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a b s t r a c t

Let G be a graph. The distance d(u, v) between the vertices u and v of the graph G is equal
to the length of a shortest path that connects u and v. The Wiener index W(G) is the sum
of all distances between vertices of G, whereas the hyper-Wiener index WW(G) is defined
as WW(G) =

1
2W(G) +

1
2
∑

{u,v}⊆V(G) d(u, v)
2. In this paper the hyper-Wiener indices of the

Cartesian product, composition, join and disjunction of graphs are computed. We apply
some of our results to compute the hyper-Wiener index of C4 nanotubes, C4 nanotori and
q-multi-walled polyhex nanotori.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this paperwe consider graphsmeans simple connected graphs, connected graphswithout loops andmultiple
edges. Suppose G is a graph with vertex set V(G). The distance between the vertices u and v of V(G) is denoted by d(u, v) and
it is defined as the number of edges in a minimal path connecting the vertices u and v. The Wiener index is one of the most
studied topological indices, both froma theoretical point of view and applications. It is equal to the sumof distances between
all pairs of vertices of the respective graph, see for details [1–5].

The hyper-Wiener index of acyclic graphs was introduced by Milan Randic in 1993. Then Klein et al. [6], generalized
Randic’s definition for all connected graphs, as a generalization of the Wiener index. It is defined as WW(G) =

1
2W(G) +

1
2
∑

{u,v}⊆V(G) d
2(u, v), where d2(u, v) = d(u, v)2. We encourage the reader to consult [7–13] for the mathematical properties

of hyper-Wiener index and its applications in chemistry.
The Cartesian product G × H of graphs G and H has the vertex set V(G × H) = V(G) × V(H) and (a, x)(b, y) is an edge of

G × H if a = b and xy ∈ E(H), or ab ∈ E(G) and x = y. If G1,G2, . . . ,Gn are graphs then we denote G1 × · · · × Gn by
⊗n

i=1 Gi.
In the case that G1 = G2 = · · · = Gn = G, we denote

⊗n
i=1 Gi by Gn. The Wiener index of the Cartesian product graphs was

studied in [14,15]. In [16], Klavzar, Rajapakse and Gutman computed the Szeged index of the Cartesian product graphs and
the present authors computed some exact formulae for the vertex PI, edge PI, first Zagreb, second Zagreb and edge Szeged
indices of product graphs, [17–20].

The join G = G1 + G2 of graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge sets E1 and E2 is the graph union
G1 ∪ G2 together with all the edges joining V1 and V2. If G = H + · · · + H︸ ︷︷ ︸

n times

then we denote G by nH.

The composition G = G1[G2] of graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge sets E1 and E2 is the graph
with vertex set V1 × V2 and u = (u1, v1) is adjacent with v = (u2, v2) whenever (u1 is adjacent with u2) or (u1 = u2 and v1 is
adjacent with v2), see [21, p. 22].
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The disjunction G ∨ H of graphs G and H is the graph with vertex set V(G) × V(H) and (u1, v1) is adjacent with (u2, v2)
whenever u1u2 ∈ E(G) or v1v2 ∈ E(H).

The symmetric difference G ⊕ H of two graphs G and H is the graph with vertex set V(G) × V(H) and E(G ⊕ H) =

{(u1, u2)(v1, v2) | u1v1 ∈ E(G) or u2v2 ∈ E(H) but not both}. In [15], Sagan et al. computed some exact formulae for the
Wiener polynomial of various graph operations containing Cartesian product, composition, join, disjunction and symmetric
difference of graphs. In [22], the present authors computed the vertex PI and Szeged indices of the join and composition of
graphs and in [19] the same calculations for the first and second Zagreb indices are done. The aim of this paper is to continue
this program for computing the hyper-Wiener index of these operations on graphs.

