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Abstract 

In this paper, we consider mixed systems containing both stochastic and nonstochastic’ 
components. To compose such systems, we introduce a general combinator which allows the 
specification of an arbitrary mixed system in terms of elementary components of only two types. 
Thus, systems are obtained hierarchically, by composing subsystems, where each subsystem can 
be viewed as an “increment” in the decomposition of the full system. The resulting mixed 
stochastic system specifications are generally not “executable”, since they do not necessarily 
permit the incremental simulation of the system variables. Such a simulation requires compiling 
the dependency relations existing between the system variables. Another issue involves finding 
the most likely internal states of a stochastic system from a set of observations. We provide 
a small set of primitives for transforming mixed systems, which allows the solution of the two 
problems of incremental simulation and estimation of stochastic systems within a common 
framework. The complete model is called CSS (a Calculus of Stochastic Systems), and is 
implemented by the SIG language, derived from the SIGNAL synchronous language. Our results 
are applicable to pattern recognition problems formulated in terms of Markov random fields or 
hidden Markov models (HMMs), and to the automatic generation of diagnostic systems for 
industrial plants starting from their risk analysis. 

* Corresponding author. E-mail addresses: {benveniste,fabre,leguernic}@irisa.fr, levy@ece.ucdavis.edu. 
1 Throughout this paper, we use the word “nonstochastic” to refer to systems which have no random part. 
In control science or statistics, such systems would be called “deterministic” as opposed to “stochastic”; 

however this name would be misleading in computer science, where “deterministic” vs. “nondeterministic” 
has a totally different meaning. This is why we decided to use the word “nonstochastic” here. 
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1. Introduction and motivation 

This paper proposes a general framework for the specification and use of probabil- 

istic models in applications of large computational complexity. To serve as reference 

in our subsequent discussion, we now describe several real applications which either 

employ, or could benefit from the use of probabilistic methods. 

l Queuing networks, performance evaluation, and risk analysis typically require a num- 

ber of tools for the specification and simulation of systems, and to compute 

statistics of interest. The modeling and simulation tasks usually require modular 

models, which are often variations of stochastic Petri nets [36]. The computation of 

statistics relies on the underlying Markov chain associated to the Petri net speci- 

fication. 

l Pattern recognition applications, depending on whether they focus on one-dimen- 

sional signals, such as for speech recognition, or multidimensional ones, as in image 

analysis and understanding, frequently rely on hidden Markov models (HMMs) 

[30] or Markov random fields [lo, 123. Both classes of models have proved quite 

successful in their respective application areas. In particular, the best speech 

recognition systems currently available are based on HMMs. The nonintrusive 

appliance load monitoring problem described recently in [16] represents another 
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interesting pattern recognition problem, where one seeks to determine which 
appliances switch on and off in an individual household, based on measurements of 
the total load power. In this context, appliances can be modeled in terms of 
communicating stochastic automata. 

l Model based monitoring and diagnostics procedures for complex systems rely often 
on a blend of statistical approaches [2] for numerical systems, and symbolic 
techniques of artificial intelligence for systems of a combinatorial nature. However, 
somewhat surprisingly, while models play a significant role in the development of 
monitoring schemes, risk analysis considerations are usually not included. Risk 
analysis is mainly used to assess the safety margins of designs, but does not seem to 
enter the synthesis of on-line monitoring and diagnostics systems, even though such 
an inclusion would be highly beneficial. 

Such applications require the following functions: 
l System specification is a first issue for complex systems. Because most of the 

applications we have described, such as load appliance monitoring, or the monitor- 
ing and diagnostics of large-scale systems, involve a mixture of random and 
nonrandom phenomena, a mixed stochastic/nonstochastic form of modeling is 
desirable. Several other key features that would need not be included are modular- 
ity, i.e., the ability to specify large subsystems from small interacting modules, ease 
of modification, and the possibility to reuse subsystems in new applications. 

l The ability to simulate systems, as well as evaluate statistics of interest is also 
a necessity. Again, modularity would be desirable in this context, although it may 
be less critical than for system specification. As for simulation, an important 
challenge is thefast simulation ofrare events of interest, such as for fault-tolerance 
applications. 

l Pattern recognition and diagnostics applications require the estimation of hidden 
quantities of interest, such as spoken words in speech recognition, appliance loads 
for the nonintrusive appliance load monitoring application, or the origin and 
assessment of faults in failure diagnostics. Modularity would again be welcome in 
this context. 
There exists a vast literature on the application of statistics and probability to the 

modeling, estimation, identification [34], and diagnostics [2] of dynamical systems. 
Unfortunately, modularity issues are almost never addressed by either statisticians or 
control engineers, and as a consequence, probabilistic and statistical techniques are 
used only rarely in the analysis of large scale systems (except in the area of perfor- 
mance evaluation, see below). 

Stochastic Petri net models [24, 361 are often used to specify stochastic systems, in 
applications such as queuing networks with synchronization, or fault-tolerance stud- 
ies. They are commonly employed to evaluate statistics of interest in performance 
evaluation. However, such computations rely on the underlying Markov chain of the 
Petri net model, so that Petri nets by themselves do not simplify the computation of 
statistics. In [27,28], however, particular structures of the transition matrix asso- 
ciated to certain Markov chains are used to decompose the statistical analysis of the 
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system under consideration. Clearly, many real applications have been tackled by 
employing approaches developed within the Petri net community, and software 
products are available. 

In a different area, probabilistic communicating process algebras and related logics 
have been studied in theoretical computer science [14,19,35]. The common approach 
to such studies consists in enriching with probability available models of communicat- 
ing process algebras, such as CCS, CSP, etc., and related kinds of temporal logics 
[l, 13,173. Expressive power and system equivalence are analyzed, as well as the 
decidability of related logics. These approaches benefit from the fundamental ad- 
vances achieved by this community to handle modularity, communication, and 
interaction between processes. However, to our knowledge, no real application has 
been reported based on such approaches, and no service is really provided beyond 
modeling. 

This paper proposes a new and flexible form of calculus, called CSS, for the 
specijcation, simulation, and hidden state estimation of mixed stochasticlnonstochastic 
systems. The model of mixed stochastic/nonstochastic systems that we employ is 
introduced in Section 2.2. Mixed stochastic/nonstochastic systems interact via a single 
combinator that we call the composition and denote by “ I”. The combination of mixed 
systems with 1 yields again mixed systems, and 1 is both associative and com- 
mutative. When applied to purely nonstochastic systems, the composition operator 1 

behaves like the conjunction of systems of relations in mathematics. The shared 
variables of the two systems provide the only mechanism for system interaction. On 
the other hand, when two purely probabilistic systems with no shared variables are 
combined, we obtain two statistically independent systems. Also, combining a purely 
stochastic system with a purely nonstochastic one, viewed as a constraint, gives the 
conditional distribution of the original stochastic system, given that the constraint is 
satisfied; this provides a very simple mechanism to specify conditional distributions. 
The combination of purely nonstochastic and stochastic building blocks with I allows 
the specification of arbitrary mixed systems. A concrete syntax based on the SIG 
minilanguage is provided to implement the operations of CSS. Note that we restrict 
our attention here to systems with only a finite number of variables. Dynamical 
systems, i.e., systems defined over infinite index sets, have been examined in [3], and 
their study raises a number of technical issues that will be tackled elsewhere. Also, 
throughout the paper, only finitely ualued variables are considered. Although our 
results hold in more general situations, such as for the case of linear Gaussian systems 
which is examined in detail in [23], a precise description of such cases will not be 
attempted here. 

Section 3 examines the simulation of mixed stochastic/nonstochastic systems. Simu- 
lation is operational in nature. In contrast, the system specification provided by CSS is 
nonoperational, since it relies on relations. We are therefore confronted with the issue 
of converting a system specification into a simulation. Since many of the applications 
we have in mind are of a real time nature, we would like to perform simulations 
incrementally, in order to ensure their efficiency. For instance, Markov chains or 
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stochastic automata are naturally simulated by using the Kolmogorov chain rule, so 
that states are generated incrementally. The Bayes rule p(x, y) = p(y 1 x)p(x) provides 
a way to simulate incrementally the random variables (X, Y) with joint distribution 
p(x, y). We only need to draw X according to the distribution p(x) and then, for 
X given, draw Y based on the conditional distribution p(yl X). We generalize the 
notions of marginal and conditional distributions to mixed systems, and use them to 
extend Bayes rule to these systems. The primitives implementing the marginal and 
conditional are introduced in SIG and are used to derive graph transformation rules 
which can be used to convert a compound system to an equivalent form which admits 
an incremental simulation. 

The maximum-likelihood (ML) estimation of mixed stochastic/nonstochastic sys- 
tems is considered in Section 4. Consider a triple (X, Y, Z) of random variables, where 
Z is observed, and the two unknown random variables X and Y admit the conditional 
distribution p(x, y 1 z). The ML estimate, also known as the maximum a posteriori 
(MAP) estimate, of (X, Y) given Z is given by (a, 9) = argmax,, ,, p(x, y ( z). To find 
these estimates incrementally, we can first compute the so-called “generalized likeli- 
hood” function pu(x I z) = max,p(x, y I z). Next, compute the conditional likelihood 
p&y I x, z) = p(x, y I z)/pY(x I z) of Y given X and Z, so that the following factorization 
holds: p(x, y) = p9(y( x)p&). Then, the desired ML estimates can be generated 
sequentially from 52 = arg max, p&x I z) and 9 = arg max,, pg( y I i, z). This incremen- 
tal estimation procedure, which is called the Viterbi algorithm in the HMM literature 
[ll, 303, just corresponds to a simple case of dynamic programming. We extend the 
notions of generalized likelihood and conditional likelihood, which now take the form 
of primitives, to mixed systems, and show that the above dynamic programming 
procedure can be generalized accordingly. These primitives are implemented in SIG, 
and we demonstrate how simple graph manipulations can be used to convert the given 
system to a form which can be incrementally estimated. In fact, the graph transforma- 
tions applied for both simulation and estimation turn out to be identical. 

Finally, Section 5 contains some conclusions and perspectives. 
It was not until recently, through discussions with A.P. Dempster, that we became 

aware that the work reported in this paper is in fact closely related to the 
Dempster-Shafer theory of belief functions [7, 8, 321 and belief networks [21,25,26, 
333 in statistics and artificial intelligence. Although our work has independent origins, 
several aspects are common with belief network theories. First, like the Demp- 
ster-Shafer model of belief functions, the mixed systems we consider are not fully 
probabilized, and combine both random and unknown types of uncertainties. How- 
ever, while the Dempster-Shafer approach relies on an axiomatic different from 
probability theory, we achieve comparable results by blending probabilistic methods 
with constraint analysis. The composition we employ for building complex systems 
from simpler ones takes a form analog to Dempster’s “product-intersection” rule [S] 
for combining belief functions. Also, our incremental simulation scheme is similar in 
nature to the fusion/propagation mechanism of [25,26]. However, there exists an 
important difference between the partly directed, partly undirected graphs that we use 
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to compile the dependency relations existing between the variables of a compound 
system, and the standard viewpoint of artificial intelligence, where directed branches 
encode “subjective causality.” Our graphs encode “objective causality” according to 
the terminology of [25], since they are used to “direct and activate the datajow in the 
computations . . .” [25]. In addition, while artificial intelligence emphasizes Bayesian 
estimation, we show that similar ideas can be applied to the solution of ML estimation 
problems. Finally, the practical implementation of our model has the syntactic form of 
a data flow programming language, which differs from the network formalism of 
artificial intelligence. 

2. CSS and the SIG mini-language 

The CSS model relies on a formal definition of mixed stochastic/nonstochastic 
systems, which is used to express the composition rule I. To motivate our choice of 
combinator 1, we first discuss several problems arising in the composition of mixed 
stochastic/nonstochastic models. 

