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Abstract

In this article we give a new proof of the determination of the full automorphism group o
baby-monster vertex operator superalgebra based on a theory of simple current extension
corollary, we also prove that theZ2-orbifold construction with respect to a 2A-involution of th
Monster applied to the moonshine vertex operator algebraV � yieldsV � itself again.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

The famous moonshine vertex operator algebraV � constructed by Frenkel–Lepowsky
Muerman [FLM] is the first example of theZ2-orbifold construction of a holomorphi
vertex operator algebra (VOA). Let us explain aZ2-orbifold construction briefly. LetV
be a holomorphic vertex operator algebra andσ an involutive automorphism onV . Then
the fixed point subalgebraV 〈σ 〉 is a simple vertex operator algebra. It is shown in [DL
that there is a unique irreducibleσ -twistedV -moduleM and we have a decompositio
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M = M0 ⊕M1 into a direct sum of irreducibleV 〈σ 〉-modules such thatM0 has an integra
top weight. AZ2-orbifold construction with respect toσ ∈ Aut(V ) refers to a constructio
of a Z2-graded extensionW = V 〈σ 〉 ⊕ M0 of the fixed point subalgebraV 〈σ 〉 and it is
expected to be a holomorphic vertex operator algebra.

In FLM’s construction, we takeV to be the lattice vertex operator algebraVΛ associated
to the Leech latticeΛ and the involutionσ is a natural liftingθ ∈ Aut(VΛ) of the (−1)-
isometry onΛ. Denote byVΛ = V +

Λ ⊕ V −
Λ the eigenspace decomposition such thatθ acts

on V ±
Λ as±1, respectively. LetV T

Λ be the unique irreducibleθ -twistedVΛ-module. Then
there is a decompositionV T

Λ = (V T
Λ )+ ⊕ (V T

Λ )− such that the top weight of(V T
Λ )+ is

integral. Then the moonshine vertex operator algebra is defined byV � := V +
Λ ⊕ (V T

Λ )+
and it is proved in [FLM] thatV � forms aZ2-graded extension ofV +

Λ . It is also proved in
[FLM] that the full automorphism group of the moonshine vertex operator algebra
Monster sporadic finite simple groupM by using Griess’ result [G].

In the Monster, there are two conjugacy classes of involutions, the 2A-conju
class and the 2B-conjugacy class (cf. [ATLAS]). One can explicitly see the action
2B-involution onV � by FLM’s construction. But it is difficult to realize the action of
2A-involution onV � before Miyamoto. In [M1], Miyamoto opened a way to study t
action of 2A-involutions of the Monster on the moonshine VOA by using a sub VOA
morphic to the unitary Virasoro VOAL(1/2,0). Let us recall the definition of Miyamot
involutions. LetV be a simple VOA ande ∈ V2 be a vector such that the sub VOA Vir(e)

generated bye is isomorphic to the Virasoro VOAL(1/2,0). Such a vectore is called
a conformal vector with central charge 1/2. SinceV as a Vir(e)-module is completely
reducible, we have a decomposition

V = Ve(0) ⊕ Ve(1/2) ⊕ Ve(1/16),

whereVe(h), h = 0,1/2,1/16, denotes a sum of all irreducible Vir(e)-submodules iso
morphic toL(1/2, h). Then one can define a linear isomorphismτe onV by

τe := 1 onVe(0) ⊕ Ve(1/2), −1 onVe(1/16).

It is proved in [M1] thatτe defines an involution of a VOAV if Ve(1/16) �= 0. This in-
volution is often called the Miyamoto involution ofτ -type. On the fixed point subalgeb
V 〈τe〉, one can define another automorphism by

σe := 1 onVe(0), −1 onVe(1/2).

This involution is called the Miyamoto involution ofσ -type. It is shown in [C] and [M1]
that in the moonshine VOA every Miyamoto involutionτe defines a 2A-involution of the
Monster and the correspondence between conformal vectors and 2A-involutions i
to-one. Therefore, in the study of 2A-involutions, it is very important to study conform
vectors with central charge 1/2. Along this idea, C.H. Lam, H. Yamada and the aut
obtained an interesting achievement on 2A-involutions of the Monster in [LYY].

The main purpose of this paper is to study theZ2-orbifold construction ofV � with
respect to the Miyamoto involution and to prove that the 2A-orbifold construction
plied to V � yields V � itself again. Since a 2A-involution of the Monster is uniqu
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determined by a conformal vectore of V � with central charge 1/2, we have to study th
commutant subalgebra of Vir(e) together with Vir(e) in order to describe the 2A-orbifol
construction. For a simple VOAV and a conformal vectore of V with central charge
1/2, set the space of highest weight vectors byTe(h) := {v ∈ V | Le(0)v = hv} for
h = 0,1/2,1/16, where we expandY (e, z) = ∑

n∈Z
Le(n)z−n−2. Then we have decom

positionsVe(h) = L(1/2, h) ⊗ Te(h) and the commutant subalgebraTe(0) acts onTe(h)

for h = 0,1/2,1/16. LikeL(1/2,0) has aZ2-graded extensionL(1/2,0) ⊕ L(1/2,1/2),
we can introduce a vertex operator superalgebra (SVOA) structure onTe(0) ⊕ Te(1/2)

and itsZ2-twisted module structure onTe(1/16). It is easy to see that the one point s
bilizer CAut(V )(e) = {ρ ∈ Aut(V ) | ρe = e} naturally acts on the space of highest wei
vectorsTe(h). If we takeV = V �, thenCAut(V �)(e) is isomorphic to the 2-fold central ex
tension〈τe〉 · B of the baby-monster sporadic finite simple groupB. Therefore, the SVOA
T

�
e (0) ⊕ T

�
e (1/2), where we have setV �

e (h) = L(1/2, h) ⊗ T
�
e (h) for h = 0,1/2,1/16,

affords a natural action ofB. Motivated by this fact, Höhn first studied this SVOA
[Hö1] and he called it thebaby-monster SVOA. Following him, we writeVB0 := T

�
e (0),

VB1 := T
�
e (1/2) andVB := T

�
e (0) ⊕ T

�
e (1/2). It is proved in [Hö2] that the full automor

phism group of the even partVB0 of VB is exactly isomorphic to the baby-monsterB. In
this paper, we give a quite different proof of Aut(VB0) � B based on a theory of simp
current extensions.

In my recent work [Y1,Y2], a theory of simple current extensions of vertex opera
algebras was developed and many useful results were obtained. Using the theory,
termine the automorphism group of the commutant subalgebraTe(0) as follows:

Theorem 1. Let V be a holomorphic VOA ande ∈ V a conformal vector with centra
charge1/2. Suppose the following:

(a) Ve(h) �= 0 for h = 0,1/2,1/16,
(b) Ve(0) andTe(0) are rationalC2-cofinite VOAs of CFT-type,
(c) Ve(1/16) is a simple currentV 〈τe〉-module,
(d) Te(1/2) is a simple currentTe(0)-module,
(e) CAut(V )(e)/〈τe〉 is a simple group or an odd group.

Then

(1) Aut(Te(0)) = CAut(V )(e)/〈τe〉.
(2) The irreducibleTe(0)-modules are given byTe(0), Te(1/2) andTe(1/16).
(3) Theτe-orbifold construction applied toV yieldsV itself again.

The assumptions (c) and (d) in the theorem above seem to be rather restrictive
ever, we prove that all the assumptions above hold ifV is the moonshine VOA. Applying
Theorem 1 toV �, we obtain the following main theorem of this paper.

Theorem 2. Let VB= VB0 ⊕ VB1 be the commutant superalgebra obtained fromV �.

(1) Aut(VB0) = B andAut(VB) = 2× B.
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(2) There are exactly three inequivalent irreducible VB0-modules, VB0, VB1 and VBT :=
T

�
e (1/16).

(3) The fusion rules for VB0-modules are as follows:
VB1 × VB1 = VB0, VB1 × VBT = VBT , VBT × VBT = VB0 + VB1.

This theorem has the following corollaries.

Corollary 1. The irreducible2A-twistedV �-module has a shape

L(1/2,1/2) ⊗ VB0 ⊕ L(1/2,0) ⊗ VB1 ⊕ L(1/2,1/16) ⊗ VBT .

Corollary 2. For any conformal vectore ∈ V � with central charge1/2, there is noρ ∈
Aut(V �) such thatρ(V

�
e (h)) = V

�
e (h) for h = 0,1/2,1/16andρ|(V �)〈τe〉 = σe.

Corollary 3. The2A-orbifold construction applied to the moonshine VOAV � yieldsV �

itself again.

At the end of this paper, we give characters ofVB0-modules and their modular transfo
mation laws. Surprisingly, we find that the fusion algebra and the modular transform
laws for the baby-monster VOA is canonically isomorphic to those of the Ising m
L(1/2,0).

