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Abstract

In this article we give a new proof of the determination of the full automorphism group of the
baby-monster vertex operator superalgebra based on a theory of simple current extensions. As a
corollary, we also prove that th&,-orbifold construction with respect to a 2A-involution of the
Monster applied to the moonshine vertex operator alg&Brgields V! itself again.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

The famous moonshine vertex operator algebraonstructed by Frenkel-Lepowsky—
Muerman [FLM] is the first example of th&;-orbifold construction of a holomorphic
vertex operator algebra (VOA). Let us explairZa-orbifold construction briefly. LeV
be a holomorphic vertex operator algebra andn involutive automorphism ol . Then
the fixed point subalgebré(®’ is a simple vertex operator algebra. It is shown in [DLM]
that there is a unique irreducibte-twisted V-module M and we have a decomposition
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M = M%@ M1 into a direct sum of irreducibl& ‘) -modules such thai/? has an integral
top weight. AZ-orbifold construction with respect to € Aut(V) refers to a construction
of a Zo-graded extensiof = V{7 @ MO of the fixed point subalgebr& @’ and it is
expected to be a holomorphic vertex operator algebra.

In FLM’s construction, we také& to be the lattice vertex operator algelitaassociated
to the Leech latticed and the involutiorns is a natural liftingd € Aut(V,) of the (—1)-
isometry onA. Denote byV, = Vj( ® V, the eigenspace decomposition such thatts

on Vi as+1, respectively. Lev' be the unique irreduciblé-twisted V4-module. Then
there is a decompositioll ] = (VI)* & (VI)~ such that the top weight ofv1)* is
integral. Then the moonshine vertex operator algebra is defindd” by Vj( <) (V/{)Jr

and it is proved in [FLM] that/? forms aZ,-graded extension dfj{. Itis also proved in
[FLM] that the full automorphism group of the moonshine vertex operator algebra is the
Monster sporadic finite simple gro@i by using Griess’ result [G].

In the Monster, there are two conjugacy classes of involutions, the 2A-conjugacy
class and the 2B-conjugacy class (cf. [ATLAS]). One can explicitly see the action of a
2B-involution onV* by FLM’s construction. But it is difficult to realize the action of a
2A-involution on V" before Miyamoto. In [M1], Miyamoto opened a way to study the
action of 2A-involutions of the Monster on the moonshine VOA by using a sub VOA iso-
morphic to the unitary Virasoro VOA.(1/2, 0). Let us recall the definition of Miyamoto
involutions. LetV be a simple VOA and € V> be a vector such that the sub VOA 4y
generated by is isomorphic to the Virasoro VOA.(1/2,0). Such a vectoe is called
a conformal vector with central charg¢2l SinceV as a Vie)-module is completely
reducible, we have a decomposition

V=V, (0 & V.(1/2) ® V,(1/16),

whereV,(h), h =0,1/2,1/16, denotes a sum of all irreducible ¥4j-submodules iso-
morphic toL(1/2, k). Then one can define a linear isomorphignon V by

=1 onV,(0)® V.(1/2), —1 onV,(1/16).

It is proved in [M1] thatz, defines an involution of a VOA/ if V,(1/16) # 0. This in-
volution is often called the Miyamoto involution eftype. On the fixed point subalgebra
V(%) one can define another automorphism by

o.: =1 onV,(0), -1 onV,(1/2).

This involution is called the Miyamoto involution ef-type. It is shown in [C] and [M1]
that in the moonshine VOA every Miyamoto involutiep defines a 2A-involution of the
Monster and the correspondence between conformal vectors and 2A-involutions is one-
to-one. Therefore, in the study of 2A-invdions, it is very important to study conformal
vectors with central charge/2. Along this idea, C.H. Lam, H. Yamada and the author
obtained an interesting achievement on 2A-involutions of the Monster in [LYY].

