

Available online at www.sciencedirect.com

Journal of Algebra 284 (2005) 645-668

www.elsevier.com/locate/jalgebra

2A-orbifold construction and the baby-monster vertex operator superalgebra

Hiroshi Yamauchi*

Graduate School of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan Received 2 April 2004

Communicated by Geoffrey Mason

To the memory of my dear Taro

Abstract

In this article we give a new proof of the determination of the full automorphism group of the baby-monster vertex operator superalgebra based on a theory of simple current extensions. As a corollary, we also prove that the \mathbb{Z}_2 -orbifold construction with respect to a 2A-involution of the Monster applied to the moonshine vertex operator algebra V^{\natural} yields V^{\natural} itself again. © 2004 Elsevier Inc. All rights reserved.

1. Introduction

The famous moonshine vertex operator algebra V^{\ddagger} constructed by Frenkel–Lepowsky– Muerman [FLM] is the first example of the \mathbb{Z}_2 -orbifold construction of a holomorphic vertex operator algebra (VOA). Let us explain a \mathbb{Z}_2 -orbifold construction briefly. Let Vbe a holomorphic vertex operator algebra and σ an involutive automorphism on V. Then the fixed point subalgebra $V^{\langle \sigma \rangle}$ is a simple vertex operator algebra. It is shown in [DLM] that there is a unique irreducible σ -twisted V-module M and we have a decomposition

^{*} Current address: Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan.

E-mail address: yamauchi@ms.u-tokyo.ac.jp.

^{0021-8693/\$ –} see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2004.09.039

 $M = M^0 \oplus M^1$ into a direct sum of irreducible $V^{\langle \sigma \rangle}$ -modules such that M^0 has an integral top weight. A \mathbb{Z}_2 -orbifold construction with respect to $\sigma \in \operatorname{Aut}(V)$ refers to a construction of a \mathbb{Z}_2 -graded extension $W = V^{\langle \sigma \rangle} \oplus M^0$ of the fixed point subalgebra $V^{\langle \sigma \rangle}$ and it is expected to be a holomorphic vertex operator algebra.

In FLM's construction, we take V to be the lattice vertex operator algebra V_A associated to the Leech lattice Λ and the involution σ is a natural lifting $\theta \in \operatorname{Aut}(V_A)$ of the (-1)isometry on Λ . Denote by $V_A = V_A^+ \oplus V_A^-$ the eigenspace decomposition such that θ acts on V_A^{\pm} as ± 1 , respectively. Let V_A^T be the unique irreducible θ -twisted V_A -module. Then there is a decomposition $V_A^T = (V_A^T)^+ \oplus (V_A^T)^-$ such that the top weight of $(V_A^T)^+$ is integral. Then the moonshine vertex operator algebra is defined by $V^{\ddagger} := V_A^+ \oplus (V_A^T)^+$ and it is proved in [FLM] that V^{\ddagger} forms a \mathbb{Z}_2 -graded extension of V_A^+ . It is also proved in [FLM] that the full automorphism group of the moonshine vertex operator algebra is the Monster sporadic finite simple group \mathbb{M} by using Griess' result [G].

In the Monster, there are two conjugacy classes of involutions, the 2A-conjugacy class and the 2B-conjugacy class (cf. [ATLAS]). One can explicitly see the action of a 2B-involution on V^{\ddagger} by FLM's construction. But it is difficult to realize the action of a 2A-involution on V^{\ddagger} before Miyamoto. In [M1], Miyamoto opened a way to study the action of 2A-involutions of the Monster on the moonshine VOA by using a sub VOA isomorphic to the unitary Virasoro VOA L(1/2, 0). Let us recall the definition of Miyamoto involutions. Let V be a simple VOA and $e \in V_2$ be a vector such that the sub VOA Vir(e) generated by e is isomorphic to the Virasoro VOA L(1/2, 0). Such a vector e is called a conformal vector with central charge 1/2. Since V as a Vir(e)-module is completely reducible, we have a decomposition

$$V = V_e(0) \oplus V_e(1/2) \oplus V_e(1/16),$$

where $V_e(h)$, h = 0, 1/2, 1/16, denotes a sum of all irreducible Vir(*e*)-submodules isomorphic to L(1/2, h). Then one can define a linear isomorphism τ_e on V by

$$\tau_e := 1$$
 on $V_e(0) \oplus V_e(1/2)$, -1 on $V_e(1/16)$.

It is proved in [M1] that τ_e defines an involution of a VOA V if $V_e(1/16) \neq 0$. This involution is often called the Miyamoto involution of τ -type. On the fixed point subalgebra $V^{\langle \tau_e \rangle}$, one can define another automorphism by

$$\sigma_e := 1$$
 on $V_e(0)$, -1 on $V_e(1/2)$.

This involution is called the Miyamoto involution of σ -type. It is shown in [C] and [M1] that in the moonshine VOA every Miyamoto involution τ_e defines a 2A-involution of the Monster and the correspondence between conformal vectors and 2A-involutions is one-to-one. Therefore, in the study of 2A-involutions, it is very important to study conformal vectors with central charge 1/2. Along this idea, C.H. Lam, H. Yamada and the author obtained an interesting achievement on 2A-involutions of the Monster in [LYY].

The main purpose of this paper is to study the \mathbb{Z}_2 -orbifold construction of V^{\natural} with respect to the Miyamoto involution and to prove that the 2A-orbifold construction applied to V^{\natural} yields V^{\natural} itself again. Since a 2A-involution of the Monster is uniquely

determined by a conformal vector e of V^{\natural} with central charge 1/2, we have to study the commutant subalgebra of Vir(e) together with Vir(e) in order to describe the 2A-orbifold construction. For a simple VOA V and a conformal vector e of V with central charge 1/2, set the space of highest weight vectors by $T_e(h) := \{v \in V \mid L^e(0)v = hv\}$ for h = 0, 1/2, 1/16, where we expand $Y(e, z) = \sum_{n \in \mathbb{Z}} L^e(n) z^{-n-2}$. Then we have decompositions $V_e(h) = L(1/2, h) \otimes T_e(h)$ and the commutant subalgebra $T_e(0)$ acts on $T_e(h)$ for h = 0, 1/2, 1/16. Like L(1/2, 0) has a \mathbb{Z}_2 -graded extension $L(1/2, 0) \oplus L(1/2, 1/2)$, we can introduce a vertex operator superalgebra (SVOA) structure on $T_e(0) \oplus T_e(1/2)$ and its \mathbb{Z}_2 -twisted module structure on $T_e(1/16)$. It is easy to see that the one point stabilizer $C_{\text{Aut}(V)}(e) = \{\rho \in \text{Aut}(V) \mid \rho e = e\}$ naturally acts on the space of highest weight vectors $T_e(h)$. If we take $V = V^{\natural}$, then $C_{Aut(V^{\natural})}(e)$ is isomorphic to the 2-fold central extension $\langle \tau_e \rangle \cdot \mathbb{B}$ of the baby-monster sporadic finite simple group \mathbb{B} . Therefore, the SVOA $T_e^{\natural}(0) \oplus T_e^{\natural}(1/2)$, where we have set $V_e^{\natural}(h) = L(1/2, h) \otimes T_e^{\natural}(h)$ for h = 0, 1/2, 1/16, affords a natural action of B. Motivated by this fact, Höhn first studied this SVOA in [Hö1] and he called it the *baby-monster SVOA*. Following him, we write $VB^0 := T_e^{\natural}(0)$, $VB^1 := T_e^{\natural}(1/2)$ and $VB := T_e^{\natural}(0) \oplus T_e^{\natural}(1/2)$. It is proved in [Hö2] that the full automorphism group of the even part VB^0 of VB is exactly isomorphic to the baby-monster \mathbb{B} . In this paper, we give a quite different proof of $Aut(VB^0) \simeq \mathbb{B}$ based on a theory of simple current extensions.

In my recent work [Y1,Y2], a theory of simple current extensions of vertex operator algebras was developed and many useful results were obtained. Using the theory, we determine the automorphism group of the commutant subalgebra $T_e(0)$ as follows:

Theorem 1. Let V be a holomorphic VOA and $e \in V$ a conformal vector with central charge 1/2. Suppose the following:

- (a) $V_e(h) \neq 0$ for h = 0, 1/2, 1/16,
- (b) $V_e(0)$ and $T_e(0)$ are rational C₂-cofinite VOAs of CFT-type,
- (c) $V_e(1/16)$ is a simple current $V^{\langle \tau_e \rangle}$ -module,
- (d) $T_e(1/2)$ is a simple current $T_e(0)$ -module,
- (e) $C_{\text{Aut}(V)}(e)/\langle \tau_e \rangle$ is a simple group or an odd group.

Then

- (1) $\operatorname{Aut}(T_e(0)) = C_{\operatorname{Aut}(V)}(e)/\langle \tau_e \rangle.$
- (2) The irreducible $T_e(0)$ -modules are given by $T_e(0)$, $T_e(1/2)$ and $T_e(1/16)$.
- (3) The τ_e -orbifold construction applied to V yields V itself again.

The assumptions (c) and (d) in the theorem above seem to be rather restrictive. However, we prove that all the assumptions above hold if V is the moonshine VOA. Applying Theorem 1 to V^{\natural} , we obtain the following main theorem of this paper.

Theorem 2. Let $VB = VB^0 \oplus VB^1$ be the commutant superalgebra obtained from V^{\natural} .

(1) $\operatorname{Aut}(VB^0) = \mathbb{B}$ and $\operatorname{Aut}(VB) = 2 \times \mathbb{B}$.

- (2) There are exactly three inequivalent irreducible VB^0 -modules, VB^0 , VB^1 and $VB_T := T_e^{\natural}(1/16)$.
- (3) The fusion rules for VB^0 -modules are as follows:

$$VB^1 \times VB^1 = VB^0$$
, $VB^1 \times VB_T = VB_T$, $VB_T \times VB_T = VB^0 + VB^1$.

This theorem has the following corollaries.

Corollary 1. *The irreducible* 2*A-twisted* V^{\natural} *-module has a shape*

 $L(1/2, 1/2) \otimes VB^0 \oplus L(1/2, 0) \otimes VB^1 \oplus L(1/2, 1/16) \otimes VB_T.$

Corollary 2. For any conformal vector $e \in V^{\natural}$ with central charge 1/2, there is no $\rho \in$ Aut (V^{\natural}) such that $\rho(V_e^{\natural}(h)) = V_e^{\natural}(h)$ for h = 0, 1/2, 1/16 and $\rho|_{(V^{\natural})^{(\tau_e)}} = \sigma_e$.

Corollary 3. The 2A-orbifold construction applied to the moonshine VOA V^{\natural} yields V^{\natural} itself again.

At the end of this paper, we give characters of VB^0 -modules and their modular transformation laws. Surprisingly, we find that the fusion algebra and the modular transformation laws for the baby-monster VOA is canonically isomorphic to those of the Ising model L(1/2, 0).

Notation. For a VOA *V* and a subgroup *G* of Aut(*V*), we denote by V^G the *G*-fixed subalgebra of *V*. For a *V*-module *M* and an automorphism $\tau \in Aut(V)$, we denote the τ -conjugate module of *M* by M^{τ} . We denote the (restricted) dual module of *M* by M^* , and *M* is called *self-dual* if $M^* \simeq M$. For *V*-modules M^1 and M^2 , we denote their fusion product by $M^1 \boxtimes_V M^2$. For a linear binary code *D* of length *n* and its element $\alpha = (\alpha_1, \ldots, \alpha_n) \in D$, we define Supp $(\alpha) := \{i \mid \alpha_i \neq 0\}$.

2. Commutant superalgebra and its automorphisms

We denote by L(c, h) the irreducible highest weight module for the Virasoro algebra with central charge c and highest weight h. It is shown in [FZ] that L(c, 0) has a structure of a simple VOA.