Let G be a graph and e = uv an edge of G. mu(e) denotes the number of edges lying closer to the vertex u than the vertex
v, andmv(e) is the number of edges lying closer to the vertex v than the vertex u. The Padmakar–Ivan (PI) index of a graph G
is defined as PI(G) =

∑
e∈E(G)[mu(e) + mv(e)], see for details [23,24]. A vertex version of this index introduced by the present

authors in [17]. In exact phrase, the vertex PI index of G, PIv(G), is the sum of [nu(e) + nv(e)] over all edges of G, where nu(e)
is the number of vertices lying closer to the vertex u than the vertex v and nv(e) is the number of vertices lying closer to the
vertex v than the vertex u.

Throughout this paper our notation is standard and takenmainly from [25,26]. Kn denotes a complete graph on n vertices.
IF H and G are graphs in which V(H) ⊆ V(G) and E(H) ⊆ E(G) then we call H to be a subgraph of G and write H ≤ G. H is
called a spanning subgraph of G, if V(H) = V(G). A graph G is called to be a quasi multi-walled nanotorus (q-multi-walled
nanotorus for short), if G is isomorphic to the direct product of a path Pn and an arbitrary nanotorus T, see [27].

2. Main results

In this section, some exact formulae for the hyper-Wiener index of the Cartesian product, composition, join, disjunction
and symmetric difference of graphs are computed.We begin by computing the hyper-Wiener index of the Cartesian product
of graphs. To do this, we need the following well-known theorem related to distance properties of the Cartesian product
graphs. We encourage the reader to consult the book of Imrich and Klavzar [21], for more details.

Lemma 1. Let G and H be graphs. Then we have:
(a) |V(G × H)| = |V(G ∨ H)| = |V(G[H])| = |V(G ⊕ H)| = |V(G)|.|V(H)| and |E(G × H)| = |E(G)|.|V(H)| + |V(G)|.|E(H)|,
(b) G × H is connected if and only if G and H are connected,
(c) If (a, x) and (b, y) are vertices of G × H then dG×H((a, x), (b, y)) = dG(a, b) + dH(x, y),
(d) The Cartesian product, join, composition, disjunction and symmetric difference of graphs are associative and all of them are

commutative except for composition.

Theorem 1. Let G and H be graphs. Then WW(G × H) = |V(H)|2WW(G) + |V(G)|2WW(H) + 2W(G)W(H).
Proof. Set V(G) = {u1, . . . , um} and V(H) = {v1, . . . , vn}. Applying Lemma 1, we have:

WW(G × H) =
1
2

∑
{u,v}⊆V(G×H)

[d2G×H(u, v) + dG×H(u, v)]

=
1
4
∑

(ui,vk)

∑
(uj,vl)

[d2G×H((ui, vk), (uj, vl)) + dG×H((ui, vk), (uj, vl))]

=
1
4

n∑
k,l=1

m∑
i,j=1

[d2G(ui, uj) + dG(ui, uj)] +
1
4

m∑
i,j=1

n∑
k,l=1

[d2H(vk, vl)

+ dH(vk, vl)] +
1
2

[
n∑

k,l=1
dH(vk, vl)

]
×

[
m∑

i,j=1
dG(ui, uj)

]
= |V(H)|2WW(G) + |V(G)|2WW(H) + 2W(G)W(H). �

Graovac and Pisanski [14], computed an exact formula for the Wiener index of the Cartesian product of graphs. In what
follows, we first apply a similar method as Theorem 1 which is simpler than earlier proof to find an exact expression for the
Wiener index of the Cartesian product of graphs.

W(G × H) =
∑

{u,v}⊆V(G×H)

dG×H(u, v)

=
1
2
∑

(ui,vk)

∑
(uj,vl)

dG×H((ui, vk), (uj, vl))

=
1
2

n∑
k,l=1

m∑
i,j=1

dG(ui, uj) +
1
2

m∑
i,j=1

n∑
k,l=1

dH(vk, vl)

= |V(H)|2W(G) + |V(G)|2W(H).