The main purpose of this paper is to study fhgorbifold construction ofV* with
respect to the Miyamoto involution and to prove that the 2A-orbifold construction ap-
plied to V% yields V¥ itself again. Since a 2A-involution of the Monster is uniquely
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determined by a conformal vecterof V¢ with central charge /2, we have to study the
commutant subalgebra of V&) together with ViKe) in order to describe the 2A-orbifold
construction. For a simple VOA’ and a conformal vectoe of V with central charge
1/2, set the space of highest weight vectors Byh) := {v € V | L¢(O)v = hv} for
h=0,1/2,1/16, where we expantl(e,z) = Y, .5 L¢(n)z~"~2. Then we have decom-
positionsV,(h) = L(1/2, h) ® T,(h) and the commutant subalgelda0) acts onT7, (k)
forh=0,1/2,1/16. Like L(1/2, 0) has aZ,-graded extensioh(1/2,0) @ L(1/2,1/2),
we can introduce a vertex operator superalgebra (SVOA) structur® @n & 7.(1/2)
and itsZ,-twisted module structure ofi.(1/16). It is easy to see that the one point sta-
bilizer Cautvy(e) = {p € Aut(V) | pe = e} naturally acts on the space of highest weight
vectorsT, (h). If we takeV = V¥, thenCayy(yz)(e) is isomorphic to the 2-fold central ex-
tension(z,) - B of the baby-monster sporadic finite simple graiprherefore, the SVOA
72(0) ® T/(1/2), where we have se¥’(h) = L(1/2, h) ® T (h) for h = 0,1/2,1/16,
affords a natural action dB. Motivated by this fact, Ho6hn first studied this SVOA in
[H1] and he called it théaby-monster SVOAollowing him, we writeVB® := 7,/(0),
VBL:= 7(1/2) andVB:= T(0) ® T/(1/2). It is proved in [H62] that the full automor-
phism group of the even pavtB® of VB is exactly isomorphic to the baby-monskrin
this paper, we give a quite different proof of AUB°) ~ B based on a theory of simple
current extensions.

In my recent work [Y1,Y2], a theory of sink@ current extensions of vertex operator
algebras was developed and many useful results were obtained. Using the theory, we de-
termine the automorphism group of the commutant subaldggliea as follows:

Theorem 1. Let V be a holomorphic VOA and € V a conformal vector with central
chargel/2. Suppose the following

(@) V.(h) #0forh=0,1/2,1/186,

(b) V.(0) andT,(0) are rational C>-cofinite VOAs of CFT-type,
(c) V.(1/16) is a simple curren¥ {%)-module,

(d) T.(1/2) is a simple currenf, (0)-module,

(€) Caut(v)(e)/(t.) is a simple group or an odd group.

Then

(1) Aut(T,(0)) = Caut(v)(e)/(Te)-
(2) The irreducibleT, (0)-modules are given by, (0), 7,(1/2) andT,(1/16).
(3) Ther.-orbifold construction applied t& yieldsV itself again.

The assumptions (c) and (d) in the theorem above seem to be rather restrictive. How-
ever, we prove that all the assumptions above hold i§ the moonshine VOA. Applying
Theorem 1 toV?, we obtain the following main theorem of this paper.

Theorem 2. Let VB= VB° @ VB! be the commutant superalgebra obtained frgfn

(1) Aut(VB°) =B andAut(VB) =2 x B.
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(2) There are exactly three inequivalent irreducible®Bodules, VB, VB! and VB :=
7, (1/16).
(3) The fusion rules for VBmodules are as follows

VB! x VB'=VB?,  VB'xVBr=VBr,  VBr xVBr=VE’ +VBL
This theorem has the following corollaries.
Corollary 1. The irreducible2A-twistedV *-module has a shape
L(1/2,1/2) @ VB & L(1/2,0) ® VB & L(1/2,1/16) ® VBr.