2.1. Ising model

We realize an SVOA $L(1/2, 0) \oplus L(1/2, 1/2)$ by using one free fermionic field. Let \mathfrak{A}_{ψ} be a \mathbb{C} -algebra generated by $\{\psi_{n+1/2} \mid n \in \mathbb{Z}\}$ with the relation $[\psi_r, \psi_s]_+ := \psi_r \psi_s + \psi_s \psi_r = \delta_{r+s,0}, r, s \in \mathbb{Z} + 1/2$. Let \mathfrak{A}_{ψ}^+ to be the subalgebra of \mathfrak{A}_{ψ} generated by $\{\psi_r \mid r > 0\}$ and let $\mathbb{C}|0\rangle$ be a trivial \mathfrak{A}_{ψ}^+ -module. Consider the induced module

$$\mathfrak{M} := \operatorname{Ind}_{\mathfrak{A}_{\psi}^{+}}^{\mathfrak{A}_{\psi}} \mathbb{C}|0\rangle = \mathfrak{A}_{\psi} \otimes_{\mathfrak{A}_{\psi}^{+}} \mathbb{C}|0\rangle.$$

It is well known (cf. [KR]) that \mathfrak{M} affords an action of the Virasoro algebra with central charge 1/2 and $\mathfrak{M} \simeq L(1/2, 0) \oplus L(1/2, 1/2)$ as a Virasoro-module. Consider the generating series $\psi(z) := \sum_{n \in \mathbb{Z}} \psi_{n+1/2} z^{-n-1}$. It is also well known (cf. [K]) that the space \mathfrak{M} , with the standard \mathbb{Z}_2 -grading, has a unique structure of a simple vertex operator superalgebra with the vacuum $\mathbb{1} = |0\rangle$ such that $Y_{\mathfrak{M}}(\psi_{-1/2}|0\rangle, z) = \psi(z)$.

Similarly, we can realize L(1/2, 1/16) as follows. Let \mathfrak{A}_{ϕ} be a \mathbb{C} -algebra generated by $\{\phi_m \mid m \in \mathbb{Z}\}$ with the relation $[\phi_m, \phi_n]_+ = \delta_{m+n,0}, m, n \in \mathbb{Z}$. Let \mathfrak{A}_{ϕ}^+ be a subalgebra of \mathfrak{A}_{ϕ} generated by $\{\phi_m \mid m > 0\}$ and let $\mathbb{C}|\frac{1}{16}$ be a trivial \mathfrak{A}_{ϕ}^+ -module. Consider the induced module

$$\mathfrak{N} := \operatorname{Ind}_{\mathfrak{A}_{\phi}^{+}}^{\mathfrak{A}_{\phi}} \mathbb{C} \big| \frac{1}{16} \big\rangle = \mathfrak{A}_{\phi} \otimes_{\mathfrak{A}_{\phi}^{+}} \mathbb{C} \big| \frac{1}{16} \big\rangle.$$

It is well known (cf. [KR]) that \mathfrak{N} affords an action of the Virasoro algebra with central charge 1/2. Set $v_{1/16}^{\pm} := (\sqrt{2}\phi_0 \pm 1)|\frac{1}{16}\rangle$. Then $v_{1/16}^{\pm}$ are highest weight vectors for the Virasoro algebra and we have a decomposition $\mathfrak{N} = \mathfrak{N}^+ \oplus \mathfrak{N}^-$, where \mathfrak{N}^{\pm} are \mathfrak{A}_{ϕ} -submodules generated by $v_{1/16}^{\pm}$, respectively, and $\mathfrak{N}^{\pm} \simeq L(1/2, 1/16)$ as Virasoro-modules. The generating series $\phi(z) := \sum_{n \in \mathbb{Z}} \phi_n z^{-n-1/2}$ uniquely defines a \mathbb{Z}_2 -twisted \mathfrak{M} -module structure on \mathfrak{N} such that the vertex operator of $\psi_{-1/2}|_0$ is given as $Y_{\mathfrak{N}}(\psi_{-1/2}|_0), z) = \phi(z)$. We can also verify that \mathfrak{N}^{\pm} are inequivalent irreducible \mathbb{Z}_2 -twisted \mathfrak{M} -submodules (cf. [LLY]). This explicit construction will be used in the proof of Theorem 2.2.

2.2. Miyamoto involution

Let $(V, Y_V(\cdot, z), \mathbb{1}, \omega)$ be a VOA. A vector $e \in V$ is called a *conformal vector* if coefficients of its vertex operator $Y_V(e, z) = \sum_{n \in \mathbb{Z}} e_{(n)} z^{-n-1} = \sum_{n \in \mathbb{Z}} L^e(n) z^{-n-2}$ generate a representation of the Virasoro algebra on V:

$$[L^{e}(m), L^{e}(n)] = (m-n)L^{e}(m+n) + \delta_{m+n,0} \frac{m^{3}-m}{12}c_{e}.$$

The scalar c_e is called the *central charge* of e. We denote by Vir(e) the sub VOA generated by e. If Vir(e) is a rational VOA, then e is called a *rational conformal vector*. A decomposition $\omega = e + (\omega - e)$ is called *orthogonal* if both e and $\omega - e$ are conformal vectors and their vertex operators are component-wisely mutually commutative.

Now assume that $e \in V$ is a rational conformal vector with central charge 1/2. Then Vir(*e*) is isomorphic to L(1/2, 0) and has three irreducible representations L(1/2, 0), L(1/2, 1/2) and L(1/2, 1/16) (cf. [DMZ]). As Vir(*e*) acts on *V* semisimply, we can decompose *V* into a direct sum of irreducible Vir(*e*)-modules as follows:

$$V = V_e(0) \oplus V_e(1/2) \oplus V_e(1/16),$$

where $V_e(h)$, $h \in \{0, 1/2, 1/16\}$, denotes the sum of all irreducible Vir(*e*)-submodules of V isomorphic to L(1/2, h). By the fusion rules for L(1/2, 0)-modules (cf. [DMZ]), we have the following theorem.

Theorem 2.1 [M1].

- (1) The linear map $\tau_e := 1$ on $V_e(0) \oplus V_e(1/2)$, -1 on $V_e(1/16)$ defines an involutive automorphism on a VOA V.
- (2) On the sub VOA $V^{\langle \tau_e \rangle} = V_e(0) \oplus V_e(1/2)$, the linear map $\sigma_e := 1$ on $V_e(0)$, -1 on $V_e(1/2)$ defines an involutive automorphism.

The involutions $\tau_e \in \operatorname{Aut}(V)$ and $\sigma_e \in \operatorname{Aut}(V^{\langle \tau_e \rangle})$ are called *Miyamoto involutions*.

2.3. Commutant superalgebra

Let *V* be a simple VOA of CFT-type and $e \in V$ a rational conformal vector with central charge 1/2. Set $T_e(h) := \{v \in V \mid L^e(0)v = h \cdot v\}$ for h = 0, 1/2, 1/16. $T_e(h)$ describes the space of highest weight vectors for Vir(*e*) and it is canonically isomorphic to Hom_{Vir(*e*)}(L(1/2, h), V) for h = 0, 1/2, 1/16. Therefore, $V_e(h) \simeq L(1/2, h) \otimes T_e(h)$ and we have a decomposition as follows:

 $V = L(1/2, 0) \otimes T_e(0) \oplus L(1/2, 1/2) \otimes T_e(1/2) \oplus L(1/2, 1/16) \otimes T_e(1/16).$

One can verify that a decomposition $\omega = e + (\omega - e)$ is orthogonal by using [FZ, Theorem 5.1]. Recall the commutant subalgebra $\operatorname{Com}_V(\operatorname{Vir}(e)) := \operatorname{Ker}_V L^e(-1)$ defined in [FZ]. It is easy to see that $T_e(0) = \operatorname{Ker}_V L^e(-1)$. So $(T_e(0), \omega - e)$ forms a sub VOA of V whose action on V is commutative with that of $\operatorname{Vir}(e)$ on V. In particular, $T_e(h)$, h = 0, 1/2, 1/16, are $T_e(0)$ -modules. By the quantum Galois theory [DM], $T_e(0)$ is a simple subalgebra and $T_e(1/2)$ is an irreducible $T_e(0)$ -module if $V_e(1/2) \neq 0$.

The commutant subalgebra $T_e(0)$ affords an extension to a superalgebra by its module $T_e(1/2)$ if $V_e(1/2) \neq 0$.

Theorem 2.2 [Hö1,Y2].

- (1) Suppose that $V_e(1/2) \neq 0$. There exists a simple SVOA structure on $T_e(0) \oplus T_e(1/2)$ such that the even part of a tensor product of SVOAs $\{L(1/2, 0) \oplus L(1/2, 1/2)\} \otimes \{T_e(0) \oplus T_e(1/2)\}$ is isomorphic to $V_e(0) \oplus V_e(1/2)$ as a VOA.
- (2) Suppose that $V_e(1/2) \neq 0$ and $V_e(1/16) \neq 0$. Then $T_e(1/16)$ carries a structure of an irreducible \mathbb{Z}_2 -twisted $T_e(0) \oplus T_e(1/2)$ -module. Moreover, $V_e(1/16)$ is isomorphic to a tensor product of an irreducible \mathbb{Z}_2 -twisted $L(1/2, 0) \oplus L(1/2, 1/2)$ -module L(1/2, 1/16) and an irreducible \mathbb{Z}_2 -twisted $T_e(0) \oplus T_e(1/2)$ -module $T_e(1/16)$.

Proof. (1) First, we introduce a vertex operator map on $T_e(0) \oplus T_e(1/2)$. Let $a \in T_e(0)$ and $x \in L(1/2, 0)$. By [ADL, Theorem 2.10], there are $T_e(0)$ -intertwining operators $I^i(\cdot, z)$ of type $T_e(0) \times T_e(i/2) \to T_e(i/2)$, i = 0, 1, such that $Y_V(x \otimes a, z)|_{V_e(i/2)} = Y_{\mathfrak{M}}(x, z) \otimes I^i(a, z)$, where $Y_{\mathfrak{M}}(\cdot, z)$ is the vertex operator map on the SVOA $L(1/2, 0) \oplus L(1/2, 1/2)$ constructed in Section 2.1. Similarly, for $u \in T_e(1/2)$ and $y \in L(1/2, 1/2)$, there are $T_e(0)$ -intertwining operators $J^0(\cdot, z)$ and $J^1(\cdot, z)$ of types $T_e(1/2) \times T_e(0) \to T_e(1/2)$ and $T_e(1/2) \times T_e(1/2) \to T_e(0)$, respectively, such that $Y_V(y \otimes u, z)|_{V_e(0)} = Y_{\mathfrak{M}}(y, z) \otimes J^0(u, z)$ and $Y_V(y \otimes u, z)|_{V_e(1/2)} = Y_{\mathfrak{M}}(y, z) \otimes J^1(u, z)$ again by [ADL, Theorem 2.10].

We define the vertex operator map $\widehat{Y}(\cdot, z)$ on $T_e(0) \oplus T_e(1/2)$ as follows: for $a, b \in T_e(0)$ and $u, v \in T_e(1/2)$,

$$\begin{split} \widehat{Y}(a,z)b &:= I^0(a,z)b, \qquad \widehat{Y}(a,z)u := I^1(a,z)u, \\ \widehat{Y}(u,z)a &:= J^0(u,z)a, \qquad \widehat{Y}(u,z)v := J^1(u,z)v. \end{split}$$

We claim that the quadruple $(T_e(0) \oplus T_e(1/2), \widehat{Y}(\cdot, z), \mathbb{1}_{T_e(0)}, \omega - e)$ forms an SVOA, where $\mathbb{1}_V = |0\rangle \otimes \mathbb{1}_{T_e(0)}$. It is clear that $\widehat{Y}(\mathbb{1}_{T_e(0)}, z) = \mathrm{id}_{T_e(0)\oplus T_e(1/2)}$ as the substructure $(T_e(0), I^0(\cdot, z), \mathbb{1}_{T_e(0)}, \omega - e)$ is exactly $\mathrm{Com}_V(\mathrm{Vir}(e))$. The L(-1)-derivation property for $\widehat{Y}(\cdot, z)$ is also clear as $\widehat{Y}(\cdot, z)$ is made of $T_e(0)$ -intertwining operators. By considering $Y_V(\psi_{-1/2}|0\rangle \otimes u, z)(|0\rangle \otimes a)$, we obtain a skew-symmetric property $J^0(u, z)a = e^{z(L(-1)-L^e(-1))}I^1(a, -z)u$ as both $Y_V(\cdot, z)$ and $Y_{\mathfrak{M}}(\cdot, z)$ satisfy the skew-symmetry. Therefore, for any $w \in T_e(0) \oplus T_e(1/2)$, the following creation property holds:

$$Y(w, z) \mathbb{1}_{T_e(0)} \in w + T_e(0) \oplus T_e(1/2)[[z]]z$$

Hence, in order to prove that the quadruple is an SVOA, it suffices to show that $\widehat{Y}(\cdot, z)$ satisfies the locality (cf. [Li1]):

$$(z_1 - z_2)^{N(w^1, w^2)} \widehat{Y}(w^1, z_1) \widehat{Y}(w^2, z_2)$$

= $(-1)^{\varepsilon(w^1, w^2)} (-z_2 + z_1)^{N(w^1, w^2)} \widehat{Y}(w^2, z_2) \widehat{Y}(w^1, z_1),$ (2.1)

where w^1 , w^2 are \mathbb{Z}_2 -homogeneous elements in $T_e(0) \oplus T_e(1/2)$, ε is the standard parity function and $N(w^1, w^2)$ is a sufficiently large integer. Since $\widehat{Y}(\cdot, z)$ is made of $T_e(0)$ intertwining operators, we only need to show the locality (2.1) in the case of $w^1, w^2 \in$ $T_e(1/2)$. Let $u, v \in T_e(1/2)$ be arbitrary and N a positive integer such that

$$(z_1 - z_2)^N \Big[Y_V(\psi_{-1/2}|0\rangle \otimes u, z_1), Y_V(\psi_{-1/2}|0\rangle \otimes v, z_2) \Big] = 0$$

on $V_e(0) \oplus V_e(1/2).$ (2.2)