2.1. Issues in mixed systems composition 

As noted in the introduction, the first requirement for the combinator 1 is that, 
when applied to purely nonstochastic systems, it must behave as the conjunction of 
constraints (or, equivalently, as the intersection of legal behaviors). Let us examine 
this requirement in the context of automata. Fig. 1 illustrates the problem one faces 
when attempting to extend the usual product of automata to the class of stochastic 

? II 
0 4 6 

label 
> 

Fig. 1. Combining stochastic automata Ignore temporarily the symbols within curved rectangles. Then the 
product of two automata is just the shuffle product of their associated infinite strings of symbols. This 

clearly satisfies our requirement concerning the intersection of behaviors. Next, take into account the 
transition probabilities appearing within the curved rectangles, so that we are now considering two 
interacting stochastic automata. Question 1: how would you define the composition of these two automata? 
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Fig. 2. Mixed stochastic/nonstochastic systems. The figure shows a system, where transitions from the state 

on the left are governed by probabilities, but transitions from the state on the right are just nondeterminis- 

tic, i.e., unspecified. Question 2: in the language (ay*by*)*, which events would you view as random, or as 

nondeterministic (unspecified)? Next, let us make the labels a and b more concrete by assuming they 

represent the actions of generating two random variables X and Y, respectively, with values in a finite 

alphabet. Then, set Z =f(X, Y) for some functionf with values in a finite alphabet, and assume we hide 

a, b, X, Y, while keeping only y. Z visible. Question 3: in the language (Zy*Zy*)*; what events would you 
view as random, or as nondeterministic (unspecified)? 

automata. Next, consider Fig. 2. It illustrates the difficulties arising in the description 
of mixed stochastic/nonstochastic systems. Suppose that instead of considering ele- 
mentary events, such as state transitions, we seek to characterize more complex ones, 
such as complete behaviors. It becomes difficult to understand the status of such 
events. Should they be viewed as random, or just as nondeterministic? Also what are 
the consequences of the fact that certain variables are hidden? This is a natural 
consequence of modularity, since variables describing the inner interaction of subsys- 
tems are not visible when considering a large system. 

Thus there is no doubt that a naive extension of nonstochastic composition will not 
work properly. Indeed, although the CCS composition rule has been extended to 
a probabilistic context by Jonsson et al. [lS], it can only model specific systems but 
not general ones. Also, CCS composition does not perform the intersection of 
behaviors, and raises difficult questions of bisimulation. 

On the other hand, the difficulties we have highlighted, concerning the nature of 
complex events or behaviors in mixed stochastic/nonstochastic system, together with 
the presence of hidden variables, were the motivation, in Dempster-Shafer and related 
theories, for the development of new axioms to define and manipulate events in large 
complex systems. Having demonstrated the need for a careful look at system composi- 
tion, we now proceed with the introduction of the CSS model. 

2.2. css 

Model of mixed stochasticfnonstochastic systems 

The mixed systems we consider are described by a quadruple 

?I = (X, CA w, P>> (2.1) 
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Fig. 3. A system in CSS. The outer box is the external boundary of the system, thus only X is visible from 

outside for further interaction. 

where 
x = {X,, . ..) X,} denotes a finite set of variables whose values are written as 
x = (Xi, . ..) xP). The variables are the observable objects of our model. The domain 
of each variable Xi is denoted as Vxi, so that the domain of the vector X can be 
expressed as Vx = ni Vx,. 
w = (Wl,.*., W,) denotes a finite set of random variables or simply randoms for 
short. Values of Wj are written as Wj, and we refer to the complete set of values 
w = (WI, . ..) wq) as a random experiment. The domain of Wi (resp. W) is denoted by 
I’, (resp. VW); in this article we assume W is finite. Randoms are hidden, i.e., not 
visible from outside the system. The reason for this property will become clear 
below. W models the random part of the system, so that if W is empty, the system is 
completely nonstochastic. 
p constitutes an unnormalized probability distribution’ for W. Specifically, we only 
require p 2 0 and 0 < C,,,p(w) <co. 

52 denotes a relation on the pair (X, W). We shall sometimes write it more explicitly 
as sZ(X1, . . . . X,; WI, . . . . W,). 

A system rr = {X, 52, W, p} is observable only through its variables. Randoms cannot 
be seen, but transfer their behavior to the system variables X through the relation Q. 
In doing so, some predicates over the variables become random, namely those which 
are completely expressible in terms of W. In the purely nonstochastic case, we may 
consider that Vw consists of a single point Wtriv, with R(wtriv) = 1 and p(o) = 0. Our 
notion of system is depicted in Fig. 3. 

The unique system for which X = 8 is called NIL. Finally, given an arbitrary system 
z = (X, Q, W, p>, the system obtained by replacing its distribution p by a uniform one, 

say equal to one, is denoted by FLAT(Z) A {X, Sz, W, l}. 

‘Handling unnormalized distributions may seem unusual, but has several advantages. It simplifies the 

definition of the composition 1 and the specification of conditional probabilities, and significantly decreases 

the computational cost of incremental simulation and estimation. Furthermore for many applications 
where the space VW has a very large cardinality, such as for the study of Markov random fields in statistical 
mechanics [20,29,31], the computation of the normalizing constant (the partition function) which trans- 

forms p into a true probability is often unnecessary. 
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Examples. (1) The above mixed systems contain as a subclass purely nonstochastic 
systems described by a set of relations, without any randoms. Another subclass 
corresponds to purely stochastic systems, for which we have X = W, and where the 
relation Q is defined by Xi = W’i for all i, so that all randoms are observed as variables. 

(2) A system n= {(Xi, X2), W, 0, P>, with Q:f(X,, X,) = W for some functionf, 
is a system with two variables. For instance, take Xi + X2 = W. In this case, each 
variable Xi cannot be viewed as random since its probability distribution is not 
defined, but the sum X1 + X2 is random. For a general function5 not all predicates 
on (X,, Y,) are random, only those which involvef(X,, X,). 

(3) For a system 

rr = {X, (WI, W,), 8, p} with Sz: X =f( WI, W,). (2.2) 

wherefis a noninjective function, the variable X is random. However, becausefis not 
injective, there are “too many” randoms; for instance, iffdepends only on WI, we can 
remove W,. This operation, called “compression”, is described in Sections 3.1 and 4.1. 

(4) The class of linear Gaussian mixed stochastic/nonstochastic systems of the form 
E Y = AX + B W was studied in detail in [23]. For such systems, E, A, B are matrices 
of suitable dimensions, W is a Gaussian random vector with zero mean and unit 
covariance matrix, and the variables correspond to the vector pair (X, Y). 

Our model of mixed systems is closely related to the one employed by Dempster 
and Shafer [7, 8,321 to formulate their theory of belief functions. Like the systems 
examined here, Dempster’s belief functions are specified by a quadruple consisting of 
a probability space (Vw, p), which is not directly visible, and a pair (Vx, r) formed by 
a set of system configurations, and a mapping r associating to each element w E Vw, 
a set T(w) c Vx. For our model, the set-valued mapping r is specified implicitly by 
the relation Sz, which associates to each random w the set 

T(w) = {x: s2(x; w)} (2.3) 

of variables x which, together with w, satisfy the relation a. 
Let us examine the modeling implications of the mixed system specification 

rc = {X, 52, W, p}. First, observe that by eliminating the randoms W from the relation 
Sz, we obtain a family of hard constraints for the variables {Xi, . . . , X,}. These 
constraints are often called “parity checks” in the failure detection literature [2]. The 
subset V: of Vx satisfying the constraints can be used to test the validity of the model 
71, by checking whether the visible variables belong to this set. 

Next, we note that each set B E VW of random experiments admits the prior 
probability 

P(B) = CweBPb) 

CwP(W) * 
(2.4) 

Eliminating the variables X from the relation Sz yields hard constraints that must be 
satisfied by the randoms {WI, . . . , W,}. Let I$ be the set of w’s satisfying these 
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constraints. The posterior probability on the randoms, given the set Vg of allowable 

configurations, takes the form 

P”(B) = 
c WEB n I’,~(~) = P(B n f’$) = P(B, V~) 

c WE VGP(W) P(G) 
W’ (2.5) 

The posterior probability Pn is the result of the interaction of the relation Sz with the 

prior distribution p in the system specification z = {X, s2, W, p}. Unfortunately, this 

new probability cannot be transferred to the variables X because, since 52 is a relation, 

the sets T(w) specified by (2.3) are not singletons, and may not be disjoints for different 

w’s. This is just a manifestation of the fact that, because projection is a monotonic 

operator on sets, but not additive, projecting a probability from one space to another 

does not yield a probability, but a different object, called a Choquet capacity [6]. On 

V,, this capacity provides a partial probabilistic knowledge which was described by 

Dempster [7, S] in terms of upper and lower probabilities for the subsets of V,. These 

upper and lower probabilities provide bounds describing the limits of our information 

concerning predicates of the X variables. In this paper, instead of adopting the 

Dempster-Shafer upper/lower probability framework, we shall remain within the 

realm of standard probability theory by considering exclusively probabilities over the 

set VW of randoms. 

The “ 1” system combinator 
The composition of mixed systems can be performed in the same manner as the 

combination of belief functions described in [7]. The main aspect of the combination 

operation is that different systems are allowed to share common variables, which 

describe their interaction, but not randoms. In other words, randoms are always 

private, and do not play a role in the combination of systems. For two systems 

71i = {Xi, Szi, Wi, Pi} with i = 1,2, the combinator 7~1) 712 = {X, s2, W, P} is defined as 

x=xluxz, (2.6a) 

w=wlxwz, (2.6b) 

P(W) = P(W1, w*) = Pl (Wl) x P2(%), (2.6~) 

Q=SZ1AQ,, (2.6d) 

where Qr A Q2 denotes the conjunction of relations sZl and Rz, which is the usual way 

of defining systems of equations in mathematics. Expressions (2.6a) and (2.6b) indicate, 

respectively, that variables may be shared, but not randoms. 

The identities (2.6a)-(2.6d) show that the systems interact only through their shared 

variables. The NIL system is a neutral element for the combinator “ I”. Our notion of 

composition is illustrated in Fig. 4. 

Examples. (1) Consider two systems rCi = {Xi, ni, Wi, Pi> with i = 1, 2, where 7~1 is 

purely stochastic, so that Xl and WI have same cardinality and Ql : Xl = WI, . . . , X, = 
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*1 72 

x X w2 

Pl(Wl) fh fb P2CW2) 

I x2 

I I I 
Xl x x2 

Fig. 4. The 1 composition. We consider two systems rc 1, n2 sharing the visible variable X, but not X1, X2. 
The first picture illustrates how interaction occurs, and the second one shows its result. 

W,, and 7z2 is purely nonstochastic, i.e., W2 = 0, with the nontrivial relation sZ2. 
Assume also that XI = X2. Then, it is easy to check that n1 1 x2 = {Xl, (Sz, A a,), 

WI, p1 ). The combined system nl 1 z2 has still the feature that randoms are visible 
through the variables, since sZ1 :X1 = IV,, . . . . X, = IV,. However, the variables 
x 1, . .., X, behave now according to the conditional distribution p? of p1 based on the 
constraint Q2. Thus the composition 1 provides a simple mechanism for specifying 
conditional probabilities, which will be used extensively in the SIG examples presented 

below. 

(2) Let ni = {xi7 Qi7 wi, Pi>, with i = 1,2, be two systems which do not interact, so 

that X1 n X2 = 0. Then, in the combination 7c1 I n2, the randoms WI and W, are 
independent.3 

2.3. The SIG mini-language 

We now proceed to describe a syntax, in the form of the langage SIG, which 
implements both the modeling format and composition rule of CSS. 

