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On Relations Between Detection and Estimation 
of Discrete Time Processes* 

A. G. JAFFER t AND S. C. GUPTA 

Information and Control Sciences Center, Southern Methodist University, 
Institute of Technology, Dallas, Texas 75222 

It is shown that, for discrete-time processes, both the causal minimum 
variance estimate of an arbitrary random signal process corrupted by additive 
white Gaussian noise, and the associated error eovariance matrix, may be 
obtained, by simple formulas, from the likelihood ratio which arises in the 
optimum detection of the same signal. As a consequence of this result, the 
optimum detector is amenable to a causal estimator-correlator type inter- 
pretation. An example is worked out to illustrate the relations obtained. 

1. INTRODUCTION 

T h e  problems of detection, as well as estimation, of signals in the presence 
of noise have been studied extensively in the literature. However, very few 
results have been established concerning explicit relations between the 
processing procedures of detection and estimation. For  cont inuous-t ime 
processes, Kailath (1969, 1970) obtained the likelihood ratio for the op t imum 
detection of an arbitrary signal process corrupted by additive Gaussian noise 
as a causal est imator-correlator  type operation (involving the Ito integral) 
and in (Kailath, 1968) obtained a converse relation. Esposito (1968) obtained 
related results for discrete-t ime processes; however, his analysis necessitated 
the use of the noncausal estimator. Some nontrivial differences between the 
discrete-time and cont inuous- t ime analyses, including the use of the noncausal 
estimator in Esposito 's  discrete-t ime analysis, have been pointed out by  
Kailath (1968). 

In  this context, the purpose here is to show that, for discrete-time processes, 
both the causal min imum variance estimate of an arbitrary signal process 
corrupted by additive white Gaussian noise and its associated error covariance 
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matrix, may be obtained from the sequential likelihood ratio by means of 
simple formulas. The  signal and noise processes need not be statistically 
independent; a certain kind of "one-sided" dependence is permitted. I t  is 
also shown that, as a consequence of these results, the likelihood ratio detector 
is amenable to a causal estimator--correlator type interpretation. The  special 
case where the signal process is Gauss-Markov is worked out as an example 
and serves to illustrate the relations obtained. 

2. RELATIONS INVOLVING ESTIMATE AND ESTIMATION ERROR COVARIANCE 

MATRIX WITH LIKELIHOOD RATIO 

Consider the following problem of deciding between two hypotheses H a 
and H°: 

Ha:~Te ~- xk ~ - v ~ ,  
(1) 

H ° : zzc = vie, 

where {v~} is an n-dimensional vector, white zero-mean Gaussian noise process 
with covariance E[v~vl T] = RkSkl and {xk} is an arbitrary (not necessarily 
Gaussian) n-dimensional vector random process. {vT~} and {x,} need not be 
mutually independent but only such that the present measurement noise is 
independent of present and past signal and past noise, i.e., 

f ( vk  I Xk,  Vk-a) = f(vk),  (la) 

where Xk ~ {xa, x2 ..... xk} and Vk =~ {va, v2 ,..., vk}. 
I t  is well known that the Bayes opt imum test for deciding between 

hypotheses H a and H ° is the following: 

choose H a 
A~ ~ ~ (2) 

choose H ° 

where A~ A=f (Zk lHa) / f (Zk lH°  ) is the likelihood ratio, • is a threshold 
which depends upon the cost assignments and the a priori probabilities of 
the hypotheses, and Zk is the observation sequence {zl ,  z~ ,..., z~}. 

Let  :~k(Zk) denote the causal minimum variance estimate of the signal x~ 
under the assumption that hypothesis H a is true, and Pk the associated 
estimation error eovariance matrix. Then  the main results of this paper are that 
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-Xk(Zk) and Pk may be obtained from the sequential likelihood ratio A~ by the 
following formulas: 

= R~ ~ [in A~], (3a) 

in A~ I lk ,  (3b) 

where O/Oz/c denotes the n-dimensional column vector of partial derivatives 
with respect to the components of z/c • To prove (3a) and (3b), first note that 
A/c can be expressed as 

Ak = f (z~ [ Z/c_,, H ~) f(Z/c_~ 1H~) (4) 
f(z/c ] Z/c-~, H °) f(Z/c_~ I H °) ' 

o r  

Ak = A/c' " A/c-1, 
where 

f(z/c I Z/c-1, H 0  
A/c' = f(z/c ] Z/c-17 H°) " 

From (1) and the fact that {v/c} is a "white" Gaussian sequence, we see that 
f(z/c I Z/c-1, H °) is zero-mean Gaussian with covariance R~,  that is, 

f(z/c I Z~_~, H °) = N,k(0, R/c). (5) 

Also, 

f (zk  [ Z/c-a, H 1) = ff(z/c I x/c, z/c_i, Ha)f(x/c ] Z~_a, H a) dx/c. (6) 