The equality (2.1) is equivalent to the following two equalities:

$$(z_1 - z_2)^N J^1(u, z_1) J^0(v, z_2) a = -(z_1 - z_2)^N J^1(v, z_2) J^0(u, z_1) a,$$
(2.3)

$$(z_1 - z_2)^N J^0(u, z_1) J^1(v, z_2) w = -(z_1 - z_2)^N J^0(v, z_2) J^1(u, z_1) w,$$
(2.4)

where $a \in T_e(0)$ and $w \in T_e(1/2)$ are arbitrary. For simplicity, we set

$$A_0 = (z_1 - z_2)^N J^1(u, z_1) J^0(v, z_2) a, \qquad B_0 = (z_1 - z_2)^N J^1(v, z_2) J^0(u, z_1) a,$$

$$A_1 = (z_1 - z_2)^N J^0(u, z_1) J^1(v, z_2) w, \qquad B_1 = (z_1 - z_2)^N J^0(v, z_2) J^1(u, z_1) w.$$

We should prove both $A_0 = -B_0$ and $A_1 = -B_1$. By (2.2), we have

$$(z_1 - z_2)^N \Big[Y_V(\psi_{-1/2}|0) \otimes u, z_1), Y_V(\psi_{-1/2}|0) \otimes v, z_2) \Big] \cdot (|0\rangle \otimes a) = 0$$

In terms of $\psi(z)$, the equality above becomes

$$\psi(z_1)\psi(z_2)|0\rangle \otimes A_0 = \psi(z_2)\psi(z_1)|0\rangle \otimes B_0.$$
(2.5)

By a direct computation, we obtain

$$\psi(z_1)\psi(z_2)|0\rangle = |0\rangle \cdot (z_1 - z_2)^{-1} + \sum_{m > n \ge 0} \psi_{-m-1/2}\psi_{-n-1/2}|0\rangle \cdot (z_1^m z_2^n - z_1^n z_2^m).$$

So by multiplying $z_1 - z_2$ both sides of (2.5) and comparing the coefficient of $|0\rangle$, we obtain $A_0 = -B_0$. Therefore, (2.3) holds. By (2.2), we have

$$(z_1 - z_2)^N \Big[Y_V(\psi_{-1/2}|0) \otimes u, z_1), Y_V(\psi_{-1/2}|0) \otimes v, z_2) \Big] \cdot (\psi_{-1/2}|0) \otimes w) = 0.$$

Rewriting the equality above in terms of $\psi(z)$, we get

$$\psi(z_1)\psi(z_2)\psi_{-1/2}|0\rangle \otimes A_1 = \psi(z_2)\psi(z_1)\psi_{-1/2}|0\rangle \otimes B_1.$$
(2.6)

By a direct computation, we have

$$\begin{split} \psi(z_1)\psi(z_2)\psi_{-1/2}|0\rangle &= \psi_{-1/2}|0\rangle \cdot \left\{ (z_1 - z_2)^{-1} + (z_1 - z_2)/z_1 z_2 \right\} \\ &+ \sum_{m>0} \psi_{-m-3/2}|0\rangle \cdot \left(z_1^{m+1} z_2^{-1} - z_1^{-1} z_2^{m+1} \right) \\ &+ \sum_{m\ge n\ge 0} \psi_{-m-5/2}\psi_{-n-3/2}\psi_{-1/2}|0\rangle \cdot \left(z_1^{m+2} z_2^{n+1} - z_1^{n+1} z_2^{m+2} \right). \end{split}$$

Multiplying $z_1 - z_2$ both sides of (2.6) and comparing the coefficient of $\psi_{-1/2}|0\rangle$ in (2.6), we obtain $(z_1^2 - z_1z_2 + z_2^2)(A_1 + B_1) = 0$. Then multiplying $z_1 + z_2$, we get $(z_1^3 + z_2^3) \times (A_1 + B_1) = 0$. On the other hand, by comparing the coefficient of $\psi_{-5/2}|0\rangle$ in (2.6), we obtain

$$\left(z_1^2 z_2^{-1} - z_1^{-1} z_2^2\right) (A_1 + B_1) = 0,$$

or equivalently $(z_1^3 - z_2^3)(A_1 + B_1) = 0$. Combining this with $(z_1^3 + z_2^3)(A_1 + B_1) = 0$, we obtain $A_1 = -B_1$ and (2.4) also holds. Hence, $\widehat{Y}(\cdot, z)$ satisfies the locality and thus $(T_e(0) \oplus T_e(1/2), \widehat{Y}(\cdot, z), \mathbb{1}_{T_e(0)}, \omega - e)$ forms an SVOA.

By the construction of the vertex operator map $\widehat{Y}(\cdot, z)$, the remaining part of (1) of Theorem 2.2 is obvious except for the simplicity of $T_e(0) \oplus T_e(1/2)$, which is almost trivial. For, as V is simple, none of $I^i(\cdot, z)$, $J^j(\cdot, z)$, i, j = 0, 1, is zero map by [DL]. Then $T_e(0) \oplus T_e(1/2)$ is also simple since $T_e(0)$ is a simple VOA and $T_e(1/2)$ is an irreducible $T_e(0)$ -module.

(2) Recall that the vertex operator map $Y_{\mathfrak{N}^+}(\cdot, z)$ on \mathfrak{N}^+ we constructed in Section 2.1 is an L(1/2, 0)-intertwining operator of type

$$(L(1/2, 0) \oplus L(1/2, 1/2)) \times L(1/2, 1/16) \to L(1/2, 1/16).$$

We make use of $Y_{\mathfrak{N}^+}(\cdot, z)$ to factorize $Y_V(\cdot, z)|_{V_e(1/16)}$. Let $a \in T_e(0)$, $u \in T_e(1/2)$, $x \in L(1/2, 0)$ and $y \in L(1/2, 1/2)$. By [ADL, Theorem 2.10], there are $T_e(0)$ -intertwining operators $X^i(\cdot, z)$ of types $T_e(i/2) \times T_e(1/16) \rightarrow T_e(1/16)$, i = 0, 1, such that $Y_V(x \otimes a, z)|_{V_e(1/16)} = Y_{\mathfrak{N}^+}(x, z) \otimes X^0(a, z)$ and $Y_V(y \otimes u, z)|_{V_e(1/16)} = Y_{\mathfrak{N}^+}(y, z) \otimes X^1(u, z)$, as $V_e(1/16) \simeq \mathfrak{N}^+ \otimes T_e(1/16)$ as Vir $(e) \otimes T_e(0)$ -modules. We define a \mathbb{Z}_2 -twisted vertex operator map $X(\cdot, z)$ of $T_e(0) \oplus T_e(1/2)$ on $T_e(1/16)$ as follows:

$$X(a,z) := X^0(a,z)$$
 for $a \in T_e(0)$, $X(u,z) := X^1(u,z)$ for $u \in T_e(1/16)$.

Then we prove $(T_e(1/16), X(\cdot, z))$ is an irreducible \mathbb{Z}_2 -twisted $T_e(0) \oplus T_e(1/2)$ -module. As $X(\cdot, z)$ is made of $T_e(0)$ -intertwining operators, we only need to prove the \mathbb{Z}_2 -twisted Jacobi identity for $X(\cdot, z)$, which is equivalent to the following commutativity and associativity for $u, v \in T_e(1/2)$ and $w \in T_e(1/16)$ (cf. [Li2]):

$$(z_1 - z_2)^{N_1} [X(u, z_1), X(v, z_2)]_+ = 0,$$
(2.7)

$$(z_0 + z_2)^{N_2 + 1/2} X(u, z_0 + z_2) X(v, z_2) w = (z_2 + z_0)^{N_2 + 1/2} X(\widehat{Y}(u, z_0)v, z_2) w, \quad (2.8)$$

where N_1 and N_2 are sufficiently large integers. We can take N > 0 which is independent of w such that

$$(z_1 - z_2)^N \left[Y_V(\psi_{-1/2}|0\rangle \otimes u, z_1), Y_V(\psi_{-1/2}|0\rangle, z_2) \right] \cdot \left(v_{1/16}^+ \otimes w \right) = 0$$

where $v_{1/16}^+ = (\phi_0 + \sqrt{2})|\frac{1}{16}\rangle \in \mathfrak{N}^+$. Since $Y_{\mathfrak{N}^+}(\psi_{-1/2}|0\rangle, z) = \phi(z)$, we can rewrite the above as follows:

$$\phi(z_1)\phi(z_2)v_{1/16}^+ \otimes (z_1 - z_2)^N X(u, z_1)X(v, z_2)w$$

= $\phi(z_2)\phi(z_1)v_{1/16}^+ \otimes (z_1 - z_2)^N X(v, z_2)X(u, z_1)w.$ (2.9)

For simplicity, we set

$$A_2 = (z_1 - z_2)^N X(u, z_1) X(v, z_2) w, \qquad B_2 = (z_1 - z_2)^N X(v, z_2) X(u, z_1) w.$$

By a direct computation, one has the following:

$$z_{1}^{1/2} z_{2}^{1/2} \phi(z_{1}) \phi(z_{2}) v_{1/16}^{+} = v_{1/16}^{+} \cdot p(z_{1}, z_{2}) + \sum_{m>0} \phi_{-m} v_{1/16}^{+} \cdot \frac{1}{\sqrt{2}} q_{m}(z_{1}, z_{2}) + \sum_{m>n>0} \phi_{-m} \phi_{-n} v_{1/16}^{+} \cdot r_{m,n}(z_{1}, z_{2}), \quad (2.10)$$

where we have set

$$p(z_1, z_2) := -\frac{1}{2} + \sum_{i=0}^{\infty} \left(\frac{z_2}{z_1}\right)^i, \qquad q_m(z_1, z_2) := z_1^m - z_2^m,$$
$$r_{m,n}(z_1, z_2) := z_1^m z_2^n - z_1^n z_2^m.$$

H. Yamauchi / Journal of Algebra 284 (2005) 645-668

It is easy to see

$$(z_1 - z_2)p(z_1, z_2) = (z_1 + z_2)/2 = (z_2 - z_1)p(z_2, z_1),$$

$$q_m(z_2, z_1) = -q_m(z_1, z_2) \text{ and } r_{m,n}(z_2, z_1) = -r_{m,n}(z_1, z_2).$$
(2.11)

By (2.10), the left-hand side of (2.9) can be expressed as follows:

$$v_{1/16}^{+} \otimes z_{1}^{-1/2} z_{2}^{-1/2} p(z_{1}, z_{2}) A_{2} + \sum_{m>0} \phi_{-m} v_{1/16}^{+} \otimes z_{1}^{-1/2} z_{2}^{-1/2} \frac{1}{\sqrt{2}} q_{m}(z_{1}, z_{2}) A_{2}$$
$$+ \sum_{m>n>0} \phi_{-m} \phi_{-n} v_{1/16}^{+} \otimes z_{1}^{-1/2} z_{2}^{-1/2} r_{m,n}(z_{1}, z_{2}) A_{2}.$$

Similarly, the right-hand side of (2.9) becomes:

$$v_{1/16}^{+} \otimes z_{1}^{-1/2} z_{2}^{-1/2} p(z_{2}, z_{1}) B_{2} + \sum_{m>0} \phi_{-m} v_{1/16}^{+} \otimes z_{1}^{-1/2} z_{2}^{-1/2} \frac{1}{\sqrt{2}} q_{m}(z_{2}, z_{1}) B_{2} + \sum_{m>n>0} \phi_{-m} \phi_{-n} v_{1/16}^{+} \otimes z_{1}^{-1/2} z_{2}^{-1/2} r_{m,n}(z_{2}, z_{1}) B_{2}.$$

Thus, we get the following relations:

$$p(z_1, z_2)A_2 = p(z_2, z_1)B_2,$$
 (2.12)

$$q_m(z_1, z_2)A_2 = q_m(z_2, z_1)B_2, \tag{2.13}$$

$$r_{m,n}(z_1, z_2)A_2 = r_{m,n}(z_2, z_1)B_2.$$
 (2.14)

Multiplying $(z_1 - z_2)$ to (2.12) and using (2.11), we obtain $\frac{1}{2}(z_1 + z_2)(A + B) = 0$. And by (2.13), we have $(z_1^m - z_2^m)(A + B) = 0$ for any m > 0. Combining them, we obtain A + B = 0 and so (2.7) follows.

