2A-orbifold construction and the baby-monster vertex operator superalgebra

Hiroshi Yamauchi *
Graduate School of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan
Received 2 April 2004
Communicated by Geoffrey Mason
To the memory of my dear Taro

Abstract

In this article we give a new proof of the determination of the full automorphism group of the baby-monster vertex operator superalgebra based on a theory of simple current extensions. As a corollary, we also prove that the \mathbb{Z}_{2}-orbifold construction with respect to a 2 A -involution of the Monster applied to the moonshine vertex operator algebra V^{\natural} yields V^{\natural} itself again. © 2004 Elsevier Inc. All rights reserved.

1. Introduction

The famous moonshine vertex operator algebra V^{\natural} constructed by Frenkel-LepowskyMuerman [FLM] is the first example of the \mathbb{Z}_{2}-orbifold construction of a holomorphic vertex operator algebra (VOA). Let us explain a \mathbb{Z}_{2}-orbifold construction briefly. Let V be a holomorphic vertex operator algebra and σ an involutive automorphism on V. Then the fixed point subalgebra $V^{\langle\sigma\rangle}$ is a simple vertex operator algebra. It is shown in [DLM] that there is a unique irreducible σ-twisted V-module M and we have a decomposition

[^0]$M=M^{0} \oplus M^{1}$ into a direct sum of irreducible $V^{\langle\sigma\rangle}$-modules such that M^{0} has an integral top weight. A \mathbb{Z}_{2}-orbifold construction with respect to $\sigma \in \operatorname{Aut}(V)$ refers to a construction of a \mathbb{Z}_{2}-graded extension $W=V^{\langle\sigma\rangle} \oplus M^{0}$ of the fixed point subalgebra $V^{\langle\sigma\rangle}$ and it is expected to be a holomorphic vertex operator algebra.

In FLM's construction, we take V to be the lattice vertex operator algebra V_{Λ} associated to the Leech lattice Λ and the involution σ is a natural lifting $\theta \in \operatorname{Aut}\left(V_{\Lambda}\right)$ of the (-1) isometry on Λ. Denote by $V_{\Lambda}=V_{\Lambda}^{+} \oplus V_{\Lambda}^{-}$the eigenspace decomposition such that θ acts on $V_{\Lambda}^{ \pm}$as ± 1, respectively. Let V_{Λ}^{T} be the unique irreducible θ-twisted V_{Λ}-module. Then there is a decomposition $V_{\Lambda}^{T}=\left(V_{\Lambda}^{T}\right)^{+} \oplus\left(V_{\Lambda}^{T}\right)^{-}$such that the top weight of $\left(V_{\Lambda}^{T}\right)^{+}$is integral. Then the moonshine vertex operator algebra is defined by $V^{\natural}:=V_{\Lambda}^{+} \oplus\left(V_{\Lambda}^{T}\right)^{+}$ and it is proved in [FLM] that V^{\natural} forms a \mathbb{Z}_{2}-graded extension of V_{Λ}^{+}. It is also proved in [FLM] that the full automorphism group of the moonshine vertex operator algebra is the Monster sporadic finite simple group \mathbb{M} by using Griess' result [G].

In the Monster, there are two conjugacy classes of involutions, the 2A-conjugacy class and the 2B-conjugacy class (cf. [ATLAS]). One can explicitly see the action of a 2B-involution on V^{\natural} by FLM's construction. But it is difficult to realize the action of a 2A-involution on V^{\natural} before Miyamoto. In [M1], Miyamoto opened a way to study the action of 2A-involutions of the Monster on the moonshine VOA by using a sub VOA isomorphic to the unitary Virasoro VOA $L(1 / 2,0)$. Let us recall the definition of Miyamoto involutions. Let V be a simple VOA and $e \in V_{2}$ be a vector such that the sub $\operatorname{VOA} \operatorname{Vir}(e)$ generated by e is isomorphic to the Virasoro VOA $L(1 / 2,0)$. Such a vector e is called a conformal vector with central charge $1 / 2$. Since V as a $\operatorname{Vir}(e)$-module is completely reducible, we have a decomposition

$$
V=V_{e}(0) \oplus V_{e}(1 / 2) \oplus V_{e}(1 / 16)
$$

where $V_{e}(h), h=0,1 / 2,1 / 16$, denotes a sum of all irreducible $\operatorname{Vir}(e)$-submodules isomorphic to $L(1 / 2, h)$. Then one can define a linear isomorphism τ_{e} on V by

$$
\tau_{e}:=1 \quad \text { on } V_{e}(0) \oplus V_{e}(1 / 2), \quad-1 \quad \text { on } V_{e}(1 / 16) .
$$

It is proved in [M1] that τ_{e} defines an involution of a VOA V if $V_{e}(1 / 16) \neq 0$. This involution is often called the Miyamoto involution of τ-type. On the fixed point subalgebra $V^{\left\langle\tau_{e}\right\rangle}$, one can define another automorphism by

$$
\sigma_{e}:=1 \quad \text { on } V_{e}(0), \quad-1 \quad \text { on } V_{e}(1 / 2) .
$$

This involution is called the Miyamoto involution of σ-type. It is shown in [C] and [M1] that in the moonshine VOA every Miyamoto involution τ_{e} defines a 2A-involution of the Monster and the correspondence between conformal vectors and 2A-involutions is one-to-one. Therefore, in the study of 2 A -involutions, it is very important to study conformal vectors with central charge $1 / 2$. Along this idea, C.H. Lam, H. Yamada and the author obtained an interesting achievement on 2A-involutions of the Monster in [LYY].

The main purpose of this paper is to study the \mathbb{Z}_{2}-orbifold construction of V^{\natural} with respect to the Miyamoto involution and to prove that the 2 A -orbifold construction applied to V^{\natural} yields V^{\natural} itself again. Since a 2A-involution of the Monster is uniquely
determined by a conformal vector e of V^{\natural} with central charge $1 / 2$, we have to study the commutant subalgebra of $\operatorname{Vir}(e)$ together with $\operatorname{Vir}(e)$ in order to describe the 2A-orbifold construction. For a simple VOA V and a conformal vector e of V with central charge $1 / 2$, set the space of highest weight vectors by $T_{e}(h):=\left\{v \in V \mid L^{e}(0) v=h v\right\}$ for $h=0,1 / 2,1 / 16$, where we expand $Y(e, z)=\sum_{n \in \mathbb{Z}} L^{e}(n) z^{-n-2}$. Then we have decompositions $V_{e}(h)=L(1 / 2, h) \otimes T_{e}(h)$ and the commutant subalgebra $T_{e}(0)$ acts on $T_{e}(h)$ for $h=0,1 / 2,1 / 16$. Like $L(1 / 2,0)$ has a \mathbb{Z}_{2}-graded extension $L(1 / 2,0) \oplus L(1 / 2,1 / 2)$, we can introduce a vertex operator superalgebra (SVOA) structure on $T_{e}(0) \oplus T_{e}(1 / 2)$ and its \mathbb{Z}_{2}-twisted module structure on $T_{e}(1 / 16)$. It is easy to see that the one point stabilizer $C_{\operatorname{Aut}(V)}(e)=\{\rho \in \operatorname{Aut}(V) \mid \rho e=e\}$ naturally acts on the space of highest weight vectors $T_{e}(h)$. If we take $V=V^{\natural}$, then $C_{\mathrm{Aut}\left(V^{\natural}\right)}(e)$ is isomorphic to the 2-fold central extension $\left\langle\tau_{e}\right\rangle \cdot \mathbb{B}$ of the baby-monster sporadic finite simple group \mathbb{B}. Therefore, the SVOA $T_{e}^{\natural}(0) \oplus T_{e}^{\natural}(1 / 2)$, where we have set $V_{e}^{\natural}(h)=L(1 / 2, h) \otimes T_{e}^{\natural}(h)$ for $h=0,1 / 2,1 / 16$, affords a natural action of \mathbb{B}. Motivated by this fact, Höhn first studied this SVOA in [Hö1] and he called it the baby-monster SVOA. Following him, we write $V B^{0}:=T_{e}^{\natural}(0)$, $V B^{1}:=T_{e}^{\natural}(1 / 2)$ and $V B:=T_{e}^{\natural}(0) \oplus T_{e}^{\natural}(1 / 2)$. It is proved in [Hö2] that the full automorphism group of the even part $V B^{0}$ of $V B$ is exactly isomorphic to the baby-monster \mathbb{B}. In this paper, we give a quite different proof of $\operatorname{Aut}\left(V B^{0}\right) \simeq \mathbb{B}$ based on a theory of simple current extensions.

In my recent work [$\mathrm{Y} 1, \mathrm{Y} 2$], a theory of simple current extensions of vertex operator algebras was developed and many useful results were obtained. Using the theory, we determine the automorphism group of the commutant subalgebra $T_{e}(0)$ as follows:

Theorem 1. Let V be a holomorphic VOA and $e \in V$ a conformal vector with central charge $1 / 2$. Suppose the following:
(a) $V_{e}(h) \neq 0$ for $h=0,1 / 2,1 / 16$,
(b) $V_{e}(0)$ and $T_{e}(0)$ are rational C_{2}-cofinite VOAs of CFT-type,
(c) $V_{e}(1 / 16)$ is a simple current $V^{\left\langle\tau_{e}\right\rangle}$-module,
(d) $T_{e}(1 / 2)$ is a simple current $T_{e}(0)$-module,
(e) $C_{\operatorname{Aut}(V)}(e) /\left\langle\tau_{e}\right\rangle$ is a simple group or an odd group.

Then
(1) $\operatorname{Aut}\left(T_{e}(0)\right)=C_{\operatorname{Aut}(V)}(e) /\left\langle\tau_{e}\right\rangle$.
(2) The irreducible $T_{e}(0)$-modules are given by $T_{e}(0), T_{e}(1 / 2)$ and $T_{e}(1 / 16)$.
(3) The τ_{e}-orbifold construction applied to V yields V itself again.

The assumptions (c) and (d) in the theorem above seem to be rather restrictive. However, we prove that all the assumptions above hold if V is the moonshine VOA. Applying Theorem 1 to V^{\natural}, we obtain the following main theorem of this paper.

Theorem 2. Let $V B=V B^{0} \oplus V B^{1}$ be the commutant superalgebra obtained from V^{\natural}.
(1) $\operatorname{Aut}\left(V B^{0}\right)=\mathbb{B}$ and $\operatorname{Aut}(V B)=2 \times \mathbb{B}$.
(2) There are exactly three inequivalent irreducible $V B^{0}$-modules, $V B^{0}, V B^{1}$ and $V B_{T}:=$ $T_{e}^{\natural}(1 / 16)$.
(3) The fusion rules for $V B^{0}$-modules are as follows:

$$
V B^{1} \times V B^{1}=V B^{0}, \quad V B^{1} \times V B_{T}=V B_{T}, \quad V B_{T} \times V B_{T}=V B^{0}+V B^{1}
$$

This theorem has the following corollaries.
Corollary 1. The irreducible $2 A$-twisted V^{\natural}-module has a shape

$$
L(1 / 2,1 / 2) \otimes V B^{0} \oplus L(1 / 2,0) \otimes V B^{1} \oplus L(1 / 2,1 / 16) \otimes V B_{T}
$$

Corollary 2. For any conformal vector $e \in V^{\natural}$ with central charge $1 / 2$, there is no $\rho \in$ $\operatorname{Aut}\left(V^{\natural}\right)$ such that $\rho\left(V_{e}^{\natural}(h)\right)=V_{e}^{\natural}(h)$ for $h=0,1 / 2,1 / 16$ and $\left.\rho\right|_{\left.\left(V^{\natural}\right)^{〔} \tau_{e}\right\rangle}=\sigma_{e}$.

Corollary 3. The $2 A$-orbifold construction applied to the moonshine $V O A V^{\natural}$ yields V^{\natural} itself again.

At the end of this paper, we give characters of $V B^{0}$-modules and their modular transformation laws. Surprisingly, we find that the fusion algebra and the modular transformation laws for the baby-monster VOA is canonically isomorphic to those of the Ising model $L(1 / 2,0)$.

Notation. For a VOA V and a subgroup G of $\operatorname{Aut}(V)$, we denote by V^{G} the G-fixed subalgebra of V. For a V-module M and an automorphism $\tau \in \operatorname{Aut}(V)$, we denote the τ-conjugate module of M by M^{τ}. We denote the (restricted) dual module of M by M^{*}, and M is called self-dual if $M^{*} \simeq M$. For V-modules M^{1} and M^{2}, we denote their fusion product by $M^{1} \boxtimes_{V} M^{2}$. For a linear binary code D of length n and its element $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in D$, we define $\operatorname{Supp}(\alpha):=\left\{i \mid \alpha_{i} \neq 0\right\}$.

2. Commutant superalgebra and its automorphisms

We denote by $L(c, h)$ the irreducible highest weight module for the Virasoro algebra with central charge c and highest weight h. It is shown in [FZ] that $L(c, 0)$ has a structure of a simple VOA.

2.1. Ising model

We realize an SVOA $L(1 / 2,0) \oplus L(1 / 2,1 / 2)$ by using one free fermionic field. Let \mathfrak{A}_{ψ} be a \mathbb{C}-algebra generated by $\left\{\psi_{n+1 / 2} \mid n \in \mathbb{Z}\right\}$ with the relation $\left[\psi_{r}, \psi_{s}\right]_{+}:=\psi_{r} \psi_{s}+$ $\psi_{s} \psi_{r}=\delta_{r+s, 0}, r, s \in \mathbb{Z}+1 / 2$. Let \mathfrak{A}_{ψ}^{+}to be the subalgebra of \mathfrak{A}_{ψ} generated by $\left\{\psi_{r} \mid r>0\right\}$ and let $\mathbb{C}|0\rangle$ be a trivial \mathfrak{A}_{ψ}^{+}-module. Consider the induced module

$$
\mathfrak{M}:=\operatorname{Ind}_{\mathfrak{A}_{\psi}^{+}}^{\mathfrak{A}_{\psi}} \mathbb{C}|0\rangle=\mathfrak{A}_{\psi} \otimes_{\mathfrak{A}_{\psi}^{+}} \mathbb{C}|0\rangle
$$

It is well known (cf. [KR]) that \mathfrak{M} affords an action of the Virasoro algebra with central charge $1 / 2$ and $\mathfrak{M} \simeq L(1 / 2,0) \oplus L(1 / 2,1 / 2)$ as a Virasoro-module. Consider the generating series $\psi(z):=\sum_{n \in \mathbb{Z}} \psi_{n+1 / 2} z^{-n-1}$. It is also well known (cf. [K]) that the space \mathfrak{M}, with the standard \mathbb{Z}_{2}-grading, has a unique structure of a simple vertex operator superalgebra with the vacuum $\mathbb{1}=|0\rangle$ such that $Y_{\mathfrak{M}}\left(\psi_{-1 / 2}|0\rangle, z\right)=\psi(z)$.