By an inductive argument, one can see that W
(⊗n

i=1 Gi

)
= |V|

2∑n
i=1

W(Gi)

|Vi|2
, where V = V

(⊗n
i=1 Gi

)
.
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Corollary. Let G1,G2, . . . ,Gn be graphs with Vi = V(Gi), 1 ≤ i ≤ n, and V = V(
⊗n

i=1 Gi). Then

WW

(
n⊗

i=1
Gi

)
= |V|

2

 n∑
i=1

WW(Gi)

|Vi|
2 +

[
n∑

i=1

W(Gi)

|Vi|
2

]2

−

n∑
i=1

W2(Gi)

|Vi|
4

 .

In particular, WW(Gn) = n|V(G)|2n−4(|V(G)|2WW(G) + (n − 1)W2(G)).

Proof. Applying an induction argument and Theorem 1, we have:

WW

(
n⊗

i=1
Gi

)
= WW

(
n−1⊗
i=1

Gi × Gn

)

= |Vn|
2

n−1∑
i=1

WW(Gi)

|Vi|
2 +

[
n−1∑
i=1

W(Gi)

|Vi|
2

]2

−

n−1∑
i=1

W2(Gi)

|Vi|
4


+WW(Gn)

|V|
2

|Vn|
2 + 2

W(Gn)

|Vn|
2

n−1∑
i=1

W(Gi)

|Vi|
2 |V|

2

= |V|
2

 n∑
i=1

WW(Gi)

|Vi|
2 +

[
n∑

i=1

W(Gi)

|Vi|
2

]2

−

n∑
i=1

W2(Gi)

|Vi|
4

 . �

Example 1. Let Pn and Cn denote a path and cycle with n vertices, respectively. By [15], W(Pn) =
n(n2−1)

6 and W(Cn) =
n3

8
2|n

n(n2 − 1)
8

2 6 |n

. By definition of hyper-Wiener index and a simple calculation with Maple 9.5, WW(Pn) =
1
24 (n

4
+ 2n3 −

n2 − 2n) and WW(Cn) =


n2(n + 1)(n + 2)

48
2|n

n(n2 − 1)(n + 3)
48

2 6 |n

.

Consider a complete graph Kn. For arbitrary vertices u, v ∈ V(Kn), d(u, v) = 1 and so between graphs with exactly n
vertices, complete graph Kn has the minimum hyper-Wiener index. Hence for every n-vertex graph G,WW(G) ≥ WW(Kn) =(

n
2

)
. In [28], Ivan Gutman proved that the path Pn has the maximum value of the λ-th power of the distance for trees

and it holds for all graphs as adding an edge the hyper-Wiener index will decrease. Therefore, for all n-vertex graph G,
WW(Pn) ≥ WW(G).

Example 2. Yousefi-Azari et al. [20], computed the PI index of C4 nanotubes and nanotori. In this example, we compute the
hyper-Wiener index of these molecular graphs. Suppose R and S denote a C4 nanotube and nanotorus, respectively. Then
R = Pn × Cm and S = Ck × Cm. In Example 1, the hyper-Wiener index of Pn and Cn are computed. Therefore, by Theorem 1,

WW(R) =


1
48

(m4n2 + 2m3n3 + 2m2n4 + 3m3n2 + 4m2n3 − 2m2n2 − 2m3n − 4m2n + 2n2) 2|m

1
48

(m4n2 + 2m3n3 + m2n4 + 3m3n2 + 2m2n3 − 2m2n2

− 2m3n − 2mn3 − 2m2n − 3mn2 + 2mn) 2 6 |m

WW(S) =



1
96

(2m4n2 + 3m3n3 + 6m3n2 + 8m2n2 + 6m2n3 + 2m2n4) m&n are even
1
96

(2m4n2 + 3m3n3 + 6m3n2 − 3m3n + 2m2n4 + 6m2n3 + 2m2n2 − 6m2n) m + n is odd
1
96

(2m4n2 + 3m3n3 + 6m3n2 − 3m3n − 4m2n2 + 2m2n4

+ 6m2n3 − 6m2n − 3mn3 − 6mn2 + 3mn) m & n are odd.