Next, we prove the associativity (2.8). As

$$\phi(z)v_{1/16}^{+} = \frac{1}{\sqrt{2}}v_{1/16}^{+}z^{-1/2} + \sum_{n>0}\phi_{-n}v_{1/16}^{+}z^{n-1/2},$$

we see that $z^{1/2}\phi(z)v_{1/16}^+ \in L(1/2, 1/16)[[z]]$. Therefore, by [Li2], we have the following associativity on \mathfrak{N}^+ :

$$(z_0 + z_2)^{1/2} \phi(z_0 + z_2) \phi(z_2) v_{1/16}^+ = (z_2 + z_0)^{1/2} Y_{\mathfrak{N}^+} (\psi(z_0) \psi_{-1/2} | 0 \rangle, z_2) v_{1/16}^+.$$
(2.15)

Let k be an integer such that

$$z^{k}Y_{V}(\psi_{-1/2}|0) \otimes u, z)v_{1/16}^{+} \otimes w \in V_{e}(1/16)[[z]].$$

On $V_e(1/16)$, we have the following associativity by [Li1]:

$$(z_0 + z_2)^{k+1} Y_V(\psi_{-1/2}|0\rangle \otimes u, z_0 + z_2) Y_V(\psi_{-1/2}|0\rangle \otimes v, z_2) v_{1/16}^+ \otimes w$$

= $(z_2 + z_0)^{k+1} Y_V(Y_V(\psi_{-1/2}|0\rangle \otimes u, z_0) \psi_{-1/2}|0\rangle \otimes v, z_2) v_{1/16}^+ \otimes w.$

In terms of $\phi(z)$ and $X(\cdot, z)$, we can rewrite the above as follows:

$$(z_0 + z_2)^{1/2} \phi(z_0 + z_2) \phi(z_2) v_{1/16}^+ \otimes (z_0 + z_2)^{k+1/2} X(u, z_0 + z_2) X(v, z_2) w$$

= $(z_2 + z_0)^{1/2} Y_{\mathfrak{N}^+} (\psi(z_0) \psi_{-1/2} | 0 \rangle, z_2) v_{1/16}^+ \otimes (z_2 + z_0)^{k+1/2} X (\widehat{Y}(u, z_0) v, z_2) w.$

Using (2.15), we get

$$(z_0 + z_2)^{1/2} \phi(z_0 + z_2) \phi(z_2) v_{1/16}^+ \otimes C = 0, \qquad (2.16)$$

where we have set

$$C := (z_0 + z_2)^{k+1/2} X(u, z_0 + z_2) X(v, z_2) w - (z_2 + z_0)^{k+1/2} X(\widehat{Y}(u, z_0)v, z_2) w.$$

By (2.10), we find that the coefficient of $\phi_{-1}v_{1/16}^+$ in $(z_0 + z_2)^{1/2}\phi(z_0 + z_2)\phi(z_2)v_{1/16}^+$ is just a monomial $z_0z_2^{-1/2}/\sqrt{2}$. Therefore, Eq. (2.16) leads to the associativity relation C = 0, or the equality (2.8). Hence, $(T_e(1/16), X(\cdot, z))$ is a \mathbb{Z}_2 -twisted $T_e(0) \oplus$ $T_e(1/2)$ -module. The remaining part of the assertion is clear except for the irreducibility, which is easy to show. If $T_e(1/16)$ contains a non-trivial \mathbb{Z}_2 -twisted $T_e(0) \oplus T_e(1/2)$ submodule, say P, then $L(1/2, 1/16) \otimes P$ forms a non-trivial $V_e(0) \oplus V_e(1/2)$ -submodule of $V_e(1/16) \simeq L(1/2, 1/16) \otimes T_e(1/16)$. This yields a contradiction as $V_e(1/16)$ is an irreducible $V_e(0) \oplus V_e(1/2)$ -module by [DM]. This completes the proof of Theorem 2.2.

Remark 2.3. As we mentioned, there are exactly two inequivalent \mathbb{Z}_2 -twisted irreducible $L(1/2, 0) \oplus L(1/2, 1/2)$ -module structures on L(1/2, 1/16) (cf. [LLY]). In the statement (2) of the theorem above, we have to choose one of them and the irreducible \mathbb{Z}_2 -twisted $T_e(0) \oplus T_e(1/2)$ -module structure on $T_e(1/16)$ may depend on this choice.

2.4. Automorphisms of commutant superalgebra

In the rest of this section we will work over the following setup:

Hypothesis 1.

- (1) V is a holomorphic VOA of CFT-type.
- (2) e is a rational conformal vector of V with central charge 1/2.
- (3) $V_e(h) \neq 0$ for h = 0, 1/2, 1/16.
- (4) $V_e(0)$ and $T_e(0)$ are rational C_2 -cofinite VOAs of CFT-type.
- (5) $V_e(1/16)$ is a simple current $V^{\langle \tau_e \rangle} = V_e(0) \oplus V_e(1/2)$ -module.
- (6) $T_e(1/2)$ is a simple current $T_e(0)$ -module.

We define the one point stabilizer by $C_{Aut(V)}(e) := \{\rho \in Aut(V) \mid \rho(e) = e\}$. Clearly $C_{Aut(V)}(e)$ forms a subgroup of Aut(V). Since $\tau_{\rho(e)} = \rho \tau_e \rho^{-1}$ for any $\rho \in Aut(V)$, we have $C_{Aut(V)}(e) \leq C_{Aut(V)}(\tau_e)$, where $C_{Aut(V)}(\tau_e)$ denotes the centralizer of an involution $\tau_e \in Aut(V)$.

Lemma 2.4. There are group homomorphisms $\psi_1 : C_{\operatorname{Aut}(V)}(e) \to C_{\operatorname{Aut}(V^{(\tau_e)})}(e)$ and $\psi_2 : C_{\operatorname{Aut}(V^{(\tau_e)})}(e) \to \operatorname{Aut}(T_e(0))$ such that $\operatorname{Ker}(\psi_1) = \langle \tau_e \rangle$ and $\operatorname{Ker}(\psi_2) = \langle \sigma_e \rangle$.

Proof. Let $\rho \in C_{Aut(V)}(e)$. Then ρ preserves the space of highest weight vectors $T_e(h)$ for h = 0, 1/2, 1/16 so that ρ definitely acts on $T_e(h)$. Therefore, we have group homomorphisms $\psi_1 : C_{Aut(V)}(e) \to C_{Aut(V^{\langle \tau_e \rangle})}(e)$ and $\psi_2 : C_{Aut(V^{\langle \tau_e \rangle})}(e) \to Aut(T_e(0))$. Assume that $\psi_1(\rho) = id_{V^{\langle \tau_e \rangle}}$ for $\rho \in C_{Aut(V)}(e)$. Since ρ commutes with τ_e , ρ acts on $V_e(1/16)$ and commutes with the action of $V^{\langle \tau_e \rangle} = V_e(0) \oplus V_e(1/2)$ on its module $V_e(1/16)$. Therefore, ρ on $V_e(1/16)$ is a scalar by Schur's lemma and hence $\rho \in \langle \tau_e \rangle \leq C_{Aut(V)}(\tau_e)$. Similarly, one can verify that $\text{Ker}(\psi_2) = \langle \sigma_e \rangle$. \Box

The following result will be used frequently (cf. [Y2, Theorem 9.1.7]).

Theorem 2.5. Let $V = V^0 \oplus V^1$ be a simple SVOA such that the even part V^0 is a rational C_2 -cofinite VOA of CFT type and the odd part V^1 is a simple current V^0 -module. Then V is both rational and \mathbb{Z}_2 -rational. Let W be an irreducible V^0 -module.

- (1) If $V^1 \boxtimes_{V^0} W \not\simeq W$ as V^0 -modules, then W is uniquely lifted to either an irreducible untwisted V-module or an irreducible \mathbb{Z}_2 -twisted V-module given by $W \oplus (V^1 \boxtimes_{V^0} W)$.
- (2) If V¹ ⊠_{V⁰} W ≃ W as V⁰-modules, then there are exactly two inequivalent irreducible Z₂-twisted V-module structures on W and these two modules are mutually Z₂-conjugate.

Lemma 2.6. Under Hypothesis 1, every irreducible $T_e(0)$ -module is contained in an untwisted irreducible $V^{\langle \tau_e \rangle}$ -module as a submodule.

Proof. Let X be an irreducible $T_e(0)$ -module. By Theorem 2.5, X is contained in an irreducible $T_e(0) \oplus T_e(1/2)$ -module or an irreducible \mathbb{Z}_2 -twisted $T_e(0) \oplus T_e(1/2)$ -module. Let \widetilde{X} be such a $T_e(0) \oplus T_e(1/2)$ -module. If \widetilde{X} is an untwisted representation, then a tensor product $\{L(1/2, 0) \oplus L(1/2, 1/2)\} \otimes \widetilde{X}$ has a structure of an untwisted $V^{\langle \tau_e \rangle}$ -module and contains X as a submodule. If \widetilde{X} is a \mathbb{Z}_2 -twisted representation, then a tensor product $L(1/2, 1/16) \otimes \widetilde{X}$ has a structure of an untwisted $V^{\langle \tau_e \rangle}$ -module and contains X as a submodule. If \widetilde{X} is a \mathbb{Z}_2 -twisted representation, then a tensor product $L(1/2, 1/16) \otimes \widetilde{X}$ has a structure of an untwisted $V^{\langle \tau_e \rangle}$ -module and contains X as a submodule. \Box

Theorem 2.7. Under Hypothesis 1, $V^{\langle \tau_e \rangle}$ has exactly four inequivalent irreducible modules, $V^{\langle \tau_e \rangle}$, $V_e(1/16)$, $W^0 := L(1/2, 0) \otimes T_e(1/2) \oplus L(1/2, 1/2) \otimes T_e(0)$ and

$$W^1 := V_e(1/16) \boxtimes_{V^{\langle \tau_e \rangle}} W^0.$$

Their fusion rules are as follows:

$$\begin{aligned} V_e(1/16) \times V_e(1/16) &= V^{\langle \tau_e \rangle}, & V_e(1/16) \times W^0 = W^1, & V_e(1/16) \times W^1 = W^0, \\ W^0 \times W^0 &= V^{\langle \tau_e \rangle}, & W^0 \times W^1 = V_e(1/16), & W^1 \times W^1 = V^{\langle \tau_e \rangle}. \end{aligned}$$

Therefore, the fusion algebra for $V^{\langle \tau_e \rangle}$ is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. Since $V = V^{\langle \tau_e \rangle} \oplus V_e(1/16)$ is a \mathbb{Z}_2 -graded simple current extension of $V^{\langle \tau_e \rangle}$, every irreducible $V^{\langle \tau_e \rangle}$ -module is lifted to either an irreducible *V*-module or an irreducible τ_e -twisted *V*-module by [Y1, Theorem 3.3]. Moreover, the τ_e -twisted *V*-module is unique up to isomorphism by [DLM, Theorem 10.3]. Since both $L(1/2, 0) \oplus L(1/2, 1/2)$ and $T_e(0) \oplus T_e(1/2)$ are simple SVOAs, the space $W^0 = L(1/2, 1/2) \otimes T_e(0) \oplus L(1/2, 0) \otimes T_e(1/2)$ has a unique structure of an irreducible $V^{\langle \tau_e \rangle}$ -module. As the top weight of W^0 is half-integral, the induced module

$$W = W^0 \oplus W^1$$
, $W^1 = V_e(1/16) \boxtimes_{W^{(\tau_e)}} W^0$,

becomes an irreducible τ_e -twisted V-module again by [Y1, Theorem 3.3]. It is clear from $V_e(1/16) \boxtimes_{V^0} W^1 = W^0$ that W^1 and $V_e(1/16)$ are inequivalent $V^{\langle \tau_e \rangle}$ -modules. Therefore, $V^{\langle \tau_e \rangle}$ has exactly four irreducible modules as in the assertion. We remark that only $V^{\langle \tau_e \rangle}$, $V_e(1/16)$ and W^1 have integral top weights.