Similarly, we can realize $L(1 / 2,1 / 16)$ as follows. Let \mathfrak{A}_{ϕ} be a \mathbb{C}-algebra generated by $\left\{\phi_{m} \mid m \in \mathbb{Z}\right\}$ with the relation $\left[\phi_{m}, \phi_{n}\right]_{+}=\delta_{m+n, 0}, m, n \in \mathbb{Z}$. Let \mathfrak{A}_{ϕ}^{+}be a subalgebra of \mathfrak{A}_{ϕ} generated by $\left\{\phi_{m} \mid m>0\right\}$ and let $\mathbb{C}\left|\frac{1}{16}\right\rangle$ be a trivial \mathfrak{A}_{ϕ}^{+}-module. Consider the induced module

$$
\mathfrak{N}:=\operatorname{Ind}_{\mathfrak{A}_{\phi}^{+}}^{\mathfrak{A}_{\phi}} \mathbb{C}\left|\frac{1}{16}\right\rangle=\mathfrak{A}_{\phi} \otimes_{\mathfrak{A}_{\phi}^{+}} \mathbb{C}\left|\frac{1}{16}\right\rangle .
$$

It is well known (cf. [KR]) that \mathfrak{N} affords an action of the Virasoro algebra with central charge $1 / 2$. Set $v_{1 / 16}^{ \pm}:=\left(\sqrt{2} \phi_{0} \pm 1\right)\left|\frac{1}{16}\right\rangle$. Then $v_{1 / 16}^{ \pm}$are highest weight vectors for the Virasoro algebra and we have a decomposition $\mathfrak{N}=\mathfrak{N}^{+} \oplus \mathfrak{N}^{-}$, where $\mathfrak{N}^{ \pm}$are \mathfrak{A}_{ϕ}-submodules generated by $v_{1 / 16}^{ \pm}$, respectively, and $\mathfrak{N}^{ \pm} \simeq L(1 / 2,1 / 16)$ as Virasoro-modules. The generating series $\phi(z):=\sum_{n \in \mathbb{Z}} \phi_{n} z^{-n-1 / 2}$ uniquely defines a \mathbb{Z}_{2} twisted \mathfrak{M}-module structure on \mathfrak{N} such that the vertex operator of $\psi_{-1 / 2}|0\rangle$ is given as $Y_{\mathfrak{N}}\left(\psi_{-1 / 2}|0\rangle, z\right)=\phi(z)$. We can also verify that $\mathfrak{N}^{ \pm}$are inequivalent irreducible $\mathbb{Z}_{2}{ }^{-}$ twisted \mathfrak{M}-submodules (cf. [LLY]). This explicit construction will be used in the proof of Theorem 2.2.

2.2. Miyamoto involution

Let $\left(V, Y_{V}(\cdot, z), \mathbb{1}, \omega\right)$ be a VOA. A vector $e \in V$ is called a conformal vector if coefficients of its vertex operator $Y_{V}(e, z)=\sum_{n \in \mathbb{Z}} e_{(n)} z^{-n-1}=\sum_{n \in \mathbb{Z}} L^{e}(n) z^{-n-2}$ generate a representation of the Virasoro algebra on V :

$$
\left[L^{e}(m), L^{e}(n)\right]=(m-n) L^{e}(m+n)+\delta_{m+n, 0} \frac{m^{3}-m}{12} c_{e}
$$

The scalar c_{e} is called the central charge of e. We denote by $\operatorname{Vir}(e)$ the sub VOA generated by e. If $\operatorname{Vir}(e)$ is a rational VOA, then e is called a rational conformal vector. A decomposition $\omega=e+(\omega-e)$ is called orthogonal if both e and $\omega-e$ are conformal vectors and their vertex operators are component-wisely mutually commutative.

Now assume that $e \in V$ is a rational conformal vector with central charge $1 / 2$. Then $\operatorname{Vir}(e)$ is isomorphic to $L(1 / 2,0)$ and has three irreducible representations $L(1 / 2,0)$, $L(1 / 2,1 / 2)$ and $L(1 / 2,1 / 16)$ (cf. [DMZ]). As $\operatorname{Vir}(e)$ acts on V semisimply, we can decompose V into a direct sum of irreducible $\operatorname{Vir}(e)$-modules as follows:

$$
V=V_{e}(0) \oplus V_{e}(1 / 2) \oplus V_{e}(1 / 16)
$$

where $V_{e}(h), h \in\{0,1 / 2,1 / 16\}$, denotes the sum of all irreducible $\operatorname{Vir}(e)$-submodules of V isomorphic to $L(1 / 2, h)$. By the fusion rules for $L(1 / 2,0)$-modules (cf. [DMZ]), we have the following theorem.

Theorem 2.1 [M1].

(1) The linear map $\tau_{e}:=1$ on $V_{e}(0) \oplus V_{e}(1 / 2),-1$ on $V_{e}(1 / 16)$ defines an involutive automorphism on a VOA V.
(2) On the sub VOA $V^{\left\langle\tau_{e}\right\rangle}=V_{e}(0) \oplus V_{e}(1 / 2)$, the linear map $\sigma_{e}:=1$ on $V_{e}(0),-1$ on $V_{e}(1 / 2)$ defines an involutive automorphism.

The involutions $\tau_{e} \in \operatorname{Aut}(V)$ and $\sigma_{e} \in \operatorname{Aut}\left(V^{\left\langle\tau_{e}\right\rangle}\right)$ are called Miyamoto involutions.

2.3. Commutant superalgebra

Let V be a simple VOA of CFT-type and $e \in V$ a rational conformal vector with central charge $1 / 2$. Set $T_{e}(h):=\left\{v \in V \mid L^{e}(0) v=h \cdot v\right\}$ for $h=0,1 / 2,1 / 16 . T_{e}(h)$ describes the space of highest weight vectors for $\operatorname{Vir}(e)$ and it is canonically isomorphic to $\operatorname{Hom}_{\operatorname{Vir}(e)}(L(1 / 2, h), V)$ for $h=0,1 / 2,1 / 16$. Therefore, $V_{e}(h) \simeq L(1 / 2, h) \otimes T_{e}(h)$ and we have a decomposition as follows:

$$
V=L(1 / 2,0) \otimes T_{e}(0) \oplus L(1 / 2,1 / 2) \otimes T_{e}(1 / 2) \oplus L(1 / 2,1 / 16) \otimes T_{e}(1 / 16)
$$

One can verify that a decomposition $\omega=e+(\omega-e)$ is orthogonal by using [FZ, Theorem 5.1]. Recall the commutant subalgebra $\operatorname{Com}_{V}(\operatorname{Vir}(e)):=\operatorname{Ker}_{V} L^{e}(-1)$ defined in [FZ]. It is easy to see that $T_{e}(0)=\operatorname{Ker}_{V} L^{e}(-1)$. So $\left(T_{e}(0), \omega-e\right)$ forms a sub VOA of V whose action on V is commutative with that of $\operatorname{Vir}(e)$ on V. In particular, $T_{e}(h)$, $h=0,1 / 2,1 / 16$, are $T_{e}(0)$-modules. By the quantum Galois theory [DM], $T_{e}(0)$ is a simple subalgebra and $T_{e}(1 / 2)$ is an irreducible $T_{e}(0)$-module if $V_{e}(1 / 2) \neq 0$.

The commutant subalgebra $T_{e}(0)$ affords an extension to a superalgebra by its module $T_{e}(1 / 2)$ if $V_{e}(1 / 2) \neq 0$.

Theorem 2.2 [Hö1,Y2].

(1) Suppose that $V_{e}(1 / 2) \neq 0$. There exists a simple SVOA structure on $T_{e}(0) \oplus T_{e}(1 / 2)$ such that the even part of a tensor product of SVOAs $\{L(1 / 2,0) \oplus L(1 / 2,1 / 2)\} \otimes$ $\left\{T_{e}(0) \oplus T_{e}(1 / 2)\right\}$ is isomorphic to $V_{e}(0) \oplus V_{e}(1 / 2)$ as a VOA.
(2) Suppose that $V_{e}(1 / 2) \neq 0$ and $V_{e}(1 / 16) \neq 0$. Then $T_{e}(1 / 16)$ carries a structure of an irreducible \mathbb{Z}_{2}-twisted $T_{e}(0) \oplus T_{e}(1 / 2)$-module. Moreover, $V_{e}(1 / 16)$ is isomorphic to a tensor product of an irreducible \mathbb{Z}_{2}-twisted $L(1 / 2,0) \oplus L(1 / 2,1 / 2)$-module $L(1 / 2,1 / 16)$ and an irreducible \mathbb{Z}_{2}-twisted $T_{e}(0) \oplus T_{e}(1 / 2)$-module $T_{e}(1 / 16)$.

Proof. (1) First, we introduce a vertex operator map on $T_{e}(0) \oplus T_{e}(1 / 2)$. Let $a \in T_{e}(0)$ and $x \in L(1 / 2,0)$. By [ADL, Theorem 2.10], there are $T_{e}(0)$-intertwining operators $I^{i}(\cdot, z)$ of type $T_{e}(0) \times T_{e}(i / 2) \rightarrow T_{e}(i / 2), i=0,1$, such that $\left.Y_{V}(x \otimes a, z)\right|_{V_{e}(i / 2)}=Y_{\mathfrak{M}}(x, z) \otimes$ $I^{i}(a, z)$, where $Y_{\mathfrak{M}}(\cdot, z)$ is the vertex operator map on the SVOA $L(1 / 2,0) \oplus L(1 / 2,1 / 2)$ constructed in Section 2.1. Similarly, for $u \in T_{e}(1 / 2)$ and $y \in L(1 / 2,1 / 2)$, there are $T_{e}(0)$-intertwining operators $J^{0}(\cdot, z)$ and $J^{1}(\cdot, z)$ of types $T_{e}(1 / 2) \times T_{e}(0) \rightarrow T_{e}(1 / 2)$ and $T_{e}(1 / 2) \times T_{e}(1 / 2) \rightarrow T_{e}(0)$, respectively, such that $\left.Y_{V}(y \otimes u, z)\right|_{V_{e}(0)}=Y_{\mathfrak{M}}(y, z) \otimes$ $J^{0}(u, z)$ and $\left.Y_{V}(y \otimes u, z)\right|_{V_{e}(1 / 2)}=Y_{\mathfrak{M}}(y, z) \otimes J^{1}(u, z)$ again by [ADL, Theorem 2.10].

We define the vertex operator map $\widehat{Y}(\cdot, z)$ on $T_{e}(0) \oplus T_{e}(1 / 2)$ as follows: for $a, b \in T_{e}(0)$ and $u, v \in T_{e}(1 / 2)$,

$$
\begin{array}{ll}
\widehat{Y}(a, z) b:=I^{0}(a, z) b, & \widehat{Y}(a, z) u:=I^{1}(a, z) u \\
\widehat{Y}(u, z) a:=J^{0}(u, z) a, & \widehat{Y}(u, z) v:=J^{1}(u, z) v .
\end{array}
$$

We claim that the quadruple $\left(T_{e}(0) \oplus T_{e}(1 / 2), \widehat{Y}(\cdot, z), \mathbb{1}_{T_{e}(0)}, \omega-e\right)$ forms an SVOA, where $\mathbb{1}_{V}=|0\rangle \otimes \mathbb{1}_{T_{e}(0)}$. It is clear that $\widehat{Y}\left(\mathbb{1}_{T_{e}(0)}, z\right)=\operatorname{id}_{T_{e}(0) \oplus T_{e}(1 / 2)}$ as the substructure $\left(T_{e}(0), I^{0}(\cdot, z), \mathbb{1}_{T_{e}(0)}, \omega-e\right)$ is exactly $\operatorname{Com}_{V}(\operatorname{Vir}(e))$. The $L(-1)$-derivation property for $\widehat{Y}(\cdot, z)$ is also clear as $\widehat{Y}(\cdot, z)$ is made of $T_{e}(0)$-intertwining operators. By considering $Y_{V}\left(\psi_{-1 / 2}|0\rangle \otimes u, z\right)(|0\rangle \otimes a)$, we obtain a skew-symmetric property $J^{0}(u, z) a=$ $e^{z\left(L(-1)-L^{e}(-1)\right)} I^{1}(a,-z) u$ as both $Y_{V}(\cdot, z)$ and $Y_{\mathfrak{M}}(\cdot, z)$ satisfy the skew-symmetry. Therefore, for any $w \in T_{e}(0) \oplus T_{e}(1 / 2)$, the following creation property holds:

$$
\widehat{Y}(w, z) \mathbb{1}_{T_{e}(0)} \in w+T_{e}(0) \oplus T_{e}(1 / 2) \llbracket z \rrbracket z
$$

Hence, in order to prove that the quadruple is an SVOA, it suffices to show that $\widehat{Y}(\cdot, z)$ satisfies the locality (cf. [Li1]):

$$
\begin{align*}
& \left(z_{1}-z_{2}\right)^{N\left(w^{1}, w^{2}\right)} \widehat{Y}\left(w^{1}, z_{1}\right) \widehat{Y}\left(w^{2}, z_{2}\right) \\
& =(-1)^{\varepsilon\left(w^{1}, w^{2}\right)}\left(-z_{2}+z_{1}\right)^{N\left(w^{1}, w^{2}\right)} \widehat{Y}\left(w^{2}, z_{2}\right) \widehat{Y}\left(w^{1}, z_{1}\right), \tag{2.1}
\end{align*}
$$

where w^{1}, w^{2} are \mathbb{Z}_{2}-homogeneous elements in $T_{e}(0) \oplus T_{e}(1 / 2), \varepsilon$ is the standard parity function and $N\left(w^{1}, w^{2}\right)$ is a sufficiently large integer. Since $\widehat{Y}(\cdot, z)$ is made of $T_{e}(0)$ intertwining operators, we only need to show the locality (2.1) in the case of $w^{1}, w^{2} \in$ $T_{e}(1 / 2)$. Let $u, v \in T_{e}(1 / 2)$ be arbitrary and N a positive integer such that

$$
\begin{align*}
& \left(z_{1}-z_{2}\right)^{N}\left[Y_{V}\left(\psi_{-1 / 2}|0\rangle \otimes u, z_{1}\right), Y_{V}\left(\psi_{-1 / 2}|0\rangle \otimes v, z_{2}\right)\right]=0 \\
& \quad \text { on } V_{e}(0) \oplus V_{e}(1 / 2) . \tag{2.2}
\end{align*}
$$