Corallary 2. For any conformal vectoe € V7 with central chargel/2, there is nop €
Aut(V?) such thato(V; (h)) = V/ (h) for h = 0,1/2, 1/16and p| sy = .

Corollary 3. The 2A-orbifold construction applied to the moonshine V@A yields V'*
itself again.

At the end of this paper, we give character&@-modules and their modular transfor-
mation laws. Surprisingly, we find that the fusion algebra and the modular transformation
laws for the baby-monster VOA is canonically isomorphic to those of the Ising model
L(1/2,0).

Notation. For a VOA V and a subgroug of Aut(V), we denote by ¢ the G-fixed
subalgebra oV. For aV-moduleM and an automorphism € Aut(V), we denote the
T-conjugate module oM by M*. We denote the (restricted) dual moduleMfby M*,
and M is calledself-dualif M* ~ M. For V-modulesM® and M2, we denote their fu-
sion product byM! Xy M?2. For a linear binary cod@® of lengthn and its element
a=(a1,...,a,) € D, we define Supfa) := {i | o; # 0}.

2. Commutant superalgebra and itsautomor phisms

We denote byL(c, k) the irreducible highest weight module for the Virasoro algebra
with central charge and highest weighk. It is shown in [FZ] thatL (c, 0) has a structure
of a simple VOA.
2.1. Ising model

We realize an SVOAL(1/2,0) & L(1/2,1/2) by using one free fermionic field. Let
Ay be aC-algebra generated dy,+1/2 | n € Z} with the relation[v,, Y1+ = ¥ ¥ +

Ys¥r =8 45.0, 7,5 € L+1/2. LetQ@ to be the subalgebra 8f;, generated by, | r > 0}
and letC|0) be a trivial%li—module. Consider the induced module

M = Ind ! C|0) = Ay g+ CI0).
v 14
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It is well known (cf. [KR]) that9t affords an action of the Virasoro algebra with central
charge ¥2 and9t ~ L(1/2,0) & L(1/2,1/2) as a Virasoro-module. Consider the gener-
ating seriesf(z) :==)_, .z 1,ﬁn+1/2z*”*l. Itis also well known (cf. [K]) that the spacht,
with the standard.;-grading, has a unique structure of a simple vertex operator superal-
gebra with the vacuurh = |0) such thatrsn (_1,2/0), 2) = ¥ (2).

Similarly, we can realizé.(1/2, 1/16) as follows. Let, be aC-algebra generated by
{dm | m € Z} with the relation(¢,,, dnl+ = Sm+n.0, m,n € Z. Let 2[3; be a subalgebra of
4 generated byg,, | m > 0} and Ietﬁc%) be atrivial%l;{-module. Consider the induced
module

A
N:=Indy? C|fg) =2 O Cl )

It is well known (cf. [KR]) that 9t affords an action of the Virasoro algebra with
central charge 2. Setvy);:=(v2¢0 % 1)|5). Then vy, are highest weight vec-
tors for the Virasoro algebra and we have a decomposilibse: 91t @ 91—, where
NE are Ay-submodules generated %16' respectively, andt* ~ L(1/2,1/16) as
Virasoro-modules. The generating sedes) := Y, ., ¢,z "~ /2 uniquely defines &,-
twisted 91-module structure oft such that the vertex operator ¢f_1,5|0) is given as
Y (¥—1/2/0), 2) = ¢(z). We can also verify tha®t™ are inequivalent irreduciblé,-
twisted 9t-submodules (cf. [LLY]). This explicit construction will be used in the proof
of Theorem 2.2.

2.2. Miyamoto involution

Let (V,Yy(-,2),1,w) be a VOA. A vectore € V is called aconformal vectoif coef-
ficients of its vertex operatdfy (e, z) =), .5 e(,,)z*”*l =Y ez L¢(n)z "2 generate a
representation of the Virasoro algebravn

m3 —m
[Le(m)’ Le(n)] =(m— n)Le (m+n)+ 8m+n,OT

Ce-

The scalar, is called thecentral chargeof e. We denote by Vife) the sub VOA generated
by e. If Vir (e) is a rational VOA, ther is called arational conformal vectarA decompo-
sitionw = e + (w — ¢) is calledorthogonalif both ¢ andw — e are conformal vectors and
their vertex operators are component-wisely mutually commutative.