Consider fusion rules for $V^{\langle \tau_e \rangle}$ -modules. By [SY, Lemma 3.12], we have the fusion rule $W^0 \times W^0 = V^{\langle \tau_e \rangle}$. Then it follows from the forthcoming Lemma 3.5 that W^0 is a simple current $V^{\langle \tau_e \rangle}$ -module. Since $V_e(1/16)$ is also a simple current $V^{\langle \tau_e \rangle}$ -module, so is $W^1 = V_e(1/16) \boxtimes_{V^{\langle \tau_e \rangle}} W^0$. By looking at the τ_e -twisted V-module structure on $W^0 \oplus W^1$, we easily find the following fusion rules:

$$V_e(1/16) \times V_e(1/16) = V^{\langle \tau_e \rangle}, \qquad V_e(1/16) \times W^0 = W^1, \qquad V_e(1/16) \times W^1 = W^0.$$

Since *V* is holomorphic, *V* is self-dual. Hence $V^{\langle \tau_e \rangle}$ and $V_e(1/16)$ are self-dual $V^{\langle \tau_e \rangle}$ -modules. Then by considering top weights we see that all irreducible $V^{\langle \tau_e \rangle}$ -modules are self-dual. Then by the *S*₃-symmetry of fusion rules (cf. [FHL]), we have the desired fusion rules. \Box

By the fusion rules for L(1/2, 0)-modules, we note that W^1 as a Vir(*e*)-module is a direct sum of copies of L(1/2, 1/16). Set the space of highest weight vectors of W^1 by $Q_e(1/16) := \{v \in W^1 \mid L^e(0)v = (1/16) \cdot v\}$. Then as a Vir(*e*) $\otimes T_e(0)$ -module, $W^1 \simeq L(1/2, 1/16) \otimes Q_e(1/16)$. By Theorem 2.5, the space $Q_e(1/16)$ naturally carries an irreducible \mathbb{Z}_2 -twisted $T_e(0) \oplus T_e(1/2)$ -module structure, which may depend on a choice of irreducible \mathbb{Z}_2 -twisted $L(1/2, 0) \oplus L(1/2, 1/2)$ -module structures on L(1/2, 1/16).

Proposition 2.8. If the \mathbb{Z}_2 -twisted $T_e(0) \oplus T_e(1/2)$ -module $T_e(1/16)$ is irreducible as a $T_e(0)$ -module, then its \mathbb{Z}_2 -conjugate is isomorphic to $Q_e(1/16)$ as a \mathbb{Z}_2 -twisted $T_e(0) \oplus T_e(1/2)$ -module. In this case there are exactly three inequivalent irreducible $T_e(0)$ -modules, $T_e(0)$, $T_e(1/2)$ and $T_e(1/16)$. Conversely, if $T_e(1/16)$ as a $T_e(0)$ -module is reducible, then so is $Q_e(1/16)$ and in this case there are exactly six inequivalent irreducible treducible $T_e(0)$ -modules.

Proof. Assume that $T_e(1/16)$ is irreducible as a $T_e(0)$ -module. In this case there are exactly two inequivalent irreducible \mathbb{Z}_2 -twisted $T_e(0) \oplus T_e(1/2)$ -module structures on $T_e(1/16)$ by Theorem 2.5. Therefore, an irreducible \mathbb{Z}_2 -twisted $T_e(0) \oplus T_e(1/2)$ -module structure on $T_e(1/16)$ given in Theorem 2.2 and its \mathbb{Z}_2 -conjugate are inequivalent. This implies that there are exactly two inequivalent irreducible untwisted $V^{\langle \tau_e \rangle}$ -module structures on $L(1/2, 1/16) \otimes T_e(1/16)$. Thus by the classification in Theorem 2.7, $V_e(1/16)$ and W^1 are isomorphic as $L(1/2, 0) \otimes T_e(0)$ -modules. By Lemma 2.6, every irreducible $T_e(0)$ -module appears in an irreducible $V^{\langle \tau_e \rangle}$ -module as a submodule. Thus $T_e(0)$ has exactly three inequivalent irreducible modules as in the assertion.

Conversely, if $T_e(1/16)$ as a $T_e(0)$ -module is reducible, then it is a direct sum of two inequivalent irreducible $T_e(0)$ -module by Theorem 2.5. In this case we note that $V_e(1/16)$ is a σ_e -stable $V^{\langle \tau_e \rangle}$ -module, that is, the σ_e -conjugate $V_e(1/16)^{\sigma_e}$ of $V_e(1/16)$ is isomorphic to $V_e(1/16)$ itself as a $V^{\langle \tau_e \rangle}$ -module. We note that $Q_e(1/16)$ is also a reducible $T_e(0)$ module. For, if $Q_e(1/16)$ is irreducible, then $T_e(1/16)$ and $Q_e(1/16)$ are in the relation of \mathbb{Z}_2 -conjugate, and hence $T_e(1/16)$ is also irreducible, a contradiction. Thus $Q_e(1/16)$ is a direct sum of two inequivalent irreducible $T_e(0)$ -submodule. If $T_e(1/16)$ and $Q_e(1/16)$ are isomorphic irreducible $T_e(0)$ -submodules, then $T_e(1/16)$ and $Q_e(1/16)$ are isomorphic irreducible \mathbb{Z}_2 -twisted $T_e(0) \oplus T_e(1/2)$ -modules by Theorem 2.5. This implies that $V_e(1/16)$ is isomorphic to W^1 as a $V^{\langle \tau_e \rangle}$ -module, which is a contradiction. Now the assertion follows from Lemma 2.6. \Box

Corollary 2.9. If $T_e(1/16)$ is irreducible as a $T_e(0)$ -module, then $V^{\langle \tau_e \rangle} \oplus W^1$ is a \mathbb{Z}_2 -graded simple current extension of $V^{\langle \tau_e \rangle}$ which is isomorphic to $V = V^{\langle \tau_e \rangle} \oplus V_e(1/16)$.

Proof. If $T_e(1/16)$ is an irreducible $T_e(0)$ -module, then by the previous proposition the \mathbb{Z}_2 -conjugate of $T_e(1/16)$ is isomorphic to $Q_e(1/16)$ as \mathbb{Z}_2 -twisted $T_e(0) \oplus T_e(1/2)$ -modules. Hence the σ_e -conjugate $V_e(0) \oplus V_e(1/2)$ -module of $V_e(1/16) = L(1/2, 1/16) \otimes T_e(1/16)$ is isomorphic to $W^1 = L(1/2, 1/16) \otimes Q_e(1/16)$ and so $\sigma_e \in \operatorname{Aut}(V^{\langle \tau_e \rangle})$ induces a VOA isomorphism between two extensions $V^{\langle \tau_e \rangle} \oplus V_e(1/16)$ and $V^{\langle \tau_e \rangle} \oplus W^1$ of $V^{\langle \tau_e \rangle}$. \Box

Remark 2.10. The corollary above implies that the τ_e -twisted orbifold construction applied to V yields V itself again.

Theorem 2.11. Under Hypothesis 1,

- (1) ψ_2 is surjective, that is, $C_{\text{Aut}(V^{(\tau_e)})}(e) \simeq \langle \sigma_e \rangle$. Aut $(T_e(0))$.
- (2) Aut $(T_e(0) \oplus T_e(1/2)) \simeq 2.(C_{\text{Aut}(V^{(\tau_e)})}(e)/\langle \sigma_e \rangle)$, where 2 denotes the canonical \mathbb{Z}_2 -symmetry on the SVOA $T_e(0) \oplus T_e(1/2)$.
- (3) $|C_{(\operatorname{Aut}(V^{(\tau_e)}))}(e) : C_{\operatorname{Aut}(V)}(e)/\langle \tau_e \rangle| \leq 2.$
- (4) If $C_{\text{Aut}(V)}(e)/\langle \tau_e \rangle$ is simple or has an odd order, then extensions in (1) and (2) split. That is, $C_{\text{Aut}(V\langle \tau_e \rangle)}(e) \simeq \langle \sigma_e \rangle \times C_{\text{Aut}(V)}(e)/\langle \tau_e \rangle$ and $\text{Aut}(T_e(0) \oplus T_e(1/2)) \simeq 2 \times \text{Aut}(T_e(0))$.

Proof. We have an injection from $C_{Aut(V^{(\tau_e)})}(e)/\langle \sigma_e \rangle$ to $Aut(T_e(0))$ by Lemma 2.4. We will show that every element in $Aut(T_e(0))$ has its preimage in $C_{Aut(V^{(\tau_e)})}(e)$. By Proposition 2.8, every irreducible $T_e(0)$ -module is contained in one of $T_e(0)$, $T_e(1/2)$, $T_e(1/16)$ or $Q_e(1/16)$ as a submodule. In particular, we find that $T_e(0)$ is the only irreducible $T_e(0)$ -module whose top weight is integral and $T_e(1/2)$ is the only irreducible $T_e(0)$ -module whose top weight is $1/2 + \mathbb{N}$. Let $\rho \in Aut(T_e(0))$. Then by considering top weights we can immediately see that $T_e(0)^{\rho} \simeq T_e(0)$ and $T_e(1/2)^{\rho} \simeq T_e(1/2)$. Then by [Sh, Theorem 2.1] we have a lifting $\tilde{\rho} \in Aut(T_e(0) \oplus T_e(1/2))$ such that $\tilde{\rho}T_e(0) = T_e(0)$, $\tilde{\rho}T_e(1/2) = T_e(1/2)$ and $\tilde{\rho}|_{T_e(0)} = \rho$. Since $\tilde{\rho}$ is uniquely determined up to the canonical \mathbb{Z}_2 -symmetry on $T_e(0) \oplus T_e(1/2)$, we have $Aut(T_e(0) \oplus T_e(1/2)) \simeq 2.Aut(T_e(0))$. Now we define $\tilde{\rho} \in C_{Aut(V^{(\tau_e)})}(e)$ by

$$\tilde{\rho}|_{L(1/2,h)\otimes T_e(h)} = \mathrm{id}_{L(1/2,h)} \otimes \tilde{\rho}, \quad h = 0, 1/2.$$

Then by this lifting $C_{\text{Aut}(V^{(\tau_e)})}(e)$ contains a subgroup isomorphic to 2.Aut $(T_e(0))$. Moreover, the canonical \mathbb{Z}_2 -symmetry on the SVOA $T_e(0) \oplus T_e(1/2)$ is naturally extended to $\sigma_e \in C_{\text{Aut}(V^{(\tau_e)})}(e)$. Clearly $\psi_2(\tilde{\rho}) = \rho$ and hence ψ_2 is surjective. Therefore, we have the desired isomorphisms $C_{\text{Aut}(V^{(\tau_e)})}(e) \simeq \langle \sigma_e \rangle$.Aut $(T_e(0))$ and Aut $(T_e(0) \oplus T_e(1/2)) \simeq$ $2.(C_{\text{Aut}(V^{(\tau_e)})}(e)/\langle \sigma_e \rangle)$. This completes the proofs of (1) and (2).

Consider (3). By Theorem 2.7, there are exactly three irreducible $V^{\langle \tau_e \rangle}$ -modules whose top weights are integral, namely, $V^{\langle \tau_e \rangle}$, $V_e(1/16)$ and W^1 . Thus $C_{Aut(V^{\langle \tau_e \rangle})}(e)$ acts on the 2-point set $\{V_e(1/16), W^1\}$ as a permutation and so there is a subgroup H of $C_{Aut(V^{\langle \tau_e \rangle})}(e)$ with index at most 2 such that $V_e(1/16)^{\pi} \simeq V_e(1/16)$ as a $V^{\langle \tau_e \rangle}$ -module for all $\pi \in H$. Then by [Sh, Theorem 2.1] there is a lifting $\tilde{\pi} \in C_{Aut(V)}(e)$ of π such that $\psi_1(\tilde{\pi}) = \pi$ for each $\pi \in H$. Thus $|C_{Aut(V^{\langle \tau_e \rangle})}(e) : C_{Aut(V)}(e)/\langle \tau_e \rangle| \leq 2$ and (3) holds.