The equality (2.1) is equivalent to the following two equalities:

$$
\begin{align*}
& \left(z_{1}-z_{2}\right)^{N} J^{1}\left(u, z_{1}\right) J^{0}\left(v, z_{2}\right) a=-\left(z_{1}-z_{2}\right)^{N} J^{1}\left(v, z_{2}\right) J^{0}\left(u, z_{1}\right) a, \tag{2.3}\\
& \left(z_{1}-z_{2}\right)^{N} J^{0}\left(u, z_{1}\right) J^{1}\left(v, z_{2}\right) w=-\left(z_{1}-z_{2}\right)^{N} J^{0}\left(v, z_{2}\right) J^{1}\left(u, z_{1}\right) w, \tag{2.4}
\end{align*}
$$

where $a \in T_{e}(0)$ and $w \in T_{e}(1 / 2)$ are arbitrary. For simplicity, we set

$$
\begin{array}{ll}
A_{0}=\left(z_{1}-z_{2}\right)^{N} J^{1}\left(u, z_{1}\right) J^{0}\left(v, z_{2}\right) a, & B_{0}=\left(z_{1}-z_{2}\right)^{N} J^{1}\left(v, z_{2}\right) J^{0}\left(u, z_{1}\right) a \\
A_{1}=\left(z_{1}-z_{2}\right)^{N} J^{0}\left(u, z_{1}\right) J^{1}\left(v, z_{2}\right) w, & B_{1}=\left(z_{1}-z_{2}\right)^{N} J^{0}\left(v, z_{2}\right) J^{1}\left(u, z_{1}\right) w
\end{array}
$$

We should prove both $A_{0}=-B_{0}$ and $A_{1}=-B_{1}$. By (2.2), we have

$$
\left(z_{1}-z_{2}\right)^{N}\left[Y_{V}\left(\psi_{-1 / 2}|0\rangle \otimes u, z_{1}\right), Y_{V}\left(\psi_{-1 / 2}|0\rangle \otimes v, z_{2}\right)\right] \cdot(|0\rangle \otimes a)=0
$$

In terms of $\psi(z)$, the equality above becomes

$$
\begin{equation*}
\psi\left(z_{1}\right) \psi\left(z_{2}\right)|0\rangle \otimes A_{0}=\psi\left(z_{2}\right) \psi\left(z_{1}\right)|0\rangle \otimes B_{0} \tag{2.5}
\end{equation*}
$$

By a direct computation, we obtain

$$
\psi\left(z_{1}\right) \psi\left(z_{2}\right)|0\rangle=|0\rangle \cdot\left(z_{1}-z_{2}\right)^{-1}+\sum_{m>n \geqslant 0} \psi_{-m-1 / 2} \psi_{-n-1 / 2}|0\rangle \cdot\left(z_{1}^{m} z_{2}^{n}-z_{1}^{n} z_{2}^{m}\right) .
$$

So by multiplying $z_{1}-z_{2}$ both sides of (2.5) and comparing the coefficient of $|0\rangle$, we obtain $A_{0}=-B_{0}$. Therefore, (2.3) holds. By (2.2), we have

$$
\left(z_{1}-z_{2}\right)^{N}\left[Y_{V}\left(\psi_{-1 / 2}|0\rangle \otimes u, z_{1}\right), Y_{V}\left(\psi_{-1 / 2}|0\rangle \otimes v, z_{2}\right)\right] \cdot\left(\psi_{-1 / 2}|0\rangle \otimes w\right)=0
$$

Rewriting the equality above in terms of $\psi(z)$, we get

$$
\begin{equation*}
\psi\left(z_{1}\right) \psi\left(z_{2}\right) \psi_{-1 / 2}|0\rangle \otimes A_{1}=\psi\left(z_{2}\right) \psi\left(z_{1}\right) \psi_{-1 / 2}|0\rangle \otimes B_{1} . \tag{2.6}
\end{equation*}
$$

By a direct computation, we have

$$
\begin{aligned}
\psi\left(z_{1}\right) \psi\left(z_{2}\right) \psi_{-1 / 2}|0\rangle= & \psi_{-1 / 2}|0\rangle \cdot\left\{\left(z_{1}-z_{2}\right)^{-1}+\left(z_{1}-z_{2}\right) / z_{1} z_{2}\right\} \\
& +\sum_{m>0} \psi_{-m-3 / 2}|0\rangle \cdot\left(z_{1}^{m+1} z_{2}^{-1}-z_{1}^{-1} z_{2}^{m+1}\right) \\
& +\sum_{m \geqslant n \geqslant 0} \psi_{-m-5 / 2} \psi_{-n-3 / 2} \psi_{-1 / 2}|0\rangle \cdot\left(z_{1}^{m+2} z_{2}^{n+1}-z_{1}^{n+1} z_{2}^{m+2}\right)
\end{aligned}
$$

Multiplying $z_{1}-z_{2}$ both sides of (2.6) and comparing the coefficient of $\psi_{-1 / 2}|0\rangle$ in (2.6), we obtain $\left(z_{1}^{2}-z_{1} z_{2}+z_{2}^{2}\right)\left(A_{1}+B_{1}\right)=0$. Then multiplying $z_{1}+z_{2}$, we get $\left(z_{1}^{3}+z_{2}^{3}\right) \times$ $\left(A_{1}+B_{1}\right)=0$. On the other hand, by comparing the coefficient of $\psi_{-5 / 2}|0\rangle$ in (2.6), we obtain

$$
\left(z_{1}^{2} z_{2}^{-1}-z_{1}^{-1} z_{2}^{2}\right)\left(A_{1}+B_{1}\right)=0
$$

or equivalently $\left(z_{1}^{3}-z_{2}^{3}\right)\left(A_{1}+B_{1}\right)=0$. Combining this with $\left(z_{1}^{3}+z_{2}^{3}\right)\left(A_{1}+B_{1}\right)=0$, we obtain $A_{1}=-B_{1}$ and (2.4) also holds. Hence, $\widehat{Y}(\cdot, z)$ satisfies the locality and thus $\left(T_{e}(0) \oplus T_{e}(1 / 2), \widehat{Y}(\cdot, z), \mathbb{1}_{T_{e}(0)}, \omega-e\right)$ forms an SVOA.

By the construction of the vertex operator map $\widehat{Y}(\cdot, z)$, the remaining part of (1) of Theorem 2.2 is obvious except for the simplicity of $T_{e}(0) \oplus T_{e}(1 / 2)$, which is almost trivial. For, as V is simple, none of $I^{i}(\cdot, z), J^{j}(\cdot, z), i, j=0,1$, is zero map by [DL]. Then $T_{e}(0) \oplus T_{e}(1 / 2)$ is also simple since $T_{e}(0)$ is a simple VOA and $T_{e}(1 / 2)$ is an irreducible $T_{e}(0)$-module.
(2) Recall that the vertex operator map $Y_{\mathfrak{N}^{+}}(\cdot, z)$ on \mathfrak{N}^{+}we constructed in Section 2.1 is an $L(1 / 2,0)$-intertwining operator of type

$$
(L(1 / 2,0) \oplus L(1 / 2,1 / 2)) \times L(1 / 2,1 / 16) \rightarrow L(1 / 2,1 / 16) .
$$

We make use of $Y_{\mathfrak{N}^{+}}(\cdot, z)$ to factorize $\left.Y_{V}(\cdot, z)\right|_{V_{e}(1 / 16)}$. Let $a \in T_{e}(0), u \in T_{e}(1 / 2), x \in$ $L(1 / 2,0)$ and $y \in L(1 / 2,1 / 2)$. By [ADL, Theorem 2.10], there are $T_{e}(0)$-intertwining operators $X^{i}(\cdot, z)$ of types $T_{e}(i / 2) \times T_{e}(1 / 16) \rightarrow T_{e}(1 / 16), i=0,1$, such that $Y_{V}(x \otimes$ $a, z)\left.\right|_{V_{e}(1 / 16)}=Y_{\mathfrak{N}^{+}}(x, z) \otimes X^{0}(a, z)$ and $\left.Y_{V}(y \otimes u, z)\right|_{V_{e}(1 / 16)}=Y_{\mathfrak{N}^{+}}(y, z) \otimes X^{1}(u, z)$, as $V_{e}(1 / 16) \simeq \mathfrak{N}^{+} \otimes T_{e}(1 / 16)$ as $\operatorname{Vir}(e) \otimes T_{e}(0)$-modules. We define a \mathbb{Z}_{2}-twisted vertex operator $\operatorname{map} X(\cdot, z)$ of $T_{e}(0) \oplus T_{e}(1 / 2)$ on $T_{e}(1 / 16)$ as follows:

$$
X(a, z):=X^{0}(a, z) \quad \text { for } a \in T_{e}(0), \quad X(u, z):=X^{1}(u, z) \quad \text { for } u \in T_{e}(1 / 16)
$$

Then we prove $\left(T_{e}(1 / 16), X(\cdot, z)\right)$ is an irreducible \mathbb{Z}_{2}-twisted $T_{e}(0) \oplus T_{e}(1 / 2)$-module. As $X(\cdot, z)$ is made of $T_{e}(0)$-intertwining operators, we only need to prove the \mathbb{Z}_{2}-twisted Jacobi identity for $X(\cdot, z)$, which is equivalent to the following commutativity and associativity for $u, v \in T_{e}(1 / 2)$ and $w \in T_{e}(1 / 16)$ (cf. [Li2]):

$$
\begin{gather*}
\left(z_{1}-z_{2}\right)^{N_{1}}\left[X\left(u, z_{1}\right), X\left(v, z_{2}\right)\right]_{+}=0 \tag{2.7}\\
\left(z_{0}+z_{2}\right)^{N_{2}+1 / 2} X\left(u, z_{0}+z_{2}\right) X\left(v, z_{2}\right) w=\left(z_{2}+z_{0}\right)^{N_{2}+1 / 2} X\left(\widehat{Y}\left(u, z_{0}\right) v, z_{2}\right) w, \tag{2.8}
\end{gather*}
$$

where N_{1} and N_{2} are sufficiently large integers. We can take $N>0$ which is independent of w such that

$$
\left(z_{1}-z_{2}\right)^{N}\left[Y_{V}\left(\psi_{-1 / 2}|0\rangle \otimes u, z_{1}\right), Y_{V}\left(\psi_{-1 / 2}|0\rangle, z_{2}\right)\right] \cdot\left(v_{1 / 16}^{+} \otimes w\right)=0
$$

where $v_{1 / 16}^{+}=\left(\phi_{0}+\sqrt{2}\right)\left|\frac{1}{16}\right\rangle \in \mathfrak{N}^{+}$. Since $Y_{\mathfrak{N}^{+}}\left(\psi_{-1 / 2}|0\rangle, z\right)=\phi(z)$, we can rewrite the above as follows:

$$
\begin{align*}
& \phi\left(z_{1}\right) \phi\left(z_{2}\right) v_{1 / 16}^{+} \otimes\left(z_{1}-z_{2}\right)^{N} X\left(u, z_{1}\right) X\left(v, z_{2}\right) w \\
& \quad=\phi\left(z_{2}\right) \phi\left(z_{1}\right) v_{1 / 16}^{+} \otimes\left(z_{1}-z_{2}\right)^{N} X\left(v, z_{2}\right) X\left(u, z_{1}\right) w . \tag{2.9}
\end{align*}
$$

For simplicity, we set

$$
A_{2}=\left(z_{1}-z_{2}\right)^{N} X\left(u, z_{1}\right) X\left(v, z_{2}\right) w, \quad B_{2}=\left(z_{1}-z_{2}\right)^{N} X\left(v, z_{2}\right) X\left(u, z_{1}\right) w
$$

By a direct computation, one has the following:

$$
\begin{align*}
z_{1}^{1 / 2} z_{2}^{1 / 2} \phi\left(z_{1}\right) \phi\left(z_{2}\right) v_{1 / 16}^{+}= & v_{1 / 16}^{+} \cdot p\left(z_{1}, z_{2}\right)+\sum_{m>0} \phi_{-m} v_{1 / 16}^{+} \cdot \frac{1}{\sqrt{2}} q_{m}\left(z_{1}, z_{2}\right) \\
& +\sum_{m>n>0} \phi_{-m} \phi_{-n} v_{1 / 16}^{+} \cdot r_{m, n}\left(z_{1}, z_{2}\right) \tag{2.10}
\end{align*}
$$

where we have set

$$
\begin{gathered}
p\left(z_{1}, z_{2}\right):=-\frac{1}{2}+\sum_{i=0}^{\infty}\left(\frac{z_{2}}{z_{1}}\right)^{i}, \quad q_{m}\left(z_{1}, z_{2}\right):=z_{1}^{m}-z_{2}^{m}, \\
r_{m, n}\left(z_{1}, z_{2}\right):=z_{1}^{m} z_{2}^{n}-z_{1}^{n} z_{2}^{m} .
\end{gathered}
$$

It is easy to see

$$
\begin{gather*}
\left(z_{1}-z_{2}\right) p\left(z_{1}, z_{2}\right)=\left(z_{1}+z_{2}\right) / 2=\left(z_{2}-z_{1}\right) p\left(z_{2}, z_{1}\right), \\
q_{m}\left(z_{2}, z_{1}\right)=-q_{m}\left(z_{1}, z_{2}\right) \quad \text { and } \quad r_{m, n}\left(z_{2}, z_{1}\right)=-r_{m, n}\left(z_{1}, z_{2}\right) . \tag{2.11}
\end{gather*}
$$

By (2.10), the left-hand side of (2.9) can be expressed as follows:

$$
\begin{aligned}
& v_{1 / 16}^{+} \otimes z_{1}^{-1 / 2} z_{2}^{-1 / 2} p\left(z_{1}, z_{2}\right) A_{2}+\sum_{m>0} \phi_{-m} v_{1 / 16}^{+} \otimes z_{1}^{-1 / 2} z_{2}^{-1 / 2} \frac{1}{\sqrt{2}} q_{m}\left(z_{1}, z_{2}\right) A_{2} \\
& \quad+\sum_{m>n>0} \phi_{-m} \phi_{-n} v_{1 / 16}^{+} \otimes z_{1}^{-1 / 2} z_{2}^{-1 / 2} r_{m, n}\left(z_{1}, z_{2}\right) A_{2} .
\end{aligned}
$$

Similarly, the right-hand side of (2.9) becomes:

$$
\begin{aligned}
& v_{1 / 16}^{+} \otimes z_{1}^{-1 / 2} z_{2}^{-1 / 2} p\left(z_{2}, z_{1}\right) B_{2}+\sum_{m>0} \phi_{-m} v_{1 / 16}^{+} \otimes z_{1}^{-1 / 2} z_{2}^{-1 / 2} \frac{1}{\sqrt{2}} q_{m}\left(z_{2}, z_{1}\right) B_{2} \\
& \quad+\sum_{m>n>0} \phi_{-m} \phi_{-n} v_{1 / 16}^{+} \otimes z_{1}^{-1 / 2} z_{2}^{-1 / 2} r_{m, n}\left(z_{2}, z_{1}\right) B_{2} .
\end{aligned}
$$

Thus, we get the following relations:

$$
\begin{align*}
p\left(z_{1}, z_{2}\right) A_{2} & =p\left(z_{2}, z_{1}\right) B_{2} \tag{2.12}\\
q_{m}\left(z_{1}, z_{2}\right) A_{2} & =q_{m}\left(z_{2}, z_{1}\right) B_{2} \tag{2.13}\\
r_{m, n}\left(z_{1}, z_{2}\right) A_{2} & =r_{m, n}\left(z_{2}, z_{1}\right) B_{2} . \tag{2.14}
\end{align*}
$$

Multiplying $\left(z_{1}-z_{2}\right)$ to (2.12) and using (2.11), we obtain $\frac{1}{2}\left(z_{1}+z_{2}\right)(A+B)=0$. And by (2.13), we have $\left(z_{1}^{m}-z_{2}^{m}\right)(A+B)=0$ for any $m>0$. Combining them, we obtain $A+B=0$ and so (2.7) follows.