Now assume that € V is a rational conformal vector with central charg21Then
Vir (e) is isomorphic toL(1/2,0) and has three irreducible representatidrg,/2, 0),
L(1/2,1/2) andL(1/2,1/16) (cf. [DMZ]). As Vir (¢) acts onV semisimply, we can de-
composeV into a direct sum of irreducible \ie)-modules as follows:

V=V, (0 & V.(1/2) ® V,(1/16),

whereV,(h), h € {0,1/2,1/16}, denotes the sum of all irreducible Y&)-submodules of
V isomorphic toL(1/2, h). By the fusion rules foi.(1/2, 0)-modules (cf. [DMZ]), we
have the following theorem.
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Theorem 2.1 [M1].

(1) The linear mapr, := 1 on V,(0) & V,(1/2), —1 on V,(1/16) defines an involutive
automorphism on a VOK.

(2) On the sub VOAV (%) = V,(0) @ V,.(1/2), the linear mapo, := 1 on V,(0), —1 on
V.(1/2) defines an involutive automorphism.

The involutionse, € Aut(V) ando, € Aut(V (%) are calledVliyamoto involutions
2.3. Commutant superalgebra

Let V be a simple VOA of CFT-type and € V a rational conformal vector with
central charge 2. SetT,(h) :={ve V |L*(QOv=h-v}forh=0,1/2,1/16.T,(h) de-
scribes the space of highest weight vectors fox&yimand it is canonically isomorphic to
Homvir ) (L(1/2, h), V) for h =0,1/2,1/16. ThereforeV, (h) ~ L(1/2,h) @ T.(h) and
we have a decomposition as follows:

V=L(1/2,009T.(00® L(1/2,1/2) ® T.(1/2) & L(1/2,1/16) ® T.(1/16).

One can verify that a decompositian= ¢ + (o — ¢) is orthogonal by using [FZ, The-
orem 5.1]. Recall the commutant subalgebra @o¥ir (e)) := Kery L¢(—1) defined in
[FZ]. It is easy to see thdl,(0) = Kery L¢(—1). So (T.(0), w — e) forms a sub VOA
of V whose action or¥/ is commutative with that of Vi) on V. In particular,7,(h),
h=0,1/2,1/16, areT,(0)-modules. By the quantum Galois theory [DM1,(0) is a sim-
ple subalgebra angl.(1/2) is an irreduciblel, (0)-module if V. (1/2) # 0.

The commutant subalgeb¥a(0) affords an extension to a superalgebra by its module
T,(1/2) if V,(1/2) #0.

Theorem 2.2 [H61,Y2].

(1) Suppose that,(1/2) = 0. There exists a simple SVOA structureBii0) & 7. (1/2)
such that the even part of a tensor product of SVQREL/2,0) & L(1/2,1/2)} ®
{T.(0) ® T.(1/2)} is isomorphic toV, (0) & V,.(1/2) as a VOA.

(2) Suppose thav,(1/2) # 0 and V,.(1/16) # 0. ThenT,(1/16) carries a structure of
an irreducible Z,-twisted T, (0) & T.(1/2)-module. Moreovery,(1/16) is isomor-
phic to a tensor product of an irreducibf&-twistedL (1/2, 0) & L(1/2, 1/2)-module
L(1/2,1/16) and an irreducibleZ,-twistedT, (0) @ T.(1/2)-moduleT, (1/16).