3According to the “maximum entropy principle” [31], among all joint distributions p(wl, w2) with 

prescribed marginals pl(wl) and p2(w2), the one which maximizes the entropy is given by pl(wl) x pz(w2), 
in which case the two components are independent. 
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The primitives of SIG 
The SIG language has the following primitives: 

(i) Nxl, . . ..xp). 
(ii) potential U(x1 , . . . , xp>, 

(iii) PI Q. 
They admit the following informal interpretation: 

(i) R(x1, . . . . xp) specifies a relation among the variables xl, . . . , xp. The corres- 
ponding system in the sense of (2.1) admits the xi’s as variables, has no randoms, and 
52 is the relation El. Thus, R(x1, . . . , xp) is a purely nonstochastic system. 

(ii) potential U(x1, . . . , xp), where U is a function taking values over the line 
(-co, + co], specifies random variables with unnormalized joint distribution 

exp - U(xI, . . ..x.). (2.7) 

The corresponding system in the sense of (2.1) has xl, . . . , xp as variables, its randoms 
w = (WI,..., W,) have the distribution exp - U(wI, . . . . w,), and s1 relates variables 
and randoms via the relations xl = WI, . . . . xp= W,. Thus, potential U(x1, . . . , xp) is 
a purely stochastic system. 

(iii) P 1 Q denotes the application of the “ I” combinator to systems P and Q. 

Specifying systems with SIG 

A system in the sense of CSS and definition (2.1) can be declared as shown below, 
where we omit variable type declarations of the form “integer”, etc: 

system PI = 

{ variable U(X, Y, Z } 96 declaration of variables 

( 1 potential U(X, Y> % distribution of (X, Y> 

1 Z=f<X, Y) % constraint on (X, Y, Z> 

I) 
end 

Several examples of SIG programs are now presented. The program 

system LINEAR= (real, E, A, B) % declaration of pwamf3tW3 

{ variable X, Y, U } 
< I potential <U**2s>/2 96 gaussian noise 

I E*Y=A*X+B*U 96 constraint on (X, Y, U> 

I) 
end 

specifies a “linear observation” E Y = AX + BU of the form introduced and studied in 
detail in [23]. To generate a HMM of the type discussed in 123,301, we cam employ 
the following program: 
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system HMM-0 = (integer N) 

{variable XIil i=O to N, YIi] i=l to N) 

< I x101=0 
1 loopi=l toN 

( I potential U(X[i-11, XIil) 

I potentialV(X[i-11, XIil, YIil) 

I) 
end 

I) 
end 

The first constraint fixes the initial condition, and the loop statement specifies the joint 

distribution of the internal states Xi and outputs Yi. The resulting system HMM-0 is 

a HMM with state X and output Y. It has 0 for initial state, and its state transitions 

and outputs are specified by the interactions U and V, so that 

p(‘% . . ..xN. yl, -.., yN) x &(%)exP - 5 [u(Xi- 1, xi) •t- v(Xi- 1, Xi, Yi)l, (2.8) 
i=l 

where CC denotes “proportional to”, and 6,(x) = 1 if x = 0, = 0 otherwise. If we want 
to consider the same HMM given that the J%IU~ condition X [Nl =X-MAX also holds, 
one needs only to add the final constraint to the previous SIG program, thus yielding 

system HMM = (integer N) 

{variable X[il i=O to N, YIil i=l to N} 

(I XIOl=O 

I X[Nl=X_MAX 

Iloopi=l toN 

<I potential U(X[i-11, XIil) 

I potentialV(X[i-11, XIil, YIil) 

I) 
end 

I) 
end 

To explain the interest of this simple trick, suppose X models the occupation level of 
a buffer, which behaves according to HMM-0. Assume X-MAX corresponds to 
a critical level, and we want to know the conditional distribution of the buffer 
evolution given that level X-MAX is reached at instant N. Then we only need to 
include the conditioning event X[Nl=X_MAX as an additional constraint in our 
original program H.M&_0 in order to obtain the desired behavior HMM. This 
mechanism can be employed whenever one seeks to concentrate on the set of 
experiments satisfying a condition of interest. Note for example that a common 
technique of risk analysis involves tracking cascades of events leading to a specific 
failure. 
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3. Simulation 

We now turn to the simulation of mixed systems. Simulation is operational in 
nature. In contrast, the system specification provided by CSS relies on relations, which 
are intrinsically nonoperational. This raises the issue of converting a system specifica- 
tion into an equivalent simulation. In this context, since we naturally wish to generate 
efficient simulations, we restrict our attention to incremental simulations. For instance, 
Markov chains or stochastic automata can be simulated incrementally by employing 
the Kolmogorov chain rule to generate the states one at a time. Such a feature is 
obviously mandatory for real-time applications. 

Consider a pair (X, Y) of standard random variables with joint distribution p(x, y). 

These two random variables can be simulated incrementally by employing the 
following procedure. 

(1) Compute the marginal 

P(X) = Cp(x, Y) 
Y 

(3.1) 

of p with respect to X. 
(2) Compute the conditional distribution p(ylx) = p(x, y)/p(x) of Y given X, so 

that we obtain the following factorization, also known as Bayes rule: 

P(% Y) = P(Y I x)p(x). (3.2) 

(3) Draw X at random following the marginal p(x), and then, for a given X, draw 
Y at random according to the conditional distribution p( y 1 X). 

We now generalize this technique to the case of mixed systems. 

3.1. Compressing the random part of a system 

Since the randoms are hidden, only their visible effect upon the system variables is 
of interest. But as we have already seen in example (2.2), the domain VW of all randoms 
may include too many details. For example, consider a pair ( W1, IV,) and assume that 
IV, is visible but not W,. The corresponding CSS model has a single variable Xi and 
constraint X1 = WI. Since W, is unneeded, it can be removed from the original 
system by computing the compressed distribution pcD(wl) = Cw2p(w1, wz), which for 
this simple case reduces to the marginal distribution with respect to wl. This is just an 
elementary case of the compression operation we now introduce. 

To a system Z, we can associate the following equivalence relation between 
randoms: 

w wnw’ iff Vx:L?(x; w) 0 L?(x, w’), (3.3) 

which just indicates that two randoms w and w’ are equivalent if they cannot be 
distinguished by the variables. Accordingly, a set B E VW is visible through the 
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variables if and only if it satisfies the property 

WEB =- w'EB. 
w’ -zw 

185 

(3.4) 

It is natural to restrict p to the sets of randoms satisfying this condition. Note in this 
respect that the family W of all sets B satisfying condition (3.4) forms a a-algebra, 
since it is closed under intersection and complementation, and contains the empty set. 
Hence, in order to characterize the random behavior of the system 71, we only need to 
specify the conditional probability P( .I W) of P given W. This can be accomplished 
by constructing what we shall call the compression TC,, of n. The compression is 
obtained from rr and the equivalence relation -II in the following manner. 

(1) First we compress the set VW of random experiments by retaining only the 
equivalence classes of the relation -II. Thus, an experiment w belongs to an equiva- 
lence class w,, , and the set of all equivalence classes forms the compressed domain V,,. 

(2) Compress the relation Q accordingly, by setting 

G?,,(x; w,,) A sZ(x; w) for w E w,,. (3Sa) 

(3) Finally, to each equivalence class w,, of randoms, we assign the probability 

PC&~,) 4 1 P(W). (3.5b) 
WEW,O 

Two systems IT and rc’ admitting the same compressed form are said to be equiva- 
lent, which is denoted as 

7L E rr’. 

Since the procedure employed to compress a system does not 
behavior as seen from the variables, we have the following result. 

(3.6) 

affect its external 

Theorem 3.1. rf71i = {Xi, ni, Wi, pi}, i = 1, 2, are equivalent in the sense 0f(3.6), they 
cannot be distinguished under simulation. In particular, they have 

(1) the same variables: X1 = X,; 
(2) the same parity checks: Vi,’ = V$; 
(3) the probability spaces { V$i, Wi, pi} are isomorphic, so that there exists a one-to- 

one map 4fiom the a-algebra WI onto Wz such that V B1 E WI, P,(+(B,)) = P,(B,). 
In addition, equivalence = is a congruence, which means that, ij’xi = n: for i = 1, 2, 

then (xl 1 n2) z (7~; In;). 

The second statement is a direct consequence of the fact that, to get the compressed 
form of (rri 1 nz), one can also (1) compress each xi separately, (2) take the composition 
of the resulting compressed forms, and finally (3) re-compress the result. The property 

7C = FLAT(X) 1 X, (3.7) 
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which is proved in Appendices B and D, is a straightforward consequence of the 

notion of system equivalence. This identity generalizes to mixed systems the idem- 

potence of composition property rc 1 TC = x of purely nonstochastic systems. 

Although the factorization (3.2) cannot be extended directly to mixed stochas- 

tic/nonstochastic systems, by employing Theorem 3.1, we develop below a general 

procedure for decomposing an arbitrary mixed system rt into marginal and condi- 

tional components which extends the factorization (3.2) of standard probability 

distributions. This decomposition will provide the key element required for incremen- 

tal system simulation. 

3.2. Two primitives 

Consider a system x = (X, 0, W, p> and a subset of variables X’ c X. The concepts 

of marginal and conditional distributions can be extended to mixed systems by 

constructing the marginal and conditional systems 

MARGINX(TT) and GWENX(~), 

which will be denoted more compactly as 

9x(n) and 9x(n), 

respectively, where Y represents here a mnemonic for Yimulation. 

The marginal. It consists of eliminating from rr the variables not in x’, which gives 

MARGIN&C) = c&&C) = {x’, s2’, w, p}, (3.8) 

where L?’ denotes the relation obtained by employing the existential qualifier 3 to 

eliminate from 52 the variables not in X’, so that 

U(x’; w) A 3 x” : Q((x’, XI’); w). (3.9) 

Note that neither the set of randoms W nor the distribution p are changed by this 

construction, which involves only tracking the effect of the projection of X onto X’ in 

the relation Sz. An interesting use of the marginal is depicted in Fig. 5. 

The conditional. The conditional system has the structure 

GIVENx(71) = Y&Z) = {x, Q, w, P”}, (3.10a) 

where the distribution p” is selected such that the factorization 

7C GE MARGIN&t) 1 GIVENy(71) = g&C) I~~(7.C) (3.10b) 

holds. Note that the relation E indicates that both sides have the same compressed 

form. The decomposition (3.10b) represents the extension to mixed systems of the 
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ml 1x2 

P(W) x PC%) 

W1 w2 

Rl A Q2 

I I I 

Xl X2 

Fig. 5. Hiding via the marginal. This is a continuation of Fig. 4. We consider again the system A, 17~~ and 
hide X in its interior. In Fig. 4, the interaction between n1 and n2 was carried by the shared variable X only. 
Since X is now hidden, we have an example of modeling systems interaction through a hidden regression 
variable. 

factorization (3.2) of a probability distribution into marginal and conditional 
components. A procedure for constructing YY(n) is presented in Appendices A and D, 
where we prove the following result. 

Theorem 3.2. There exists a system 9x(x) with the structure (3.1Oa), and such that 
(3.10b) is satisjied. 

Although the particular construction of 9x((x) we provide in Appendices A and 
D guarantees uniqueness up to equivalence, we do not know whether the solution of 
factorization equation (3.10b) for a system of the form (3.1Oa) is unique up to 
equivalence. 

Notation. In the following, it will be convenient to extend the definitions of gz(n) 
and Yz(n) to the case where Z is not necessarily a subset of the variables X of 71, by 
denoting 

Pz(4 4 gz n x(n), Yz(4 e yz n x(4. (3.11) 

3.3. Properties of the primitives 

The operations that we have just introduced admit a number of properties which 
will be employed extensively in the sequel. They are collected in the following lemma, 
which is proved in Appendices B and D. 
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Lemma 3.1. The marginal and conditional primitives satisfy the following propertiex4 

71 = Y&c) 1 Y&c), (3.12) 

9s~~’ o g&C) = 9~ o y&C) = FLAT o &+C), (3.13) 

% o % v z(n) = Pz(79, (3.14) 

YY ” z(7d” Yz(4 = YY ” z(x), (3.15) 
- _ 

.spx,(R I%) = 711 I ~Xl(Q)> (3.16) 

where in (3.16) XI denotes the set of variables of 7~~. 