Notation. For a VOA V and a subgroupG of Aut(V ), we denote byV G the G-fixed
subalgebra ofV . For aV -moduleM and an automorphismτ ∈ Aut(V ), we denote the
τ -conjugate module ofM by Mτ . We denote the (restricted) dual module ofM by M∗,
andM is calledself-dualif M∗ � M. For V -modulesM1 andM2, we denote their fu
sion product byM1 �V M2. For a linear binary codeD of length n and its elemen
α = (α1, . . . , αn) ∈ D, we define Supp(α) := {i | αi �= 0}.

2. Commutant superalgebra and its automorphisms

We denote byL(c,h) the irreducible highest weight module for the Virasoro alge
with central chargec and highest weighth. It is shown in [FZ] thatL(c,0) has a structure
of a simple VOA.

2.1. Ising model

We realize an SVOAL(1/2,0) ⊕ L(1/2,1/2) by using one free fermionic field. Le
Aψ be aC-algebra generated by{ψn+1/2 | n ∈ Z} with the relation[ψr,ψs ]+ := ψrψs +
ψsψr = δr+s,0, r, s ∈ Z+1/2. LetA+

ψ to be the subalgebra ofAψ generated by{ψr | r > 0}
and letC|0〉 be a trivialA+

ψ -module. Consider the induced module

M := Ind
Aψ

A
+ C|0〉 = Aψ ⊗

A
+ C|0〉.
ψ ψ
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It is well known (cf. [KR]) thatM affords an action of the Virasoro algebra with cent
charge 1/2 andM � L(1/2,0) ⊕ L(1/2,1/2) as a Virasoro-module. Consider the gen
ating seriesψ(z) := ∑

n∈Z
ψn+1/2z

−n−1. It is also well known (cf. [K]) that the spaceM,
with the standardZ2-grading, has a unique structure of a simple vertex operator sup
gebra with the vacuum1 = |0〉 such thatYM(ψ−1/2|0〉, z) = ψ(z).

Similarly, we can realizeL(1/2,1/16) as follows. LetAφ be aC-algebra generated b
{φm | m ∈ Z} with the relation[φm,φn]+ = δm+n,0, m,n ∈ Z. Let A

+
φ be a subalgebra o

Aφ generated by{φm | m > 0} and letC| 1
16〉 be a trivialA+

φ -module. Consider the induce
module

N := Ind
Aφ

A
+
φ

C
∣∣ 1

16

〉 = Aφ ⊗A
+
φ

C
∣∣ 1

16

〉
.

It is well known (cf. [KR]) that N affords an action of the Virasoro algebra w
central charge 1/2. Set v±

1/16 := (
√

2φ0 ± 1)| 1
16〉. Then v±

1/16 are highest weight vec
tors for the Virasoro algebra and we have a decompositionN = N+ ⊕ N−, where
N± are Aφ-submodules generated byv±

1/16, respectively, andN± � L(1/2,1/16) as
Virasoro-modules. The generating seriesφ(z) := ∑

n∈Z
φnz

−n−1/2 uniquely defines aZ2-
twistedM-module structure onN such that the vertex operator ofψ−1/2|0〉 is given as
YN(ψ−1/2|0〉, z) = φ(z). We can also verify thatN± are inequivalent irreducibleZ2-
twistedM-submodules (cf. [LLY]). This explicit construction will be used in the pro
of Theorem 2.2.

2.2. Miyamoto involution

Let (V ,YV (·, z),1,ω) be a VOA. A vectore ∈ V is called aconformal vectorif coef-
ficients of its vertex operatorYV (e, z) = ∑

n∈Z
e(n)z

−n−1 = ∑
n∈Z

Le(n)z−n−2 generate a
representation of the Virasoro algebra onV :

[
Le(m),Le(n)

] = (m − n)Le(m + n) + δm+n,0
m3 − m

12
ce.

The scalarce is called thecentral chargeof e. We denote by Vir(e) the sub VOA generate
by e. If Vir (e) is a rational VOA, thene is called arational conformal vector. A decompo-
sition ω = e + (ω − e) is calledorthogonalif both e andω − e are conformal vectors an
their vertex operators are component-wisely mutually commutative.

Now assume thate ∈ V is a rational conformal vector with central charge 1/2. Then
Vir (e) is isomorphic toL(1/2,0) and has three irreducible representationsL(1/2,0),
L(1/2,1/2) andL(1/2,1/16) (cf. [DMZ]). As Vir (e) acts onV semisimply, we can de
composeV into a direct sum of irreducible Vir(e)-modules as follows:

V = Ve(0) ⊕ Ve(1/2) ⊕ Ve(1/16),

whereVe(h), h ∈ {0,1/2,1/16}, denotes the sum of all irreducible Vir(e)-submodules o
V isomorphic toL(1/2, h). By the fusion rules forL(1/2,0)-modules (cf. [DMZ]), we
have the following theorem.
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Theorem 2.1 [M1] .

(1) The linear mapτe := 1 on Ve(0) ⊕ Ve(1/2), −1 on Ve(1/16) defines an involutive
automorphism on a VOAV .

(2) On the sub VOAV 〈τe〉 = Ve(0) ⊕ Ve(1/2), the linear mapσe := 1 on Ve(0), −1 on
Ve(1/2) defines an involutive automorphism.

The involutionsτe ∈ Aut(V ) andσe ∈ Aut(V 〈τe〉) are calledMiyamoto involutions.

2.3. Commutant superalgebra

Let V be a simple VOA of CFT-type ande ∈ V a rational conformal vector with
central charge 1/2. SetTe(h) := {v ∈ V | Le(0)v = h · v} for h = 0,1/2,1/16.Te(h) de-
scribes the space of highest weight vectors for Vir(e) and it is canonically isomorphic t
HomVir(e)(L(1/2, h),V ) for h = 0,1/2,1/16. Therefore,Ve(h) � L(1/2, h) ⊗ Te(h) and
we have a decomposition as follows:

V = L(1/2,0) ⊗ Te(0) ⊕ L(1/2,1/2) ⊗ Te(1/2) ⊕ L(1/2,1/16) ⊗ Te(1/16).

One can verify that a decompositionω = e + (ω − e) is orthogonal by using [FZ, The
orem 5.1]. Recall the commutant subalgebra ComV (Vir(e)) := KerV Le(−1) defined in
[FZ]. It is easy to see thatTe(0) = KerV Le(−1). So (Te(0),ω − e) forms a sub VOA
of V whose action onV is commutative with that of Vir(e) on V . In particular,Te(h),
h = 0,1/2,1/16, areTe(0)-modules. By the quantum Galois theory [DM],Te(0) is a sim-
ple subalgebra andTe(1/2) is an irreducibleTe(0)-module ifVe(1/2) �= 0.

The commutant subalgebraTe(0) affords an extension to a superalgebra by its mod
Te(1/2) if Ve(1/2) �= 0.

Theorem 2.2 [Hö1,Y2].

(1) Suppose thatVe(1/2) �= 0. There exists a simple SVOA structure onTe(0) ⊕ Te(1/2)

such that the even part of a tensor product of SVOAs{L(1/2,0) ⊕ L(1/2,1/2)} ⊗
{Te(0) ⊕ Te(1/2)} is isomorphic toVe(0) ⊕ Ve(1/2) as a VOA.

(2) Suppose thatVe(1/2) �= 0 and Ve(1/16) �= 0. ThenTe(1/16) carries a structure of
an irreducibleZ2-twistedTe(0) ⊕ Te(1/2)-module. Moreover,Ve(1/16) is isomor-
phic to a tensor product of an irreducibleZ2-twistedL(1/2,0) ⊕L(1/2,1/2)-module
L(1/2,1/16) and an irreducibleZ2-twistedTe(0) ⊕ Te(1/2)-moduleTe(1/16).

Proof. (1) First, we introduce a vertex operator map onTe(0)⊕Te(1/2). Leta ∈ Te(0) and
x ∈ L(1/2,0). By [ADL, Theorem 2.10], there areTe(0)-intertwining operatorsI i(·, z) of
type Te(0) × Te(i/2) → Te(i/2), i = 0,1, such thatYV (x ⊗ a, z)|Ve(i/2) = YM(x, z) ⊗
I i(a, z), whereYM(·, z) is the vertex operator map on the SVOAL(1/2,0)⊕L(1/2,1/2)

constructed in Section 2.1. Similarly, foru ∈ Te(1/2) and y ∈ L(1/2,1/2), there are
Te(0)-intertwining operatorsJ 0(·, z) and J 1(·, z) of typesTe(1/2) × Te(0) → Te(1/2)

andTe(1/2) × Te(1/2) → Te(0), respectively, such thatYV (y ⊗ u, z)|Ve(0) = YM(y, z) ⊗
J 0(u, z) andYV (y ⊗ u, z)|Ve(1/2) = YM(y, z) ⊗ J 1(u, z) again by [ADL, Theorem 2.10]
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We define the vertex operator map̂Y(·, z) on Te(0) ⊕ Te(1/2) as follows: fora, b ∈ Te(0)

andu,v ∈ Te(1/2),

Ŷ (a, z)b := I0(a, z)b, Ŷ (a, z)u := I1(a, z)u,

Ŷ (u, z)a := J 0(u, z)a, Ŷ (u, z)v := J 1(u, z)v.