Consider (4). Suppose $C_{Aut(V)}(e)/\langle \tau_e \rangle$ is either simple or odd. By (3), $C_{Aut(V^{\langle \tau_e \rangle})}(e)$ contains a subgroup isomorphic to $C_{Aut(V)}(e)/\langle \tau_e \rangle$ with index at most 2. Since $\langle \sigma_e \rangle$ is a normal subgroup of $C_{Aut(V^{\langle \tau_e \rangle})}(e)$ of order 2, the index $|C_{Aut(V^{\langle \tau_e \rangle})}(e) : C_{Aut(V)}(e)/\langle \tau_e \rangle|$ must be 2 by the assumption and hence we obtain the desired isomorphism $C_{Aut(V^{\langle \tau_e \rangle})}(e) \simeq \langle \sigma_e \rangle \times C_{Aut(V)}(e)/\langle \tau_e \rangle$. In this case, it is easy to see that the extension $Aut(T_e(0) \oplus T_e(1/2)) = 2.Aut(T_e(0))$ splits. \Box

Corollary 2.12. If $C_{\text{Aut}(V)}(e)/\langle \tau_e \rangle$ is simple, then $V_e(1/16)$ is an irreducible $V_e(0)$ -module and $T_e(1/16)$ is an irreducible $T_e(0)$ -module. Therefore, $V = V^{\langle \tau_e \rangle} \oplus V_e(1/16)$ and $V^{\langle \tau_e \rangle} \oplus W^1$ are equivalent extensions of $V^{\langle \tau_e \rangle}$.

Proof. Let *H* be the subgroup of $C_{\text{Aut}(V^{(\tau_e)})}(e)$ which fixes $V_e(1/16)$ in the action on the 2-point set $\{V_e(1/16), W^1\}$. It is shown in the proof of (3) of Theorem 2.11 that we have inclusions

$$H \leqslant C_{\operatorname{Aut}(V)}(e)/\langle \tau_e \rangle \lneq C_{\operatorname{Aut}(V^{\langle \tau_e \rangle})}(e) = \langle \sigma_e \rangle \times C_{\operatorname{Aut}(V)}(e)/\langle \tau_e \rangle.$$

Therefore, $\sigma_e \notin H$ and hence the σ_e permutes $V_e(1/16)$ and W^1 . Then $V_e(1/16)$ is an irreducible $V_e(0)$ -module by Proposition 2.8 and hence $T_e(1/16)$ as a $T_e(0)$ -module is irreducible. The rest of the assertion follows from Corollary 2.9. \Box

3. 2A-framed VOA

In this section we consider VOAs with unitary Virasoro frames. For convention, we introduce the following notion:

Definition 3.1. A simple vertex operator algebra (V, ω) is called 2*A*-framed if there is an orthogonal decomposition $\omega = e^1 + \cdots + e^n$ such that each e^i generates a sub VOA isomorphic to L(1/2, 0). The decomposition $\omega = e^1 + \cdots + e^n$ is called a 2*A*-frame of *V*.

Remark 3.2. Any 2A-framed VOA is rational and C₂-cofinite (cf. [DGH,Z]).

3.1. Structure codes

For a 2A-framed VOA, we can associate two linear binary codes in the following way (cf. [M2,DGH]). Let (V, ω) be a 2A-framed VOA with a 2A-frame $\omega = e^1 + \cdots + e^n$. Set $F := \operatorname{Vir}(e^1) \otimes \cdots \otimes \operatorname{Vir}(e^n)$. Then $F \simeq L(1/2, 0)^{\otimes n}$ and V is a direct sum of irreducible F-submodules $L(1/2, h_1) \otimes \cdots \otimes L(1/2, h_n), h_i \in \{0, 1/2, 1/16\}$. Assign to an irreducible F-module $\bigotimes_{i=1}^n L(1/2, h_i)$ its 1/16-word $(\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_2^n$ by $\alpha_i = 1$ if and only if $h_i = 1/16$. For each $\alpha \in \mathbb{Z}_2^n$, denote by V^{α} the sum of all irreducible F-submodules whose 1/16-words are equal to α and define a linear code $S \subset \mathbb{Z}_2^n$ by $S = \{\alpha \in \mathbb{Z}_2^n \mid V^{\alpha} \neq 0\}$. Then we have the 1/16-word decomposition $V = \bigoplus_{\alpha \in S} V^{\alpha}$. By the fusion rules for L(1/2, 0)-modules, we have an S-graded structure $V^{\alpha} \cdot V^{\beta} \subset V^{\alpha+\beta}$. Namely, the dual group S^* of an abelian 2-group S acts on V, and we find that this automorphism group coincides with the elementary abelian 2-group generated by Miyamoto involutions $\{\tau_{e^i} \mid 1 \leq i \leq n\}$. Therefore, all $V^{\alpha}, \alpha \in S$, are inequivalent irreducible $V^{S^*} = V^0$ -modules by [DM].

Since there is no L(1/2, 1/16)-component in V^0 , the fixed point subalgebra $V^{S^*} = V^0$ is of the following form:

$$V^{0} = \bigoplus_{h_{i} \in \{0, 1/2\}} m_{h_{1}, \dots, h_{n}} L(1/2, h_{1}) \otimes \dots \otimes L(1/2, h_{n}),$$

where $m_{h_1,...,h_n}$ denotes the multiplicity. On V^0 we can define σ -type Miyamoto involutions σ_{e^i} for i = 1, ..., n. Denote by I the elementary abelian 2-subgroup of Aut (V^0) generated by $\{\sigma_{e^i} \mid 1 \leq i \leq n\}$. Then we have $(V^0)^I = F$ and each $m_{h_1,...,h_n} L(1/2, h_1) \otimes \cdots \otimes L(1/2, h_n)$ is an irreducible F-submodule by [DM]. Thus $m_{h_1,...,h_n} \in \{0, 1\}$ and we obtain an even linear code $D := \{(2h_1, ..., 2h_n) \in \mathbb{Z}_2^n \mid m_{h_1,...,h_n} \neq 0\}$ such that

$$V^{0} = \bigoplus_{\alpha = (\alpha_{1}, \dots, \alpha_{n}) \in D} L(1/2, \alpha_{1}/2) \otimes \dots \otimes L(1/2, \alpha_{n}/2).$$
(3.1)

The VOA V^0 is a *D*-graded simple current extension of *F* and is referred to as a *code VOA associated to code D*. We call a pair (D, S) the *structure codes* of a 2A-framed VOA *V*. Since powers of *z* in an L(1/2, 0)-intertwining operator of type $L(1/2, 1/2) \times L(1/2, 1/2) \to L(1/2, 1/16)$ are half-integral, structure codes satisfy $D \subset S^{\perp}$.

3.2. Construction of 2A-framed VOA

In this subsection we recall Miyamoto's construction of 2A-framed VOAs in [M3]. Here we assume the following:

Hypothesis 2.

- (1) (D, S) is a pair of even linear even codes of \mathbb{Z}_2^n such that
 - (1-i) $D \subset S^{\perp}$,
 - (1-ii) for each $\alpha \in S$, there is a subcode $E^{\alpha} \subset D$ such that E^{α} is a direct sum of the [8, 4, 4] Hamming code H_8 and $\operatorname{Supp}(E^{\alpha}) = \operatorname{Supp}(\alpha)$, where $\operatorname{Supp}(A)$ denotes $\bigcup_{\beta \in A} \operatorname{Supp}(\beta)$ for a subset A of \mathbb{Z}_2^n .
- (2) V^0 is the code VOA associated to the code D.
- (3) $\{V^{\alpha} \mid \alpha \in S\}$ is a set of irreducible V^0 -modules such that
 - (3-i) the 1/16-word of V^{α} is equal to α for all $\alpha \in S$,
 - (3-ii) all $V^{\alpha}, \alpha \in S$, have integral top weights,
 - (3-iii) the fusion product $V^{\alpha} \boxtimes_{V^0} V^{\beta}$ contains at least one $V^{\alpha+\beta}$. That is, there is a non-trivial V^0 -intertwining operator of type $V^{\alpha} \times V^{\beta} \to V^{\alpha+\beta}$ for any $\alpha, \beta \in S$.

Theorem 3.3 [M3,Y2].

- (1) Under the condition (1) of Hypothesis 2, all V^{α} , $\alpha \in D$, are simple current V^{0} -modules.
- (2) Under Hypothesis 2, the space $V = \bigoplus_{\alpha \in S} V^{\alpha}$ carries a unique structure of a simple VOA as an S-graded simple current extension of V^0 .

Remark 3.4. In [M3], Miyamoto assumed stronger conditions than those in Hypothesis 2. In particular, he assumed that the structure codes (D, S) are of length 8k for some positive integer k. A refinement in [Y2] enables us to construct 2A-framed VOAs with structure codes of any length as long as Hypothesis 2 is satisfied.

3.3. Superalgebras associated to 2A-framed VOA

Let *V* be a 2A-framed VOA with structure codes (D, S). We assume that the pair (D, S) satisfies the condition (1-ii) of Hypothesis 2 and $D = S^{\perp}$. Then *V* is holomorphic by [M4,DGH]. Let $\omega = e^1 + \cdots + e^n$ be the 2A-frame of *V*. We consider the commutant subalgebra of Vir (e^1) . For simplicity, we set $e = e^1$. Assume that $\{1\} \cap \text{Supp}(S) \neq \emptyset$. Then by the condition (1-ii) of Hypothesis 2, we have $V_e(1/2) \neq 0$. Let $V = \bigoplus_{\alpha \in S} V^{\alpha}$ be the 1/16-word decomposition according to the structure codes (D, S). Set $S^0 = \{\alpha \in S \mid \{1\} \cap \text{Supp}(\alpha) = \emptyset\}$ and $S^1 = \{\alpha \in S \mid \{1\} \cap \text{Supp}(\alpha) = \{1\}\}$. Then $S = S^0 \sqcup S^1$ (disjoint union) and we have a \mathbb{Z}_2 -grading $V = (\bigoplus_{\alpha \in S^0} V^{\alpha}) \oplus (\bigoplus_{\beta \in S^1} V^{\beta})$ such that $V_e(0) \oplus V_e(1/2) = \bigoplus_{\alpha \in S^0} V^{\alpha}$ and $V_e(1/16) = \bigoplus_{\beta \in S^1} V^{\beta}$. We shall prove that $V_e(1/16)$ is a simple current $V^{\langle \tau_e \rangle}$ -module. We quote the following simple lemma from [Y2]:

Lemma 3.5 [Y2]. Let V be a simple rational C_2 -cofinite VOA of CFT-type. If two V-modules M^1 and M^2 satisfy $M^1 \times M^2 = V$ in the fusion algebra, then both M^1 and M^2 are simple current V-modules. In particular, if V is self-dual, then the set of all the simple current V-modules form a finite abelian group in the fusion algebra.

Lemma 3.6. $V_e(1/16)$ is a simple current $V^{\langle \tau_e \rangle}$ -module.

Proof. By Lemma 3.5, it suffices to show that $V_e(1/16) \boxtimes_{V^{\langle \tau_e \rangle}} V_e(1/16) = V^{\langle \tau_e \rangle}$. Let M be an irreducible $V^{\langle \tau_e \rangle}$ -submodule of $V_e(1/16) \boxtimes_{V^{\langle \tau_e \rangle}} V_e(1/16)$. Since $V^{\alpha} \boxtimes_{V^0} V^{\alpha} = V^0$ for any $\alpha \in S$ by (1) of Theorem 3.3, M contains V^0 as a V^0 -submodule. Thus M contains a non-zero vacuum-like vector and hence M is isomorphic to $V^{\langle \tau_e \rangle}$ as a $V^{\langle \tau_e \rangle}$ -module by [Li3]. Therefore, we have $V_e(1/16) \times V_e(1/16) = nV^{\langle \tau_e \rangle}$ for some $n \in \mathbb{N}$. As V is holomorphic, both $V^{\langle \tau_e \rangle}$ and $V_e(1/16)$ are self-dual $V^{\langle \tau_e \rangle}$ -modules. Now by using the S_3 -symmetry of fusion rules, we obtain the desired fusion rule $V_e(1/16) \times V_e(1/16) = V^{\langle \tau_e \rangle}$ for the canonical fusion rule $V^{\langle \tau_e \rangle} \times V_e(1/16) = V_e(1/16)$. \Box

Write $V_e(h) = L(1/2, h) \otimes T_e(h)$ for h = 0, 1/2, 1/16 as we did before. By Theorem 2.2, $T_e(0) \oplus T_e(1/2)$ forms a simple SVOA. The Virasoro vector of $T_e(0)$ is given by $\omega - e^1 = e^2 + \cdots + e^n$ and so $T_e(0)$ is a 2A-framed VOA. We compute the structure codes of $T_e(0)$. Define $\phi_{\varepsilon} : \mathbb{Z}_2^{n-1} \hookrightarrow \mathbb{Z}_2^n$ by $\mathbb{Z}_2^{n-1} \ni \alpha \mapsto (\varepsilon, \alpha) \in \mathbb{Z}_2^n$ for $\varepsilon = 0, 1$, and set

 $D^{\varepsilon} := \left\{ \alpha \in \mathbb{Z}_2^{n-1} \mid \phi_{\varepsilon}(\alpha) \in D \right\}, \quad \varepsilon = 0, 1, \qquad S^{0,0} := \left\{ \beta \in \mathbb{Z}_2^{n-1} \mid \phi_0(\beta) \in S^0 \right\}.$

Proposition 3.7.