Note that (3.12) corresponds to the requirement (3.10b) for the conditional; also, 
= and = symbols have been carefully used in this lemma. Identity (3.13) indicates 
that be successively applying the marginal and conditional primitives to a system, we 
obtain a flat distribution. Expression (3.14) shows that the marginal g( .) behaves like 
a projection, and (3.15) represents the dual property satisfied by the conditional. 

Systems with no shared variables have no interaction, and involve independent 
families of randoms. Hence if n1 and n2 have no shared variables, in order to simulate 
the composition 7~~ 1 7c2, we only need to simulate 7r1 and xZ separately. This corres- 
ponds to the easiest, but trivial, case of incremental simulation. But our discussion at 
the beginning of this section indicates that incremental simulation can be performed 
under more general circumstances. Specifically, the reason why the factorization (3.2) 
allows the simulation of first X followed by Y is that combining p( y ( x) with p(x) does 
not modify the behavior of X. In other words, p( y 1 x) represents totally new informa- 
tion with no bearing on X. This feature leads us to introduce the notion of innovation 
which extends to mixed systems the familiar concept of innovations process in filtering 
and detection theory. 

Definition 3.1 (Innovation). Let 71i and Xi, i = 1,2, be two systems and their variables. 
If Y denotes an arbitrary set of variables, the system 7~~ is said to be a Y-innovation of 
x1, which we denote as 

if 
_ 

9x, ” Y o YY(%) I ~Yh) = YY(Z1). (3.17) 

For the special case when Y is empty, we just say that 7~ is an innooation of x1, which 
is written as 7c2 I 7c1. 

4fi g(x) denotes the composition of maps f( g(x)). 
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Thus, rr2 represents a Y-innovation of rci if composing yv(rrz) with yv(nr) does 
not modify yv(rci). In particular, when Y is empty, this means that, to simulate 
n1 I rc2, we can equivalently first simulate rc 1, and then, having the outcome of this first 
partial simulation, subsequently simulate 7~. Thus a pictorial view of property 
7c2 JLv rtr could be that, given Y, the interaction between rcr and rcz is oriented from nr 
to rcz. This graphical view of innovations will be extensively used in the sequel, in 
particular for the examples of Section 3.5. 

From the above definition and comments it is clear that the relations lLv and ii are 
not commutative. Also the selection of the conditioning set Y affects strongly whether 
a system constitutes an innovation of another. For example, if Xi n Xz E Y, the two 
relations rci 1v rrnz and rrz lLv rci hold trivially. The concept of innovation will form the 
basis for the derivation of compilation rules for decomposing a system into an ordered 
sequence of subsystems which can be simulated in accordance of this order. The 
compilation rules will rely on the following properties of innovations, which are 
proved in Appendices C and D. 

Lemma 3.2. Given an arbitrary system TC, and a subset X’ of its variables, we have 

9x44 y %+4 (3.18) 

i.e., the conditional innovates with respect to the marginal. Furthermore, if rc2 ALy zl, i.e., 
7~ is a Y-innovation of x1, the following identities hold: 

9X,” YWY(%)l~Yh)) = YYh), (3.19) 

~Yhl%) = ~Yh)I~YW, (3.20) 
- - _ 
~Y(%i%) = ~Yh)l~YW, (3.21) 

3.4. Incremental system simulation 

Consider now a compound system of the form 

7C= Iislzi9 (3.22) 

where I denotes a finite index set. We seek to develop an incremental simulation 
procedure for such a system, so as to be able to evaluate progressively the porbabili- 
ties of complex events. 

Graphical representation. Let rri and rc2 be two systems admitting a nonempty set 
X of common variables. For these two systems, we employ the graphical notation 

rc-X-7r2 if 
7c2 is not an innovation of n,, and 

n, is not an innovation of 7r2. 

Similarly, we write 

n, + X + rc2 if 
7r2 is an innovation of rrl, but 

7r, is not an innovation of n2. 

(3.23a) 

(3.23b) 
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and 

7c1crXtt7r2 if 
nZ is an innovation of rcl and 

7r1 is an innovation of rc2. 
(3.23~) 

Obviously, it is rather uncommon that two systems should be mutual innovations, 
and still share common variables. However, this situation may occur in certain 
instances, such as when n, = rc2 = rc with 7~ nonstochastic, since in this case the 
composition rule z In s 7~ implies rc is its own innovation. 

Next, consider each pair (xi, nj) of components of the compound system rr given by 
(3.22). If ni and ~j share common variables, we say they are neighbors and draw 
a branch between them. The choice of branch orientation or the lack thereof depends 
on which of the three cases (3.23a)-(3.23c) holds. In this manner, we generate 
a bipartite graph, where systems and variables alternate, which we call the execution 
graph of rc, and denote by 

EXECGRAPH(X). 

This graph has the effect of visualizing all the statistical dependency relations existing 
between the variables of subsystems xi, iel. 

It is worth noting that graphs of a similar nature have been introduced recently by 
a number of authors under the name of influence diagrams, or belief networks, to 
perform local computations on large networks of interconnected conditional prob- 
ability distributions [21, 25, 261 or belief functions [9, 331. Such networks, as well as 
the execution of graphs described above, find their root in the standard graphical 
representation of Markov random fields in terms of cliques of neighbors [20]. 
However, while the graphs of Markov random fields are undirected, like the branches 
produced in (3.23a), the goal of belief networks is to perform local computations in 
a causal manner, which as will be shown below, requires a directed acyclic graph. At 
this stage, the execution graph associated to a compound system 7~ of the form (3.22) is 
in general partly undirected, and partly directed. Our objective is now to develop 
compilation rules for transforming this graph into a directed one. 

Graph compilation. The structure of the execution graph of a compound system 
provides all the information required to determine whether this system can be 
simulated incrementally, as shown by the following result. 

Lemma 3.3. Consider a partition I = J u J” with J n J” = 8, for which we write 

zJ= ljdnj> n? = IjcJ’nj, 

XJ = set of private variables of xJ, 

Xy = set of private variables of IT;, 

8X = set of shared variables of 7cJ and 7~5. 
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(1) We have 
_ - - 

9x,(n) = 9x,(% I ~PaXM)). 

(2) Under the stronger assumption 

(3.24) 

xJ -+ ax + n; or 7tJ++axt,n;, (3.25) 

identity (3.24) reduces to 

9x,(n) = ox,, (3.26) 

which indicates that to simulate the variables XJ of the compound system TC, we only need 
to simulate the subsystem xJ. 

Proof. We first prove (1). By using the decomposition (3.12) for rc; with X’ = 8X, and 
observing that Yax(rc;) is an X,-innovation of rcJ 1 gax(n;), we get 

9x,(n) = 9x,(% 16) 
- - 

= .4px,h I ~dx(e) I ~“ax(4)) 
- - 

= .4px,(% I .4odXM)) I ~x,“~4pdx(~~), (3.27) 

where the last equality is due to property (3.21) of innovations. Next, using successive- 
ly properties (3.14) and (3.13) of primitives, and noting the system 7$ has no variables 
in XJ, we obtain 

- - - 
~x,“~axM) = ~XJO~X, ” ax”~x,u axM) 

= 9x, 0 FLAT 0 &(?Z;) = NIL, (3.28) 

which together with (3.27), proves (3.24). 
We now derive part (2) of the lemma. Under assumption (3.25), property (3.19) of 

innovations implies 

~x,(Q I %x(6)) = ~x,h), 

which proves (2). q 

(3.29) 

Based on the above lemma, we can readily determine from the execution graph of 
a compound system rc whether this system can be simulated incrementally, i.e., if 
simulating sequentially the successive (ordered) components yields a simulation of the 
compound system. This notion is now formalized (we use Theorem 3.1 in formulating 
this definition). 

Definition 3.2 (Incremental simulation). A compound system 71 = I ie1 Iti is said to 
admit an incremental simulation if there exists a total order < on I such that the 
simulation of rr can be performed as follows. Denote by Xi the set of visible variables of 
component Ki. Then for all i,, EZ, once actual values of the variables in Ui<i,Xi are 
given, the variables of Xi, can be drawn using BiO only. 
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Theorem 3.3. A compound system TT of the form (3.22) admits an incremental simulation 

if and only if EXECGRAPH(~) is an acyclic directed graph. 

This means that this graph contains no undirected branch of the form (3.23a), and 

no directed cycle. When determining whether the graph contains cycles, all bidirec- 

tional branches of the form (3.23~) can be used as “wild cards” whose orientation can 

be selected so as to break potential cycles. 

Proof of Theorem 3.3. An important property of a directed graph is that it is 

acyclic if and only if we can define a total order < on its vertices which is 

compatible with the orientation of its branches (see [15, p. 2003). Consequently, 

if EXECGRAPH(Z) is a directed acyclic graph, we can reorder its components r< 

in such a way that for all pairs (71i, nj) which are connected by a branch of the form 

(3.23b), we have i< j. Then, according to part (2) of Lemma 3.3, the system rc can be 

simulated incrementally by generating its components 71i sequentially, for increasing 

values of i. 

Conversely, suppose EXECGRAPH(Z) contains either an undirected branch of the 

form (3.23a) or a cycle. Then we can find a partition of rc such that rc_, and rcs are linked 

by an undirected branch. When EXECGRAPH(Z) contains a cycle, such a partition is 

generated by letting the cycle straddle nJ and its complement. Then, EXECGRAPH(X) 

contains both branches going from nJ to rc;, and viceversa, so that when all the 

subsystems of nJ and its complement are aggregated, the branches going in opposite 

directions between zJ and rc; collapse into an undirected branch of the form (3.23a). 

Thus, according to part (1) of Lemma 3.3, in order simulate the variables XJ of rc, we 

must solve a fixed point equation of the form (3.24), which prohibits incremental 

simulation. 0 

As a side remark, note that fixed-point equations of the form (3.24) can be solved 

iteratively by employing stochastic relaxation methods such as the Metropolis algo- 

rithm or the Gibbs sampler [12]. However, such schemes fall outside the scope of the 

incremental simulation procedures described here. 

Next, since most compound systems of the form (3.22) usually give rise to execution 

graphs which contain either undirected branches or cycles, it is of interest to develop 

transformation/compilation rules, which when applied to a given system rc, will yield 

a new system which can be incrementally simulated. In doing so, we restrict our 

attention to transformations which preserve the local connectivity of EXECGRAPH(Z). 

Otherwise, we could always aggregate all the subsystems pi and their variables into 

the full rc system which contains only one increment, and thus admits a trivial, but 

uninteresting, incremental simulation. Consequently, we require for the time being 

that the transformations applied to rc should preserve the structure of the interaction 

graph obtained by removing all branch orientations from EXECGRAPH(~L), as well as 

the variables Xi of the subsystems forming its vertices. 
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Theorem 3.4. Given a compound system TC whose interaction graph forms a tree, we can 
transform TT into an equivalent system x’ such that EXECGRAPH@‘) is a directed tree, and 

is thus amenable to incremental simulation. 