We claim that the quadruple(Te(0) ⊕ Te(1/2), Ŷ (·, z),1Te(0),ω − e) forms an SVOA,
where1V = |0〉 ⊗ 1Te(0). It is clear that̂Y (1Te(0), z) = idTe(0)⊕Te(1/2) as the substructur
(Te(0), I0(·, z),1Te(0),ω − e) is exactly ComV (Vir(e)). The L(−1)-derivation property
for Ŷ (·, z) is also clear aŝY (·, z) is made ofTe(0)-intertwining operators. By consid
ering YV (ψ−1/2|0〉 ⊗ u, z)(|0〉 ⊗ a), we obtain a skew-symmetric propertyJ 0(u, z)a =
ez(L(−1)−Le(−1))I1(a,−z)u as bothYV (·, z) and YM(·, z) satisfy the skew-symmetry
Therefore, for anyw ∈ Te(0) ⊕ Te(1/2), the following creation property holds:

Ŷ (w, z)1Te(0) ∈ w + Te(0) ⊕ Te(1/2)[[z]]z.
Hence, in order to prove that the quadruple is an SVOA, it suffices to show thatŶ (·, z)
satisfies the locality (cf. [Li1]):

(z1 − z2)
N(w1,w2)Ŷ

(
w1, z1

)
Ŷ

(
w2, z2

)
= (−1)ε(w

1,w2)(−z2 + z1)
N(w1,w2)Ŷ

(
w2, z2

)
Ŷ

(
w1, z1

)
, (2.1)

wherew1, w2 areZ2-homogeneous elements inTe(0) ⊕ Te(1/2), ε is the standard parit
function andN(w1,w2) is a sufficiently large integer. SincêY (·, z) is made ofTe(0)-
intertwining operators, we only need to show the locality (2.1) in the case ofw1,w2 ∈
Te(1/2). Let u,v ∈ Te(1/2) be arbitrary andN a positive integer such that

(z1 − z2)
N

[
YV (ψ−1/2|0〉 ⊗ u, z1), YV (ψ−1/2|0〉 ⊗ v, z2)

] = 0

onVe(0) ⊕ Ve(1/2). (2.2)

The equality (2.1) is equivalent to the following two equalities:

(z1 − z2)
NJ 1(u, z1)J

0(v, z2)a = −(z1 − z2)
NJ 1(v, z2)J

0(u, z1)a, (2.3)

(z1 − z2)
NJ 0(u, z1)J

1(v, z2)w = −(z1 − z2)
NJ 0(v, z2)J

1(u, z1)w, (2.4)

wherea ∈ Te(0) andw ∈ Te(1/2) are arbitrary. For simplicity, we set

A0 = (z1 − z2)
NJ 1(u, z1)J

0(v, z2)a, B0 = (z1 − z2)
NJ 1(v, z2)J

0(u, z1)a,

A1 = (z1 − z2)
NJ 0(u, z1)J

1(v, z2)w, B1 = (z1 − z2)
NJ 0(v, z2)J

1(u, z1)w.

We should prove bothA0 = −B0 andA1 = −B1. By (2.2), we have

(z1 − z2)
N

[
YV (ψ−1/2|0〉 ⊗ u, z1), YV (ψ−1/2|0〉 ⊗ v, z2)

] · (|0〉 ⊗ a) = 0.
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In terms ofψ(z), the equality above becomes

ψ(z1)ψ(z2)|0〉 ⊗ A0 = ψ(z2)ψ(z1)|0〉 ⊗ B0. (2.5)

By a direct computation, we obtain

ψ(z1)ψ(z2)|0〉 = |0〉 · (z1 − z2)
−1 +

∑
m>n�0

ψ−m−1/2ψ−n−1/2|0〉 · (zm
1 zn

2 − zn
1zm

2

)
.

So by multiplyingz1 − z2 both sides of (2.5) and comparing the coefficient of|0〉, we
obtainA0 = −B0. Therefore, (2.3) holds. By (2.2), we have

(z1 − z2)
N

[
YV (ψ−1/2|0〉 ⊗ u, z1), YV (ψ−1/2|0〉 ⊗ v, z2)

] · (ψ−1/2|0〉 ⊗ w) = 0.

Rewriting the equality above in terms ofψ(z), we get

ψ(z1)ψ(z2)ψ−1/2|0〉 ⊗ A1 = ψ(z2)ψ(z1)ψ−1/2|0〉 ⊗ B1. (2.6)

By a direct computation, we have

ψ(z1)ψ(z2)ψ−1/2|0〉 = ψ−1/2|0〉 · {(z1 − z2)
−1 + (z1 − z2)/z1z2

}
+

∑
m>0

ψ−m−3/2|0〉 · (zm+1
1 z−1

2 − z−1
1 zm+1

2

)
+

∑
m�n�0

ψ−m−5/2ψ−n−3/2ψ−1/2|0〉 · (zm+2
1 zn+1

2 − zn+1
1 zm+2

2

)
.

Multiplying z1 − z2 both sides of (2.6) and comparing the coefficient ofψ−1/2|0〉 in (2.6),
we obtain(z2

1 − z1z2 + z2
2)(A1 + B1) = 0. Then multiplyingz1 + z2, we get(z3

1 + z3
2) ×

(A1 + B1) = 0. On the other hand, by comparing the coefficient ofψ−5/2|0〉 in (2.6), we
obtain (

z2
1z

−1
2 − z−1

1 z2
2

)
(A1 + B1) = 0,

or equivalently(z3
1 − z3

2)(A1 + B1) = 0. Combining this with(z3
1 + z3

2)(A1 + B1) = 0,
we obtainA1 = −B1 and (2.4) also holds. Hence,̂Y (·, z) satisfies the locality and thu
(Te(0) ⊕ Te(1/2), Ŷ (·, z),1Te(0),ω − e) forms an SVOA.

By the construction of the vertex operator map̂Y (·, z), the remaining part of (1) o
Theorem 2.2 is obvious except for the simplicity ofTe(0) ⊕ Te(1/2), which is almost
trivial. For, asV is simple, none ofI i(·, z), J j (·, z), i, j = 0,1, is zero map by [DL]. Then
Te(0) ⊕ Te(1/2) is also simple sinceTe(0) is a simple VOA andTe(1/2) is an irreducible
Te(0)-module.

(2) Recall that the vertex operator mapYN+(·, z) onN+ we constructed in Section 2
is anL(1/2,0)-intertwining operator of type(

L(1/2,0) ⊕ L(1/2,1/2)
)× L(1/2,1/16) → L(1/2,1/16).
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We make use ofYN+(·, z) to factorizeYV (·, z)|Ve(1/16). Let a ∈ Te(0), u ∈ Te(1/2), x ∈
L(1/2,0) and y ∈ L(1/2,1/2). By [ADL, Theorem 2.10], there areTe(0)-intertwining
operatorsXi(·, z) of typesTe(i/2) × Te(1/16) → Te(1/16), i = 0,1, such thatYV (x ⊗
a, z)|Ve(1/16) = YN+(x, z) ⊗ X0(a, z) andYV (y ⊗ u, z)|Ve(1/16) = YN+(y, z) ⊗ X1(u, z),
asVe(1/16) � N+ ⊗ Te(1/16) as Vir(e) ⊗ Te(0)-modules. We define aZ2-twisted vertex
operator mapX(·, z) of Te(0) ⊕ Te(1/2) onTe(1/16) as follows:

X(a, z) := X0(a, z) for a ∈ Te(0), X(u, z) := X1(u, z) for u ∈ Te(1/16).

Then we prove(Te(1/16),X(·, z)) is an irreducibleZ2-twistedTe(0) ⊕ Te(1/2)-module.
As X(·, z) is made ofTe(0)-intertwining operators, we only need to prove theZ2-twisted
Jacobi identity forX(·, z), which is equivalent to the following commutativity and as
ciativity for u,v ∈ Te(1/2) andw ∈ Te(1/16) (cf. [Li2]):

(z1 − z2)
N1

[
X(u, z1),X(v, z2)

]
+ = 0, (2.7)

(z0 + z2)
N2+1/2X(u, z0 + z2)X(v, z2)w = (z2 + z0)

N2+1/2X
(
Ŷ (u, z0)v, z2

)
w, (2.8)

whereN1 andN2 are sufficiently large integers. We can takeN > 0 which is independen
of w such that

(z1 − z2)
N

[
YV (ψ−1/2|0〉 ⊗ u, z1), YV (ψ−1/2|0〉, z2)

] · (v+
1/16 ⊗ w

) = 0,

wherev+
1/16 = (φ0 + √

2)| 1
16〉 ∈ N+. SinceYN+(ψ−1/2|0〉, z) = φ(z), we can rewrite the

above as follows:

φ(z1)φ(z2)v
+
1/16 ⊗ (z1 − z2)

NX(u, z1)X(v, z2)w

= φ(z2)φ(z1)v
+
1/16 ⊗ (z1 − z2)

NX(v, z2)X(u, z1)w. (2.9)

For simplicity, we set

A2 = (z1 − z2)
NX(u, z1)X(v, z2)w, B2 = (z1 − z2)

NX(v, z2)X(u, z1)w.