Next, we prove the associativity (2.8). As

$$
\phi(z) v_{1 / 16}^{+}=\frac{1}{\sqrt{2}} v_{1 / 16}^{+} z^{-1 / 2}+\sum_{n>0} \phi_{-n} v_{1 / 16}^{+} z^{n-1 / 2},
$$

we see that $\left.z^{1 / 2} \phi(z) v_{1 / 16}^{+} \in L(1 / 2,1 / 16) \llbracket z \rrbracket\right]$. Therefore, by [Li2], we have the following associativity on \mathfrak{N}^{+}:

$$
\begin{equation*}
\left(z_{0}+z_{2}\right)^{1 / 2} \phi\left(z_{0}+z_{2}\right) \phi\left(z_{2}\right) v_{1 / 16}^{+}=\left(z_{2}+z_{0}\right)^{1 / 2} Y_{\mathfrak{N}^{+}}\left(\psi\left(z_{0}\right) \psi_{-1 / 2}|0\rangle, z_{2}\right) v_{1 / 16}^{+} . \tag{2.15}
\end{equation*}
$$

Let k be an integer such that

$$
z^{k} Y_{V}\left(\psi_{-1 / 2}|0\rangle \otimes u, z\right) v_{1 / 16}^{+} \otimes w \in V_{e}(1 / 16) \llbracket z \rrbracket .
$$

On $V_{e}(1 / 16)$, we have the following associativity by [Li1]:

$$
\begin{aligned}
& \left(z_{0}+z_{2}\right)^{k+1} Y_{V}\left(\psi_{-1 / 2}|0\rangle \otimes u, z_{0}+z_{2}\right) Y_{V}\left(\psi_{-1 / 2}|0\rangle \otimes v, z_{2}\right) v_{1 / 16}^{+} \otimes w \\
& \quad=\left(z_{2}+z_{0}\right)^{k+1} Y_{V}\left(Y_{V}\left(\psi_{-1 / 2}|0\rangle \otimes u, z_{0}\right) \psi_{-1 / 2}|0\rangle \otimes v, z_{2}\right) v_{1 / 16}^{+} \otimes w
\end{aligned}
$$

In terms of $\phi(z)$ and $X(\cdot, z)$, we can rewrite the above as follows:

$$
\begin{aligned}
& \left(z_{0}+z_{2}\right)^{1 / 2} \phi\left(z_{0}+z_{2}\right) \phi\left(z_{2}\right) v_{1 / 16}^{+} \otimes\left(z_{0}+z_{2}\right)^{k+1 / 2} X\left(u, z_{0}+z_{2}\right) X\left(v, z_{2}\right) w \\
& \quad=\left(z_{2}+z_{0}\right)^{1 / 2} Y_{\mathfrak{N}^{+}}\left(\psi\left(z_{0}\right) \psi_{-1 / 2}|0\rangle, z_{2}\right) v_{1 / 16}^{+} \otimes\left(z_{2}+z_{0}\right)^{k+1 / 2} X\left(\widehat{Y}\left(u, z_{0}\right) v, z_{2}\right) w
\end{aligned}
$$

Using (2.15), we get

$$
\begin{equation*}
\left(z_{0}+z_{2}\right)^{1 / 2} \phi\left(z_{0}+z_{2}\right) \phi\left(z_{2}\right) v_{1 / 16}^{+} \otimes C=0, \tag{2.16}
\end{equation*}
$$

where we have set

$$
C:=\left(z_{0}+z_{2}\right)^{k+1 / 2} X\left(u, z_{0}+z_{2}\right) X\left(v, z_{2}\right) w-\left(z_{2}+z_{0}\right)^{k+1 / 2} X\left(\widehat{Y}\left(u, z_{0}\right) v, z_{2}\right) w
$$

By (2.10), we find that the coefficient of $\phi_{-1} v_{1 / 16}^{+}$in $\left(z_{0}+z_{2}\right)^{1 / 2} \phi\left(z_{0}+z_{2}\right) \phi\left(z_{2}\right) v_{1 / 16}^{+}$ is just a monomial $z_{0} z_{2}^{-1 / 2} / \sqrt{2}$. Therefore, Eq. (2.16) leads to the associativity relation $C=0$, or the equality (2.8). Hence, $\left(T_{e}(1 / 16), X(\cdot, z)\right)$ is a \mathbb{Z}_{2}-twisted $T_{e}(0) \oplus$ $T_{e}(1 / 2)$-module. The remaining part of the assertion is clear except for the irreducibility, which is easy to show. If $T_{e}(1 / 16)$ contains a non-trivial \mathbb{Z}_{2}-twisted $T_{e}(0) \oplus T_{e}(1 / 2)$ submodule, say P, then $L(1 / 2,1 / 16) \otimes P$ forms a non-trivial $V_{e}(0) \oplus V_{e}(1 / 2)$-submodule of $V_{e}(1 / 16) \simeq L(1 / 2,1 / 16) \otimes T_{e}(1 / 16)$. This yields a contradiction as $V_{e}(1 / 16)$ is an irreducible $V_{e}(0) \oplus V_{e}(1 / 2)$-module by [DM]. This completes the proof of Theorem 2.2.

Remark 2.3. As we mentioned, there are exactly two inequivalent \mathbb{Z}_{2}-twisted irreducible $L(1 / 2,0) \oplus L(1 / 2,1 / 2)$-module structures on $L(1 / 2,1 / 16)$ (cf. [LLY]). In the statement (2) of the theorem above, we have to choose one of them and the irreducible \mathbb{Z}_{2}-twisted $T_{e}(0) \oplus T_{e}(1 / 2)$-module structure on $T_{e}(1 / 16)$ may depend on this choice.

2.4. Automorphisms of commutant superalgebra

In the rest of this section we will work over the following setup:

Hypothesis 1.

(1) V is a holomorphic VOA of CFT-type.
(2) e is a rational conformal vector of V with central charge $1 / 2$.
(3) $V_{e}(h) \neq 0$ for $h=0,1 / 2,1 / 16$.
(4) $V_{e}(0)$ and $T_{e}(0)$ are rational C_{2}-cofinite VOAs of CFT-type.
(5) $V_{e}(1 / 16)$ is a simple current $V^{\left\langle\tau_{e}\right\rangle}=V_{e}(0) \oplus V_{e}(1 / 2)$-module.
(6) $T_{e}(1 / 2)$ is a simple current $T_{e}(0)$-module.

We define the one point stabilizer by $C_{\operatorname{Aut}(V)}(e):=\{\rho \in \operatorname{Aut}(V) \mid \rho(e)=e\}$. Clearly $C_{\operatorname{Aut}(V)}(e)$ forms a subgroup of $\operatorname{Aut}(V)$. Since $\tau_{\rho(e)}=\rho \tau_{e} \rho^{-1}$ for any $\rho \in \operatorname{Aut}(V)$, we have $C_{\operatorname{Aut}(V)}(e) \leqslant C_{\mathrm{Aut}(V)}\left(\tau_{e}\right)$, where $C_{\operatorname{Aut}(V)}\left(\tau_{e}\right)$ denotes the centralizer of an involution $\tau_{e} \in \operatorname{Aut}(V)$.

Lemma 2.4. There are group homomorphisms $\psi_{1}: C_{\operatorname{Aut}(V)}(e) \rightarrow C_{\mathrm{Aut}\left(V^{\left(\tau_{e}\right)}\right)}(e)$ and $\psi_{2}: C_{\left.\operatorname{Aut}\left(V \tau_{e}\right\rangle\right)}(e) \rightarrow \operatorname{Aut}\left(T_{e}(0)\right)$ such that $\operatorname{Ker}\left(\psi_{1}\right)=\left\langle\tau_{e}\right\rangle$ and $\operatorname{Ker}\left(\psi_{2}\right)=\left\langle\sigma_{e}\right\rangle$.

Proof. Let $\rho \in C_{\mathrm{Aut}(V)}(e)$. Then ρ preserves the space of highest weight vectors $T_{e}(h)$ for $h=0,1 / 2,1 / 16$ so that ρ definitely acts on $T_{e}(h)$. Therefore, we have group homomorphisms $\psi_{1}: C_{\operatorname{Aut}(V)}(e) \rightarrow C_{\operatorname{Aut}\left(V V_{e}\langle \rangle\right)}(e)$ and $\psi_{2}: C_{\operatorname{Aut}\left(V^{\left\langle\tau_{e}\right\rangle}\right)}(e) \rightarrow \operatorname{Aut}\left(T_{e}(0)\right)$. Assume that $\psi_{1}(\rho)=\operatorname{id}_{V^{\left\{\tau_{e}\right\rangle}}$ for $\rho \in C_{\operatorname{Aut}(V)}(e)$. Since ρ commutes with τ_{e}, ρ acts on $V_{e}(1 / 16)$ and commutes with the action of $V^{\left\langle\tau_{e}\right\rangle}=V_{e}(0) \oplus V_{e}(1 / 2)$ on its module $V_{e}(1 / 16)$. Therefore, ρ on $V_{e}(1 / 16)$ is a scalar by Schur's lemma and hence $\rho \in\left\langle\tau_{e}\right\rangle \leqslant C_{\text {Aut }(V)}\left(\tau_{e}\right)$. Similarly, one can verify that $\operatorname{Ker}\left(\psi_{2}\right)=\left\langle\sigma_{e}\right\rangle$.

The following result will be used frequently (cf. [Y2, Theorem 9.1.7]).
Theorem 2.5. Let $V=V^{0} \oplus V^{1}$ be a simple SVOA such that the even part V^{0} is a rational C_{2}-cofinite VOA of CFT type and the odd part V^{1} is a simple current V^{0}-module. Then V is both rational and \mathbb{Z}_{2}-rational. Let W be an irreducible V^{0}-module.
(1) If $V^{1} \boxtimes_{V^{0}} W \not \nsim W$ as V^{0}-modules, then W is uniquely lifted to either an irreducible untwisted V-module or an irreducible \mathbb{Z}_{2}-twisted V-module given by $W \oplus\left(V^{1} \boxtimes_{V^{0}} W\right)$.
(2) If $V^{1} \boxtimes_{V^{0}} W \simeq W$ as V^{0}-modules, then there are exactly two inequivalent irreducible \mathbb{Z}_{2}-twisted V-module structures on W and these two modules are mutually \mathbb{Z}_{2}-conjugate.

Lemma 2.6. Under Hypothesis 1, every irreducible $T_{e}(0)$-module is contained in an untwisted irreducible $V^{\left\langle\tau_{e}\right\rangle}$-module as a submodule.

Proof. Let X be an irreducible $T_{e}(0)$-module. By Theorem 2.5, X is contained in an irreducible $T_{e}(0) \oplus T_{e}(1 / 2)$-module or an irreducible \mathbb{Z}_{2}-twisted $T_{e}(0) \oplus T_{e}(1 / 2)$-module. Let \widetilde{X} be such a $T_{e}(0) \oplus T_{e}(1 / 2)$-module. If \widetilde{X} is an untwisted representation, then a tensor product $\{L(1 / 2,0) \oplus L(1 / 2,1 / 2)\} \otimes \widetilde{X}$ has a structure of an untwisted $V^{\left\langle\tau_{e}\right\rangle}$-module and contains X as a submodule. If \widetilde{X} is a \mathbb{Z}_{2}-twisted representation, then a tensor product $L(1 / 2,1 / 16) \otimes \widetilde{X}$ has a structure of an untwisted $V^{\left\langle\tau_{e}\right\rangle}$-module and contains X as a submodule.

Theorem 2.7. Under Hypothesis 1, $V^{\left\langle\tau_{e}\right\rangle}$ has exactly four inequivalent irreducible modules, $V^{\left\langle\tau_{e}\right\rangle}, V_{e}(1 / 16), W^{0}:=L(1 / 2,0) \otimes T_{e}(1 / 2) \oplus L(1 / 2,1 / 2) \otimes T_{e}(0)$ and

$$
W^{1}:=V_{e}(1 / 16) \boxtimes_{V^{\{t e\rangle}} W^{0} .
$$

Their fusion rules are as follows:

$$
\begin{aligned}
V_{e}(1 / 16) \times V_{e}(1 / 16)=V^{\left\langle\tau_{e}\right\rangle}, & V_{e}(1 / 16) \times W^{0}=W^{1}, & V_{e}(1 / 16) \times W^{1}=W^{0}, \\
W^{0} \times W^{0}=V^{\left\langle\tau_{e}\right\rangle}, & W^{0} \times W^{1}=V_{e}(1 / 16), & W^{1} \times W^{1}=V^{\left\langle\tau_{e}\right\rangle} .
\end{aligned}
$$

Therefore, the fusion algebra for $V^{\left\langle\tau_{e}\right\rangle}$ is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
Proof. Since $V=V^{\left\langle\tau_{e}\right\rangle} \oplus V_{e}(1 / 16)$ is a \mathbb{Z}_{2}-graded simple current extension of $V^{\left\langle\tau_{e}\right\rangle}$, every irreducible $V^{\left\langle\tau_{e}\right\rangle}$-module is lifted to either an irreducible V-module or an irreducible $\tau_{e^{-}}$ twisted V-module by [Y1, Theorem 3.3]. Moreover, the τ_{e}-twisted V-module is unique up to isomorphism by [DLM, Theorem 10.3]. Since both $L(1 / 2,0) \oplus L(1 / 2,1 / 2)$ and $T_{e}(0) \oplus T_{e}(1 / 2)$ are simple SVOAs, the space $W^{0}=L(1 / 2,1 / 2) \otimes T_{e}(0) \oplus L(1 / 2,0) \otimes$ $T_{e}(1 / 2)$ has a unique structure of an irreducible $V^{\left\langle\tau_{e}\right\rangle}$-module. As the top weight of W^{0} is half-integral, the induced module

$$
W=W^{0} \oplus W^{1}, \quad W^{1}=V_{e}(1 / 16) \boxtimes_{V^{\left\langle\tau_{e}\right\rangle}} W^{0}
$$

becomes an irreducible τ_{e}-twisted V-module again by [Y1, Theorem 3.3]. It is clear from $V_{e}(1 / 16) \boxtimes_{V^{0}} W^{1}=W^{0}$ that W^{1} and $V_{e}(1 / 16)$ are inequivalent $V^{\left\langle\tau_{e}\right\rangle}$-modules. Therefore, $V^{\left\langle\tau_{e}\right\rangle}$ has exactly four irreducible modules as in the assertion. We remark that only $V^{\left\langle\tau_{e}\right\rangle}$, $V_{e}(1 / 16)$ and W^{1} have integral top weights.