Proof. (1) First, we introduce a vertex operator mapio) & 7.(1/2). Leta € T,(0) and
x € L(1/2,0). By [ADL, Theorem 2.10], there arg, (0)-intertwining operatorg! (-, z) of
type 7, (0) x T.(i/2) — T.(i/2), i = 0,1, such that'y (x ® a, 2)|v,i/2) = Yon(x,2) ®
I'(a, z), whereYon (-, 7) is the vertex operator map on the SVQA1/2,0) & L(1/2,1/2)
constructed in Section 2.1. Similarly, far e 7,(1/2) andy € L(1/2,1/2), there are
T,(0)-intertwining operators/9(-, z) and J1(-,z) of types7,(1/2) x T,(0) — T.(1/2)
and7.(1/2) x T.(1/2) — T.(0), respectively, such thaty (y @ u, 2)|v,(0) = Yo (¥, 2) ®
JOu, z) andYy (y ® u, 2)lv,(1/2) = Yom (¥, 2) ® J(u, z) again by [ADL, Theorem 2.10].
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We define the vertex operator mifp«, z)onT,(0) @ T,(1/2) as follows: fora, b € T,(0)
andu,v e T,(1/2),

?(a,z)b:: IO(a,z)b, ?(a,z)u = Il(a,z)u,
?(u, z7)a = JO(u, 7)a, ?(u, v = Jl(u, 2)v.

We claim that the quadruplér, (0) & T,(1/2), ?( 2), 17,00, @ — e) forms an SVOA,
where]lv =|0) ® 17,(g). It is clear that?(]lTe(o) z) =idr,0e7.(1/2) as the substructure
(T, (O) 19¢, 2), 17,0, —€) is exactly Cony (Vir(e)). The L(—1)-derivation property
for Y( z) is also clear asY( z) is made ofT,(0)-intertwining operators. By consid-
ering Yy (¥-1/2/0) ® u, 2)(|0) ® a), we obtain a skew-symmetric properf (u, z)a =
ESLED-LED) g 2y as bothYy (-, z) and Yor(-,z) satisfy the skew-symmetry.
Therefore, for anyw € 7,(0) & T.(1/2), the following creation property holds:

Y (w, 2)17,00) € w + T, (0) & To(1/2)[z]z.

Hence, in order to prove that the quadruple is an SVOA, it suffices to show that)
satisfies the locality (cf. [Lil]):

(21— 22V IT (wh, 21) T (w2, 22)
= (—1)F@h D gy p gy N@hw?) Y(w? 22)Y (wh, z2), (2.1)

wherew?, w2 areZz homogeneous elementsa(0) & 7, (1/2), ¢ is the standard parity
function andN(w w?) is a sufficiently large integer. Since(-, z) is made of7,(0)-
intertwining operators, we only need to show the locality (2.1) in the caselof? ¢
T.(1/2). Letu, v € T,(1/2) be arbitrary andv a positive integer such that

(21— 22V [Yv (¥-1,210) ® u, 20). Yv (¥-1210) ® v, 22)] = O
onV,(0) & V.(1/2). (2.2)
The equality (2.1) is equivalent to the following two equalities:
(21— 22V T, 20) 7%, 22)a = —(z1 — 220 T (v, 22) I O(u, z1)a, (2.3)
(21— 22N 7%, 20) T (. 22w = — (21 — 22)V 0w, 22) T H(u, 20w, (2.4)
wherea € T,(0) andw € T,(1/2) are arbitrary. For simplicity, we set
Ao= (21— 22N T . 20)J%0v. 22)a,  Bo= (21— 22)" 1 (v. 22)%(u. z0)a.
Ar=(1—- 2" ) v 2w, Bi=(z1— 22" 1%, 22) 7 M, 2w
We should prove botldg = —Bg andA; = —Bj. By (2.2), we have

(21— 22V Yy (Y-1,210) ® u, 22), Yy (Y—1,210) ® v, 22)] - (10) ® @) = O,
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In terms ofy (z), the equality above becomes