Proof. Since the interaction graph of rc forms a tree, the index set I admits a natural 
distance, where for i, j E I, d(i, j) = k if the unique path linking xi to nj has k branches. 
Select now an arbitrary node iO E Z as the root of the tree. A partial order can be 
defined over Z by considering the distance of i to i,,. Thus we write i< j if i is closer to iO 

than j. Consider the following rules: 
Rule 1: Select i E I, and let i_ be the unique neighbor of i such that i_ Xi, i.e., i_ 

denotes the parent of i. If 71i and 71i_ share variables, and 7Ci is not already an 
innovation of xi_, then factor xi as 

71i E gXi_(zi) I yXi_(71i)9 (3.30) 

otherwise do nothing. Here, Xi_ denotes the set of variables of xi_. 
Rule 2: If the factorization (3.30) has been performed, reorganize the compound 

system rc by rewriting 

71i- l?ri E 7Ci_ 17Cj 

with 

(3.3 la) 

4_ ’ 71i_ I gXi_(ni)~ ?Ti ’ 5@Xi_(7Ci). (3.31b) 

This reorganization clearly preserves the structure of the interaction graph of rc, as 
well as the variables of subsystems rt_ and rti. 

The index set I can be ordered so that successive indices i are nonincreasing with 
respect to the partial order <. By successively applying Rules 1 and 2 to this sequence, 
we find that once the transformation (3.31a) and (3.31b) has been applied to node i, the 
new system rr’ includes the branch 

I 71i_ + Xi_,i + 7rj (3.32) 

in its execution graph, where Xi_, i represents the set of shared variables of rc_ and ni. 
Then when Rules 1 and 2 are subsequently applied to system n:_j, n:_ may change, 
but the orientation of the branch (3.32) remains the same. Thus, to transform the given 
tree into a fully oriented tree, we need to apply the rules only once at each node of the 
tree, by moving gradually from its extremities towards its root iO, so that the 
complexity of the compilation procedure is proportional to the cardinality of I. Note 
that in the above procedure, the choice of root i0 is completely arbitrary. 0 

Unfortunately, the above result does not tell us what to do for systems whose 
interaction graph is not a tree. For such systems, we can always transform the 
interaction graph of 71 into a tree by aggregating some of its vertices. Such an 
aggregation has the effect of regrouping the subsystems rti of rc into larger clumps. In 
doing so, it is desirable to keep the number of aggregations to a minimum, as well as to 
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ensure that the structure of the resulting tree does not depend on the order in which 
aggregations are performed. A simple solution to this problem was presented in [21] 
(see also [37, Ch. 121) for the case of triangulated graphs. Recall that a graph is 
triangulated if it does not include chordless cycles. This solution relies on the fact that 
if a graph is triangulated, the hypergraph formed by its maximum cliques is acyclic. 
A hypergraph differs from a graph by the fact that its “edges” are actually subsets of 
the vertex set. Also, the cliques of a graph are sets of mutual neighbors, and a clique is 
said to be maximal if it is not contained in another clique. Consequently, given 
a compound system 71 whose interaction graph is triangulated, to aggregate it into 
a tree, we need only to find its maximum cliques, and aggregate together the 
corresponding subsystems. Note that a given subsystem ni may belong to several 
maximum cliques, and thus will be aggregated into several clumps. The resulting 
aggregated graph forms a tree, to which we can then apply the compilation procedure 
of Theorem 3.4. When the interaction graph of n is not triangulated, we can always 
triangulate it by adding branches. However, the new branches must be selected 
judiciously, since different branch fill-in strategies may lead to triangulated graphs 
with different numbers of cliques, and cliques of different sizes. 

The application of the compilation rules and aggregation scheme we have just 
described are illustrated in Appendix E by considering two examples, one for which 
the interaction graph forms a tree, and one where it contains a cycle. 

3.5. The SIG simulation compiler 

We now implement the marginal and conditional primitives in the SIG language, 
and use them to incrementally simulate compound systems. Let SYSTEM denote 
a system and X, Y be two of its variables. The two operators 

extract X, Y in SYSTEM 

given X, Y SYSTEM 

denote, respectively, the marginal Y -x, v (SYSTEM) and conditional 9x, v(SYSTEM). 
To illustrate the application of these operators, we consider the HMM example. As 

a first step, examine the system 

system HMM-inc = (integer N) 

{variableX[i]i=OtoN,Y[i]i=ltoN} 

(I xt01=0 
(loopi=ltoN 

(1 given X[i-1] potential U(X[i-11, X[i]) 
1 givenX[i-11, X[i] potentialV(X[i-11, X[il, Y[il) 

I) 
end 

I) 
end. 
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Since only “given . . . potential . . . ” statements are used, the SIG program 
HMM_inc admits the execution graph 

x0 + x0,x1 + Xl + x1,x2 + x2 ZN-1 + XN-l,xN + nN 

1 1 
. . . 

L 

01 02 ON 

where the subsystems appearing in the graph are defined by 

PI li] ::=givenXli-11 potentia.IUCXli-11,Xlil) 

SIGMA ii1 ::=givenXli-11, X[i] potentiaIVoIli-11, Xlil, Ylil) 

(3.33) 

Since this execution graph is an oriented tree, according to Theorem 3.3, we can 
simulate HMM_~C “on-line” for increasing values of the index i. On the other hand, 
this is not the case if we consider the original I-IMM program, even if it contains only 
given.. . statements, because of the presence of the two-point boundary-value condi- 
tion 

<I x101=0 
1 X[N] =X-MAX 

I>. 

In fact, the execution graph of HMM takes the form 

no - x0, xi - 711 - xi, x2 - 7c2 nN-l - XN-1, XN - nN 

I I 
. . . 

I (3.34) 

Cl 62 ON 

It is a nonoriented tree, which can be transformed into a directed one by employing 
the two compilation rules described in the proof of Theorem 3.4. The algorithm 
proceeds in two phases: we first apply the rules to the vertical branches of the tree, 
which model the HMM observations, and then perform a right to left sweep over the 
horizontal branches, which model the Markov chain dynamics. 

(1) Applying Rule 1, the potent&l V(X [i- 11, X lil, Y [il) can be decomposed as 
follows, where c=) means = : 

potential V(X[i-11, Xlil, Y[il> 

<=) 

(1 extractX[i-11, Xlil inpotentiaJV(xli-11, Xlil, Ylil) 
1 givenX[i-11, Xlil potentialVcX[i-11, Xlil, Ylil) 

I 1. 

For each index i, the subsystem 

SIGMA[i] ::=givenX[i-11, X[i] potentiaIV(X[i-11, X[i], Y[i]) 

is an innovation with respect to all other subsystems, and is executable as soon as 
Xii- l] and X [i] have been simulated. 
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(2) Applying Rule 2, define 

PI[i] ::=(I extract X[i-11, X[i] in potential V(X[i-11, Xb], Ybl) 

1 potentiallJcX[i-11, X[il) 

I). 

where the boundary constraints X [Ol = 0 and X [N] =X-MAX need also to be included 

for i= 1 and i=N, respectively. 

(3) Recursively, for i decreasing from N to 1, 

(a) apply Rule 1 and decompose 

PI[il(=)(( extract X[i-11 inPI[il 
I given X [i- l] PI [i] 

I>; 

(b) apply Rule 2 and redefine 

PI [i] ::=(I givenX[i-11 PI[i] 

I> 

PI[i-1] ::=(I extract X[i-11 inPI[il 

I PI[i-l] 

I>. 

The resulting system is equivalent to the original one, and has the execution graph 

(3.33), so that it is ready for simulation. 

4. Estimation 

Consider a pair (X, Y) of random variables with joint distribution p(x, y). The 

maximum likelihood estimate of (X, Y) is given by 

(i, j) A arg max p(x, y). 

X.Y 
(4.1) 

When the pair (X, Y) is unknown, but we observe a third variable 2, the ML estimate 

of (X, Y) given Z, which is sometimes called the maximum a posteriori (MAP) 

estimate, is obtained by replacing p(x, y) by p(x, ylz) in the above expression. This 

estimate can be generated incrementally by employing the following procedure: 

(1) Compute the generalized likelihood 

~96) A max P(X, Y) 
Y 

(4.2) 

of X based on p. 
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(2) Compute the conditional likelihood p9( y 1 x) 4i p(x, y)/pu(x) of Y given X, so 
that the following factorization holds: 

P(X9 Y) = P&Y I X)P&). 

Note that this factorization differs from the Bayes rule appearing in (3.2). 
(3) Find j? = arg max, p&x), and then select E = arg maxy py( y Ii). The estimated 

pair (a, 9) coincides with (4.1). 
The above incremental estimation procedure is just a simple form of dynamic 

programming, which is also called the Viterbi algorithm in the HMM literature 
[ 11,303. We now generalize this technique to mixed systems. The approach we follow 
parallels the one employed to extend Bayes rule to mixed systems for the simulation 
case. 

4.1, Maximum-likelihood compression of randoms 

We modify the notion of compression introduced in Section 3.1 to account for the 
fact that while the marginal probability (3.1) was obtained from the distribution p(x, y) 

by performing a summation over y, the generalized likelihood (4.2) requires a maximi- 

zation over y. To track the effect of this change, we examine again the simple example 
consisting of a pair (WI, W,) of randoms, where WI is completely visible through 
a variable X, = WI, but W, has no effect on the variables. To eliminate W,, we can 
replace it by its ML estimate GZ, thus yielding the new distribution pML-co(wl) = 

max,l p(wl , w2) = p(wl , 8,) for the remaining random WI. The procedure employed 
to reduce the original system to the quadruple (X1,X1 = WI, puL_co(wl), WI) 

represents an elementary case of the maximum likelihood compression procedure 
described below. 

Given a system rc and the equivalence relation -Z introduced in (4.4), we obtain the 
ML-compression of a system n as follows: 

(1) Compress the set VW of random experiments by retaining only the equivalence 
classes w,, for the relation wn. 

(2) Compress the relation s2 accordingly, by setting 

Q,,(x; w,,) 4 Q(x; w) for WEW,,. (4.4) 

(3) Assign to each equivalence class w,, the generalized likelihood 

PML-co(~co) A swap. (4.5) 

Two systems rc and n’ having the same ML-compressed form are said to be 
ML-equivalent, which is written as 

7L =zl?. (4.6) 

Note that, while compression and ML-compression are difirent operations, any 
system which is compressed is also ML-compressed, and vice versa, since compression 
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is a feature of the relation 52, not of p. The notion of ML-equivalence motivates the 

following result. 

Theorem 4.1. If Zi = (Xi, Q, Wi, pi>, i = 1, 2 are ML-equivalent in the sense of (4.6), 
they cannot be distinguished under estimation, so that they have 

(1) the same variables: X1 = X2; 
(2) the same parity checks: V$; = Vg;; 
(3) the same generalized likelihoods p&_,, i = 1, 2. 

Remark. Since most of the properties of the marginal and conditional primitives 

derived in the previous section are of an algebraic nature, they remain valid if we 

replace the “1” operation by a “max”, i.e., as we perform ML-compressions instead of 

compressions. Consequently, our earlier incremental simulation results can be 

adapted with little effort to the incremental estimation case. 

4.2. A framework for estimation, and two primitives 

Consider a system rc = {X, Q, W, p}, and a partition 

X=YuZ 

of the system variables X into observations Y and unknowns Z. We seek to 

(1) estimate the unknowns from the observations, and 

(2) determine how likely the observations are by replacing the unknowns by their 

estimated values. 

In the following, when considering a system 71, we shall specify how its variables are 

partitioned into observations and unknowns by denoting 

7c = {(Y, Z), Q, W, P}. 

For such a system, if Z’ c Z denotes a subset of its unknowns, we now construct the 

generalized likelihood and conditional likelihood systems 

ESTIMATES and KNOWING&K), 

which will also be denoted more compactly as 

- 
gz(x) and bz(rc), 

where the symbol 6’ is employed here as a mnemonic for gstimation. 