Consider fusion rules for $V^{\left\langle\tau_{e}\right\rangle}$-modules. By [SY, Lemma 3.12], we have the fusion rule $W^{0} \times W^{0}=V^{\left\langle\tau_{e}\right\rangle}$. Then it follows from the forthcoming Lemma 3.5 that W^{0} is a simple current $V^{\left\langle\tau_{e}\right\rangle}$-module. Since $V_{e}(1 / 16)$ is also a simple current $V^{\left\langle\tau_{e}\right\rangle}$-module, so is $W^{1}=V_{e}(1 / 16) \boxtimes_{V^{\left(\tau_{e}\right)}} W^{0}$. By looking at the τ_{e}-twisted V-module structure on $W^{0} \oplus W^{1}$, we easily find the following fusion rules:

$$
V_{e}(1 / 16) \times V_{e}(1 / 16)=V^{\left\langle\tau_{e}\right\rangle}, \quad V_{e}(1 / 16) \times W^{0}=W^{1}, \quad V_{e}(1 / 16) \times W^{1}=W^{0} .
$$

Since V is holomorphic, V is self-dual. Hence $V^{\left\langle\tau_{e}\right\rangle}$ and $V_{e}(1 / 16)$ are self-dual $V^{\left\langle\tau_{e}\right\rangle_{-}}$ modules. Then by considering top weights we see that all irreducible $V^{\left\langle\tau_{e}\right\rangle}$-modules are self-dual. Then by the S_{3}-symmetry of fusion rules (cf. [FHL]), we have the desired fusion rules.

By the fusion rules for $L(1 / 2,0)$-modules, we note that W^{1} as a $\operatorname{Vir}(e)$-module is a direct sum of copies of $L(1 / 2,1 / 16)$. Set the space of highest weight vectors of W^{1} by $Q_{e}(1 / 16):=\left\{v \in W^{1} \mid L^{e}(0) v=(1 / 16) \cdot v\right\}$. Then as a $\operatorname{Vir}(e) \otimes T_{e}(0)$-module, $W^{1} \simeq L(1 / 2,1 / 16) \otimes Q_{e}(1 / 16)$. By Theorem 2.5 , the space $Q_{e}(1 / 16)$ naturally carries an irreducible \mathbb{Z}_{2}-twisted $T_{e}(0) \oplus T_{e}(1 / 2)$-module structure, which may depend on a choice of irreducible \mathbb{Z}_{2}-twisted $L(1 / 2,0) \oplus L(1 / 2,1 / 2)$-module structures on $L(1 / 2,1 / 16)$.

Proposition 2.8. If the \mathbb{Z}_{2}-twisted $T_{e}(0) \oplus T_{e}(1 / 2)$-module $T_{e}(1 / 16)$ is irreducible as a $T_{e}(0)$-module, then its \mathbb{Z}_{2}-conjugate is isomorphic to $Q_{e}(1 / 16)$ as a \mathbb{Z}_{2}-twisted $T_{e}(0) \oplus$ $T_{e}(1 / 2)$-module. In this case there are exactly three inequivalent irreducible $T_{e}(0)$ modules, $T_{e}(0), T_{e}(1 / 2)$ and $T_{e}(1 / 16)$. Conversely, if $T_{e}(1 / 16)$ as a $T_{e}(0)$-module is reducible, then so is $Q_{e}(1 / 16)$ and in this case there are exactly six inequivalent irreducible $T_{e}(0)$-modules.

Proof. Assume that $T_{e}(1 / 16)$ is irreducible as a $T_{e}(0)$-module. In this case there are exactly two inequivalent irreducible \mathbb{Z}_{2}-twisted $T_{e}(0) \oplus T_{e}(1 / 2)$-module structures on $T_{e}(1 / 16)$ by Theorem 2.5. Therefore, an irreducible \mathbb{Z}_{2}-twisted $T_{e}(0) \oplus T_{e}(1 / 2)$-module structure on $T_{e}(1 / 16)$ given in Theorem 2.2 and its \mathbb{Z}_{2}-conjugate are inequivalent. This implies that there are exactly two inequivalent irreducible untwisted $V^{\left\langle\tau_{e}\right\rangle}$-module structures on $L(1 / 2,1 / 16) \otimes T_{e}(1 / 16)$. Thus by the classification in Theorem $2.7, V_{e}(1 / 16)$ and W^{1} are isomorphic as $L(1 / 2,0) \otimes T_{e}(0)$-modules. By Lemma 2.6, every irreducible $T_{e}(0)-$ module appears in an irreducible $V^{\left\langle\tau_{e}\right\rangle}$-module as a submodule. Thus $T_{e}(0)$ has exactly three inequivalent irreducible modules as in the assertion.

Conversely, if $T_{e}(1 / 16)$ as a $T_{e}(0)$-module is reducible, then it is a direct sum of two inequivalent irreducible $T_{e}(0)$-module by Theorem 2.5 . In this case we note that $V_{e}(1 / 16)$ is a σ_{e}-stable $V^{\left\langle\tau_{e}\right\rangle}$-module, that is, the σ_{e}-conjugate $V_{e}(1 / 16)^{\sigma_{e}}$ of $V_{e}(1 / 16)$ is isomorphic to $V_{e}(1 / 16)$ itself as a $V^{\left\langle\tau_{e}\right\rangle}$-module. We note that $Q_{e}(1 / 16)$ is also a reducible $T_{e}(0)$ module. For, if $Q_{e}(1 / 16)$ is irreducible, then $T_{e}(1 / 16)$ and $Q_{e}(1 / 16)$ are in the relation of \mathbb{Z}_{2}-conjugate, and hence $T_{e}(1 / 16)$ is also irreducible, a contradiction. Thus $Q_{e}(1 / 16)$ is a direct sum of two inequivalent irreducible $T_{e}(0)$-submodule. If $T_{e}(1 / 16)$ and $Q_{e}(1 / 16)$ contain isomorphic irreducible $T_{e}(0)$-submodules, then $T_{e}(1 / 16)$ and $Q_{e}(1 / 16)$ are isomorphic irreducible \mathbb{Z}_{2}-twisted $T_{e}(0) \oplus T_{e}(1 / 2)$-modules by Theorem 2.5. This implies that $V_{e}(1 / 16)$ is isomorphic to W^{1} as a $V^{\left\langle\tau_{e}\right\rangle}$-module, which is a contradiction. Now the assertion follows from Lemma 2.6.

Corollary 2.9. If $T_{e}(1 / 16)$ is irreducible as a $T_{e}(0)$-module, then $V^{\left\langle\tau_{e}\right\rangle} \oplus W^{1}$ is a \mathbb{Z}_{2} graded simple current extension of $V^{\left\langle\tau_{e}\right\rangle}$ which is isomorphic to $V=V^{\left\langle\tau_{e}\right\rangle} \oplus V_{e}(1 / 16)$.

Proof. If $T_{e}(1 / 16)$ is an irreducible $T_{e}(0)$-module, then by the previous proposition the \mathbb{Z}_{2}-conjugate of $T_{e}(1 / 16)$ is isomorphic to $Q_{e}(1 / 16)$ as \mathbb{Z}_{2}-twisted $T_{e}(0) \oplus T_{e}(1 / 2)$ modules. Hence the σ_{e}-conjugate $V_{e}(0) \oplus V_{e}(1 / 2)$-module of $V_{e}(1 / 16)=L(1 / 2,1 / 16) \otimes$ $T_{e}(1 / 16)$ is isomorphic to $W^{1}=L(1 / 2,1 / 16) \otimes Q_{e}(1 / 16)$ and so $\sigma_{e} \in \operatorname{Aut}\left(V^{\left\langle\tau_{e}\right\rangle}\right)$ induces a VOA isomorphism between two extensions $V^{\left\langle\tau_{e}\right\rangle} \oplus V_{e}(1 / 16)$ and $V^{\left\langle\tau_{e}\right\rangle} \oplus W^{1}$ of $V^{\left\langle\tau_{e}\right\rangle}$.

Remark 2.10. The corollary above implies that the τ_{e}-twisted orbifold construction applied to V yields V itself again.

Theorem 2.11. Under Hypothesis 1,
(1) ψ_{2} is surjective, that is, $C_{\operatorname{Aut}\left(V^{\left\langle\tau_{e}\right\rangle}\right)}(e) \simeq\left\langle\sigma_{e}\right\rangle . \operatorname{Aut}\left(T_{e}(0)\right)$.
(2) $\operatorname{Aut}\left(T_{e}(0) \oplus T_{e}(1 / 2)\right) \simeq 2 .\left(C_{\operatorname{Aut}\left(V^{\left.\left(\tau_{e}\right\rangle\right)}\right)}(e) /\left\langle\sigma_{e}\right\rangle\right)$, where 2 denotes the canonical \mathbb{Z}_{2} symmetry on the SVOA $T_{e}(0) \oplus T_{e}(1 / 2)$.
(3) $\left|C_{\left.\left(\operatorname{Aut}\left(V V^{\langle\tau}\right\rangle\right)\right)}(e): C_{\operatorname{Aut}(V)}(e) /\left\langle\tau_{e}\right\rangle\right| \leqslant 2$.
(4) If $C_{\operatorname{Aut}(V)}(e) /\left\langle\tau_{e}\right\rangle$ is simple or has an odd order, then extensions in (1) and (2) split. That is, $C_{\operatorname{Aut}\left(V^{\left\langle\tau_{e}\right\rangle}\right)}(e) \simeq\left\langle\sigma_{e}\right\rangle \times C_{\operatorname{Aut}(V)}(e) /\left\langle\tau_{e}\right\rangle$ and $\operatorname{Aut}\left(T_{e}(0) \oplus T_{e}(1 / 2)\right) \simeq$ $2 \times \operatorname{Aut}\left(T_{e}(0)\right)$.

Proof. We have an injection from $C_{\operatorname{Aut}\left(V^{\left\{\tau_{e}\right\rangle}\right)}(e) /\left\langle\sigma_{e}\right\rangle$ to $\operatorname{Aut}\left(T_{e}(0)\right)$ by Lemma 2.4. We will show that every element in $\operatorname{Aut}\left(T_{e}(0)\right)$ has its preimage in $C_{\operatorname{Aut}\left(V^{\langle\tau e}\right)}(e)$. By Proposition 2.8, every irreducible $T_{e}(0)$-module is contained in one of $T_{e}(0), T_{e}(1 / 2), T_{e}(1 / 16)$ or $Q_{e}(1 / 16)$ as a submodule. In particular, we find that $T_{e}(0)$ is the only irreducible $T_{e}(0)$-module whose top weight is integral and $T_{e}(1 / 2)$ is the only irreducible $T_{e}(0)$ module whose top weight is in $1 / 2+\mathbb{N}$. Let $\rho \in \operatorname{Aut}\left(T_{e}(0)\right)$. Then by considering top weights we can immediately see that $T_{e}(0)^{\rho} \simeq T_{e}(0)$ and $T_{e}(1 / 2)^{\rho} \simeq T_{e}(1 / 2)$. Then by [Sh, Theorem 2.1] we have a lifting $\tilde{\rho} \in \operatorname{Aut}\left(T_{e}(0) \oplus T_{e}(1 / 2)\right)$ such that $\tilde{\rho} T_{e}(0)=T_{e}(0)$, $\tilde{\rho} T_{e}(1 / 2)=T_{e}(1 / 2)$ and $\left.\tilde{\rho}\right|_{T_{e}(0)}=\rho$. Since $\tilde{\rho}$ is uniquely determined up to the canonical \mathbb{Z}_{2}-symmetry on $T_{e}(0) \oplus T_{e}(1 / 2)$, we have $\operatorname{Aut}\left(T_{e}(0) \oplus T_{e}(1 / 2)\right) \simeq 2 \cdot \operatorname{Aut}\left(T_{e}(0)\right)$. Now we define $\tilde{\tilde{\rho}} \in C_{\operatorname{Aut}\left(V^{\left\{\tau_{e}\right)}\right)}(e)$ by

$$
\left.\tilde{\tilde{\rho}}\right|_{L(1 / 2, h) \otimes T_{e}(h)}=\operatorname{id}_{L(1 / 2, h)} \otimes \tilde{\rho}, \quad h=0,1 / 2 .
$$

Then by this lifting $C_{\operatorname{Aut}\left(V^{\left\langle\tau_{e}\right\rangle}\right)}(e)$ contains a subgroup isomorphic to $2 \cdot \operatorname{Aut}\left(T_{e}(0)\right)$. Moreover, the canonical \mathbb{Z}_{2}-symmetry on the SVOA $T_{e}(0) \oplus T_{e}(1 / 2)$ is naturally extended to $\sigma_{e} \in C_{\operatorname{Aut}\left(V^{\left\langle\tau_{e}\right\rangle}\right)}(e)$. Clearly $\psi_{2}(\tilde{\tilde{\rho}})=\rho$ and hence ψ_{2} is surjective. Therefore, we have the desired isomorphisms $C_{\mathrm{Aut}\left(V^{\left.\left\langle\tau_{e}\right\rangle\right)}\right.}(e) \simeq\left\langle\sigma_{e}\right\rangle \cdot \operatorname{Aut}\left(T_{e}(0)\right)$ and $\operatorname{Aut}\left(T_{e}(0) \oplus T_{e}(1 / 2)\right) \simeq$ 2. $\left(C_{\operatorname{Aut}\left(V^{\left(\tau_{e}\right)}\right)}(e) /\left\langle\sigma_{e}\right\rangle\right)$. This completes the proofs of (1) and (2).

