 217

Fig. 6. Application of the compilation rules of Theorem 3.4 to a tree

A. Benveniste et al. / Theoretical Computer Science I52 (1995) 171-217 215

Fig. 7. Compilation procedure for a graph containing a cycle.

order to do so, must wait until all subordinates have turned in their report. Note that
this information gathering scheme relies strongly on the fact that each person has
a single superior.

Figure 7 shows the result of applying the same procedure to a nonhierarchial
organization: the outcome is that hierarchy is recreated! The execution graph shown
in subfigure (1, 1) does not form a tree since it contains a cycle. The successive
subfigures illustrate what happens when Rules 1, 2 are nevertheless applied to this
case. The partial order that we choose for the graph nodes is depicted in subfigure
(1,2). Consider now the transformation occurring as we go from subfigure (2, 1) to
(2,2). A single patch with index j switches from grey to black, and two neighboring

216 A. Benveniste et al. / Theoretical Computer Science I52 (1995) 171-217

patches switch from black to white. Among these two patches, we focus our attention
on the one which is not a minimal vertex of the directed graph, whose index is i. This
vertex is connected to two lower vertices in the sense of the partial order on the graph,
namely j and the root node 0. As i switches from black to white, the following
operations are performed.

(1) We factor ni = sPx,Ij,,,(ni) 1 9’x,,o,,,(~i), where Xi, (j, 0) represents the union of
variables shared by rcj and ni on the one hand, and no and xi on the other hand.

(2) The local subsystem at i is replaced by 9’xi,Cj,,,(xi).

(3) The new system 715 = pxi,CI,O)(ni) I ~xi,(,,,,(~i) I rc IS assigned to the patch j, where j
.9’xi (j ,,(ni) represents the contribution of the other patch switching from black to
white, so that a new branch linking 0 and j needs to be added to the execution graph.

Pursuing the compilation procedure yields the graphs of subfigures (3, 1) and (3,2),
where the procedure terminates. Note that in subfigure (3,2), the cycle of original
execution graph has been triangulated through the addition of new branches. Thus,
our compilation procedure automatically triangulates the underlying execution graph
and implicitly replaces it by the tree formed by its maximal cliques, as recommended
in [21].

In our interpretation, when a subordinate has several direct superiors, they must all
agree on the subordinate’s report as they compile their own information. The outcome
of the compilation procedure is therefore that hierarchy is recreated through the
aggregation of all direct superiors into a single virtual one!

Acknowledgements

The authors are indebted to anonymous reviewers for their helpful comments and
suggestions on an earlier version of this paper.

References

[l] R. Alur, C. Courcoubetis and D. Dill, Model checking for probabilistic real-time systems, in: Proc.

18th Internat. Coil. on Automata Languages and Programming (ICALP) (1991).

[Z] M. Basseville and I.V. Nikiforov, Detection of Abrupt Changes: Theory and Applications (Prentice-

Hall, Englewood Cliffs, NJ, 1993).

[3] A. Benveniste, Constructive probability and the SlGNdea language: Building and handling random

processes with programming, Tech. Report 1532, Institut National de Recherche en Informatique et
Automatique, Rocquencourt, France, 1991.

[4] A. Benveniste, M. Le Borgne and P. Le Guemic, Hybrid systems the SIGNAL approach, Lecture Notes
in Computer Science, Vol. 736 (Springer, Berlin, 1993) 23e-254.

[S] A. Benveniste and P. Le Guernic, Hybrid dynamical systems theory and the SIGNAL language, IEEE

Trans. Automat. Control 35 (1990) 535-546.

[6] C. Dellacherie and P. Meyer, Probabiktk et Potentiels (Hermann, Paris, 1976).
[7] A.P. Dempster, Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Statist.

38 (1967) 325-339.

[S] A.P. Dempster, A generalization of Bayesian inference (with discussion), J. Royal Statist. Sot. Ser. B 30

(1968) 205-247.

A. Benvenisfe et al. / Theoretical Computer Science 152 (1995) I71- 217 217

[9] A.P. Dempster, Construction and local computation aspects of network belief functions, in: R.M.

Oliver and J.Q. Smith, eds., Injuence Diagrams, BeliefNets, and Decision Analysis (Wiley, Chichester,

1990) Ch. 6, 121-141.