Example 3. Consider the graph G whose vertices are the r-tuples b1b2 · · · bN with bi ∈ {0, 1, . . . , ni − 1}, ni ≥ 2, and
let two vertices be adjacent if the corresponding tuples differ in precisely one place. Such a graph is called a Hamming
graph. It is well-known fact that a graph G is a Hamming graph if and only if it can be written in the form G =

⊗N
i=1 Kni .

By the previous corollary, it is possible to compute the hyper-Wiener index of a Hamming graph, but we consider only
the case that b1 = b2 = · · · = bN = 2. Such a graph is called a hypercube of dimension N and denoted by QN . Then,
WW(QN) = 22N−4(N2

+ 3N).

Example 4. Yousefi and Ashrafi [29], computed an exact formula for computing the Wiener index of a polyhex nanotorus
T = T[p, q]. Here p and q denote the number vertical zigzags and rows, respectively. They proved that:
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W(T) =


pq2

24
(6p2 + q2 − 4) q < p

p2q

24
(3q2 + p2 + 3pq − 4) q ≥ p.

The present authors [30] computed the hyper-Wiener index of a polyhex nanotorus. We apply Theorem 1 to compute the
hyper-Wiener index of q-multi-walled nanotube R = Pn × T. Using a tedious calculation, we have:

WW(R) =



1
576

[12p2q2n4 + (24p3q2 + 24p2q2 + 4pq4 − 16pq2)n3 + (36p2q2 + 18pq5)n2

− (72pq3 + 24p3q2 + 4pq5 + 24p2q2 − 16pq2)n] q ≤ p
1

576
[12p2q2n4 + (24p2q2 + 12p2q3 + 12p3q2 + 4p4q − 16p2q)n3

+ (168p3q + 318p5q + 576p4q + 48pq3 − 288p3q2 + 24p2q4
+ 36p3q3 − 168p4q2 + pq5 − 12p2q2)n2
− (24p2q2 + 12p2q3 + 12p3q2 + 4p4q − 16p2q)n] p =

q
2

1
576

[12p2q2n4 + (24p2q2 + 12p2q3 + 12p3q2 + 4p4q − 36p2q)n3

+ (12p2q2 − 120p2q + 30p5q + 24p2q4 + 72p2q3 + 96p2q2 + 36p3q3 + 24p4q2)n2
− (24p2q2 + 12p2q3 + 12p3q2 + 4p4q − 36p2q)n] p < q

2
1

576
[12p2q2n4 + (24p2q2 + 12p2q3 + 12p3q2 + 4p4q − 36p2q)n3

+ (−12p2q2 − 120p3q − 72pq3 + 24p4q2 + 96p2q2 + 20p5q + 24p2q4 + 36p3q3)n2
− (24p2q2 + 12p2q3 + 12p3q2 + 4p4q − 36p2q)n] q

2 < p < q.

In what follows we prove an elementary lemma which is crucial in computing the hyper-Wiener index of composition
of graphs.

Lemma 2. Let G1 and G2 be graphs. If G1 is connected, |V(G1)| > 1 and G = G1[G2] then for every vertex (u1, v1), (u2, v2) ∈ V(G)
we have:

dG((u1, v1), (u2, v2)) =


dG1(u1, u2) u1 6= u2
0 u1 = u2 & v1 = v2
1 u1 = u2 & v1v2 ∈ E2
2 u1 = u2 & v1v2 6∈ E2.