Consider (3). By Theorem 2.7, there are exactly three irreducible $V^{\left\langle\tau_{e}\right\rangle}$-modules whose top weights are integral, namely, $V^{\left\langle\tau_{e}\right\rangle}, V_{e}(1 / 16)$ and W^{1}. Thus $C_{\text {Aut }\left(V^{\left\langle\tau_{e}\right\rangle}\right)}(e)$ acts on the 2-point set $\left\{V_{e}(1 / 16), W^{1}\right\}$ as a permutation and so there is a subgroup H of $C_{\operatorname{Aut}\left(V^{\left\{\tau_{e}\right\rangle}\right)}(e)$ with index at most 2 such that $V_{e}(1 / 16)^{\pi} \simeq V_{e}(1 / 16)$ as a $V^{\left\langle\tau_{e}\right\rangle}$-module for all $\pi \in H$. Then by [Sh, Theorem 2.1] there is a lifting $\tilde{\pi} \in C_{\text {Aut }(V)}(e)$ of π such that $\psi_{1}(\tilde{\pi})=\pi$ for each $\pi \in H$. Thus $\left|C_{\operatorname{Aut}\left(V^{\left.\left\langle\tau_{e}\right\rangle\right)}\right.}(e): C_{\operatorname{Aut}(V)}(e) /\left\langle\tau_{e}\right\rangle\right| \leqslant 2$ and (3) holds.

Consider (4). Suppose $C_{\operatorname{Aut}(V)}(e) /\left\langle\tau_{e}\right\rangle$ is either simple or odd. By (3), $C_{\operatorname{Aut}\left(V^{\langle\tau} \tau_{e}\right)}(e)$ contains a subgroup isomorphic to $C_{\operatorname{Aut}(V)}(e) /\left\langle\tau_{e}\right\rangle$ with index at most 2 . Since $\left\langle\sigma_{e}\right\rangle$ is a normal subgroup of $C_{\operatorname{Aut}\left(V^{\langle\tau e}\right)}(e)$ of order 2, the index $\left|C_{\operatorname{Aut}\left(V^{\langle\tau e}\right)}(e): C_{\operatorname{Aut}(V)}(e) /\left\langle\tau_{e}\right\rangle\right|$ must be 2 by the assumption and hence we obtain the desired isomorphism $C_{\operatorname{Aut}\left(V^{(\tau e)}\right)}(e) \simeq$ $\left\langle\sigma_{e}\right\rangle \times C_{\operatorname{Aut}(V)}(e) /\left\langle\tau_{e}\right\rangle$. In this case, it is easy to see that the extension $\operatorname{Aut}\left(T_{e}(0) \oplus\right.$ $\left.T_{e}(1 / 2)\right)=2 \cdot \operatorname{Aut}\left(T_{e}(0)\right)$ splits.

Corollary 2.12. If $C_{\operatorname{Aut}(V)}(e) /\left\langle\tau_{e}\right\rangle$ is simple, then $V_{e}(1 / 16)$ is an irreducible $V_{e}(0)-$ module and $T_{e}(1 / 16)$ is an irreducible $T_{e}(0)$-module. Therefore, $V=V^{\left\langle\tau_{e}\right\rangle} \oplus V_{e}(1 / 16)$ and $V^{\left\langle\tau_{e}\right\rangle} \oplus W^{1}$ are equivalent extensions of $V^{\left\langle\tau_{e}\right\rangle}$.

Proof. Let H be the subgroup of $C_{\mathrm{Aut}\left(V^{\{\tau e}\right)}(e)$ which fixes $V_{e}(1 / 16)$ in the action on the 2-point set $\left\{V_{e}(1 / 16), W^{1}\right\}$. It is shown in the proof of (3) of Theorem 2.11 that we have inclusions

$$
H \leqslant C_{\mathrm{Aut}(V)}(e) /\left\langle\tau_{e}\right\rangle \lesseqgtr C_{\mathrm{Aut}\left(V\left(\tau_{e}\right)\right\rangle}(e)=\left\langle\sigma_{e}\right\rangle \times C_{\mathrm{Aut}(V)}(e) /\left\langle\tau_{e}\right\rangle
$$

Therefore, $\sigma_{e} \notin H$ and hence the σ_{e} permutes $V_{e}(1 / 16)$ and W^{1}. Then $V_{e}(1 / 16)$ is an irreducible $V_{e}(0)$-module by Proposition 2.8 and hence $T_{e}(1 / 16)$ as a $T_{e}(0)$-module is irreducible. The rest of the assertion follows from Corollary 2.9.

3. 2A-framed VOA

In this section we consider VOAs with unitary Virasoro frames. For convention, we introduce the following notion:

Definition 3.1. A simple vertex operator algebra (V, ω) is called $2 A$-framed if there is an orthogonal decomposition $\omega=e^{1}+\cdots+e^{n}$ such that each e^{i} generates a sub VOA isomorphic to $L(1 / 2,0)$. The decomposition $\omega=e^{1}+\cdots+e^{n}$ is called a 2A-frame of V.

Remark 3.2. Any 2A-framed VOA is rational and C_{2}-cofinite (cf. [DGH,Z]).

3.1. Structure codes

For a 2A-framed VOA, we can associate two linear binary codes in the following way (cf. [M2,DGH]). Let (V, ω) be a 2A-framed VOA with a 2A-frame $\omega=e^{1}+\cdots+e^{n}$. Set $F:=\operatorname{Vir}\left(e^{1}\right) \otimes \cdots \otimes \operatorname{Vir}\left(e^{n}\right)$. Then $F \simeq L(1 / 2,0)^{\otimes n}$ and V is a direct sum of irreducible F-submodules $L\left(1 / 2, h_{1}\right) \otimes \cdots \otimes L\left(1 / 2, h_{n}\right), h_{i} \in\{0,1 / 2,1 / 16\}$. Assign to an irreducible F-module $\bigotimes_{i=1}^{n} L\left(1 / 2, h_{i}\right)$ its $1 / 16$-word $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{2}^{n}$ by $\alpha_{i}=1$ if and only if $h_{i}=$ $1 / 16$. For each $\alpha \in \mathbb{Z}_{2}^{n}$, denote by V^{α} the sum of all irreducible F-submodules whose $1 / 16$-words are equal to α and define a linear code $S \subset \mathbb{Z}_{2}^{n}$ by $S=\left\{\alpha \in \mathbb{Z}_{2}^{n} \mid V^{\alpha} \neq 0\right\}$. Then we have the $1 / 16$-word decomposition $V=\bigoplus_{\alpha \in S} V^{\alpha}$. By the fusion rules for $L(1 / 2,0)$ modules, we have an S-graded structure $V^{\alpha} \cdot V^{\beta} \subset V^{\alpha+\beta}$. Namely, the dual group S^{*} of an abelian 2-group S acts on V, and we find that this automorphism group coincides with the elementary abelian 2-group generated by Miyamoto involutions $\left\{\tau_{e^{i}} \mid 1 \leqslant i \leqslant n\right\}$. Therefore, all $V^{\alpha}, \alpha \in S$, are inequivalent irreducible $V^{S^{*}}=V^{0}$-modules by [DM].

Since there is no $L(1 / 2,1 / 16)$-component in V^{0}, the fixed point subalgebra $V^{S^{*}}=V^{0}$ is of the following form:

$$
V^{0}=\bigoplus_{h_{i} \in\{0,1 / 2\}} m_{h_{1}, \ldots, h_{n}} L\left(1 / 2, h_{1}\right) \otimes \cdots \otimes L\left(1 / 2, h_{n}\right),
$$

where $m_{h_{1}, \ldots, h_{n}}$ denotes the multiplicity. On V^{0} we can define σ-type Miyamoto involutions $\sigma_{e^{i}}$ for $i=1, \ldots, n$. Denote by I the elementary abelian 2 -subgroup of $\operatorname{Aut}\left(V^{0}\right)$ generated by $\left\{\sigma_{e^{i}} \mid 1 \leqslant i \leqslant n\right\}$. Then we have $\left(V^{0}\right)^{I}=F$ and each $m_{h_{1}, \ldots, h_{n}} L\left(1 / 2, h_{1}\right) \otimes$ $\cdots \otimes L\left(1 / 2, h_{n}\right)$ is an irreducible F-submodule by [DM]. Thus $m_{h_{1}, \ldots, h_{n}} \in\{0,1\}$ and we obtain an even linear code $D:=\left\{\left(2 h_{1}, \ldots, 2 h_{n}\right) \in \mathbb{Z}_{2}^{n} \mid m_{h_{1}, \ldots, h_{n}} \neq 0\right\}$ such that

$$
\begin{equation*}
V^{0}=\bigoplus_{\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in D} L\left(1 / 2, \alpha_{1} / 2\right) \otimes \cdots \otimes L\left(1 / 2, \alpha_{n} / 2\right) . \tag{3.1}
\end{equation*}
$$

The VOA V^{0} is a D-graded simple current extension of F and is refereed to as a code VOA associated to code D. We call a pair (D, S) the structure codes of a 2A-framed VOA V. Since powers of z in an $L(1 / 2,0)$-intertwining operator of type $L(1 / 2,1 / 2) \times$ $L(1 / 2,1 / 2) \rightarrow L(1 / 2,1 / 16)$ are half-integral, structure codes satisfy $D \subset S^{\perp}$.

3.2. Construction of $2 A$-framed VOA

In this subsection we recall Miyamoto's construction of 2A-framed VOAs in [M3]. Here we assume the following:

Hypothesis 2.

(1) (D, S) is a pair of even linear even codes of \mathbb{Z}_{2}^{n} such that
(1-i) $D \subset S^{\perp}$,
(1-ii) for each $\alpha \in S$, there is a subcode $E^{\alpha} \subset D$ such that E^{α} is a direct sum of the $[8,4,4]$ Hamming code H_{8} and $\operatorname{Supp}\left(E^{\alpha}\right)=\operatorname{Supp}(\alpha)$, where $\operatorname{Supp}(A)$ denotes $\bigcup_{\beta \in A} \operatorname{Supp}(\beta)$ for a subset A of \mathbb{Z}_{2}^{n}.
(2) V^{0} is the code VOA associated to the code D.
(3) $\left\{V^{\alpha} \mid \alpha \in S\right\}$ is a set of irreducible V^{0}-modules such that
(3-i) the $1 / 16$-word of V^{α} is equal to α for all $\alpha \in S$,
(3-ii) all $V^{\alpha}, \alpha \in S$, have integral top weights,
(3-iii) the fusion product $V^{\alpha} \boxtimes_{V^{0}} V^{\beta}$ contains at least one $V^{\alpha+\beta}$. That is, there is a non-trivial V^{0}-intertwining operator of type $V^{\alpha} \times V^{\beta} \rightarrow V^{\alpha+\beta}$ for any $\alpha, \beta \in S$.

Theorem 3.3 [M3,Y2].
(1) Under the condition (1) of Hypothesis 2, all $V^{\alpha}, \alpha \in D$, are simple current V^{0} modules.
(2) Under Hypothesis 2, the space $V=\bigoplus_{\alpha \in S} V^{\alpha}$ carries a unique structure of a simple $V O A$ as an S-graded simple current extension of V^{0}.

Remark 3.4. In [M3], Miyamoto assumed stronger conditions than those in Hypothesis 2. In particular, he assumed that the structure codes (D, S) are of length $8 k$ for some positive integer k. A refinement in [Y2] enables us to construct 2A-framed VOAs with structure codes of any length as long as Hypothesis 2 is satisfied.

3.3. Superalgebras associated to $2 A$-framed VOA

Let V be a 2A-framed VOA with structure codes (D, S). We assume that the pair (D, S) satisfies the condition (1-ii) of Hypothesis 2 and $D=S^{\perp}$. Then V is holomorphic by [M4,DGH]. Let $\omega=e^{1}+\cdots+e^{n}$ be the 2A-frame of V. We consider the commutant subalgebra of $\operatorname{Vir}\left(e^{1}\right)$. For simplicity, we set $e=e^{1}$. Assume that $\{1\} \cap \operatorname{Supp}(S) \neq \emptyset$. Then by the condition (1-ii) of Hypothesis 2 , we have $V_{e}(1 / 2) \neq 0$. Let $V=\bigoplus_{\alpha \in S} V^{\alpha}$ be the $1 / 16$-word decomposition according to the structure codes (D, S). Set $S^{0}=\{\alpha \in S \mid\{1\} \cap$ $\operatorname{Supp}(\alpha)=\emptyset\}$ and $S^{1}=\{\alpha \in S \mid\{1\} \cap \operatorname{Supp}(\alpha)=\{1\}\}$. Then $S=S^{0} \sqcup S^{1}$ (disjoint union) and we have a \mathbb{Z}_{2}-grading $V=\left(\bigoplus_{\alpha \in S^{0}} V^{\alpha}\right) \oplus\left(\bigoplus_{\beta \in S^{1}} V^{\beta}\right)$ such that $V_{e}(0) \oplus V_{e}(1 / 2)=$ $\bigoplus_{\alpha \in S^{0}} V^{\alpha}$ and $V_{e}(1 / 16)=\bigoplus_{\beta \in S^{1}} V^{\beta}$. We shall prove that $V_{e}(1 / 16)$ is a simple current $V^{\left\langle\tau_{e}\right\rangle}$-module. We quote the following simple lemma from [Y2]:

Lemma 3.5 [Y2]. Let V be a simple rational C_{2}-cofinite VOA of CFT-type. If two V-modules M^{1} and M^{2} satisfy $M^{1} \times M^{2}=V$ in the fusion algebra, then both M^{1} and M^{2} are simple current V-modules. In particular, if V is self-dual, then the set of all the simple current V-modules form a finite abelian group in the fusion algebra.