(1) The structure codes of $T_e(0)$ with respect to the 2A-frame $e^2 + \dots + e^n$ are $(D^0, S^{0,0})$. (2) $T_e(1/2)$ has the 1/16-word decomposition $T_e(1/2) = \bigoplus_{\alpha \in S^{0,0}} T_e(1/2)^{\alpha}$.

Proof. For $\alpha \in S^0$, define $V^{\alpha,\varepsilon}$ to be the sum of all irreducible $\bigotimes_{i=1}^n \operatorname{Vir}(e^i)$ -submodules of V^{α} whose $\operatorname{Vir}(e^1)$ -components are isomorphic to $L(1/2, \varepsilon/2)$ for $\varepsilon = 0, 1$. By (1-ii) of Hypothesis 2, $V^{\alpha,\varepsilon} \neq 0$ for all $\alpha \in S^0$ and $\varepsilon = 0, 1$. Therefore, $V^{\alpha} = V^{\alpha,0} \oplus V^{\alpha,1}$ and we obtain the 1/16-word decompositions $V_e(0) = \bigoplus_{\alpha \in S^0} V^{\alpha,0}$ and $V_e(1/2) = \bigoplus_{\alpha \in S^0} V^{\alpha,1}$. Since $D = \phi_0(D^0) \sqcup \phi_1(D^1)$, $V^{0,0}$ is isomorphic to $\operatorname{Vir}(e^1) \otimes U_{D^0}$, where U_{D^0} denotes the code VOA associated to the even code D^0 . Thus $T_e(0)$ has the 1/16-word decomposition $T_e(0) = \bigoplus_{\alpha \in S^{0,0}} T_e(0)^{\alpha}$ such that $T_e(0)^0 \simeq U_{D^0}$. Hence the structure codes of $T_e(0)$ are $(D^0, S^{0,0})$. The proof of (2) is similar. \Box

The following is easy to see:

Lemma 3.8. If the structure codes (D, S) satisfy the condition (1) of Hypothesis 2, then so do $(D^0, S^{0,0})$.

Thus $T_e(0) = \bigoplus_{\alpha \in S^{0,0}} T_e(0)^{\alpha}$ is an $S^{0,0}$ -graded simple current extension of $T_e(0)^0$ by (1) of Theorem 3.3. In addition, by using (2) of Theorem 3.3, we can reconstruct $T_e(0)$ without reference to V.

Proposition 3.9. $T_e(1/2)$ is a simple current $T_e(0)$ -module.

Proof. It suffices to show that $T_e(1/2) \boxtimes_{T_e(0)} T_e(1/2) = T_e(0)$ by Lemma 3.5. Let M be an irreducible $T_e(0)$ -submodule of $T_e(1/2) \boxtimes_{T_e(0)} T_e(1/2)$. Since $T_e(1/2)$ has a 1/16-word decomposition $T_e(1/2) = \bigoplus_{\alpha \in S^{0,0}} T_e(1/2)^{\alpha}$ by Proposition 3.7, $T_e(1/2)^0$ as a $\bigotimes_{i=2}^n \operatorname{Vir}(e^i)$ -module is isomorphic to

$$\bigoplus_{\beta=(\beta_2,\ldots,\beta_n)\in D^1} L(1/2,\beta_2/2)\otimes\cdots\otimes L(1/2,\beta_n/2).$$

Therefore, by the fusion rules of L(1/2, 0), M contains $L(1/2, 0)^{\otimes n-1}$ as a $\bigotimes_{i=2}^{n} \operatorname{Vir}(e^{i})$ submodule. So M contains a non-trivial vacuum-like vector and hence M is isomorphic to $T_e(0)$ as a $T_e(0)$ -module by [Li3]. Therefore, there exists an $n \in \mathbb{N}$ such that $T_e(1/2) \times T_e(1/2) = nT_e(0)$. Since V is holomorphic, both $T_e(0)$ and $T_e(1/2)$ are self-dual $T_e(0)$ -modules. So by the S_3 -symmetry of fusion rules, we obtain the desired fusion rule $T_e(1/2) \times T_e(1/2) = T_e(0)$ from the canonical fusion rule $T_e(0) \times T_e(1/2) = T_e(1/2)$. \Box

To summarize, we obtain:

Proposition 3.10. Let V be a 2A-framed VOA with a 2A-frame $\omega = e^1 + \cdots + e^n$ and its associated structure codes (D, S). Suppose that the pair (D, S) satisfies the condition (1-ii) of Hypothesis 2, $D = S^{\perp}$ and $V_{e^1}(1/16) \neq 0$. Then V and e^1 satisfy Hypothesis 1.

4. The baby-monster SVOA

Let $(V^{\natural}, \omega^{\natural})$ be the moonshine VOA constructed in [FLM]. The full automorphism group of V^{\natural} is the Monster \mathbb{M} , the largest sporadic finite simple group. We apply our results to V^{\natural} and study the baby-monster SVOA. As shown in [DMZ], V^{\natural} has a 2A-frame $\omega^{\natural} = e^1 + \cdots + e^{48}$, and one of its structure codes are determined in [DGH,M4].

Theorem 4.1 [DGH,M4]. *The moonshine VOA* V^{\natural} *has a 2A-frame such that its associated structure codes* $(D^{\natural}, S^{\natural})$ *are as follows:*

$$S^{\natural} := \operatorname{Span}_{\mathbb{Z}_2} \{ (\alpha, \alpha, \alpha), (1^{16} 0^{32}), (0^{32} 1^{16}) \in \mathbb{Z}_2^{48} \mid \alpha \in \operatorname{RM}(1, 4) \}, \quad D^{\natural} := (S^{\natural})^{\perp},$$

where RM(1, 4) is a Reed-Müller code defined as follows:

$$\mathrm{RM}(1,4) := \mathrm{Span}_{\mathbb{Z}_2} \left\{ \left(1^{16} \right), \left(1^{8} 0^8 \right), \left(1^4 0^4 1^4 0^4 \right), \left(\{ 1100 \}^4 \right), \left(\{ 10 \}^8 \right) \right\} < \mathbb{Z}_2^{16}.$$

Lemma 4.2. For any conformal vector e of V^{\natural} with central charge 1/2, V^{\natural} and e satisfy *Hypothesis* 1.

Proof. It is shown in [C] and [M1] that all the conformal vectors with central charge 1/2 are conjugate under the Monster $\mathbb{M} = \operatorname{Aut}(V^{\natural})$. Thus we may assume that $e = e^1$. Since

 $\{1\} \subset \text{Supp}(S^{\natural}), V_{e^1}(1/16) \neq 0$. It is easy to verify that the structure codes $(D^{\natural}, S^{\natural})$ satisfy (1-ii) of Hypothesis 2. Therefore, V^{\natural} and e^1 satisfy Hypothesis 1 by Proposition 3.10. \Box

Now set $e = e^1$ and consider the commutant subalgebra $T_e^{\natural}(0)$ of Vir(e) in V^{\natural} . By the lemma above, we have the following decomposition:

$$V^{\mathfrak{q}} = L(1/2, 0) \otimes T_{e}^{\mathfrak{q}}(0) \oplus L(1/2, 1/2) \otimes T_{e}^{\mathfrak{q}}(1/2) \oplus L(1/2, 1/16) \otimes T_{e}^{\mathfrak{q}}(1/16)$$

with $T_e^{\natural}(h) \neq 0$ for h = 0, 1/2, 1/16. By Theorem 2.2, we know that $T_e^{\natural}(0) \oplus T_e^{\natural}(1/2)$ forms a simple SVOA and $T_e^{\natural}(1/16)$ is an irreducible \mathbb{Z}_2 -twisted $T_e^{\natural}(0) \oplus T_e^{\natural}(1/2)$ -module. Moreover, the algebraic structures on $T_e^{\natural}(0) \oplus T_e^{\natural}(1/2)$ and $T_e^{\natural}(1/16)$ are independent of choice of a conformal vector $e = e^1 \in V^{\natural}$ because all the conformal vectors with central charge 1/2 are conjugate under $\mathbb{M} = \operatorname{Aut}(V^{\natural})$.

Lemma 4.3. $C_{\operatorname{Aut}(V^{\natural})}(e)/\langle \tau_e \rangle$ is the baby-monster sporadic finite simple group \mathbb{B} .

Proof. It is shown in [C] and [M1] that the map $e \mapsto \tau_e$ defines a one-to-one correspondence between conformal vectors in V^{\natural} with central charge 1/2 and involutions of 2A-conjugacy class of \mathbb{M} . Therefore, $C_{\operatorname{Aut}(V^{\natural})}(e) = C_{\operatorname{Aut}(V^{\natural})}(\tau_e)$. We know that $C_{\mathbb{M}}(\tau_e)$ is isomorphic to a 2-fold central extension $\langle \tau_e \rangle \cdot \mathbb{B}$ of the baby-monster simple group \mathbb{B} (cf. [ATLAS]). So the assertion holds. \Box

By the lemma above, the commutant subalgebra $T_e^{\natural}(0)$ affords an action of \mathbb{B} . We set $VB^0 := T_e^{\natural}(0)$, $VB^1 := T_e(1/2)$ and $VB := T_e^{\natural}(0) \oplus T_e^{\natural}(1/2)$ and we call VB the *baby-monster vertex operator superalgebra*. We also set $VB_T := T_e^{\natural}(1/16)$ for convention. Now we state our main result which gives a new proof of [Hö2].

Theorem 4.4.

- (1) Aut(VB^0) $\simeq \mathbb{B}$ and Aut(VB) $\simeq 2 \times \mathbb{B}$.
- (2) VB_T as a VB^0 -module is irreducible. Thus, there are exactly three irreducible VB^0 -modules, VB^0 , VB^1 and VB_T .
- (3) The fusion rules for irreducible VB^0 -modules are as follows:

$$VB^1 \times VB^1 = VB^0$$
, $VB^1 \times VB_T = VB_T$, $VB_T \times VB_T = VB^0 + VB^1$.

Proof. (1) follows from Theorem 2.11 and Lemma 4.3. By Corollary 2.12, VB_T as a VB^0 -module is irreducible. Then (2) follows from Proposition 2.8. Consider (3). We only have to show the fusion rule $VB_T \times VB_T = VB^0 + VB^1$. By considering the 1/16-word decomposition of VB_T , we have $VB_T \times VB_T = n_0VB^0 + n_1VB^1$ for some $n_0, n_1 \in \mathbb{N}$. Since top weights of VB^0 , VB^1 and VB_T are distinct, every irreducible VB^0 -module is self-dual. Then by the S_3 -symmetry of fusion rules we obtain the desired fusion rule. \Box

The classification of irreducible VB^0 -modules has interesting corollaries.

Corollary 4.5. The irreducible 2A-twisted V^{\natural} -module as an $L(1/2, 0) \otimes VB^{0}$ -module has a shape

$$L(1/2, 1/2) \otimes VB^0 \oplus L(1/2, 0) \otimes VB^1 \oplus L(1/2, 1/16) \otimes VB_T$$
.

Proof. Follows from Theorems 4.4, 2.7 and Proposition 2.8. \Box

Remark 4.6. A straightforward construction of the 2A-twisted and 2B-twisted V^{\natural} -modules is already obtained by Lam [L].

Corollary 4.7. For any conformal vector $e \in V^{\natural}$ with central charge 1/2, there is no automorphism ρ on V^{\natural} such that $\rho(V_e^{\natural}(h)) = V_e^{\natural}(h)$ for h = 0, 1/2 and $\rho|_{(V^{\natural})^{(\tau_e)}} = \sigma_e$.