Now, from (1) a, 

f(z~ I x/c, Zk-~, H a) = fv~lx~,z~_l,nl(z/c --  x/c [ xd, Z/c-1 , H1) • (6a) 

Since, under H a, Z~-I is a function of Xk-a and Ve_l,  then application of 
condition (la) to the right-hand side of (6a) yields 

f(z~ I x~, Z/C-l, n 1) ~ fv~(z~ - -  x~) 

= N,~(x/c, R~). (7) 

1 W h e r e  no  c o n f u s i o n  is l iable  to ar ise  t h e  co nd i t i o na l  d e n s i t y  of  a r a n d o m  var iab le  x 
g i v e n  r a n d o m  var iab le  y is specif ied as f(x l Y); o the rwi se ,  t h e  m o r e  expl ic i t  n o t a t i o n  

f~lu(C~ ] fl) is u s e d  w h e r e  a a n d  fl are  d u m m y  var iables .  
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Thus 

Ak' = j" exp[-- ½(Zk --  x~)rR~a(Zk --  xT~)] f(x~ ] Z~-a, H a) dx~ 
exp[-- -lz rR-az 1 (8) 

2 k !c /C.I 

= f exp[xkTRk-lz/C --  ½xkTR~-aX~] f(xk [ Zk-1, H1) dxk. (9) 

Taking the partial derivative of Aft with respect to z/c, 

-- R~ -a f x~ exp[x~rR~lz~ --  ½xkTR~-lx~] f(x/c [ Z~-I,  H a) dxk. (10) 
8Zk 

The causal minimum variance estimator under the assumption that the 
signal process {xk} is surely present in the observation interval, has the 
expression 

.% = j" xkf(xk Zk, H I) dxk, (11) 

o r  

o r  

Hence 

j 'xkf(zk x~, Z/c_a , Ha)f(xk [ Z~-a, Ha) dxk 
R/c f(z~ [ Zk-~, H a) ' 

(12) 

j" xkf(z/C Xk, Z/c_i, Ha)/(x~ [ Z/~_a, H ~) dx~ 
~/c = Af f  " f ( z k  I Zk-a ,  H °) 

(13) 

Rk = "fxk exp[x/crR;az/c --  ½xffR/ax/c ] f (xk  [ Z/c-a ~, H a) dxk (14) 
Aft 

On comparing (14) with (10), we immediately deduce that 

or 

Rk R~ 8Aft 8 
- -  A~' ' 8zk - -  R/c ~ [ln A/c'] ( lS)  

8 [ln A/c --  in A/c_1], - -  R/c ~ - ~  

8 
R/c = R/c ~ [ln A~], (3a) 

643/2o/I-4 
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which proves the first of the two relations. Equation (3a) is a stronger version 
of Esposito's result for the noncausal estimator [see Esposito (1968), Eq. (6)]. 

The estimation error covariance matrix Pk is defined by 

o r  

Pn = f [x~ - Rn][xn - ~Wf(xn I Z~, H a) dxk, 

Pn = f x~x~rf(xT~ [ Zk, H 1) dx~ -- ~n~S. 

(16) 

(17) 

A second differentiation of the expression [(a/~zn)(ln Ak')] r with respect to zk 
gives 

o r  

~ t ~ , T ~ 1 ,~ , r  
cqz~ t[~zT(lnAn)] I = ~-~k I[~F' ~-£k Ak ] f 

An' 8Z~ 

(18) 

An' azn An' • ~ A,( (19) 

© , T 1 0 [ ~ . , / I , ] T t R k  
t n ~ 7 ) [ ~ 7 ( l n A ~ ) ]  I t '~=~Tn ' tn~z£{/cqzk  na , 

Rn 
ATe' Ozn 

1, ~ , r  A:-w[<An ] (20) 
o r  

, (21) 

as a consequence of (15). Partial differentiation of (10) with respect to zk 
allows the first term on the right side of (21) to be written as 

Ak' ~z-~ ~ A~ Rk 

xkx~ r exp[x~rRglz~ -- ½x~TRglx~]/(x~ [ Z~-l, H i) dx~ 
A~' (22) 

Comparison of the right-hand sides of (11) and (14) immediately establishes 
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that the right-hand side of (22) may be written as f xkxkrf(xk I Zk, H 1) dxk. 
Thus (21) simplifies to 

(lnA;)] fx xJf(x lZ ,H1)dx,o 
- -  ~ 7 ~  r = P k  (23)  

by virtue of (17). 
The final result, Eq. (3b), follows on noting that 

a (lnAe') = a (lnAk). ~Zk ~zk 

Additionally, it may be readily verified from (15) that 

in A~' = f R~I~ dzT~ + C~(Zk_I), (24) 

where Ck(Zk-1) is not a function of ZT~ • Now let Zkl denote the last or final 
observation vector. The likelihood ratio A~(Zks ) based on all past data Z~ ,  
which is used in the decision rule (2) for choosing H 1 or H °, has the expression 

ky 
in A~I = ~ In A1~'. (25) 

k=l 

Substitution of (24) into (25) yields 

/cy ky 

ln Ak, : y] f R ~ a z k - k  Z C/~(ZT~-I)" (26) 
k=l " k=l 

On integrating by parts, (26) can be written as 

k I kf ky 
i n  A/c s. = E z k r a ~ - l x k -  E f •7¢TR;1 dJ~2l¢ @ E Ck(Z/c-i)" (27)  

k=l k=l k=l 

Thus the computation of the likelihood ratio is basically an estimator- 
correlator operation (represented by the first term in (27)) with additional 
operations for evaluating the bias terms (which are a function of the estimate 
and the data). Note that use of the causal estimator permits on-line compu- 
tation of the likelihood ratio. 