[lo] R.C. Dubes and A.K. Jain, Random field models in image analysis, J. Appl. Statist. 12 (1989) 131-164.
[ll] G.D. Forney, The Viterbi algorithm, Proc. IEEE 61 (1973) 268-278.
[12] S. Geman and D. Geman, Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of

images, IEEE Trans. Pattern Anal. Machine Intell. 6 (1984) 721-741.
[13] A. Giacalone, C. Jou and S. Smolka, Algebraic reasoning for probabilistic concurrent systems, in:

Proc. IFIP TC2 Working Con& on Programming Concepts and Methods (1989).
[14] H. Hansson and B. Jonsson, A calculus for communicating systems with time and probabilities, in:

Proc. 11th IEEE Real-Time Systems Symp., Los Alamitos (1990) 278-287.

[15] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).

[16] G.W. Hart, Nonintrusive appliance and load monitoring, Proc. IEEE 80 (1992) 1870-1891.
[17] S. Hart and M. Sharir, Probabilistic propositional temporal logic, Inform. and Control 70 (1986)

97-155.
[18] B. Jonsson, C. Ho-Stuart and Y. Wang, Testing and refinement for nondeterministic and probabilistic

processes, Lecture Notes in Computer Science, Vol. 863 (Springer Verlag, Berlin, 1994, pp. 418-430.

[19] B. Jonsson and K. Larsen, Specification and refinement of probabilistic processes, in: Proc. 6th IEEE
Internat. Symp. on Logic in Computer Science, Amsterdam (1991) 266-277.

[20] R. Kindermann and J.L. Snell, Markov Random Fields and their Applications (American Mathematical

Society, Providence, RI, 1980).

[21] S.L. Lauritzen and D.J. Spiegelhalter, Local computations with probabilities on graphical structures

and their application to expert systems (with discussion), J. Royal Statist. Sot. Ser. B 50 (1988)

157-224.

[22] P. Le Guemic, T. Gauthier, M. Le Borgne and C. Le Maire, Programming real-time applications with

SIGNAL, Proc. IEEE 79 (1991) 1321-1336.
[23] B.C. Levy, A. Benveniste and R. Nikoukhah, High-level primitives for recursive maximum likelihood

estimation, Tech. Report 767, IRISA, Rennes, France, 1993.

[24] M. Molloy, Performance analysis using stochastic Petri nets, IEEE Trans. Comput. 31(1982) 913-917.
[25] J. Pearl, Fusion, propagation, and structuring in belief networks, Artificial Intelligence 29 (1986)

241-288.
[26] M.A. Peot and R.D. Shachter, Fusion and propagation with multiple observations in belief networks,

Artijcial Intelligence 48 (1991) 299-318.
[27] B. Plateau and K. Atif, Stochastic automata network for modeling parallel systems, IEEE Trans.

Software Eng. 17 (1991) 1093-1108.

[28] B. Plateau and J.-M. Fourneau, A methodology for solving Markov models of parallel systems,

J. Parallel Distrib. Comput. 12 (1991) 370-387.
[29] B. Prum and J. Fort, Stochastic Processes on a Lattice and Gibbs Measure (Kluwer Academic, Boston,

MA, 1991).

[30] L.R. Rabiner and B.H. Juang, An introduction to hidden Markov models, IEEE ASSP Magazine
3 (1986) 4-16.

[31] C. Robert, Modkles Statistiques pour PIntelligence Artijicielle (Masson, Paris, 1991).

[32] G. Shafer, A Mathematical Theory of Evidence (Princeton Univ. Press, Princeton, NJ, 1976).

[33] P.P. Shenoi and G. Shafer, Axioms for probability and belief function propagation, in: R.D. Shachter,
T.S. Levitt, L.N. Kanal and J.F. Lemmer, eds., Uncertainty in Artificial Intelligence, Vol. 4 (North-

Holland, Amsterdam, 1990) 169-198.

[34] T. Soderstrom and P. Stoica, System Identification (Prentice-Hall, Englewood Cliffs, NJ, 1989).

[35] R. van Glabbeek, S.A. Smolka, B. Steffen and C. Toffs, Reactive, generative, and stratified models of

probabilistic processes, in: Proc. 5th IEEE Internat. Symp. on Logic in Computer Science, Philadelphia,

PA (1990) 130-141.

[36] N. Viswanadham and Y. Narahari, Performance Modeling of Automated Manufacturing Systems
(Prentice-Hall, Englewood Cliffs, NJ, 1992).

[37] J. Whittaker, Graphical Models in Applied Multioariate Statistics (Wiley, New York, 1990).