Proof. Suppose u1u2 ∈ E1. Then for every vertex v1, v2 ∈ V2, dG((u1, v1), (u2, v2)) = 1 = dG1(u1, u2). Therefore, for every
u1u2 not in E1, dG((u1, v1), (u2, v2)) <= dG1(u1, u2) and if dG((u1, v1), (u2, v2)) < dG1(u1, u2) = p then there is a path
(u1, v1)(a1, b1) . . . (aq, bq)(u2, v2) in G such that q + 1 < p. But by definition u1a1a2 . . . aqu2 is a path in G1 and this means
q + 1 = p. So dG((u1, v1), (u2, v2)) = dG1(u1, u2). Other cases are immediate consequences of the definition. �

Theorem 2. Let G and H be graphs. Then WW(G + H) =
3
2 |(V(G))|2 +

3
2 |V(H)|2 − 2|E(H)| − 2|(E(G))| −

3
2 |V(G)| −

3
2 |V(H)| +

|V(G)||V(H)|.

Proof. By definition of the join of two graphs, one can see that,

dG+H(u, v) =


0 u = v
1 uv ∈ E(G) or uv ∈ E(H) or (u ∈ V(G) & v ∈ V(H))
2 otherwise.

Therefore,WW(G+H) =
1
4
∑

{u,v}⊆V(G+H)[d
2
G+H(u, v)+dG+H(u, v)] = 1

4
∑

v∈V(G)[2degG(v)+6(|V(G)|−degG(v)−1)+2|V(H)|]+
1
4
∑

v∈V(H)[2degH(v)+ 6(|V(H)| −degH(v)− 1)+ 2|V(G)|] = 3
2 |(V(G))|2 +

3
2 |V(H)|2 − 2|E(H)| − 2|(E(G))| − 3

2 |V(G)| − 3
2 |V(H)| +

|V2(G)||V(H)|, as desired. �

Corollary. Let G1,G2, . . . ,Gn be graphs with Vi = V(Gi) and Ei = E(Gi), 1 ≤ i ≤ n. Then

WW(G1 + · · · + Gn) =

n∑
i=1

(
3
(

|Vi|

2

)
− 2|Ei|

)
+

1
2

n∑
i 6=j,i,j=1

|Vi||Vj|.

In particular, WW(nG) =
1
2 (n

2
+ 2n)|V(G)|2 − 2n|E(G)| −

3n
2 |V(G)|.

Proof. Apply Theorem 2 and an inductive argument. �
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Example 5. Consider a complete n-partite graph G = Km1,m2,...,mn containing v = |V(G)| vertices. By definition of this graph,
V = V(G) can be partitioned into subsets V1, V2, . . . , Vn of V such that for every i, 1 ≤ i ≤ n, there is no edge between
the vertices of Vi. It is easy to see that Km1,m2,...,mn is the join of n empty graphs G1, . . . ,Gn with exactly m1, . . . ,mn vertices,
respectively. So by previous corollary WW(Km1,m2,...,mn) = 3

∑n
i=1

(
mi
2

)
+

1
2
∑n

i 6=j,i,j=1 mimj.

Theorem 3. Let G and H be graphs and G be connected. Then WW(G[H]) = |V(H)|2WW(G) + 3|V(G)|
(

|V(H)|
2

)
− 2|V(G)||E(H)| =

|V(H)|2WW(G) +
|V(G)|

2 (WW(2H) − |V(H)|2).

Proof. Set V(G) = {u1, . . . , um} and V(H) = {v1, . . . , vn}. Then by Lemma 2, we have:

WW(G[H]) =
1
2

∑
{u,v}⊆V(G[H])

[d2G[H]
(u, v) + dG[H](u, v)]

=
1
4
∑

(ui,vk)

∑
(uj,vl)

[d2G[H]
((ui, vk), (uj, vl)) + dG[H]((ui, vk), (uj, vl))]

=
1
4

m∑
p=1

n∑
k,l=1

[d2G[H]
((up, vk), (up, vl)) + dG[H]((up, vk), (upvl))]

+
1
4

n∑
k,l=1

m∑
i 6=j,i,j=1

[d2G[H]
((ui, vk), (uj, vl)) + dG[H]((ui, vk), (ujvl))]

=
1
4

m∑
p=1

n∑
i=1

[2degH(vi) + 6(|V(H)| − degH(vi) − 1)] + |V(H)|2WW(G)

= |V(H)|2WW(G) + 3|V(G)|

(
|V(H)|

2

)
− 2|V(G)||E(H)|.