The generalized likelihood. It consists of eliminating from r~ the unknowns not in Z’, 
which yields 

ESTIMATE&n)= &&)= ((Y,z'),Q',w,p), 14.7) 
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where 52’ denotes the relation obtained by using the existential quantifier 3 to 
eliminate from Q the unknowns not in Z’, so that 

sz’(y,z’;w)P ~z”:52((y,z’,z”);w). (4.8) 

Note that neither the randoms W nor the distribution p are changed by this construc- 
tion, which involves only tracking the effect of the projection of Z onto Z’ in the 
relation 52. Note also that, at this point, there is no difference between 8( .) and g( .), 
since we have #z(n) = gp, v z(n). 

The conditional likelihood. It is uniquely specified by requiring it should have the 
structure 

KNOWING&) = 8&) = {(Y, z), 52, w, jf’}, (4.9a) 

where p” is selected such that the factorization 

71 = 0 &(K) I82’(7c) (4.9b) 

holds. Recall that Ed indicates that both sides have the same ML-compressed form. 
Note that &z(n) modifies only the distribution p. The factorization (4.9b) extends to 
mixed systems, the factorization (4.3) of a probability distribution into generalized and 
conditional likelihoods. Finally, observe that since G and E Y are different equiva- 
lence relations, the primitives Y( .) and 8( .) are different. 

Notation. In the following, it will be convenient to extend the definition of ~?u(rc) and 
b”(rc) to the case where the set U is not included in Z, by denoting 

8”(X) 4 &J n z($T), &u(n) p 8, n z(n). (4.10) 

4.3. Properties of the primitives 

The generalized likelihood and conditional likelihood primitives admit a number of 
properties which are collected in the following lemma. Its proof, as well as that of 
almost all the results of this section, is omitted, since as observed at the end of Section 
4.1, it involves only replacing summations by maximizations in the results of the 
previous section. 

Lemma 4.1. The generalized likelihood and conditional likelihood primitives satisfy the 
identities: 

7c =z C&,(72) 1 b&c), 
- - 

8~ o &,(7C) = 8~ o &z’(n) = FLAT o &(n), 

az o &J ” z(n) = fz($, 

gu ” z o &z(n) = Ju ” ZW, 
- - 
&Z,(% 1712) = 711 I bz1(712)v 

where in (4.15) Zi denotes the set of unknowns of x1. 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
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Note that (4.11) is just a restatement of the factorization requirement (4.9b) for the 
conditional likelihood. Identity (4.12) indicates that by successively applying the 
generalized likelihood and conditional likelihood primitives, we obtain a flat distribu- 
tion. Expression (4.13) shows that the generalized likelihood 8( .) behaves like a pro- 
jection, and (4.14) represents the dual property satisfied by the conditional likelihood. 

Systems with no shared variables have no interaction, and involve independent 
families of randoms. Hence if nl and x2 have no shared variables, in order to estimate 
the composition rci 1 rc2, we only need to estimate ni and rrZ separately. This corres- 
ponds to the easiest, but trivial, case of incremental simulation. But our discussion at 
the beginning of this section shows that incremental estimation can be performed 
under weaker assumptions. The key feature of the factorization (4.3) which makes it 
possible to estimate X first, and they Y, is that combining p&y(x) with p&x) does not 
modify the estimate of X. This remark naturally leads to the notion of ML-innovation 
we introduce now. 

Definition 4.1 (ML-innouation). Let ni and Ziy i = 1, 2, denote two systems and their 
unknowns. If U denotes an arbitrary set of variables, 7~~ is said to be a U-ML- 

innovation of rcl, which we denote as 

if 

#z, ” uO~u(%)l bu(Jrn,) -28u(%). (4.16) 

If U is empty, we just say that x2 is a ML-innovation of x1, which we write rc2 JLZ nl. 
Thus, rc2 represents a U-ML-innovation of rcl if composing tpu(~,) with bu(nl) 

does not modify bu(~,) 
Note again that the relations lL$ and Is are not commutative, and are not 

identical to the innovations Yu and Y, respectively. Also, if we select the condition- 
ing set U such that Z1 n Zz c U, then both x1 lL<7r2 and xZILg rcz JLgrcl hold. In 
other words, as soon as all the unknowns coupling two systems are specified, these 
systems become innovations for each other. We now state without proof several of the 
properties of ML-innovations. 

Lemma 4.2. Given a system TC and a subset Z’ of its unknowns, we have 

b~(n)JL-LPf.Fz+r). 

Also, lj- z2 1: nI, the following identities are satisjied: 

&, ” u(bu(%) I 6uh )I = ~LJ(n1)7 

J&I I %I -u~uh) I ~&A 
_ - _ 

B&I In) -Y~uh) I mu. 

(4.17) 

(4.18) 

(4.19) 

(4.20) 
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4.4. Incremental estimation 

We consider a compound system of the form (3.22) and wish to estimate its 
variables incrementally. 

Graphical representation. Let xl and x2 be two systems admitting a common set 
Z of unknowns. For these two systems, we employ the graphical notation 

z,~Z~nZ if 
7c2 is not an ML-innovation of x1, and 

?tI is not an ML-innovation of 7r2. 
(4.21a) 

Similarly 

a 
7cI 5 Z + 7r2 if 

7c2 is an ML-innovation of q, but 

x1 is not an ML-innovation of 7c2, 
(4.21b) 

and 

Y I 
7c1ttZo7z2 if 

n2 is an ML-innovation of q, and 

z1 is an ML-innovation of 7~~. 
(4.21~) 

Now, consider each pair (ni, nj) of subsystems of the given compound system 
7~ = 1 iEIXi. When the two subsystems ni and x, share variables we say they are 
neighbors and draw a branch between them, which is oriented according to which of 
the three cases (4.21a)-(4.21c) applies. Collecting all branches generated in this 
manner yields a bipartite graph where unknowns and systems alternate, which we call 
the estimation graph of z, and denote by 

ESTIMGRAPH (n). 

Graph compilation. The estimation graph plays a key role in the incremental 
estimation of compound systems, as indicated by the following results. 

Lemma 4.3. Consider a partition I = J u J” with J n J” = 8, and denote 

71J = I jdKj3 n? = Ije.lcnj, 

ZJ = set of private unknowns of x5, 

Z; = set of private unknowns of 7~5, 

aZ = set of shared unknowns of nJ and 7~;. 

(1) We have 
- - - - 

&z,(n) = gZ,hJ 1 &a~@;)) 1 FLAT’ 6;). 

(2) Under the stronger assumption 

identity (4.22) reduces to 
- - - 

gz,(‘C) = gZ,kJ) 1 FLAT ’ b(6), 

(4.22) 

(4.23) 

(4.24) 
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which indicates that, to estimate the variables ZJ of the compound system rt, only the 
subsystem nJ is needed.5 

Proof. We only derive part (l), since it requires introducing a small modification in 
the proof of Lemma 3.3, where the simulation form of the above result is presented. 
Employing the decomposition (4.11) of 715 with Z’ = i?Z, and using the fact that 
J~z(K~) is a ZJ-ML-innovation for rcJ 1 #dz(xS), we get 

G,(n) = &,(R I 6) 
- - 

= JZ,oG I ac?Z(G) I ~8ZM)) 
- - - 

= Jz,bb I ~az(e)) I ~Z,“~dZw), (4.25) 

where the last equality is due to property (4.20) of innovations. Next, using success- 
ively properties (4.13) and (4.12) of primitives, and noting ~5 has no unknowns in ZJ, 

we find 
- - 

Jz, o 8az(~;) = Jz, o 62, ” JZ o bz, ” dZM) 

= c&,0 FLAT 0 &&;) = FLAT 0 &7C;), (4.26) 

which is where a difference appears with respect to Lemma 3.3. Together with (4.25), 
this identity proves (4.22). The proof of part (2) is the same as for the simulation 
case. 0 

Theorem 4.2. Consider a compound system n oftheform (3.22). 
(1) II admits an incremental estimation tf and only zf ESTIMGRAPH(~) is an acyclic 

directed graph. 
(2) If the interaction graph obtained by removing all branch orientations from ESTIM- 

GRAPH(R) forms a tree, rt can be transformed into an equivalent system 7~’ such that 
EXECGRAPH(~) is a directed tree, which can therefore be incrementally estimated. 

When determining whether the graph contains cycles, all bidirectional branches of 
the form (4.21~) can be used as “wild cards” whose orientation is selected so as to 
break potential cycles. 

Proof of Theorem 4.2. Parts (1) and (2) are proved in the same manner as Theorems 
3.3 and 3.4, respectively. We include a description of the procedure employed to 
convert a system represented by a tree into one which is represented by a directed tree, 
since this scheme will be implemented in SIG. Again, since the interaction graph of rc is 
a tree, we select an arbitrary root i,, on this tree, and use the distance between nodes 

‘The second factor FLAT 0 dP(ni) is irrelevant for the estimation problem, since it only contains the parity 
checks of the observations. 
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and the root to specify a partial order on the index set I, where i <j if i is closer to i,, 
than j. The transformation relies again on the following rules: 

Rule 1: Select iEl, and let i_ be the unique neighbor of i such that i_ < i, i.e., i_ 

denotes the parent of i. If xi and ni_ share variables, and 71i is not already an 
innovation of xi_, then factor xi as 

ni E #Z,_ tni) I &Z,_ tni)5 (4.27) 

otherwise do nothing. Here, Zi_ denotes the set of unknowns of Zi_. 
Rule 2: If the factorization (4.27) has been performed, reorganize the compound 

system n by rewriting 

(4.28a) 

with 

’ xi- ’ ni- I ~Zi_(xi)~ ?l( ’ dZ,_(7Ti). (4.28b) 

The index set I can be ordered so that successive indices i are nonincreasing with 
respect to the partial order <. By successively applying Rules 1 and 2 to this sequence, 
we find that once the transformation (4.28a) and (4.28b) has been applied to node i, the 
new system rr’ includes the branch 

7C_ z Zi_,i 5 7t; (4.29) 

in its execution graph, where Zi_, i represents the set of shared unknowns of 7tf_ and 
71:. Then when Rules 1 and 2 are subsequently applied to system rc_ , nf_ may change, 
but the orientation of the branch (4.29) remains the same. Thus, to transform the given 
tree into a fully oriented tree, we need to apply the rules orly once at each node of the 
tree, by moving from its extremities towards its root i,,, so that the complexity of the 
compilation procedure is proportional to the cardinality of I. 0 

4.5. The SIG estimation compiler 

We now implement in SIG the generalized and conditional likelihood primitives and 
use them to perform incremental simulation. If SYSTEM denotes a system and X, Y are 
two of its variables, the two operators 

estimate X, Y in SYSTEM 
knowing X, Y estimate SYSTEM 

represent, respectively, the {X, Y}-generalized likelihood c?~,~(SYSTEM) and {X, Y}- 
conditional likelihood ~?x, y(SYSTEM). If X, Y are the only two unknowns of interest 
in the system, only the operator estimate X, Y in SYSTEM needs to be employed. On 
the other hand, if we seek to estimate other variables given X, Y and the observed 
data, we need also to make use of knowing X, Y estima&e SYSTEM. 
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The application of these two operators can be illustrated by studying the HMM 

example. As a first step, consider the modified program 

system HMM = (integer N) 

{variable X[i] i=O to N, Y[i] i=l to N 

obsemred Y lil i= 1 to N } % declaration of observations 

<I x101=0 
1 X[N] =X-MAX 

lloopi=l toN 

(1 potential UcXli-11, Xlil) 

lpot.entialV(X[i-l],X[i],Y[i]) 

I) 
end 

I) 
end, 

where we have introduced the new information that the Y’s are observed, but not the 
other variables. When estimation problems are considered, this information needs to 

be supplied as part of a system specification. The estimation graph of HMM is given by 

J 9 Y _Y Y Y 
710 - x(-J, x1 - 7c1 - x1, x2 - 712 XN-1 -xN-l,xN-XN 

19 I2 . . . I2 (4.30) 

01 02 fJN 

It is a nonoriented tree, which can be converted into a directed one by applying the 

two compilation rules introduced in the proof of Theorem 4.2. The algorithm pro- 

ceeds in two stages: we first apply the rules to the vertical branches of the tree, which 

model the HMM observations, and then process from right to left the horizontal 

branches, which model the Markov chain transitions. 