By a direct computation, one has the following:

z
1/2
1 z

1/2
2 φ(z1)φ(z2)v

+
1/16 = v+

1/16 · p(z1, z2) +
∑
m>0

φ−mv+
1/16 · 1√

2
qm(z1, z2)

+
∑

m>n>0

φ−mφ−nv
+
1/16 · rm,n(z1, z2), (2.10)

where we have set

p(z1, z2) := −1

2
+

∞∑
i=0

(
z2

z1

)i

, qm(z1, z2) := zm
1 − zm

2 ,

rm,n(z1, z2) := zmzn − znzm.
1 2 1 2
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It is easy to see

(z1 − z2)p(z1, z2) = (z1 + z2)/2= (z2 − z1)p(z2, z1),

qm(z2, z1) = −qm(z1, z2) and rm,n(z2, z1) = −rm,n(z1, z2). (2.11)

By (2.10), the left-hand side of (2.9) can be expressed as follows:

v+
1/16 ⊗ z

−1/2
1 z

−1/2
2 p(z1, z2)A2 +

∑
m>0

φ−mv+
1/16 ⊗ z

−1/2
1 z

−1/2
2

1√
2
qm(z1, z2)A2

+
∑

m>n>0

φ−mφ−nv
+
1/16 ⊗ z

−1/2
1 z

−1/2
2 rm,n(z1, z2)A2.

Similarly, the right-hand side of (2.9) becomes:

v+
1/16 ⊗ z

−1/2
1 z

−1/2
2 p(z2, z1)B2 +

∑
m>0

φ−mv+
1/16 ⊗ z

−1/2
1 z

−1/2
2

1√
2
qm(z2, z1)B2

+
∑

m>n>0

φ−mφ−nv
+
1/16 ⊗ z

−1/2
1 z

−1/2
2 rm,n(z2, z1)B2.

Thus, we get the following relations:

p(z1, z2)A2 = p(z2, z1)B2, (2.12)

qm(z1, z2)A2 = qm(z2, z1)B2, (2.13)

rm,n(z1, z2)A2 = rm,n(z2, z1)B2. (2.14)

Multiplying (z1 − z2) to (2.12) and using (2.11), we obtain12(z1 + z2)(A + B) = 0. And
by (2.13), we have(zm

1 − zm
2 )(A + B) = 0 for anym > 0. Combining them, we obtai

A + B = 0 and so (2.7) follows.
Next, we prove the associativity (2.8). As

φ(z)v+
1/16 = 1√

2
v+

1/16z
−1/2 +

∑
n>0

φ−nv
+
1/16z

n−1/2,

we see thatz1/2φ(z)v+
1/16 ∈ L(1/2,1/16)[[z]]. Therefore, by [Li2], we have the followin

associativity onN+:

(z0 + z2)
1/2φ(z0 + z2)φ(z2)v

+
1/16 = (z2 + z0)

1/2YN+
(
ψ(z0)ψ−1/2|0〉, z2

)
v+

1/16.

(2.15)

Let k be an integer such that

zkYV (ψ−1/2|0〉 ⊗ u, z)v+ ⊗ w ∈ Ve(1/16)[[z]].
1/16
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OnVe(1/16), we have the following associativity by [Li1]:

(z0 + z2)
k+1YV (ψ−1/2|0〉 ⊗ u, z0 + z2)YV (ψ−1/2|0〉 ⊗ v, z2)v

+
1/16 ⊗ w

= (z2 + z0)
k+1YV

(
YV (ψ−1/2|0〉 ⊗ u, z0)ψ−1/2|0〉 ⊗ v, z2

)
v+

1/16 ⊗ w.

In terms ofφ(z) andX(·, z), we can rewrite the above as follows:

(z0 + z2)
1/2φ(z0 + z2)φ(z2)v

+
1/16 ⊗ (z0 + z2)

k+1/2X(u, z0 + z2)X(v, z2)w

= (z2 + z0)
1/2YN+

(
ψ(z0)ψ−1/2|0〉, z2

)
v+

1/16 ⊗ (z2 + z0)
k+1/2X

(
Ŷ (u, z0)v, z2

)
w.

Using (2.15), we get

(z0 + z2)
1/2φ(z0 + z2)φ(z2)v

+
1/16 ⊗ C = 0, (2.16)

where we have set

C := (z0 + z2)
k+1/2X(u, z0 + z2)X(v, z2)w − (z2 + z0)

k+1/2X
(
Ŷ (u, z0)v, z2

)
w.

By (2.10), we find that the coefficient ofφ−1v
+
1/16 in (z0 + z2)

1/2φ(z0 + z2)φ(z2)v
+
1/16

is just a monomialz0z
−1/2
2 /

√
2. Therefore, Eq. (2.16) leads to the associativity re

tion C = 0, or the equality (2.8). Hence,(Te(1/16),X(·, z)) is a Z2-twisted Te(0) ⊕
Te(1/2)-module. The remaining part of the assertion is clear except for the irreducibility
which is easy to show. IfTe(1/16) contains a non-trivialZ2-twisted Te(0) ⊕ Te(1/2)-
submodule, sayP , thenL(1/2,1/16)⊗P forms a non-trivialVe(0)⊕Ve(1/2)-submodule
of Ve(1/16) � L(1/2,1/16)⊗Te(1/16). This yields a contradiction asVe(1/16) is an irre-
ducibleVe(0) ⊕ Ve(1/2)-module by [DM]. This completes the proof of Theorem 2.2.�
Remark 2.3. As we mentioned, there are exactly two inequivalentZ2-twisted irreducible
L(1/2,0) ⊕ L(1/2,1/2)-module structures onL(1/2,1/16) (cf. [LLY]). In the statement
(2) of the theorem above, we have to choose one of them and the irreducibleZ2-twisted
Te(0) ⊕ Te(1/2)-module structure onTe(1/16) may depend on this choice.

2.4. Automorphisms of commutant superalgebra

In the rest of this section we will work over the following setup:

Hypothesis 1.

(1) V is a holomorphic VOA of CFT-type.
(2) e is a rational conformal vector ofV with central charge 1/2.
(3) Ve(h) �= 0 for h = 0,1/2,1/16.
(4) Ve(0) andTe(0) are rationalC2-cofinite VOAs of CFT-type.
(5) Ve(1/16) is a simple currentV 〈τe〉 = Ve(0) ⊕ Ve(1/2)-module.
(6) Te(1/2) is a simple currentTe(0)-module.
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We define the one point stabilizer byCAut(V )(e) := {ρ ∈ Aut(V ) | ρ(e) = e}. Clearly
CAut(V )(e) forms a subgroup of Aut(V ). Sinceτρ(e) = ρτeρ

−1 for any ρ ∈ Aut(V ), we
haveCAut(V )(e) � CAut(V )(τe), whereCAut(V )(τe) denotes the centralizer of an involutio
τe ∈ Aut(V ).

Lemma 2.4. There are group homomorphismsψ1 :CAut(V )(e) → CAut(V 〈τe〉)(e) and
ψ2 :CAut(V 〈τe〉)(e) → Aut(Te(0)) such thatKer(ψ1) = 〈τe〉 andKer(ψ2) = 〈σe〉.

Proof. Let ρ ∈ CAut(V )(e). Thenρ preserves the space of highest weight vectorsTe(h)

for h = 0,1/2,1/16 so thatρ definitely acts onTe(h). Therefore, we have group hom
morphismsψ1 :CAut(V )(e) → CAut(V 〈τe〉)(e) andψ2 :CAut(V 〈τe〉)(e) → Aut(Te(0)). Assume
thatψ1(ρ) = idV 〈τe〉 for ρ ∈ CAut(V )(e). Sinceρ commutes withτe , ρ acts onVe(1/16) and
commutes with the action ofV 〈τe〉 = Ve(0) ⊕ Ve(1/2) on its moduleVe(1/16). Therefore,
ρ on Ve(1/16) is a scalar by Schur’s lemma and henceρ ∈ 〈τe〉 � CAut(V )(τe). Similarly,
one can verify that Ker(ψ2) = 〈σe〉. �

The following result will be used frequently (cf. [Y2, Theorem 9.1.7]).

Theorem 2.5. LetV = V 0 ⊕V 1 be a simple SVOA such that the even partV 0 is a rational
C2-cofinite VOA of CFT type and the odd partV 1 is a simple currentV 0-module. ThenV
is both rational andZ2-rational. LetW be an irreducibleV 0-module.

(1) If V 1�V 0 W �� W asV 0-modules, thenW is uniquely lifted to either an irreducible un
twistedV -module or an irreducibleZ2-twistedV -module given byW ⊕ (V 1 �V 0 W).

(2) If V 1 �V 0 W � W as V 0-modules, then there are exactly two inequivalent ir
ducibleZ2-twistedV -module structures onW and these two modules are mutua
Z2-conjugate.