¥ (z0)¥(22)|0) ® Ao =¥ (22)¥(21)|0) ® Bo. (2.5)

By a direct computation, we obtain

V(2% (z2)|0) =0) - (21— z2) '+ Z Vom—1/2¥—n-1/2/0) - (2{'25 — 2125').

m>n2>0

So by multiplyingz1 — z2 both sides of (2.5) and comparing the coefficienf@f we
obtainAg = — Bgp. Therefore, (2.3) holds. By (2.2), we have

(z1— Zz)N[Yv(I//—l/zlo) Qu,z1), Yv(¥-1/210) ® v, 22)] - (¥_12/0) @ w) =

Rewriting the equality above in terms ¢f(z), we get

Y (z1) ¥ (22)¥-1/2/0) ® A1 = ¥ (z2) ¥ (21)¥-1/2/0) ® B1. (2.6)

By a direct computation, we have

Y (2) ¥ (22)¥-1/210) = ¥_1/2/0) - {(z1 — 22) " + (21 — 22)/2122}
+ ) Vom-320) - (et — 2T

m>0

+ D Voms¥on-32¥-1/210) - (2§ 5T - ST,
m>=n2=0

Multiplying z1 — 7z both sides of (2.6) and comparing the coeﬁ|C|en11/ofl/2|0 ) in (2 6),
we obtain(z2 — z1z2 + z3)(A1 + B1) = 0. Then multiplyingzy + z2, we get(z1 +23) x
(A1 + B1) =0. On the other hand, by comparing the coefficienyag,2|0) in (2.6), we
obtain

(2t —27'23) (A1 + By =

or equwalently(zl — zz)(Al + By) =0. Comblnmg this Wlth(zl + zz)(Al + B1) =0,
we obtainA; = —B and (2.4) also holds. Henc@( z) satisfies the locality and thus
(T,(0)® T.(1/2), Y( 2),17,(0), @ — e) forms an SVOA.

By the construction of the vertex operator me z), the remaining part of (1) of
Theorem 2.2 is obvious except for the simplicity Bf(0) & T,(1/2), which is almost
trivial. For, asV is simple, none of (-, z), J/ (-, z), i, j =0, 1, is zero map by [DL]. Then
T.(0) @ T.(1/2) is also simple sinc&, (0) is a simple VOA andr,(1/2) is an irreducible
T,(0)-module.

(2) Recall that the vertex operator még- (-, z) on 91+ we constructed in Section 2.1
is anL(1/2, 0)-intertwining operator of type

(L(1/2,0) ® L(1/2,1/2)) x L(1/2,1/16) — L(1/2,1/16).



H. Yamauchi / Journal of Algebra 284 (2005) 645—-668 653

We make use oFy+ (-, z) to factorizeYy (-, 2)|v,1/16)- Leta € T.(0), u € T.(1/2), x €

L(1/2,0) andy € L(1/2,1/2). By [ADL, Theorem 2.10], there ar&,(0)-intertwining
operatorsX’(-, z) of typesT,(i/2) x T,(1/16) — T,(1/16), i =0, 1, such that'y (x ®

a,2)lv,a16 = Yo+ (x,2) ® XOa,2) and Yy (y ® u, 2)|v,1/16 = Yo+ (v, 2) ® X (u, 2),

asV,(1/16) Nt ® T.(1/16) as Vire) ® T.(0)-modules. We define &,-twisted vertex
operator magX (-, z) of 7,(0) @ T.(1/2) on T,(1/16) as follows:

X(a,z):=X%a,z) foraeT,0), X(u,z):=XYu,z) foru e T,(1/16).