(1) Applying Rule 1, the potential V(X li- 11, X lil, Y lil) can be decomposed as 

follows, where c=)L means E-Y, 

potential V(X[i- 11, Xlil, Y lil> 

<=)L 

(1 estimate X[i-11, Xlil in potential V(Xli-11, Xlil, Ylil) 

I knowing X[i-11, X[i] estimate potential V(Xli-11, Xlil, Ylil) 

I) 

For each index i, the subsystem 

knowing X[i- 11, Xlil estimate potential V(X [i- 11, Xlil, Ylil) 

is an ML-innovation with respect to all other subsystems. 

(2) Applying Rule 2, define 

PI[i] :: =<I estimate X[i-11, Xli] in potential V(Xli-11, Xlil, Ylil) 

I potential U(Xli-11, Xlil) 

II 
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where the boundary constraints X [O] = 0 and X [N] =X-MAX need also to be included 
for i=l and i=N, respectively. 

(3) Recursively, for i decreasing from N to 1, 

(a) Apply Rule 1 and decompose 

PI [il (=)L ( 1 estimate X [i - 1 I in PI [il 

1 knowing X[i- 11 estimate PI [il 

I) 

(b) Apply Rule 2 and redefine 

PI[i] ::=(I knowingX[i-1] estimatePI[il 

I) 

PI[i-l]::=(IestimateX[i-11 inPI[i] 

I PIIi- 11 

I) 

The resulting system is equivalent to the original one, and its estimation graph 

is an oriented tree, so that it is amenable to recursive estimation. 
The above ML estimation procedure for hidden Markov models corresponds in 

fact to a reverse form of the standard Viterbi algorithm [30], which in addition to the 
right to left compilation sweep performed above includes a backtracking phase, where 
the most likely hidden state trajectory is generated recursively, starting from the 
extimate of X 101, and using the estimate of X [i- 11 and the system Flfil to generate the 
estimate of X [il. This algorithm is discussed in further detail in [23], where it is shown 
to admit the same high-level program as the Rauch-Tung-Striebel double-sweep 
smoother of linear Gaussian state-space models. Obviously, since the HMM model is 
fully reversible, the right to left compilation procedure employed here could be 
replaced by a left to right sweep, which would yield the standard version of the Viterbi 
algorithm. The advantage of our choice of compilation direction is that it highlights 
the close analogy existing between simulation and estimation. 

5. Discussion and conclusions 

We have introduced the CSS model and associated SIG minilanguage for describing 

stochastic/nonstochastic systems. CSS is a relational model where systems are defined 
by relations and unnormalized probability densities. This feature has several advant- 
ages. First, it makes the definition of the composition operation “ I” relatively easy. 
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Second, it provides us with a simple mechanism for specifying the conditional 
behavior of a system given that certain constraints are satisfied, which has the 
potential to be very useful when tracking cascades of events leading to system failures. 

However, the system specification provided by CSS is generally not executable, i.e., 
it does not readily lead to a system implementation. To convert it to a form which can 
be simulated, we rely on a compilation, which examines the dependency relations, 
both nonstochastic and statistical, existing between the system variables. This compi- 
lation employs two operations. The marginal L?‘( .) and conditional 9’( .) extend to 
mixed systems the standard marginal and conditional probability distributions of 
fully probabilized systems. With their help, we were able to introduce the notion of 
innovation, whereby rc’ is an innovation of n if, roughly speaking, 7~’ does not influence 
n in the composition rc 1 d, but rc may influence rc’, so that the interaction between 
rc and rc’ is oriented, and n: 1 rc’ is amenable to incremental simulation. In general, 
systems interact in a nonoriented way. When the interaction graph of a system forms 
a tree, we have presented rules which can be used to convert the tree into a directed 
one while preserving equivalence of the compound system. In combination with the 
results of [21] for aggregating a triangulated graph into a tree, these rules can be used 
to compile arbitrary interaction graphs. A SIG implementation of the compilation 
rules was presented. Finally, it turns out that our simulation results can be adapted, 
with minor modifications, to the hidden state estimation of mixed systems. We only 
need to replace the g(. ) and Y( . ) operations by z(. ) and b( . ), which simply amounts 
to replacing summations by maximizations while performing randoms compressions. 
Since the 1 and max operations have similar properties (they are both commutative 
and associative), this makes it easy to convert simulation results to estimation, and 
vice versa. 

Although CSS is obviously related to the theory of belief functions and belief 
networks developed in [7, 8, 32, 331, it differs from it in several respects. First, as 
mentioned earlier, unlike the Dempster-Shafer approach which relies on upper and 
lower probabilities in the space Vx of visible variables, we keep track of probability 
distributions on the random configurations. Second, through the introduction of the 
concept of innovation, which does not appear in the belief networks literature, CSS 
provides concrete solutions to basic problems such as mixed system simulation and 
estimation. To our knowledge, no other approach offers this range of facilities. 

The research presented here can be extended in several directions. 
l It would be of interest to extend our results to the case of mixed system whose 

variables and/or randoms take values in continuous domains. The main difficulty 
in attempting such a generalization is that all operations we perform must be 
implementable in a finite number of steps. This means that an algebraic mechanism 
must be available for eliminating variables within relations, and all probability 
densities, including those generated by randoms compression, must be finitely 
parametrized. These two conditions are generally not satisfied, but they do hold for 
the case of linear relations and Gaussian distributions which is studied in detail in 
[23]. In fact, it turns out that for the linear-Gaussian case, the two primitives g(.) 
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and 8( .) are identical, as well as the two primitives Y( .) and &‘( .). Furthermore, the 
primitives can be implemented efficiently with standard matrix analysis methods. 

l A second issue concerns the simulation or estimation of compound systems whose 
interaction graph is not a tree. The incremental simulation and estimation tech- 
niques developed here do not apply to such graphs. Although we can always resort 
to aggregation to convert a graph into a tree, this may not be the best way to 
proceed, since aggregation can produce very coarse aggregates. An alternative 
approach would consist of formulating simulation and estimation in terms of fixed 
point equations, for which we could then use iterative stochastic relaxation 
methods of the type employed in statistical mechanics. 

l A third issue involves the introduction of two features currently missing from CSS, 
namely the specification of timing information and the ability to define mixed 
systems over infinite time intervals. These two features are already present in the 
previously introduced SIGN&U language [3], which represents an extension of the 
SIGNAL synchronous real-time language [4,5,22]. The SIGNalea language general- 
izes stochastic B&hi automata, Petri nets, and our SIG minilanguage. But the 
mathematical foundations of SIGN&XI in [3] are somewhat shaky and estimation is 
not included. Thus, generalizing CSS to SIGN&W is a high priority task, particularly 
since SIGN&U is currently under implementation. 

l Finally, our results need to be tested on real applications. Two applications of 
StciNalea are now under consideration. The first one involves the implementation 
for Electricte de France of the nonintrusive appliance load monitoring scheme 
proposed in [16], which presents strong similarities with speech recognition, and 
for which Viterbi-style estimation algorithms are expected to be successful. A sec- 
ond potential application in the area of power generation concerns the design of 
a monitoring and diagnostic system from its risk analysis description. In this 
context, we would like to determine whether our relational model, because of its 
ability to track cascades of events leading to specific failures, presents advantages 
for risk analysis. 

Appendix A. Proof of Theorem 3.2 under Assumption A.1 

Several results of our paper are derived in two stages, first by proving them under 
the assumption shown below, which is later removed in Appendix D to obtain 
a general derivation. 

Assumption AS. The system 7~ is such that, for each x, there is at most one w satisfying 
relation Q(x; w). 

Recall that two systems are equivalent if they have the same compressed form. 
Thus, we can assume without loss of generality that n is compressed, so that the 
factorization (3.10b) requires that II should be identical to the system obtained by 
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compressing gx(rc), combining it with 9x(n), and then compressing the combina- 

tion. 

(1) We first compute the compressed form n’ = {xl, sz’, W’, p’} of gx(rr). We have 

Q’(x’; w) = 3 x” : Q((x’, 2’); w), W) 

so that w1 -n,~2 iff 

VX’, 3x;‘:Lq(x’, ix;‘); WI) .e- 3x;‘: Q((x’, x;‘); wz). 64.2) 

Then, if w’ denotes an equivalence class of the relation -nr, the compressed form of 

p assigns to w’ the probability 

P’(W’) = c P(U), (A.3) 
vcw’ 

and the compressed relation 0’ is given by 

B(x’, w’) = sz’(x’, w) for w E w’. (A.4) 

The summation appearing in (A.3) illustrates why the system gx(rc) can be viewed as 

a “marginal” of rr with respect to the variables X’. 

(2) Assume now that Yx(rc) has the form (3.10a), where the distribution p” still 

needs to be selected. Let us compute it A 9x(n) 19x(n). The resulting system 

ii: = {X, fi, $9, P} satisfies 

*=Wxw, (A.5a) 

ji(w’, w) = p’(w’) x p”(W) (ASb) 

and 

ii((xJ, x”); (w’, w)) = Q(x’; w’(w)) A Q((x’, x”); w), (A.5c) 

where w’(w) is the equivalence class containing w. This is where we have used the 

assumption that for each x, there exists at most one w satisfying relation sZ(x, w); this 

implies that w’ must be the equivalence class containing w. Compressing (A.5c) yields 

again s2: the random (w, w’) with w E w’ is redundant and can be compressed as 

w alone. 

(3) To prove that the requirement (3.10b) uniquely specifies p”, note that by 

equating p(w) to expression (A.5b) for P(w, w’(w)), we obtain 

p”(W) = P(W) 

C”EW+v)P(+ 
64.6) 

which uniquely defines p”. This expression generalizes to mixed systems the factoriz- 

ation (3.2) of standard probability distributions. 

This proves our claim under Assumption A.l. 
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Appendix B. Proof of formula (3.7) and Lemma 3.1 under Assumption A.1 

Identity (3.7) is in fact trivially satisfied under Assumption A.l. To derive (3.13), 
observe from (A.6) that if the equivalence classes w’ are singletons, then V w, p”(w) = 1. 
Given a system 7c = {X, 52, W, p}, this implies that the conditional with respect to 
all its variables satisfies 9x(n) = {X, L!, W, l} = FLAT(X). Thus 9’~. 0 gpx’(rr) = 
FLATO 9x(n). Applying now the primitives in reverse order, consider first 
9x(n) = (X, Q, W, p”) where p” is given by (A.6). Taking the marginal of this system 
with respect to X’ and compressing the result yields the system {X’, Q’, W, p’}, where 
52’ is obtained by eliminating from s2 the variables not in X’, and p’ is obtained by 
compressing p” accordingly. Using expression (A.6) for p”, this gives 

p’(w’) = 1 p”(W) = 1, 
WEW’ 

(B-1) 

which proves the second part of (3.13). 
Property (3.14) is just a consequence of the fact that taking the marginal of a system 

with respect to a set of variables requires only to project s2 on the desired variables 
and the system randoms. To prove (3.15), we assume that rc is compressed and 
Y u Z G X. We only need to show that the probability distributions satisfy the chain 
rule (3.15). In doing so, we denote by w’(w, Z) the equivalence class containing the 
random w when the equivalence relation (A.2) is specified with respect to the set Z, i.e., 
we compute the marginal of rc with respect to Z. According to (A.6), the distribution of 
~Z(X) is given by 

Pw9 = 
P(W) 

CVEW’(W,Z)P(~)’ 
03.2) 

But the equivalence class w’(w, Z) is the union of equivalence classes u’(u, Y u Z) 
generated by applying (A.2) to the larger set of variables Y u Z. Hence, the distribu- 

tionp~,~~~(~)of~y,z 0 Yz(n) can be expressed as 

P~“z~z(w)= 
P!iw 

C"W+v,Y" z,PD) 

P(W) 1 
= 

c DE w’(w, Z) P(U) 
X 

1 P(U) 
vew’(w, Y " Z) 

Cuev’(v,Z)P(u) 

P(W) 

=c VEW’(W, Y " Z)P(U) 
= P? ” z(w), (B.3) 

which proves (3.15). 
To derive (3.16), it is convenient not to compress systems when computing mar- 

ginals or composing systems. The two systems appearing on both sides of (3.16) can be 
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denoted, respectively, as 

9x,(% I x2) = {X’, fi, w’, P’>, 

7cr 1 ~x,(rL2) = {X”, ti’, W”, p”}. 