Lemma 2.6. Under Hypothesis1, every irreducibleTe(0)-module is contained in an un
twisted irreducibleV 〈τe〉-module as a submodule.

Proof. Let X be an irreducibleTe(0)-module. By Theorem 2.5,X is contained in an ir-
reducibleTe(0) ⊕ Te(1/2)-module or an irreducibleZ2-twistedTe(0) ⊕ Te(1/2)-module.
Let X̃ be such aTe(0) ⊕ Te(1/2)-module. IfX̃ is an untwisted representation, then a t
sor product{L(1/2,0) ⊕ L(1/2,1/2)} ⊗ X̃ has a structure of an untwistedV 〈τe〉-module
and containsX as a submodule. If̃X is a Z2-twisted representation, then a tensor pr
uct L(1/2,1/16) ⊗ X̃ has a structure of an untwistedV 〈τe〉-module and containsX as a
submodule. �
Theorem 2.7. Under Hypothesis1, V 〈τe〉 has exactly four inequivalent irreducible mo
ules,V 〈τe〉, Ve(1/16), W0 := L(1/2,0) ⊗ Te(1/2) ⊕ L(1/2,1/2) ⊗ Te(0) and

W1 := Ve(1/16) �V 〈τe〉 W0.

Their fusion rules are as follows:
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Ve(1/16) × Ve(1/16) = V 〈τe〉, Ve(1/16) × W0 = W1, Ve(1/16) × W1 = W0,

W0 × W0 = V 〈τe〉, W0 × W1 = Ve(1/16), W1 × W1 = V 〈τe〉.

Therefore, the fusion algebra forV 〈τe〉 is isomorphic toZ2 × Z2.

Proof. SinceV = V 〈τe〉⊕Ve(1/16) is aZ2-graded simple current extension ofV 〈τe〉, every
irreducibleV 〈τe〉-module is lifted to either an irreducibleV -module or an irreducibleτe-
twistedV -module by [Y1, Theorem 3.3]. Moreover, theτe-twistedV -module is unique
up to isomorphism by [DLM, Theorem 10.3]. Since bothL(1/2,0) ⊕ L(1/2,1/2) and
Te(0) ⊕ Te(1/2) are simple SVOAs, the spaceW0 = L(1/2,1/2) ⊗ Te(0) ⊕ L(1/2,0) ⊗
Te(1/2) has a unique structure of an irreducibleV 〈τe〉-module. As the top weight ofW0 is
half-integral, the induced module

W = W0 ⊕ W1, W1 = Ve(1/16) �V 〈τe〉 W0,

becomes an irreducibleτe-twistedV -module again by [Y1, Theorem 3.3]. It is clear fro
Ve(1/16)�V 0 W1 = W0 thatW1 andVe(1/16) are inequivalentV 〈τe〉-modules. Therefore
V 〈τe〉 has exactly four irreducible modules as in the assertion. We remark that onlyV 〈τe〉,
Ve(1/16) andW1 have integral top weights.

Consider fusion rules forV 〈τe〉-modules. By [SY, Lemma 3.12], we have the fusi
rule W0 × W0 = V 〈τe〉. Then it follows from the forthcoming Lemma 3.5 thatW0 is a
simple currentV 〈τe〉-module. SinceVe(1/16) is also a simple currentV 〈τe〉-module, so is
W1 = Ve(1/16)�V 〈τe〉 W0. By looking at theτe-twistedV -module structure onW0 ⊕W1,
we easily find the following fusion rules:

Ve(1/16) × Ve(1/16) = V 〈τe〉, Ve(1/16) × W0 = W1, Ve(1/16) × W1 = W0.

SinceV is holomorphic,V is self-dual. HenceV 〈τe〉 andVe(1/16) are self-dualV 〈τe〉-
modules. Then by considering top weights we see that all irreducibleV 〈τe〉-modules are
self-dual. Then by theS3-symmetry of fusion rules (cf. [FHL]), we have the desired fus
rules. �

By the fusion rules forL(1/2,0)-modules, we note thatW1 as a Vir(e)-module is
a direct sum of copies ofL(1/2,1/16). Set the space of highest weight vectors
W1 by Qe(1/16) := {v ∈ W1 | Le(0)v = (1/16) · v}. Then as a Vir(e) ⊗ Te(0)-module,
W1 � L(1/2,1/16)⊗Qe(1/16). By Theorem 2.5, the spaceQe(1/16) naturally carries an
irreducibleZ2-twistedTe(0) ⊕ Te(1/2)-module structure, which may depend on a cho
of irreducibleZ2-twistedL(1/2,0) ⊕ L(1/2,1/2)-module structures onL(1/2,1/16).

Proposition 2.8. If the Z2-twistedTe(0) ⊕ Te(1/2)-moduleTe(1/16) is irreducible as a
Te(0)-module, then itsZ2-conjugate is isomorphic toQe(1/16) as aZ2-twistedTe(0) ⊕
Te(1/2)-module. In this case there are exactly three inequivalent irreducibleTe(0)-
modules,Te(0), Te(1/2) and Te(1/16). Conversely, ifTe(1/16) as a Te(0)-module is
reducible, then so isQe(1/16) and in this case there are exactly six inequivalent ir
ducibleTe(0)-modules.
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Proof. Assume thatTe(1/16) is irreducible as aTe(0)-module. In this case there a
exactly two inequivalent irreducibleZ2-twisted Te(0) ⊕ Te(1/2)-module structures o
Te(1/16) by Theorem 2.5. Therefore, an irreducibleZ2-twistedTe(0) ⊕ Te(1/2)-module
structure onTe(1/16) given in Theorem 2.2 and itsZ2-conjugate are inequivalent. This im
plies that there are exactly two inequivalent irreducible untwistedV 〈τe〉-module structures
onL(1/2,1/16)⊗ Te(1/16). Thus by the classification in Theorem 2.7,Ve(1/16) andW1

are isomorphic asL(1/2,0) ⊗ Te(0)-modules. By Lemma 2.6, every irreducibleTe(0)-
module appears in an irreducibleV 〈τe〉-module as a submodule. ThusTe(0) has exactly
three inequivalent irreducible modules as in the assertion.

Conversely, ifTe(1/16) as aTe(0)-module is reducible, then it is a direct sum of two
equivalent irreducibleTe(0)-module by Theorem 2.5. In this case we note thatVe(1/16) is
a σe-stableV 〈τe〉-module, that is, theσe-conjugateVe(1/16)σe of Ve(1/16) is isomorphic
to Ve(1/16) itself as aV 〈τe〉-module. We note thatQe(1/16) is also a reducibleTe(0)-
module. For, ifQe(1/16) is irreducible, thenTe(1/16) andQe(1/16) are in the relation o
Z2-conjugate, and henceTe(1/16) is also irreducible, a contradiction. ThusQe(1/16) is
a direct sum of two inequivalent irreducibleTe(0)-submodule. IfTe(1/16) andQe(1/16)
contain isomorphic irreducibleTe(0)-submodules, thenTe(1/16) andQe(1/16) are iso-
morphic irreducibleZ2-twistedTe(0) ⊕ Te(1/2)-modules by Theorem 2.5. This implie
thatVe(1/16) is isomorphic toW1 as aV 〈τe〉-module, which is a contradiction. Now th
assertion follows from Lemma 2.6.�
Corollary 2.9. If Te(1/16) is irreducible as aTe(0)-module, thenV 〈τe〉 ⊕ W1 is a Z2-
graded simple current extension ofV 〈τe〉 which is isomorphic toV = V 〈τe〉 ⊕ Ve(1/16).

Proof. If Te(1/16) is an irreducibleTe(0)-module, then by the previous proposition t
Z2-conjugate ofTe(1/16) is isomorphic toQe(1/16) as Z2-twisted Te(0) ⊕ Te(1/2)-
modules. Hence theσe-conjugateVe(0)⊕Ve(1/2)-module ofVe(1/16) = L(1/2,1/16)⊗
Te(1/16) is isomorphic toW1 = L(1/2,1/16) ⊗ Qe(1/16) and soσe ∈ Aut(V 〈τe〉) in-
duces a VOA isomorphism between two extensionsV 〈τe〉 ⊕ Ve(1/16) and V 〈τe〉 ⊕ W1

of V 〈τe〉. �
Remark 2.10. The corollary above implies that theτe-twisted orbifold construction applie
to V yieldsV itself again.