Lemma 3.6. $V_{e}(1 / 16)$ is a simple current $V^{\left\langle\tau_{e}\right\rangle}$-module.
Proof. By Lemma 3.5, it suffices to show that $V_{e}(1 / 16) \boxtimes_{V^{\left\langle\tau_{e}\right\rangle}} V_{e}(1 / 16)=V^{\left\langle\tau_{e}\right\rangle}$. Let M be an irreducible $V^{\left\langle\tau_{e}\right\rangle}$-submodule of $V_{e}(1 / 16) \boxtimes_{V^{\left(\tau_{e}\right\rangle}} V_{e}(1 / 16)$. Since $V^{\alpha} \boxtimes_{V^{0}} V^{\alpha}=V^{0}$ for any $\alpha \in S$ by (1) of Theorem 3.3, M contains V^{0} as a V^{0}-submodule. Thus M contains a non-zero vacuum-like vector and hence M is isomorphic to $V^{\left\langle\tau_{e}\right\rangle}$ as a $V^{\left\langle\tau_{e}\right\rangle}$-module by [Li3]. Therefore, we have $V_{e}(1 / 16) \times V_{e}(1 / 16)=n V^{\left\langle\tau_{e}\right\rangle}$ for some $n \in \mathbb{N}$. As V is holomorphic, both $V^{\left\langle\tau_{e}\right\rangle}$ and $V_{e}(1 / 16)$ are self-dual $V^{\left\langle\tau_{e}\right\rangle}$-modules. Now by using the S_{3} symmetry of fusion rules, we obtain the desired fusion rule $V_{e}(1 / 16) \times V_{e}(1 / 16)=V^{\left\langle\tau_{e}\right\rangle}$ from the canonical fusion rule $V^{\left\langle\tau_{e}\right\rangle} \times V_{e}(1 / 16)=V_{e}(1 / 16)$.

Write $V_{e}(h)=L(1 / 2, h) \otimes T_{e}(h)$ for $h=0,1 / 2,1 / 16$ as we did before. By Theorem 2.2, $T_{e}(0) \oplus T_{e}(1 / 2)$ forms a simple SVOA. The Virasoro vector of $T_{e}(0)$ is given by $\omega-e^{1}=e^{2}+\cdots+e^{n}$ and so $T_{e}(0)$ is a 2 A -framed VOA. We compute the structure codes of $T_{e}(0)$. Define $\phi_{\varepsilon}: \mathbb{Z}_{2}^{n-1} \hookrightarrow \mathbb{Z}_{2}^{n}$ by $\mathbb{Z}_{2}^{n-1} \ni \alpha \mapsto(\varepsilon, \alpha) \in \mathbb{Z}_{2}^{n}$ for $\varepsilon=0$, 1 , and set

$$
D^{\varepsilon}:=\left\{\alpha \in \mathbb{Z}_{2}^{n-1} \mid \phi_{\varepsilon}(\alpha) \in D\right\}, \quad \varepsilon=0,1, \quad S^{0,0}:=\left\{\beta \in \mathbb{Z}_{2}^{n-1} \mid \phi_{0}(\beta) \in S^{0}\right\}
$$

Proposition 3.7.

(1) The structure codes of $T_{e}(0)$ with respect to the $2 A$-frame $e^{2}+\cdots+e^{n}$ are $\left(D^{0}, S^{0,0}\right)$.
(2) $T_{e}(1 / 2)$ has the $1 / 16$-word decomposition $T_{e}(1 / 2)=\bigoplus_{\alpha \in S^{0,0}} T_{e}(1 / 2)^{\alpha}$.

Proof. For $\alpha \in S^{0}$, define $V^{\alpha, \varepsilon}$ to be the sum of all irreducible $\bigotimes_{i=1}^{n} \operatorname{Vir}\left(e^{i}\right)$-submodules of V^{α} whose $\operatorname{Vir}\left(e^{1}\right)$-components are isomorphic to $L(1 / 2, \varepsilon / 2)$ for $\varepsilon=0$, 1 . By (1-ii) of Hypothesis $2, V^{\alpha, \varepsilon} \neq 0$ for all $\alpha \in S^{0}$ and $\varepsilon=0,1$. Therefore, $V^{\alpha}=V^{\alpha, 0} \oplus V^{\alpha, 1}$ and we obtain the $1 / 16$-word decompositions $V_{e}(0)=\bigoplus_{\alpha \in S^{0}} V^{\alpha, 0}$ and $V_{e}(1 / 2)=\bigoplus_{\alpha \in S^{0}} V^{\alpha, 1}$. Since $D=\phi_{0}\left(D^{0}\right) \sqcup \phi_{1}\left(D^{1}\right), V^{0,0}$ is isomorphic to $\operatorname{Vir}\left(e^{1}\right) \otimes U_{D^{0}}$, where $U_{D^{0}}$ denotes the code VOA associated to the even code D^{0}. Thus $T_{e}(0)$ has the $1 / 16$-word decomposition $T_{e}(0)=\bigoplus_{\alpha \in S^{0,0}} T_{e}(0)^{\alpha}$ such that $T_{e}(0)^{0} \simeq U_{D^{0}}$. Hence the structure codes of $T_{e}(0)$ are ($D^{0}, S^{0,0}$). The proof of (2) is similar.

The following is easy to see:
Lemma 3.8. If the structure codes (D, S) satisfy the condition (1) of Hypothesis 2 , then so do $\left(D^{0}, S^{0,0}\right)$.

Thus $T_{e}(0)=\bigoplus_{\alpha \in S^{0,0}} T_{e}(0)^{\alpha}$ is an $S^{0,0}$-graded simple current extension of $T_{e}(0)^{0}$ by (1) of Theorem 3.3. In addition, by using (2) of Theorem 3.3, we can reconstruct $T_{e}(0)$ without reference to V.

Proposition 3.9. $T_{e}(1 / 2)$ is a simple current $T_{e}(0)$-module.
Proof. It suffices to show that $T_{e}(1 / 2) \boxtimes_{T_{e}(0)} T_{e}(1 / 2)=T_{e}(0)$ by Lemma 3.5. Let M be an irreducible $T_{e}(0)$-submodule of $T_{e}(1 / 2) \boxtimes_{T_{e}(0)} T_{e}(1 / 2)$. Since $T_{e}(1 / 2)$ has a $1 / 16$-word decomposition $T_{e}(1 / 2)=\bigoplus_{\alpha \in S^{0,0}} T_{e}(1 / 2)^{\alpha}$ by Proposition 3.7, $T_{e}(1 / 2)^{0}$ as a $\bigotimes_{i=2}^{n} \operatorname{Vir}\left(e^{i}\right)$ module is isomorphic to

$$
\bigoplus_{\beta=\left(\beta_{2}, \ldots, \beta_{n}\right) \in D^{1}} L\left(1 / 2, \beta_{2} / 2\right) \otimes \cdots \otimes L\left(1 / 2, \beta_{n} / 2\right)
$$

Therefore, by the fusion rules of $L(1 / 2,0), M$ contains $L(1 / 2,0)^{\otimes n-1}$ as a $\bigotimes_{i=2}^{n} \operatorname{Vir}\left(e^{i}\right)$ submodule. So M contains a non-trivial vacuum-like vector and hence M is isomorphic to $T_{e}(0)$ as a $T_{e}(0)$-module by [Li3]. Therefore, there exists an $n \in \mathbb{N}$ such that $T_{e}(1 / 2) \times T_{e}(1 / 2)=n T_{e}(0)$. Since V is holomorphic, both $T_{e}(0)$ and $T_{e}(1 / 2)$ are self-dual $T_{e}(0)$-modules. So by the S_{3}-symmetry of fusion rules, we obtain the desired fusion rule $T_{e}(1 / 2) \times T_{e}(1 / 2)=T_{e}(0)$ from the canonical fusion rule $T_{e}(0) \times T_{e}(1 / 2)=T_{e}(1 / 2)$.

To summarize, we obtain:
Proposition 3.10. Let V be a $2 A$-framed VOA with a $2 A$-frame $\omega=e^{1}+\cdots+e^{n}$ and its associated structure codes (D, S). Suppose that the pair (D, S) satisfies the condition (1-ii) of Hypothesis $2, D=S^{\perp}$ and $V_{e^{1}}(1 / 16) \neq 0$. Then V and e^{1} satisfy Hypothesis 1 .

4. The baby-monster SVOA

Let $\left(V^{\natural}, \omega^{\natural}\right)$ be the moonshine VOA constructed in [FLM]. The full automorphism group of V^{\natural} is the Monster \mathbb{M}, the largest sporadic finite simple group. We apply our results to V^{\natural} and study the baby-monster SVOA. As shown in [DMZ], V^{\natural} has a 2A-frame $\omega^{\natural}=e^{1}+\cdots+e^{48}$, and one of its structure codes are determined in [DGH,M4].

Theorem 4.1 [DGH,M4]. The moonshine VOA V^{\natural} has a $2 A$-frame such that its associated structure codes ($D^{\natural}, S^{\natural}$) are as follows:

$$
S^{\natural}:=\operatorname{Span}_{\mathbb{Z}_{2}}\left\{(\alpha, \alpha, \alpha),\left(1^{16} 0^{32}\right),\left(0^{32} 1^{16}\right) \in \mathbb{Z}_{2}^{48} \mid \alpha \in \operatorname{RM}(1,4)\right\}, \quad D^{\natural}:=\left(S^{\natural}\right)^{\perp},
$$

where $\mathrm{RM}(1,4)$ is a Reed-Müller code defined as follows:

$$
\operatorname{RM}(1,4):=\operatorname{Span}_{\mathbb{Z}_{2}}\left\{\left(1^{16}\right),\left(1^{8} 0^{8}\right),\left(1^{4} 0^{4} 1^{4} 0^{4}\right),\left(\{1100\}^{4}\right),\left(\{10\}^{8}\right)\right\}<\mathbb{Z}_{2}^{16}
$$

Lemma 4.2. For any conformal vector e of V^{\natural} with central charge $1 / 2, V^{\natural}$ and e satisfy Hypothesis 1.

Proof. It is shown in [C] and [M1] that all the conformal vectors with central charge $1 / 2$ are conjugate under the Monster $\mathbb{M}=\operatorname{Aut}\left(V^{\natural}\right)$. Thus we may assume that $e=e^{1}$. Since
$\{1\} \subset \operatorname{Supp}\left(S^{\natural}\right), V_{e^{1}}(1 / 16) \neq 0$. It is easy to verify that the structure codes $\left(D^{\natural}, S^{\natural}\right)$ satisfy (1-ii) of Hypothesis 2. Therefore, V^{\natural} and e^{1} satisfy Hypothesis 1 by Proposition 3.10.

Now set $e=e^{1}$ and consider the commutant subalgebra $T_{e}^{\natural}(0)$ of $\operatorname{Vir}(e)$ in V^{\natural}. By the lemma above, we have the following decomposition:

$$
V^{\natural}=L(1 / 2,0) \otimes T_{e}^{\natural}(0) \oplus L(1 / 2,1 / 2) \otimes T_{e}^{\natural}(1 / 2) \oplus L(1 / 2,1 / 16) \otimes T_{e}^{\natural}(1 / 16)
$$

with $T_{e}^{\natural}(h) \neq 0$ for $h=0,1 / 2,1 / 16$. By Theorem 2.2, we know that $T_{e}^{\natural}(0) \oplus T_{e}^{\natural}(1 / 2)$ forms a simple SVOA and $T_{e}^{\natural}(1 / 16)$ is an irreducible \mathbb{Z}_{2}-twisted $T_{e}^{\natural}(0) \oplus T_{e}^{\natural}(1 / 2)$-module. Moreover, the algebraic structures on $T_{e}^{\natural}(0) \oplus T_{e}^{\natural}(1 / 2)$ and $T_{e}^{\natural}(1 / 16)$ are independent of choice of a conformal vector $e=e^{1} \in V^{\natural}$ because all the conformal vectors with central charge $1 / 2$ are conjugate under $\mathbb{M}=\operatorname{Aut}\left(V^{\natural}\right)$.

Lemma 4.3. $C_{\operatorname{Aut}\left(V^{\natural}\right)}(e) /\left\langle\tau_{e}\right\rangle$ is the baby-monster sporadic finite simple group \mathbb{B}.
Proof. It is shown in [C] and [M1] that the map $e \mapsto \tau_{e}$ defines a one-to-one correspondence between conformal vectors in V^{\natural} with central charge $1 / 2$ and involutions of 2A-conjugacy class of \mathbb{M}. Therefore, $C_{\operatorname{Aut}\left(V^{\natural}\right)}(e)=C_{\operatorname{Aut}\left(V^{\natural}\right)}\left(\tau_{e}\right)$. We know that $C_{\mathbb{M}}\left(\tau_{e}\right)$ is isomorphic to a 2 -fold central extension $\left\langle\tau_{e}\right\rangle \cdot \mathbb{B}$ of the baby-monster simple group \mathbb{B} (cf. [ATLAS]). So the assertion holds.

By the lemma above, the commutant subalgebra $T_{e}^{\natural}(0)$ affords an action of \mathbb{B}. We set $V B^{0}:=T_{e}^{\natural}(0), V B^{1}:=T_{e}(1 / 2)$ and $V B:=T_{e}^{\natural}(0) \oplus T_{e}^{\natural}(1 / 2)$ and we call $V B$ the babymonster vertex operator superalgebra. We also set $V B_{T}:=T_{e}^{\natural}(1 / 16)$ for convention. Now we state our main result which gives a new proof of [Hö2].

Theorem 4.4.

(1) $\operatorname{Aut}\left(V B^{0}\right) \simeq \mathbb{B}$ and $\operatorname{Aut}(V B) \simeq 2 \times \mathbb{B}$.
(2) $V B_{T}$ as a $V B^{0}$-module is irreducible. Thus, there are exactly three irreducible $V B^{0}{ }^{-}$ modules, $V B^{0}, V B^{1}$ and $V B_{T}$.
(3) The fusion rules for irreducible $V B^{0}$-modules are as follows:

$$
V B^{1} \times V B^{1}=V B^{0}, \quad V B^{1} \times V B_{T}=V B_{T}, \quad V B_{T} \times V B_{T}=V B^{0}+V B^{1}
$$

Proof. (1) follows from Theorem 2.11 and Lemma 4.3. By Corollary 2.12, $V B_{T}$ as a $V B^{0}$-module is irreducible. Then (2) follows from Proposition 2.8. Consider (3). We only have to show the fusion rule $V B_{T} \times V B_{T}=V B^{0}+V B^{1}$. By considering the $1 / 16$-word decomposition of $V B_{T}$, we have $V B_{T} \times V B_{T}=n_{0} V B^{0}+n_{1} V B^{1}$ for some $n_{0}, n_{1} \in \mathbb{N}$. Since top weights of $V B^{0}, V B^{1}$ and $V B_{T}$ are distinct, every irreducible $V B^{0}$-module is self-dual. Then by the S_{3}-symmetry of fusion rules we obtain the desired fusion rule.

The classification of irreducible $V B^{0}$-modules has interesting corollaries.