Then we proveT,(1/16), X (-, z)) is an irreducibleZ,-twisted T, (0) & T.(1/2)-module.
As X (-, z) is made ofT, (0)-intertwining operators, we only need to prove gtwisted
Jacobi identity forX (-, z), which is equivalent to the following commutativity and asso-
ciativity for u, v € T,(1/2) andw € T,(1/16) (cf. [Li2]):

(21— 22" [X (u,21), X (v, 22)], =0, (2.7)
(zo+ 22V Y2X (u, 20 + 22) X (v, 22)w = (22 + 20) V22X (Y (u, z0)v, 22)w, (2.8)

whereN1 and N; are sufficiently large integers. We can take> 0 which is independent
of w such that

(21— 22)" [Yv (¥-1/210) @ u, 20), Yv (¥-12/0), 22)] - (v16® w) =0,

wherevf/16 = (¢o + «/ﬁ)ll—le) € NT. SinceYm+(¥—-1/210), z) = ¢(z), we can rewrite the
above as follows:

¢ (21 (22)v},16® (21— 220V X (0, 2) X (v, 22w
= $(22)p (2)VY)16® (21 — 22N X (v, 22) X (u, 2D w. (2.9)
For simplicity, we set
Az=(1—- 22" Xw.2)X @ 22w,  B2=(z1—22)" X (v, 22) X (. z1)w.

By a direct computation, one has the following:

1/2_1/2 1
Z]_/ Zz/ ¢ (z1)¢ (ZZ)U]J_F/]_G = U]J_r/le - p(z1,22) + Z (bfmU]J_r/le ©—=qm (21, 22)
V2
m>0
+ Z G—mP—n U;Jlr/le “Fm,n (21, 22), (2.10)
m>n>0
where we have set
1 (2 m_m
p(z1,22) :=—§+Z o) qm(z1,22) =21 — 25,
i=0

mn (21, 22) =127 25 — 2123 -
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Itis easy to see

(z1 —22)p(z1, 22) = (1 + 22) /2= (22 — 21) p(22, 71),

qm(z2,21) = —qm (21, 22) and rm,n(ZZ’ 71) = —Fm,n (z1,22). (211)

By (2.10), the left-hand side of (2.9) can be expressed as follows:

~1/2_-1/2 —172_-172 1
v]16® 121 122" p(z1, 22) A2 + D -mv6® 7, 22" 7qm(11,zz)A2
m>0 2
~1/2_-1/2
+ Z ¢_m¢_nUJ—DlG®Zl /ZZ /rm,n(zla 72)A2.

m>n>0

Similarly, the right-hand side of (2.9) becomes:

~1/2_-1/2 ~1/2_-172 1
vf/16® 71 / 2 "2 p(z2,21)B2 + Z ¢—mvf/16® 74 / 75 / Tqu(zz, 71) B2
m=>0
—1/2_—1/2
+ Z ¢_m¢_nUI_/16®Zl / ) / rm,n(ZZa 71) Bo.
m>n>0
Thus, we get the following relations:

p(z1,22)A2 = p(z2,21) B2, (2.12)

qm(z1, 22) A2 = qm (22, 21) B2, (2.13)

Ym,n (z1,22)A2 = rm,n(ZZa z1) Bo. (214)

Multiplying (z1 — z2) to (2.12) and using (2.11), we obta%ﬂzl +z2)(A+ B) =0. And
by (2.13), we havez]' — z5')(A + B) = 0 for anym > 0. Combining them, we obtain
A+ B=0and so (2.7) follows.

Next, we prove the associativity (2.8). As

1 _ -
¢(Z)U516: _Uf/lez 1/2+2¢7nvf/16Zn 1/27

/2

n>0

we see thatl/qu(z)vf/l6 € L(1/2,1/16)[z]. Therefore, by [Li2], we have the following
associativity ordt*:

(20 + 22?0 (20 + 2206 (22)v]) 16 = (22 + 20V *You+ (¥ (20)¥-1210), 22) v 15
(2.15)

Letk be an integer such that

Yy (Y-1/210) ® u, D)v] 1 ® w € Ve (1/16)[[2].
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OnV,(1/16), we have the following associativity by [Lil]:

(zo+ 22" ¥y (Y-1/210) ® u, 20+ 22) Vv (Y-1/2|0) ® v, 22)vf )1 g @ w
= (22+ 20" Yy (Yv (¥-1/210) ® u, 20)¥—1/210) ® v, 22V, @ W.