Theorem 2.11. Under Hypothesis1,

(1) ψ2 is surjective, that is,CAut(V 〈τe〉)(e) � 〈σe〉.Aut(Te(0)).
(2) Aut(Te(0) ⊕ Te(1/2)) � 2.(CAut(V 〈τe 〉)(e)/〈σe〉), where2 denotes the canonicalZ2-

symmetry on the SVOATe(0) ⊕ Te(1/2).
(3) |C(Aut(V 〈τe〉))(e) : CAut(V )(e)/〈τe〉| � 2.
(4) If CAut(V )(e)/〈τe〉 is simple or has an odd order, then extensions in(1) and (2)

split. That is,CAut(V 〈τe〉)(e) � 〈σe〉 × CAut(V )(e)/〈τe〉 and Aut(Te(0) ⊕ Te(1/2)) �
2× Aut(Te(0)).
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Proof. We have an injection fromCAut(V 〈τe〉)(e)/〈σe〉 to Aut(Te(0)) by Lemma 2.4. We
will show that every element in Aut(Te(0)) has its preimage inCAut(V 〈τe〉)(e). By Proposi-
tion 2.8, every irreducibleTe(0)-module is contained in one ofTe(0), Te(1/2), Te(1/16)
or Qe(1/16) as a submodule. In particular, we find thatTe(0) is the only irreducible
Te(0)-module whose top weight is integral andTe(1/2) is the only irreducibleTe(0)-
module whose top weight is in 1/2 + N. Let ρ ∈ Aut(Te(0)). Then by considering to
weights we can immediately see thatTe(0)ρ � Te(0) andTe(1/2)ρ � Te(1/2). Then by
[Sh, Theorem 2.1] we have a lifting̃ρ ∈ Aut(Te(0) ⊕ Te(1/2)) such thatρ̃Te(0) = Te(0),
ρ̃Te(1/2) = Te(1/2) andρ̃|Te(0) = ρ. Sinceρ̃ is uniquely determined up to the canonic
Z2-symmetry onTe(0) ⊕ Te(1/2), we have Aut(Te(0) ⊕ Te(1/2)) � 2.Aut(Te(0)). Now
we define ˜̃ρ ∈ CAut(V 〈τe〉)(e) by

˜̃ρ|L(1/2,h)⊗Te(h) = idL(1/2,h) ⊗ρ̃, h = 0,1/2.

Then by this liftingCAut(V 〈τe〉)(e) contains a subgroup isomorphic to 2.Aut(Te(0)). More-
over, the canonicalZ2-symmetry on the SVOATe(0) ⊕ Te(1/2) is naturally extended to
σe ∈ CAut(V 〈τe〉)(e). Clearly ψ2( ˜̃ρ) = ρ and henceψ2 is surjective. Therefore, we hav
the desired isomorphismsCAut(V 〈τe〉)(e) � 〈σe〉.Aut(Te(0)) and Aut(Te(0) ⊕ Te(1/2)) �
2.(CAut(V 〈τe〉)(e)/〈σe〉). This completes the proofs of (1) and (2).

Consider (3). By Theorem 2.7, there are exactly three irreducibleV 〈τe〉-modules whose
top weights are integral, namely,V 〈τe〉, Ve(1/16) andW1. ThusCAut(V 〈τe〉)(e) acts on the
2-point set{Ve(1/16),W1} as a permutation and so there is a subgroupH of CAut(V 〈τe〉)(e)
with index at most 2 such thatVe(1/16)π � Ve(1/16) as aV 〈τe〉-module for allπ ∈ H .
Then by [Sh, Theorem 2.1] there is a lifting̃π ∈ CAut(V )(e) of π such thatψ1(π̃) = π for
eachπ ∈ H . Thus|CAut(V 〈τe〉)(e) : CAut(V )(e)/〈τe〉| � 2 and (3) holds.

Consider (4). SupposeCAut(V )(e)/〈τe〉 is either simple or odd. By (3),CAut(V 〈τe〉)(e)
contains a subgroup isomorphic toCAut(V )(e)/〈τe〉 with index at most 2. Since〈σe〉 is
a normal subgroup ofCAut(V 〈τe〉)(e) of order 2, the index|CAut(V 〈τe〉)(e) : CAut(V )(e)/〈τe〉|
must be 2 by the assumption and hence we obtain the desired isomorphismCAut(V 〈τe〉)(e) �
〈σe〉 × CAut(V )(e)/〈τe〉. In this case, it is easy to see that the extension Aut(Te(0) ⊕
Te(1/2)) = 2.Aut(Te(0)) splits. �
Corollary 2.12. If CAut(V )(e)/〈τe〉 is simple, thenVe(1/16) is an irreducibleVe(0)-
module andTe(1/16) is an irreducibleTe(0)-module. Therefore,V = V 〈τe〉 ⊕ Ve(1/16)
andV 〈τe〉 ⊕ W1 are equivalent extensions ofV 〈τe〉.

Proof. Let H be the subgroup ofCAut(V 〈τe〉)(e) which fixesVe(1/16) in the action on the
2-point set{Ve(1/16),W1}. It is shown in the proof of (3) of Theorem 2.11 that we ha
inclusions

H � CAut(V )(e)/〈τe〉 � CAut(V 〈τe〉)(e) = 〈σe〉 × CAut(V )(e)/〈τe〉.

Therefore,σe /∈ H and hence theσe permutesVe(1/16) and W1. ThenVe(1/16) is an
irreducibleVe(0)-module by Proposition 2.8 and henceTe(1/16) as aTe(0)-module is
irreducible. The rest of the assertion follows from Corollary 2.9.�
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3. 2A-framed VOA

In this section we consider VOAs with unitary Virasoro frames. For convention
introduce the following notion:

Definition 3.1. A simple vertex operator algebra(V ,ω) is called2A-framedif there is
an orthogonal decompositionω = e1 + · · · + en such that eachei generates a sub VOA
isomorphic toL(1/2,0). The decompositionω = e1 + · · · + en is called a2A-frameof V .

Remark 3.2. Any 2A-framed VOA is rational andC2-cofinite (cf. [DGH,Z]).

3.1. Structure codes

For a 2A-framed VOA, we can associate two linear binary codes in the following
(cf. [M2,DGH]). Let (V ,ω) be a 2A-framed VOA with a 2A-frameω = e1 + · · · + en. Set
F := Vir (e1) ⊗ · · · ⊗ Vir (en). ThenF � L(1/2,0)⊗n andV is a direct sum of irreducibl
F -submodulesL(1/2, h1)⊗· · ·⊗L(1/2, hn), hi ∈ {0,1/2,1/16}. Assign to an irreducible
F -module

⊗n
i=1 L(1/2, hi) its 1/16-word(α1, . . . , αn) ∈ Zn

2 by αi = 1 if and only ifhi =
1/16. For eachα ∈ Zn

2, denote byV α the sum of all irreducibleF -submodules whos
1/16-words are equal toα and define a linear codeS ⊂ Zn

2 by S = {α ∈ Zn
2 | V α �= 0}. Then

we have the 1/16-word decompositionV = ⊕
α∈S V α . By the fusion rules forL(1/2,0)-

modules, we have anS-graded structureV α · V β ⊂ V α+β . Namely, the dual groupS∗
of an abelian 2-groupS acts onV , and we find that this automorphism group coincid
with the elementary abelian 2-group generated by Miyamoto involutions{τei | 1 � i � n}.
Therefore, allV α , α ∈ S, are inequivalent irreducibleV S∗ = V 0-modules by [DM].

Since there is noL(1/2,1/16)-component inV 0, the fixed point subalgebraV S∗ = V 0

is of the following form:

V 0 =
⊕

hi∈{0,1/2}
mh1,...,hnL(1/2, h1) ⊗ · · · ⊗ L(1/2, hn),

wheremh1,...,hn denotes the multiplicity. OnV 0 we can defineσ -type Miyamoto invo-
lutions σei for i = 1, . . . , n. Denote byI the elementary abelian 2-subgroup of Aut(V 0)

generated by{σei | 1 � i � n}. Then we have(V 0)I = F and eachmh1,...,hnL(1/2, h1) ⊗
· · · ⊗ L(1/2, hn) is an irreducibleF -submodule by [DM]. Thusmh1,...,hn ∈ {0,1} and we
obtain an even linear codeD := {(2h1, . . . ,2hn) ∈ Zn

2 | mh1,...,hn �= 0} such that

V 0 =
⊕

α=(α1,...,αn)∈D

L(1/2, α1/2) ⊗ · · · ⊗ L(1/2, αn/2). (3.1)

The VOA V 0 is a D-graded simple current extension ofF and is refereed to as acode
VOA associated to codeD. We call a pair(D,S) the structure codesof a 2A-framed
VOA V . Since powers ofz in anL(1/2,0)-intertwining operator of typeL(1/2,1/2) ×
L(1/2,1/2) → L(1/2,1/16) are half-integral, structure codes satisfyD ⊂ S⊥.
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3.2. Construction of 2A-framed VOA

In this subsection we recall Miyamoto’s construction of 2A-framed VOAs in [M3]. H
we assume the following:

Hypothesis 2.

(1) (D,S) is a pair of even linear even codes ofZn
2 such that

(1-i) D ⊂ S⊥,
(1-ii) for eachα ∈ S, there is a subcodeEα ⊂ D such thatEα is a direct sum of the

[8,4,4] Hamming codeH8 and Supp(Eα) = Supp(α), where Supp(A) denotes⋃
β∈A Supp(β) for a subsetA of Zn

2.