The second equality is an immediate consequence of Theorem 2. �

Lemma 3. Let G and H be connected graphs. Then

dG∨H((a, b), (c, d)) =


0 a = c & b = d
1 ac ∈ E(G) or bd ∈ E(H)
2 otherwise.

Proof. The first two cases of the expression of dG∨H((a, b), (c, d)) are immediate consequences of the definition of
disjunction. Suppose (a, c) 6= (b, d), ac 6∈ E(G) and bd 6∈ E(H). Therefore, dG∨H((a, b), (c, d)) > 1. Since G and H are connected,
there exist x ∈ V(G) and y ∈ V(H) such that ax ∈ E(G) and dy ∈ E(H). So dG∨H((a, b), (x, y)) = dG∨H((c, d), (x, y)) = 1, proving
the lemma. �

Suppose G is a graph and x ∈ V(G). Define d(x,G) =
∑

y∈G d(x, y) and d2(x,G) =
∑

y∈V(G) d
2(x, y).

Theorem 4. Let G and H be graphs. Then WW(G ∨ H) = 3
(

|V(G)||V(H)|
2

)
+ 4|E(G)||E(H)| − 2|V(H)|2|E(G)| − 2|V(G)|2|E(H)|.

Proof. It is sufficient to count the number of vertices of unit distance from a fixed vertex (a, b). By definition and
Lemma 3, |{v ∈ V(G ∨ H) | dG∨H((a, b), v) = 1}| = |{(c, d) | ac ∈ E(G)}| + |{(c, d) | bd ∈ E(H)}| − |{(c, d) | ac ∈

E(G) & bd ∈ E(H)}| = degG(a)|V(H)| + degH(b)|V(G)| − degG(a)degH(b). Since |V(G ∨ H)| = |V(G)||V(H)|, d2((a, b),G ∨

H) + d((a, b),G ∨ H) = 6|V(G)||V(H)| − 4degG(a)|V(H)| − 4degH(b)|V(G)| + 4degG(a)degH(b) − 6. Therefore, WW(G ∨ H) =

1
4
∑

v∈V(H)

∑
u∈V(G)[6|V(G)||V(H)|−4degG(u)|V(H)|−4degH(v)|V(G)|+4degG(u)degH(v)−6] = 3

(
|V(G)||V(H)|

2

)
+4|E(G)||E(H)|−

2|V(H)|2|E(G)| − 2|V(G)|2|E(H)|, as desired. �

Using similar arguments as Lemma 3 and Theorem 4, one can prove the following results:

Lemma 4. Let G and H be connected graphs. Then

dG⊕H((a, b), (c, d)) =


0 a = c & b = d
1 ac ∈ E(G) or bd ∈ E(H) but not both
2 otherwise. �

Theorem 5. Let G andH be connected graphs. ThenWW(G⊕H) = 3
(

|V(G)||V(H)|
2

)
+8|E(G)||E(H)|−2|V(H)|2|E(G)|−2|V(G)|2|E(H)|.

�

We end the paper with the following simple but elegant lemma:
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Lemma 5. Let H be a spanning subgraph of G then WW(H) ≥ WW(G).

Proof. The proof is straightforward and omitted. �

Using Lemmas 1(d) and 5, one can see that for arbitrary connected graphs G and H, since G × H ≤ G[H] ≤ G ∨ H,
WW(G×H) ≥ WW(G[H]) ≥ WW(G∨H) andWW(G×H) ≥ WW(H[G]) ≥ WW(G∨H). On the other hand, G×H ≤ G⊕H ≤ G∨H
and so WW(G × H) ≥ WW(G ⊕ H) ≥ WW(G ∨ H).
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