Corollary 4.5. The irreducible $2 A$-twisted V^{\natural}-module as an $L(1 / 2,0) \otimes V B^{0}$-module has a shape

$$
L(1 / 2,1 / 2) \otimes V B^{0} \oplus L(1 / 2,0) \otimes V B^{1} \oplus L(1 / 2,1 / 16) \otimes V B_{T}
$$

Proof. Follows from Theorems 4.4, 2.7 and Proposition 2.8.
Remark 4.6. A straightforward construction of the 2A-twisted and 2B-twisted V^{\natural}-modules is already obtained by Lam [L].

Corollary 4.7. For any conformal vector $e \in V^{\natural}$ with central charge $1 / 2$, there is no automorphism ρ on V^{\natural} such that $\rho\left(V_{e}^{\natural}(h)\right)=V_{e}^{\natural}(h)$ for $h=0,1 / 2$ and $\left.\rho\right|_{\left(V^{\natural}\right)}\left\langle\tau_{e}\right\rangle=\sigma_{e}$.

Proof. Suppose such an automorphism ρ exists. We remark that ρ also preserves the space $V_{e}^{\natural}(1 / 16)$ as $\rho \in C_{\mathrm{Aut}\left(V^{\natural}\right)}(e)$. We view $V_{e}^{\natural}(1 / 16)$ as a $\left(V^{\natural}\right)^{\left\langle\tau_{e}\right\rangle}$-module by a restriction of the vertex operator map $Y_{V^{\natural}}(\cdot, z)$ on V^{\natural}. Consider the σ_{e}-conjugate $\left(V^{\natural}\right)^{\left\langle\tau_{e}\right\rangle}-$ module $V_{e}^{\natural}(1 / 16)^{\sigma_{e}}$. By Theorem 4.4 and Proposition 2.8, $V_{e}^{\natural}(1 / 16)^{\sigma_{e}}$ is not isomorphic to $V_{e}^{\natural}(1 / 16)$ as a $\left(V^{\natural}\right)^{\left\langle\tau_{e}\right\rangle}$-module. On the other hand, we can take a canonical linear isomorphism $\varphi: V_{e}^{\natural}(1 / 16) \rightarrow V_{e}^{\natural}(1 / 16)^{\sigma_{e}}$ such that $Y_{V_{e}^{\natural}(1 / 16)^{\sigma_{e}}}(a, z) \varphi v=\varphi Y_{V^{\natural}}\left(\sigma_{e} a, z\right) v$ for any $a \in\left(V^{\natural}\right)^{\left\langle\tau_{e}\right\rangle}$ and $v \in V_{e}^{\natural}(1 / 16)$ by definition of the conjugate module. Then we have

$$
Y_{V_{e}^{\natural}(1 / 16)^{\sigma_{e}}}(a, z) \varphi \rho v=\varphi Y_{V^{\sharp}}\left(\sigma_{e} a, z\right) \rho v=\varphi Y_{V^{\natural}}(\rho a, z) \rho v=\varphi \rho Y_{V^{\natural}}(a, z) v
$$

for any $a \in\left(V^{\natural}\right)^{\left\langle\tau_{e}\right\rangle}$ and $v \in V_{e}^{\natural}(1 / 16)$. Thus $\varphi \rho$ defines a $\left(V^{\natural}\right)^{\left\langle\tau_{e}\right\rangle}$-isomorphism between $V_{e}^{\natural}(1 / 16)$ and $V_{e}^{\natural}(1 / 16)^{\sigma_{e}}$, which is a contradiction.

Corollary 4.8. The $2 A$-orbifold construction applied to the moonshine VOA V^{\natural} yields V^{\natural} itself again.

Proof. Follows from Theorem 4.4 and Corollary 2.12.
Remark 4.9. The statement in the corollary above was conjectured by Tuite [Tu]. In [Tu], Tuite has shown that any \mathbb{Z}_{p}-orbifold construction of V^{\natural} yields either the moonshine VOA V^{\natural} or the Leech lattice VOA V_{Λ} under the uniqueness conjecture of the moonshine VOA which states that V^{\natural} constructed by Frenkel et al. [FLM] is the unique holomorphic VOA with central charge 24 whose weight one subspace is trivial.

Finally, we end this paper by presenting the modular transformations of characters of $V B^{0}$-modules. Here the character means the conformal character, not the q-dimension, of modules. Recall the characters of $L(1 / 2,0)$-modules. By an explicit construction of $L(1 / 2,0)$-modules in Section 2.1 (cf. [FFR]), one can easily prove the following:

$$
\operatorname{ch}_{L(1 / 2,0)}(\tau)=\frac{1}{2} q^{-1 / 48}\left\{\prod_{n=0}^{\infty}\left(1+q^{n+1 / 2}\right)+\prod_{n=0}^{\infty}\left(1-q^{n+1 / 2}\right)\right\}
$$

$$
\begin{aligned}
& \operatorname{ch}_{L(1 / 2,1 / 2)}(\tau)=\frac{1}{2} q^{-1 / 48}\left\{\prod_{n=0}^{\infty}\left(1+q^{n+1 / 2}\right)-\prod_{n=0}^{\infty}\left(1-q^{n+1 / 2}\right)\right\} \\
& \operatorname{ch}_{L(1 / 2,1 / 16)}(\tau)=q^{-1 / 24} \prod_{n=1}^{\infty}\left(1+q^{n}\right)
\end{aligned}
$$

The following modular transformations are well known:

$$
\begin{aligned}
& \operatorname{ch}_{L(1 / 2,0)}(-1 / \tau)=\frac{1}{2} \operatorname{ch}_{L(1 / 2,0)}(\tau)+\frac{1}{2} \operatorname{ch}_{L(1 / 2,1 / 2)}(\tau)+\frac{1}{\sqrt{2}} \operatorname{ch}_{L(1 / 2,1 / 16)}(\tau) \\
& \operatorname{ch}_{L(1 / 2,1 / 2)}(-1 / \tau)=\frac{1}{2} \operatorname{ch}_{L(1 / 2,0)}(\tau)+\frac{1}{2} \operatorname{ch}_{L(1 / 2,1 / 2)}(\tau)-\frac{1}{\sqrt{2}} \operatorname{ch}_{L(1 / 2,1 / 16)}(\tau) \\
& \operatorname{ch}_{L(1 / 2,1 / 16)}(-1 / \tau)=\frac{1}{\sqrt{2}} \operatorname{ch}_{L(1 / 2,0)}(\tau)-\frac{1}{\sqrt{2}} \operatorname{ch}_{L(1 / 2,1 / 2)}(\tau)
\end{aligned}
$$

Set $j(\tau):=J(\tau)-744$, where $J(\tau)$ is the famous $\mathrm{SL}_{2}(\mathbb{Z})$-invariant. Since $\mathrm{ch}_{V^{\natural}}(\tau)=j(\tau)$ and

$$
\operatorname{ch}_{V^{\natural}}(\tau)=\operatorname{ch}_{L(1 / 2,0)}(\tau) \operatorname{ch}_{V B^{0}}(\tau)+\operatorname{ch}_{L(1 / 2,1 / 2)}(\tau) \operatorname{ch}_{V B^{1}}(\tau)+\operatorname{ch}_{L(1 / 2,1 / 16)}(\tau) \operatorname{ch}_{V B_{T}}(\tau),
$$

we can write down the characters of irreducible $V B^{0}$-modules by using those of V^{\natural} and $L(1 / 2,0)$-modules. This computation is already done in [Ma] by using Matsuo-Norton trace formula. The results are written as a rational expression involving the functions $j(\tau)$, $\mathrm{ch}_{L(1 / 2, h)}(\tau), h=0,1 / 2,1 / 16$, their first and second derivatives and the Eisenstein series $E_{2}(\tau)$ and $E_{4}(\tau)$, see [Ma].

By Zhu's theorem [Z], the linear space spanned by $\left\{\mathrm{ch}_{V B^{0}}(\tau), \mathrm{ch}_{V B^{1}}(\tau), \mathrm{ch}_{V B_{T}}(\tau)\right\}$ affords an $\mathrm{SL}_{2}(\mathbb{Z})$-action. Using the modular transformations for $j(\tau)$ and $\mathrm{ch}_{L(1 / 2, h)}(\tau)$, $h=0,1 / 2,1 / 16$, we can show the following modular transformations:

$$
\begin{aligned}
& \operatorname{ch}_{V B^{0}}(-1 / \tau)=\frac{1}{2} \operatorname{ch}_{V B^{0}}(\tau)+\frac{1}{2} \operatorname{ch}_{V B^{1}}(\tau)+\frac{1}{\sqrt{2}} \operatorname{ch}_{V B_{T}}(\tau), \\
& \operatorname{ch}_{V B^{1}}(-1 / \tau)=\frac{1}{2} \operatorname{ch}_{V B^{0}}(\tau)+\frac{1}{2} \operatorname{ch}_{V B^{1}}(\tau)-\frac{1}{\sqrt{2}} \operatorname{ch}_{V B_{T}}(\tau), \\
& \operatorname{ch}_{V B_{T}}(-1 / \tau)=\frac{1}{\sqrt{2}} \operatorname{ch}_{V B^{0}}(\tau)-\frac{1}{\sqrt{2}} \operatorname{ch}_{V B^{1}}(\tau) .
\end{aligned}
$$

Namely, we have exactly the same modular transformation laws for the Ising model $L(1 / 2,0)$. As in Theorem 4.4, we also note that the fusion algebra for $V B^{0}$ is also canonically isomorphic to that of $L(1 / 2,0)$. Therefore, we may say that $L(1 / 2,0)$ and $V B^{0}$ form a dual-pair inside the moonshine VOA V^{\natural}.

Acknowledgments

The author thanks the members of the Komaba Seminar on Finite Groups for valuable discussions and for noticing a gap in a prototype version of this paper. He also thanks Professor Atsushi Matsuo for the information of Tuite's work and Professor Ching Hung Lam for his suggestions improving this paper.

References

[ATLAS] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, ATLAS of Finite Groups, Clarendon, Oxford, 1985.
[ADL] T. Abe, C. Dong, H. Li, Fusion rules for the vertex operator algebras $M(1)^{+}$and V_{L}^{+}, Comm. Math. Phys. 253 (2005) 171-219.
[C] J.H. Conway, A simple construction for the Fischer-Griess monster group, Invent. Math. 79 (1985) 513-540.
[DGH] C. Dong, R.L. Griess, G. Höhn, Framed vertex operator algebras, codes and the moonshine module, Comm. Math. Phys. 193 (1998) 407-448.
[DL] C. Dong, J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Operators, Progr. Math., vol. 112, Birkhäuser, Boston, 1993.
[DLM] C. Dong, H. Li, G. Mason, Modular-invariance of trace functions in orbifold theory and generalized moonshine, Comm. Math. Phys. 214 (2000) 1-56.
[DM] C. Dong, G. Mason, On quantum Galois theory, Duke Math. J. 86 (1997) 305-321.
[DMZ] C. Dong, G. Mason, Y. Zhu, Discrete series of the Virasoro algebra and the moonshine module, Proc. Sympos. Pure. Math. 56 (1994) 295-316.
[FFR] A.J. Feingold, I.B. Frenkel, J.F.X. Ries, Spinor construction of vertex operator algebras, triality, and $E_{8}^{(1)}$, Contemp. Math. 121 (1991).
[FHL] I. Frenkel, Y.-Z. Huang, J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993).
[FLM] I.B. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Academic Press, New York, 1988.
[FZ] I.B. Frenkel, Y. Zhu, Vertex operator algebras associated to representation of affine and Virasoro algebras, Duke Math. J. 66 (1992) 123-168.
[G] R.L. Griess, The friendly giant, Invent. Math. 69 (1982) 1-102.
[Hö1] G. Höhn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster, PhD thesis, Bonn 1995; Bonner Math. Schriften 286 (1996) 1-85.
[Hö2] G. Höhn, The group of symmetries of the shorter moonshine module, math.QA/0210076.
[K] V.G. Kac, Vertex Algebras for Beginners, second ed., Cambridge Univ. Press, Cambridge, UK, 1990.
[KR] V.G. Kac, A.K. Raina, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, World Scientific, Singapore, 1987.
[L] C.H. Lam, Some twisted modules for framed vertex operator algebras, J. Algebra 231 (2000) 331-341.
[LLY] C.H. Lam, N. Lam, H. Yamauchi, Extension of Virasoro vertex operator algebra by a simple module, Internat. Math. Res. Notices 11 (2003) 577-611.
[LYY] C.H. Lam, H. Yamada, H. Yamauchi, Vertex operator algebras, extended E_{8}-diagram, and McKay's observation on the Monster simple group, math.QA/0403010.
[Li1] H. Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996) 143-195.
[Li2] H. Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, in: C. Dong, G. Mason (Eds.), Moonshine, the Monster, and Related Topics, in: Contemp. Math., vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 203-236.
[Li3] H. Li, Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Algebra 96 (1994) 279-297.
[Ma] A. Matsuo, Norton's trace formulae for the Griess algebra of a vertex operator algebra with larger symmetry, Comm. Math. Phys. 224 (2001) 565-591.
[M1] M. Miyamoto, Griess algebras and conformal vectors in vertex operator algebras, J. Algebra 179 (1996) 528-548.
[M2] M. Miyamoto, Representation theory of code vertex operator algebras, J. Algebra 201 (1998) 115-150.
[M3] M. Miyamoto, A Hamming code vertex operator algebra and construction of vertex operator algebras, J. Algebra 215 (1999) 509-530.
[M4] M. Miyamoto, A new construction of the moonshine vertex operator algebra over the real number field, Ann. of Math. 159 (2004) 535-596.
[Sh] H. Shimakura, Automorphism group of the vertex operator algebra V_{L}^{+}for an even lattice L without roots, J. Algebra 280 (2004) 29-57; math.QA/0311141.
[SY] S. Sakuma, H. Yamauchi, Vertex operator algebra with two Miyamoto involutions generating S_{3}, J. Algebra 267 (2003) 272-297.
[Tu] M. Tuite, On the relationship between Monstrous Moonshine and the uniqueness of the Moonshine module, Comm. Math. Phys. 166 (1995) 495-532.
[Y1] H. Yamauchi, Module category of simple current extensions of vertex operator algebras, J. Pure Appl. Algebra 189 (2004) 315-328.
[Y2] H. Yamauchi, A theory of simple current extensions of vertex operator algebras and applications to the moonshine vertex operator algebra, PhD thesis, University of Tsukuba, 2004.
[Z] Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996) 237-302.

[^0]: * Current address: Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan.

 E-mail address: yamauchi@ms.u-tokyo.ac.jp.