(2) V 0 is the code VOA associated to the codeD.
(3) {V α | α ∈ S} is a set of irreducibleV 0-modules such that

(3-i) the 1/16-word ofV α is equal toα for all α ∈ S,
(3-ii) all V α , α ∈ S, have integral top weights,
(3-iii) the fusion productV α �V 0 V β contains at least oneV α+β . That is, there

is a non-trivialV 0-intertwining operator of typeV α × V β → V α+β for any
α,β ∈ S.

Theorem 3.3 [M3,Y2] .

(1) Under the condition(1) of Hypothesis2, all V α , α ∈ D, are simple currentV 0-
modules.

(2) Under Hypothesis2, the spaceV = ⊕
α∈S V α carries a unique structure of a simp

VOA as anS-graded simple current extension ofV 0.

Remark 3.4. In [M3], Miyamoto assumed stronger conditions than those in Hypothesis
In particular, he assumed that the structure codes(D,S) are of length 8k for some positive
integerk. A refinement in [Y2] enables us to construct 2A-framed VOAs with struc
codes of any length as long as Hypothesis 2 is satisfied.

3.3. Superalgebras associated to 2A-framed VOA

LetV be a 2A-framed VOA with structure codes(D,S). We assume that the pair(D,S)

satisfies the condition (1-ii) of Hypothesis 2 andD = S⊥. ThenV is holomorphic by
[M4,DGH]. Let ω = e1 + · · · + en be the 2A-frame ofV . We consider the commuta
subalgebra of Vir(e1). For simplicity, we sete = e1. Assume that{1} ∩Supp(S) �= ∅. Then
by the condition (1-ii) of Hypothesis 2, we haveVe(1/2) �= 0. Let V = ⊕

α∈S V α be the
1/16-word decomposition according to the structure codes(D,S). SetS0 = {α ∈ S | {1} ∩
Supp(α) = ∅} andS1 = {α ∈ S | {1} ∩ Supp(α) = {1}}. ThenS = S0 � S1 (disjoint union)
and we have aZ2-gradingV = (

⊕
α∈S0 V α) ⊕ (

⊕
β∈S1 V β) such thatVe(0) ⊕ Ve(1/2) =⊕

α∈S0 V α andVe(1/16) = ⊕
β∈S1 V β . We shall prove thatVe(1/16) is a simple curren

V 〈τe〉-module. We quote the following simple lemma from [Y2]:
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Lemma 3.5 [Y2] . LetV be a simple rationalC2-cofinite VOA of CFT-type. If twoV -mo-
dulesM1 andM2 satisfyM1 × M2 = V in the fusion algebra, then bothM1 andM2 are
simple currentV -modules. In particular, ifV is self-dual, then the set of all the simp
currentV -modules form a finite abelian group in the fusion algebra.

Lemma 3.6. Ve(1/16) is a simple currentV 〈τe〉-module.

Proof. By Lemma 3.5, it suffices to show thatVe(1/16) �V 〈τe〉 Ve(1/16) = V 〈τe〉. Let M

be an irreducibleV 〈τe〉-submodule ofVe(1/16) �V 〈τe〉 Ve(1/16). SinceV α �V 0 V α = V 0

for anyα ∈ S by (1) of Theorem 3.3,M containsV 0 as aV 0-submodule. ThusM contains
a non-zero vacuum-like vector and henceM is isomorphic toV 〈τe〉 as aV 〈τe〉-module
by [Li3]. Therefore, we haveVe(1/16) × Ve(1/16) = nV 〈τe〉 for somen ∈ N. As V is
holomorphic, bothV 〈τe〉 andVe(1/16) are self-dualV 〈τe〉-modules. Now by using theS3-
symmetry of fusion rules, we obtain the desired fusion ruleVe(1/16) × Ve(1/16) = V 〈τe〉
from the canonical fusion ruleV 〈τe〉 × Ve(1/16) = Ve(1/16). �

Write Ve(h) = L(1/2, h) ⊗ Te(h) for h = 0,1/2,1/16 as we did before. By Theo
rem 2.2,Te(0) ⊕ Te(1/2) forms a simple SVOA. The Virasoro vector ofTe(0) is given
by ω − e1 = e2 + · · · + en and soTe(0) is a 2A-framed VOA. We compute the structu
codes ofTe(0). Defineφε :Zn−1

2 ↪→ Zn
2 by Zn−1

2 � α �→ (ε,α) ∈ Zn
2 for ε = 0,1, and set

Dε := {
α ∈ Zn−1

2

∣∣ φε(α) ∈ D
}
, ε = 0,1, S0,0 := {

β ∈ Zn−1
2

∣∣ φ0(β) ∈ S0}.
Proposition 3.7.

(1) The structure codes ofTe(0) with respect to the 2A-framee2 + · · ·+ en are (D0, S0,0).
(2) Te(1/2) has the1/16-word decompositionTe(1/2) = ⊕

α∈S0,0 Te(1/2)α .

Proof. For α ∈ S0, defineV α,ε to be the sum of all irreducible
⊗n

i=1 Vir (ei)-submodules
of V α whose Vir(e1)-components are isomorphic toL(1/2, ε/2) for ε = 0,1. By (1-ii) of
Hypothesis 2,V α,ε �= 0 for all α ∈ S0 andε = 0,1. Therefore,V α = V α,0 ⊕ V α,1 and we
obtain the 1/16-word decompositionsVe(0) = ⊕

α∈S0 V α,0 andVe(1/2) = ⊕
α∈S0 V α,1.

SinceD = φ0(D
0)�φ1(D

1), V 0,0 is isomorphic to Vir(e1)⊗UD0, whereUD0 denotes the
code VOA associated to the even codeD0. ThusTe(0) has the 1/16-word decomposition
Te(0) = ⊕

α∈S0,0 Te(0)α such thatTe(0)0 � UD0. Hence the structure codes ofTe(0) are
(D0, S0,0). The proof of (2) is similar. �

The following is easy to see:

Lemma 3.8. If the structure codes(D,S) satisfy the condition(1) of Hypothesis2, then so
do (D0, S0,0).

ThusTe(0) = ⊕
α∈S0,0 Te(0)α is anS0,0-graded simple current extension ofTe(0)0 by

(1) of Theorem 3.3. In addition, by using (2) of Theorem 3.3, we can reconstructTe(0)

without reference toV .
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Proposition 3.9. Te(1/2) is a simple currentTe(0)-module.

Proof. It suffices to show thatTe(1/2)�Te(0) Te(1/2) = Te(0) by Lemma 3.5. LetM be an
irreducibleTe(0)-submodule ofTe(1/2)�Te(0) Te(1/2). SinceTe(1/2) has a 1/16-word de-
compositionTe(1/2) = ⊕

α∈S0,0 Te(1/2)α by Proposition 3.7,Te(1/2)0 as a
⊗n

i=2 Vir(ei)-
module is isomorphic to⊕

β=(β2,...,βn)∈D1

L(1/2, β2/2) ⊗ · · · ⊗ L(1/2, βn/2).

Therefore, by the fusion rules ofL(1/2,0), M containsL(1/2,0)⊗n−1 as a
⊗n

i=2 Vir(ei)-
submodule. SoM contains a non-trivial vacuum-like vector and henceM is isomor-
phic to Te(0) as aTe(0)-module by [Li3]. Therefore, there exists ann ∈ N such that
Te(1/2)×Te(1/2) = nTe(0). SinceV is holomorphic, bothTe(0) andTe(1/2) are self-dual
Te(0)-modules. So by theS3-symmetry of fusion rules, we obtain the desired fusion r
Te(1/2)×Te(1/2) = Te(0) from the canonical fusion ruleTe(0)×Te(1/2) = Te(1/2). �

To summarize, we obtain:

Proposition 3.10. Let V be a 2A-framed VOA with a 2A-frameω = e1 + · · · + en and
its associated structure codes(D,S). Suppose that the pair(D,S) satisfies the condition
(1-ii) of Hypothesis2, D = S⊥ andVe1(1/16) �= 0. ThenV ande1 satisfy Hypothesis1.

4. The baby-monster SVOA

Let (V �,ω�) be the moonshine VOA constructed in [FLM]. The full automorph
group of V � is the MonsterM, the largest sporadic finite simple group. We apply
results toV � and study the baby-monster SVOA. As shown in [DMZ],V � has a 2A-frame
ω� = e1 + · · · + e48, and one of its structure codes are determined in [DGH,M4].

Theorem 4.1 [DGH,M4]. The moonshine VOAV � has a 2A-frame such that its associat
structure codes(D�,S�) are as follows:

S� := SpanZ2

{
(α,α,α),

(
116032), (032116) ∈ Z48

2 | α ∈ RM(1,4)
}
, D� := (

S�
)⊥

,

whereRM(1,4) is a Reed–Müller code defined as follows:
RM(1,4) := SpanZ2

{(
116), (1808), (14041404), ({1100}4), ({10}8)} < Z16

2 .

Lemma 4.2. For any conformal vectore of V � with central charge1/2, V � ande satisfy
Hypothesis1.