Clearly, we have X’ = X” = X1 and W’ = w” = WI x W1. Next, applying the com- 
position rule (2.6d) and the definition (3.9) of a marginal and decomposing 
x1 = (Z1, x,) and x2 = (xc, &) into their shared component x, and private ones, we 

get 

~((&,x,);(w,,w,)) = 3~‘z:SZl((x”l,x,);wl)AS22((x,,f,);wz) 

= 52,(X1;wl)A3x’?:522((x,,12);wz) 

= Q”(X1; (WI 3 WI). (f3.4) 

Finally, the equality of the distributions p’ and p” follows from the fact that they are 
both obtained by summing p2 over the private randoms of 7r2, where the summation is 
performed either after or before composition with rcl, which does not change the 
resulting distribution. 

Appendix C. Proof of Lemma 3.2 under Assumption A.1 

To prove (3.18) we find, by combining property (3.13) of the primitives with the 
composition rule (3.7) for a system and its FLAT version, that 

9x 0 Yx(7c) 1 L&+c) = P&L), (C.1) 

which according to (3.17) shows that the conditional 9x(~) forms an innovation for 
the marginal 9x(n). 

Let now 7r2 be a Y-innovation of rcl, so that (3.17) holds. Substituting this 

expression inside property (3.16) of primitives yields 

9x, “Y(~Y(~Z)I~Yh)) = %,” YO%L,” Y0~Y(~2)I~Y(~I)9 

= ~Yh), (C.2) 

which proves (3.19). 
To derive (3.20), we use the factorization (3.12) to write 

Xl I x2 = 76’ I YYb2) 

with 

(C.3a) 

- - 
rc’p ~Y~~~~I.spY~~2~I~Y~~1~. (C.3b) 
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Then, the fact that rc2 is a Y-innovation of rci implies 5@v(~) is an innovation of n’. To 
see this, note that 

71’ I pox, ” Y “YY(n2)= ~Y~~,~I~Y~~2~l~~Y~~~~I~4px, “Y0~Yb2)) 

= ~~hK9’~(712)l~~h) (by (3.17)) 

= x’. (C.4) 

Consequently, by applying (3.19), we find 

PY “x,~~~Y~~~~l~Y~~2~l~Y~~~~~l~Y~~2~~= ~Y(~1)I.FIY(~2)l~Y(~1). (C.5) 

But gy(rrl) is an innovation of gv(nl) I gy(7c2), so that applying again (3.19) gives 

.4PY((~Y(R1)l~Y(~2)l~Y(~1)) = ~YhWY(~2)~ F-3) 

which, together with (CS), proves (3.21). Identity (3.20) for the conditional follows 
from the one we have just derived for the marginal, since the constraints are not 
affected by the conditional, and the normalization factors of the densities are obtained 
directly from those of the marginals. This proves the result. 

Appendix D. Proof of Theorem 3.2, formula (3.7), and Lemmas 3.1 and 3.2 

in the general case 

Consider now an arbitrary system rc = {X, Q, W, p}. We can associate to rc an 
augmented system 

ii= {X u W,Qr\S5,W,p}, (D.la) 

with 

W = (I&, ‘.., w,>, (DSb) 

52”:Wj= Wj forl<j<q, (D.lc) 

which satisfies Assumption A.l. The system E is obtained from rr just by making the 
randoms Wj directly visible from the outside through the introduction of the addi- 
tional variables Wj. Note that we have 

71 = 9x($. (D.2) 

Proof of Theorem 3.2. We can apply Theorem 3.2 to il. This yields 

E = 9x(??) I Y&i) = 3$&E) 15+&c), (D-3) 

since X’ c X and the formulas involving the marginal p( .) alone are trivially true 
without Assumption A.l. Next, since E satisfies Assumption A.l, we can apply (3.18) 
and (3.21). Together with (D.2), this gives 

7c = ~x(7r)l~x~~x(Iz), (D.4) 
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which has the form (3.10b) provided we identify 

9x(x) 4 9x 0 Yx(j?). (D.5) 

According to the construction of Appendix A, the system 9x(E) has the structure 

.4px(i2) = {X u w, Q A 5, w, p”}, (W 

with 

P(W) 

p”(w) = c”wqw~Pw 
(D.7) 

where W(w) denotes the equivalence class containing w for the equivalence relation 

associated to the projection of Sz A fi onto X’. However, because this projection 

eliminates entirely the variables W, it coincides with the projection of Q on X’, so that 

W(w) = w’(w), where w’(w) is the equivalence class containing w for the equivalence 

relation (A.l). Then, when we perform the marginal of 9x(E) with respect to X, the 

variable set X u @‘is projected onto X, and the relation Q A n” reduces to 52 alone, so 

that the resulting system 9’x(rc) has the structure (3.10a), where p”(w) obeys (A.6). 

Thus, the procedure employed to generate the conditional 9x(n) does not depend on 

whether rr satisfies Assumption A.1 or not. 

Proof of formula (3.7). We start from the identity 

?2 E ?21 FLAT@) (W 

for the system 71. Since this formula implies that FLAT(%) is an innovation of 2, we can 

apply (3.21), which yields 

7C = 7-CIpx” FLAT(%)= 7Cl FLAT(X), (D.9) 

where the equality gxo FLAT(%) = FLAT(X) is due to the fact that the projection of 

CL! A fi onto X coincides with that of ft alone. 

Proof of Lemma 3.1. The proof of formulas (3.14) and (3.16) given in Appendix B does 

not use Assumption A. 1. Thus we only have to extend (3.13) and (3.15). First, we apply 

(3.13) to kc, which gives 

9x o 9x(7?) = $+4px, 0 9x@) = FLAT 0 ~&C). (D.lO) 

But, .J?x(it) = 9x(n). Then, using (D.5), we have 

9x 0 Yx(E) = 9x 0 9x 0 9x+?) = 9x 0 9x(7$ (D.11) 

which, together with (D.lO), proves (3.13). To prove (3.15), we can assume without loss 

of generality that W n (Y u Z) = 0. Then, as before, we note that (3.15) holds for i& 

so that 

YY v z"Yz($ = YY" zm. (D.12) 
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Since W n (Y u Z) = 8, we have Yz(rr) = Yz(it). Using this remark, applying 9x( ) 

to both sides of (D.12), and using (DS), gives (3.15) for an arbitrary rc. 

Proof of Lemma 3.2. The proof given in Appendix C does not use Assumption A.l. 

Appendix E. Examples of compound system compilation 

To illustrate the rules developed in Theorem 3.4 for transforming a compound 

system into an executable one, we consider two examples. The first example is 

depicted in Fig. 6. This figure should be read like ordinary text, from left to right, and 

from top to bottom. Each subfigure will be designated by its row and column indices, 

so that (3,2) refers to the subfigure appearing in the third row and second column. The 

subfigure (1,1) represents the execution graph of a compound system rc = 1 isI Xi. Each 

vertex of the graph corresponds to a subsystem ni. Since the graph is a tree, the 

compilation procedure of Theorem 3.4 is applicable. The first step consists in selecting 

a root node, which is shown in subfigure (1,2), where the precedence relationship 

existing between parent nodes and their children is used to orient the tree. The root 

node is the one from which all arrows originate. All extremities of the tree are 

represented by black patches in subfigure (2, 1). The remaining subfigures illustrate 

the application of Rules 1 and 2 of Theorem 3.4 to bring rc to executable form. As we 

go from subfigure (2, 1) to (2,2), the following changes occur: 

l Three patches move from grey to black. Let nj be the subsystem corresponding to 

such a patch, and let nil and Zi, be the subsystems represented by the two patches 

adjacent to i which switch from back to white. 

l When a patch i = il, i2 goes from black to white, the following operations are 

performed. 

(1) We factor ni = Px,,j(ni) 1 Yxi,j(~i); where nj is the unique neighbor of rti on the 

tree, and Xi,j denotes the shared variables of ~j and 71i. 

(2) The local subsystem at i is replaced by ~xi,j(~i). 

l As the patch j goes from grey to black, its local subsystem is replaced by 

The subfigures (2, 1) to (4,2) describe the successive application of Rules 1,2 to the 

tree. The final subfigure (4, 2) represents a compound system rc’ = I isI 7~; which is 

equivalent to the original system, but such that EXECGRAPH(Z’) is a directed tree, and 

thus executable. 

The above compilation procedure can be interpreted as follows. Suppose each 

patch represents a person collecting information in a hierarchical organization. After 

gathering the desired information, each individual writes a detailed report for per- 

sonal use, and forwards a synthetic memo to his/her superior. The superior merges 

his/her own information with the synthetic memos of his/her subordinates, but in 
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Fig. 6. Application of the compilation rules of Theorem 3.4 to a tree 
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Fig. 7. Compilation procedure for a graph containing a cycle. 

order to do so, must wait until all subordinates have turned in their report. Note that 
this information gathering scheme relies strongly on the fact that each person has 
a single superior. 

Figure 7 shows the result of applying the same procedure to a nonhierarchial 
organization: the outcome is that hierarchy is recreated! The execution graph shown 
in subfigure (1, 1) does not form a tree since it contains a cycle. The successive 
subfigures illustrate what happens when Rules 1, 2 are nevertheless applied to this 
case. The partial order that we choose for the graph nodes is depicted in subfigure 
(1,2). Consider now the transformation occurring as we go from subfigure (2, 1) to 
(2,2). A single patch with index j switches from grey to black, and two neighboring 



216 A. Benveniste et al. / Theoretical Computer Science I52 (1995) 171-217 

patches switch from black to white. Among these two patches, we focus our attention 
on the one which is not a minimal vertex of the directed graph, whose index is i. This 
vertex is connected to two lower vertices in the sense of the partial order on the graph, 
namely j and the root node 0. As i switches from black to white, the following 
operations are performed. 

(1) We factor ni = sPx,Ij,,,(ni) 1 9’x,,o,,,(~i), where Xi, (j, 0) represents the union of 
variables shared by rcj and ni on the one hand, and no and xi on the other hand. 

(2) The local subsystem at i is replaced by 9’xi,Cj,,,(xi). 

(3) The new system 715 = pxi,CI,O)(ni) I ~xi,(,,,,(~i) I rc IS assigned to the patch j, where j 
.9’xi (j ,,(ni) represents the contribution of the other patch switching from black to 
white, so that a new branch linking 0 and j needs to be added to the execution graph. 

Pursuing the compilation procedure yields the graphs of subfigures (3, 1) and (3,2), 
where the procedure terminates. Note that in subfigure (3,2), the cycle of original 
execution graph has been triangulated through the addition of new branches. Thus, 
our compilation procedure automatically triangulates the underlying execution graph 
and implicitly replaces it by the tree formed by its maximal cliques, as recommended 
in [21]. 

In our interpretation, when a subordinate has several direct superiors, they must all 
agree on the subordinate’s report as they compile their own information. The outcome 
of the compilation procedure is therefore that hierarchy is recreated through the 
aggregation of all direct superiors into a single virtual one! 
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