The actual evaluation of the term f ZkrR71 d.~ in (27) is difficult, in 
general, since xk is not usually a known analytic function of zk. For the 
special case of a Guass-Markov sequence {x~}, however, R~ is an explicit 
linear function of z~ [see (44)] and the integral can be calculated. 
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3. AN EXAMPLE 

To illustrate the relations (3a) and (3b), we consider here the special case 
where x~ evolves as a Gauss-Markov process according to the equation 

X~ = Ce,e_lX/~_l -~-We__ 1 (28) 

4~k,k_l is a n × n one-step transition matrix and {we} is a zero-mean white 
Gaussian process with E[w~w~ r] = Q~3e~. {we} and {v~} are assumed to be 
mutually independent. 

The  causal minimum variance estimate of x~ under H ~ has been obtained 
in the literature by several methods (Kalman, 1960; Ho and Lee, 1964) and 
is given by the familiar Kalman estimator algorithms: 

~k = $~,k-~k-~ + Nk[Nk + Rk]-~[ze - -  $k.~-l~k-~], (29) 

Ne cov{x~ I Zk-1, H ~} r = = 4~k.k-lPk~.k-1 + Qk ,  (30) 

Pk = cov{xe [ Ze ,  H ~} : N~ - -  N~[Ne + R~]-INk,  (31) 

or equivalently 

p~1 = N~I + R~I. (32) 

We propose to rederive the Kalman filter algorithms (29)-(32) by com- 
puting the likelihood ratio and using (3a) and (3b). I t  may be easily shown 
(Ho and Lee, 1964) 

and 

f (zk  I Zk-~, H ~) = Xzk(~e.k-lXe-1, Nk + R~), 

f (z~ ] Ze-1,  H °) = N~k(O, Rk). 

(33) 

Thus  the logarithm of the likelihood ratio A~ is 

o r  

In Ak = In A~' + In Ak_~, 

in A k lz  rr  N . RT .~r rN = - -  ~ k t k + R~]-lZ~ q- / ~ - - l Y " k , k - - l l .  /o + Rk]-lZk 

_ _  1.~..T .&T r N ~k-l't'/c,k--IL e -1- Rb]-l~be&-lle-1 

+ IzSR~lz e + terms which are not a function of z~. (34) 
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Taking the partial derivative of (34) with respect to zo gives 

3zk [ln As] = --[No + Re]-~ze q- [N~ + Ro]-14,e,o_:~o_~ + R;:z~ (35) 

= [ R ~  1 - -  (Ne + Ro) -1] zk + [Ne + Re]-~¢e,e_~o_~ • (36) 

By the matrix inversion lemma (Sage, 1968), 

(No + Re)-: = R~: -- R~IT~Rk -1, (37) 

where 

T ;  1 = N;  1 + R;: .  (38) 

Substitution of (37) into (36) yields 

[ln Ak] = R~:TkR~:zk + [R~: --  R~-:TkR~:] 4~e,k-::~k-1 (39) 
~ze 

Therefore, according to our relation (3a), 

io = Re ~z~ [ln Ao] = ¢e,e_:Xk_: -~- TeRT:[ze -- ~o,e-l%-d. (40) 

Furthermore, partial differentiation of (39) with respect to :re and use of 
relation (3b) yields 

"1 T 

In Ak] Rk = Te = Pe (41) Rk ~ L~ZT~ 

where Pe = cov{xo Ze, H:}. Also, from (38) and (41), 

PER;: : I - -  P e N f  ~, ( 4 2 )  

where I is the identity matrix. Application of the matrix inversion lemma to 
(38) yields 

Pe = No -- Ne[No + R~]-: No. (43) 

Use of (42) and (43) allow (40) to be rewritten in the more familiar form: 

f~e = ¢o,e-:~e-1 + No[Nk + Ro]-:[zo - -  Ce,e-:~e-:], (44) 

where 

Ne r 
= t#od~'-lP/c-lt, bo,e-1 + Qo,  (45) 
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and 

1~  1 = N~ 1 -~- R~ 1. (46) 

Equations (44)-(46) are, however, precisely the Kalman filter algorithms 

(29)-(32). 
Hence our relations (3a) and (3b) are verified for the special case of a 

Gauss-Markov signal process. 
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