Proof. It is shown in [C] and [M1] that all the conformal vectors with central charge 1/2
are conjugate under the MonsterM = Aut(V �). Thus we may assume thate = e1. Since
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{1} ⊂ Supp(S�), Ve1(1/16) �= 0. It is easy to verify that the structure codes(D�,S�) satisfy
(1-ii) of Hypothesis 2. Therefore,V � ande1 satisfy Hypothesis 1 by Proposition 3.10.�

Now sete = e1 and consider the commutant subalgebraT
�
e (0) of Vir (e) in V �. By the

lemma above, we have the following decomposition:

V � = L(1/2,0) ⊗ T �
e (0) ⊕ L(1/2,1/2) ⊗ T �

e (1/2) ⊕ L(1/2,1/16) ⊗ T �
e (1/16)

with T
�
e (h) �= 0 for h = 0,1/2,1/16. By Theorem 2.2, we know thatT �

e (0) ⊕ T
�
e (1/2)

forms a simple SVOA andT �
e (1/16) is an irreducibleZ2-twistedT

�
e (0)⊕T

�
e (1/2)-module.

Moreover, the algebraic structures onT
�
e (0) ⊕ T

�
e (1/2) andT

�
e (1/16) are independent o

choice of a conformal vectore = e1 ∈ V � because all the conformal vectors with cent
charge 1/2 are conjugate underM = Aut(V �).

Lemma 4.3. CAut(V �)(e)/〈τe〉 is the baby-monster sporadic finite simple groupB.

Proof. It is shown in [C] and [M1] that the mape �→ τe defines a one-to-one corr
spondence between conformal vectors inV � with central charge 1/2 and involutions of
2A-conjugacy class ofM. Therefore,CAut(V �)(e) = CAut(V �)(τe). We know thatCM(τe)

is isomorphic to a 2-fold central extension〈τe〉 · B of the baby-monster simple groupB
(cf. [ATLAS]). So the assertion holds.�

By the lemma above, the commutant subalgebraT
�
e (0) affords an action ofB. We set

VB0 := T
�
e (0), VB1 := Te(1/2) and VB := T

�
e (0) ⊕ T

�
e (1/2) and we callVB the baby-

monster vertex operator superalgebra. We also setVBT := T
�
e (1/16) for convention. Now

we state our main result which gives a new proof of [Hö2].

Theorem 4.4.

(1) Aut(VB0) � B andAut(VB) � 2× B.
(2) VBT as a VB0-module is irreducible. Thus, there are exactly three irreducible V0-

modules, VB0, VB1 and VBT .
(3) The fusion rules for irreducible VB0-modules are as follows:

VB1 × VB1 = VB0, VB1 × VBT = VBT , VBT × VBT = VB0 + VB1.

Proof. (1) follows from Theorem 2.11 and Lemma 4.3. By Corollary 2.12,VBT as a
VB0-module is irreducible. Then (2) follows from Proposition 2.8. Consider (3). We
have to show the fusion ruleVBT × VBT = VB0 + VB1. By considering the 1/16-word de-
composition ofVBT , we haveVBT × VBT = n0VB0 + n1VB1 for somen0, n1 ∈ N. Since
top weights ofVB0, VB1 andVBT are distinct, every irreducibleVB0-module is self-dual
Then by theS3-symmetry of fusion rules we obtain the desired fusion rule.�

The classification of irreducibleVB0-modules has interesting corollaries.
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Corollary 4.5. The irreducible 2A-twistedV �-module as anL(1/2,0) ⊗ VB0-module has
a shape

L(1/2,1/2) ⊗ VB0 ⊕ L(1/2,0) ⊗ VB1 ⊕ L(1/2,1/16) ⊗ VBT .

Proof. Follows from Theorems 4.4, 2.7 and Proposition 2.8.�
Remark 4.6. A straightforward construction of the 2A-twisted and 2B-twistedV �-modules
is already obtained by Lam [L].

Corollary 4.7. For any conformal vectore ∈ V � with central charge1/2, there is no auto-
morphismρ onV � such thatρ(V

�
e (h)) = V

�
e (h) for h = 0,1/2 andρ|(V �)〈τe〉 = σe.

Proof. Suppose such an automorphismρ exists. We remark thatρ also preserves th
spaceV

�
e (1/16) as ρ ∈ CAut(V �)(e). We view V

�
e (1/16) as a(V �)〈τe〉-module by a re-

striction of the vertex operator mapYV �(·, z) on V �. Consider theσe-conjugate(V �)〈τe〉-
moduleV

�
e (1/16)σe . By Theorem 4.4 and Proposition 2.8,V

�
e (1/16)σe is not isomorphic

to V
�
e (1/16) as a(V �)〈τe〉-module. On the other hand, we can take a canonical linear

morphismϕ :V �
e (1/16) → V

�
e (1/16)σe such thatY

V
�
e (1/16)σe

(a, z)ϕv = ϕYV �(σea, z)v for
anya ∈ (V �)〈τe〉 andv ∈ V

�
e (1/16) by definition of the conjugate module. Then we hav

Y
V

�
e (1/16)σe

(a, z)ϕρv = ϕYV �(σea, z)ρv = ϕYV �(ρa, z)ρv = ϕρYV �(a, z)v

for anya ∈ (V �)〈τe〉 andv ∈ V
�
e (1/16). Thusϕρ defines a(V �)〈τe〉-isomorphism betwee

V
�
e (1/16) andV

�
e (1/16)σe , which is a contradiction. �

Corollary 4.8. The 2A-orbifold construction applied to the moonshine VOAV � yieldsV �

itself again.

Proof. Follows from Theorem 4.4 and Corollary 2.12.�
Remark 4.9. The statement in the corollary above was conjectured by Tuite [Tu]. In [
Tuite has shown that anyZp-orbifold construction ofV � yields either the moonshine VO
V � or the Leech lattice VOAVΛ under the uniqueness conjecture of the moonshine V
which states thatV � constructed by Frenkel et al. [FLM] is the unique holomorphic VO
with central charge 24 whose weight one subspace is trivial.

Finally, we end this paper by presenting the modular transformations of charac
VB0-modules. Here the character means the conformal character, not theq-dimension,
of modules. Recall the characters ofL(1/2,0)-modules. By an explicit construction o
L(1/2,0)-modules in Section 2.1 (cf. [FFR]), one can easily prove the following:

chL(1/2,0)(τ ) = 1

2
q−1/48

{ ∞∏(
1+ qn+1/2) +

∞∏(
1− qn+1/2)},
n=0 n=0
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chL(1/2,1/2)(τ ) = 1

2
q−1/48

{ ∞∏
n=0

(
1+ qn+1/2) −

∞∏
n=0

(
1− qn+1/2)},

chL(1/2,1/16)(τ ) = q−1/24
∞∏

n=1

(
1+ qn

)
.

The following modular transformations are well known:

chL(1/2,0)(−1/τ) = 1

2
chL(1/2,0)(τ ) + 1

2
chL(1/2,1/2)(τ ) + 1√

2
chL(1/2,1/16)(τ ),

chL(1/2,1/2)(−1/τ) = 1

2
chL(1/2,0)(τ ) + 1

2
chL(1/2,1/2)(τ ) − 1√

2
chL(1/2,1/16)(τ ),

chL(1/2,1/16)(−1/τ) = 1√
2

chL(1/2,0)(τ ) − 1√
2

chL(1/2,1/2)(τ ).

Setj (τ ) := J (τ)−744, whereJ (τ) is the famous SL2(Z)-invariant. Since chV �(τ ) = j (τ )

and

chV �(τ ) = chL(1/2,0)(τ )chVB0(τ ) + chL(1/2,1/2)(τ )chVB1(τ ) + chL(1/2,1/16)(τ )chVBT
(τ ),

we can write down the characters of irreducibleVB0-modules by using those ofV � and
L(1/2,0)-modules. This computation is already done in [Ma] by using Matsuo–No
trace formula. The results are written as a rational expression involving the functionsj (τ ),
chL(1/2,h)(τ ), h = 0,1/2,1/16, their first and second derivatives and the Eisenstein s
E2(τ ) andE4(τ ), see [Ma].

By Zhu’s theorem [Z], the linear space spanned by{chVB0(τ ),chVB1(τ ),chVBT
(τ )} af-

fords an SL2(Z)-action. Using the modular transformations forj (τ ) and chL(1/2,h)(τ ),
h = 0,1/2,1/16, we can show the following modular transformations:

chVB0(−1/τ) = 1

2
chVB0(τ ) + 1

2
chVB1(τ ) + 1√

2
chVBT

(τ ),

chVB1(−1/τ) = 1

2
chVB0(τ ) + 1

2
chVB1(τ ) − 1√

2
chVBT

(τ ),

chVBT (−1/τ) = 1√
2

chVB0(τ ) − 1√
2

chVB1(τ ).

Namely, we have exactly the same modular transformation laws for the Ising m
L(1/2,0). As in Theorem 4.4, we also note that the fusion algebra forVB0 is also canoni-
cally isomorphic to that ofL(1/2,0). Therefore, we may say thatL(1/2,0) andVB0 form
a dual-pair inside the moonshine VOAV �.
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