Proof. Suppose such an automorphism ρ exists. We remark that ρ also preserves the space $V_e^{\natural}(1/16)$ as $\rho \in C_{\operatorname{Aut}(V^{\natural})}(e)$. We view $V_e^{\natural}(1/16)$ as a $(V^{\natural})^{\langle \tau_e \rangle}$ -module by a restriction of the vertex operator map $Y_{V^{\natural}}(\cdot, z)$ on V^{\natural} . Consider the σ_e -conjugate $(V^{\natural})^{\langle \tau_e \rangle}$ -module $V_e^{\natural}(1/16)^{\sigma_e}$. By Theorem 4.4 and Proposition 2.8, $V_e^{\natural}(1/16)^{\sigma_e}$ is not isomorphic to $V_e^{\natural}(1/16)$ as a $(V^{\natural})^{\langle \tau_e \rangle}$ -module. On the other hand, we can take a canonical linear isomorphism $\varphi : V_e^{\natural}(1/16) \to V_e^{\natural}(1/16)^{\sigma_e}$ such that $Y_{V_e^{\natural}(1/16)^{\sigma_e}}(a, z)\varphi v = \varphi Y_{V^{\natural}}(\sigma_e a, z)v$ for any $a \in (V^{\natural})^{\langle \tau_e \rangle}$ and $v \in V_e^{\natural}(1/16)$ by definition of the conjugate module. Then we have

 $Y_{V^{\natural}(1/16)^{\sigma_{e}}}(a,z)\varphi\rho v = \varphi Y_{V^{\natural}}(\sigma_{e}a,z)\rho v = \varphi Y_{V^{\natural}}(\rho a,z)\rho v = \varphi \rho Y_{V^{\natural}}(a,z)v$

for any $a \in (V^{\natural})^{\langle \tau_e \rangle}$ and $v \in V_e^{\natural}(1/16)$. Thus $\varphi \rho$ defines a $(V^{\natural})^{\langle \tau_e \rangle}$ -isomorphism between $V_e^{\natural}(1/16)$ and $V_e^{\natural}(1/16)^{\sigma_e}$, which is a contradiction. \Box

Corollary 4.8. The 2A-orbifold construction applied to the moonshine VOA V^{\natural} yields V^{\natural} itself again.

Proof. Follows from Theorem 4.4 and Corollary 2.12. \Box

Remark 4.9. The statement in the corollary above was conjectured by Tuite [Tu]. In [Tu], Tuite has shown that any \mathbb{Z}_p -orbifold construction of V^{\natural} yields either the moonshine VOA V^{\natural} or the Leech lattice VOA V_A under the uniqueness conjecture of the moonshine VOA which states that V^{\natural} constructed by Frenkel et al. [FLM] is the unique holomorphic VOA with central charge 24 whose weight one subspace is trivial.

Finally, we end this paper by presenting the modular transformations of characters of VB^0 -modules. Here the character means the conformal character, not the q-dimension, of modules. Recall the characters of L(1/2, 0)-modules. By an explicit construction of L(1/2, 0)-modules in Section 2.1 (cf. [FFR]), one can easily prove the following:

$$\operatorname{ch}_{L(1/2,0)}(\tau) = \frac{1}{2}q^{-1/48} \left\{ \prod_{n=0}^{\infty} (1+q^{n+1/2}) + \prod_{n=0}^{\infty} (1-q^{n+1/2}) \right\},\$$

H. Yamauchi / Journal of Algebra 284 (2005) 645-668

$$ch_{L(1/2,1/2)}(\tau) = \frac{1}{2}q^{-1/48} \left\{ \prod_{n=0}^{\infty} (1+q^{n+1/2}) - \prod_{n=0}^{\infty} (1-q^{n+1/2}) \right\},$$
$$ch_{L(1/2,1/16)}(\tau) = q^{-1/24} \prod_{n=1}^{\infty} (1+q^n).$$

The following modular transformations are well known:

$$\begin{aligned} \mathrm{ch}_{L(1/2,0)}(-1/\tau) &= \frac{1}{2} \operatorname{ch}_{L(1/2,0)}(\tau) + \frac{1}{2} \operatorname{ch}_{L(1/2,1/2)}(\tau) + \frac{1}{\sqrt{2}} \operatorname{ch}_{L(1/2,1/16)}(\tau), \\ \mathrm{ch}_{L(1/2,1/2)}(-1/\tau) &= \frac{1}{2} \operatorname{ch}_{L(1/2,0)}(\tau) + \frac{1}{2} \operatorname{ch}_{L(1/2,1/2)}(\tau) - \frac{1}{\sqrt{2}} \operatorname{ch}_{L(1/2,1/16)}(\tau), \\ \mathrm{ch}_{L(1/2,1/16)}(-1/\tau) &= \frac{1}{\sqrt{2}} \operatorname{ch}_{L(1/2,0)}(\tau) - \frac{1}{\sqrt{2}} \operatorname{ch}_{L(1/2,1/2)}(\tau). \end{aligned}$$

Set $j(\tau) := J(\tau) - 744$, where $J(\tau)$ is the famous $SL_2(\mathbb{Z})$ -invariant. Since $ch_{V^{\natural}}(\tau) = j(\tau)$ and

$$ch_{V^{\natural}}(\tau) = ch_{L(1/2,0)}(\tau) ch_{VB^{0}}(\tau) + ch_{L(1/2,1/2)}(\tau) ch_{VB^{1}}(\tau) + ch_{L(1/2,1/16)}(\tau) ch_{VB_{T}}(\tau),$$

we can write down the characters of irreducible VB^0 -modules by using those of V^{\natural} and L(1/2, 0)-modules. This computation is already done in [Ma] by using Matsuo–Norton trace formula. The results are written as a rational expression involving the functions $j(\tau)$, $ch_{L(1/2,h)}(\tau)$, h = 0, 1/2, 1/16, their first and second derivatives and the Eisenstein series $E_2(\tau)$ and $E_4(\tau)$, see [Ma].

By Zhu's theorem [Z], the linear space spanned by $\{ch_{VB^0}(\tau), ch_{VB^1}(\tau), ch_{VB_T}(\tau)\}$ affords an SL₂(\mathbb{Z})-action. Using the modular transformations for $j(\tau)$ and $ch_{L(1/2,h)}(\tau)$, h = 0, 1/2, 1/16, we can show the following modular transformations:

$$ch_{VB^{0}}(-1/\tau) = \frac{1}{2} ch_{VB^{0}}(\tau) + \frac{1}{2} ch_{VB^{1}}(\tau) + \frac{1}{\sqrt{2}} ch_{VB_{T}}(\tau),$$

$$ch_{VB^{1}}(-1/\tau) = \frac{1}{2} ch_{VB^{0}}(\tau) + \frac{1}{2} ch_{VB^{1}}(\tau) - \frac{1}{\sqrt{2}} ch_{VB_{T}}(\tau),$$

$$ch_{VB_{T}}(-1/\tau) = \frac{1}{\sqrt{2}} ch_{VB^{0}}(\tau) - \frac{1}{\sqrt{2}} ch_{VB^{1}}(\tau).$$

Namely, we have exactly the same modular transformation laws for the Ising model L(1/2, 0). As in Theorem 4.4, we also note that the fusion algebra for VB^0 is also canonically isomorphic to that of L(1/2, 0). Therefore, we may say that L(1/2, 0) and VB^0 form a dual-pair inside the moonshine VOA V^{\ddagger} .

Acknowledgments

The author thanks the members of the Komaba Seminar on Finite Groups for valuable discussions and for noticing a gap in a prototype version of this paper. He also thanks Professor Atsushi Matsuo for the information of Tuite's work and Professor Ching Hung Lam for his suggestions improving this paper.

References

- [ATLAS] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, ATLAS of Finite Groups, Clarendon, Oxford, 1985.
- [ADL] T. Abe, C. Dong, H. Li, Fusion rules for the vertex operator algebras $M(1)^+$ and V_L^+ , Comm. Math. Phys. 253 (2005) 171–219.
- [C] J.H. Conway, A simple construction for the Fischer–Griess monster group, Invent. Math. 79 (1985) 513–540.
- [DGH] C. Dong, R.L. Griess, G. Höhn, Framed vertex operator algebras, codes and the moonshine module, Comm. Math. Phys. 193 (1998) 407–448.
- [DL] C. Dong, J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Operators, Progr. Math., vol. 112, Birkhäuser, Boston, 1993.
- [DLM] C. Dong, H. Li, G. Mason, Modular-invariance of trace functions in orbifold theory and generalized moonshine, Comm. Math. Phys. 214 (2000) 1–56.
- [DM] C. Dong, G. Mason, On quantum Galois theory, Duke Math. J. 86 (1997) 305–321.
- [DMZ] C. Dong, G. Mason, Y. Zhu, Discrete series of the Virasoro algebra and the moonshine module, Proc. Sympos. Pure. Math. 56 (1994) 295–316.
- [FFR] A.J. Feingold, I.B. Frenkel, J.F.X. Ries, Spinor construction of vertex operator algebras, triality, and $E_8^{(1)}$, Contemp. Math. 121 (1991).
- [FHL] I. Frenkel, Y.-Z. Huang, J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993).
- [FLM] I.B. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Academic Press, New York, 1988.
- [FZ] I.B. Frenkel, Y. Zhu, Vertex operator algebras associated to representation of affine and Virasoro algebras, Duke Math. J. 66 (1992) 123–168.
- [G] R.L. Griess, The friendly giant, Invent. Math. 69 (1982) 1–102.
- [Hö1] G. Höhn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster, PhD thesis, Bonn 1995; Bonner Math. Schriften 286 (1996) 1–85.
- [Hö2] G. Höhn, The group of symmetries of the shorter moonshine module, math.QA/0210076.
- [K] V.G. Kac, Vertex Algebras for Beginners, second ed., Cambridge Univ. Press, Cambridge, UK, 1990.
- [KR] V.G. Kac, A.K. Raina, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, World Scientific, Singapore, 1987.
- [L] C.H. Lam, Some twisted modules for framed vertex operator algebras, J. Algebra 231 (2000) 331–341.
- [LLY] C.H. Lam, N. Lam, H. Yamauchi, Extension of Virasoro vertex operator algebra by a simple module, Internat. Math. Res. Notices 11 (2003) 577–611.
- [LYY] C.H. Lam, H. Yamada, H. Yamauchi, Vertex operator algebras, extended E₈-diagram, and McKay's observation on the Monster simple group, math.QA/0403010.
- [Li1] H. Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996) 143–195.
- [Li2] H. Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, in: C. Dong, G. Mason (Eds.), Moonshine, the Monster, and Related Topics, in: Contemp. Math., vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 203–236.
- [Li3] H. Li, Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Algebra 96 (1994) 279–297.

- [Ma] A. Matsuo, Norton's trace formulae for the Griess algebra of a vertex operator algebra with larger symmetry, Comm. Math. Phys. 224 (2001) 565–591.
- [M1] M. Miyamoto, Griess algebras and conformal vectors in vertex operator algebras, J. Algebra 179 (1996) 528–548.
- [M2] M. Miyamoto, Representation theory of code vertex operator algebras, J. Algebra 201 (1998) 115–150.
 [M3] M. Miyamoto, A Hamming code vertex operator algebra and construction of vertex operator algebras, J. Algebra 215 (1999) 509–530.
- [M4] M. Miyamoto, A new construction of the moonshine vertex operator algebra over the real number field, Ann. of Math. 159 (2004) 535–596.
- [Sh] H. Shimakura, Automorphism group of the vertex operator algebra V_L^+ for an even lattice L without roots, J. Algebra 280 (2004) 29–57; math.QA/0311141.
- [SY] S. Sakuma, H. Yamauchi, Vertex operator algebra with two Miyamoto involutions generating S₃, J. Algebra 267 (2003) 272–297.
- [Tu] M. Tuite, On the relationship between Monstrous Moonshine and the uniqueness of the Moonshine module, Comm. Math. Phys. 166 (1995) 495–532.
- [Y1] H. Yamauchi, Module category of simple current extensions of vertex operator algebras, J. Pure Appl. Algebra 189 (2004) 315–328.
- [Y2] H. Yamauchi, A theory of simple current extensions of vertex operator algebras and applications to the moonshine vertex operator algebra, PhD thesis, University of Tsukuba, 2004.
- [Z] Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996) 237–302.