In terms of¢ (z) and X (-, z), we can rewrite the above as follows:

(z0+ 220?20+ 22)$ (22)vy 16 ® (20 + 22 T2X (u, 20+ 22) X (v, 22)w
= (z2+ 20 ?Yor+ (¥ (20)¥-1/2/0). Zz)vf/le ®(z2+ Zo)k“/zX(?(u, 20V, 22)w.

Using (2.15), we get

(z0+22)"?$ (20 + 22)¢ (22)v]/1® C =0, (2.16)
where we have set
C = (z0+ 222X (u, 20 + 22) X (v, 22)w — (22 + zo)k“/zx(?(u, 200V, 22)w.

By (2.10), we find that the coefficient @f 1v]5 in (z0 + 22)%¢ (20 + 22)¢ (z2)v7 1

is just a monomialzozz_l/z/\/i. Therefore, Eq. (2.16) leads to the associativity rela-
tion C =0, or the equality (2.8). Hence[l.(1/16), X (-, z)) is a Zp-twisted T,(0) &
T.(1/2)-module. The remaining part of the agsanm is clear except for the irreducibility,
which is easy to show. If,(1/16) contains a non-trivial,-twisted T, (0) & T,(1/2)-
submodule, say, thenL(1/2, 1/16) ® P forms a non-trivialv, (0) & V,(1/2)-submodule

of V,(1/16) ~ L(1/2,1/16) ® T.(1/16). This yields a contradiction d&.(1/16) is an irre-
ducibleV,(0) & V,(1/2)-module by [DM]. This completes the proof of Theorem 2.23

Remark 2.3. As we mentioned, there are exactly two inequivaléstwisted irreducible
L(1/2,0)® L(1/2,1/2)-module structures oh(1/2,1/16) (cf. [LLY]). In the statement
(2) of the theorem above, we have to choose one of them and the irreddgiblasted
T.(0) & T.(1/2)-module structure off,(1/16) may depend on this choice.

2.4. Automorphisms of commutant superalgebra

In the rest of this section we will work over the following setup:

Hypothesis 1.

(1) V is a holomorphic VOA of CFT-type.

(2) e is arational conformal vector df with central charge 2.
(3) V.(h) #£0forh =0,1/2,1/16.

(4) V.(0) andT,(0) are rationalC»-cofinite VOAs of CFT-type.
(5) V.(1/16) is a simple currenv %! = v, (0) @ V,(1/2)-module.
(6) T.(1/2) is a simple current, (0)-module.
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We define the one point stabilizer autv)(e) := {p € Aut(V) | p(e) = e}. Clearly
Caut(v)(e) forms a subgroup of AGV). Sincer,) = pt.p L for any p € Aut(V), we
haveCaut(v)(e) < Cautv)(Te), whereCautv)(te) denotes the centralizer of an involution
7, € Aut(V).

Lemma 2.4. There are group homomorphismg; : Caytv)(e) — Caut(v ey (€) and
V21 Cayy(v trer) (€) = AUL(T,(0)) such thaier(y1) = (z.) andKer(y2) = (o).

Proof. Let p € Cautv)(e). Thenp preserves the space of highest weight veciolg)
for h=0,1/2,1/16 so thato definitely acts or, (k). Therefore, we have group homo-
morphisms/y : Cauv)(e) — Caut(v ey (€) andyrs : Caut(v )y (€) = AUt(T,(0)). Assume
thatyr1(p) = idy ) for p € Cautv)(e). Sincep commutes withr,, p acts onV,(1/16) and
commutes with the action df (%) = V,(0) @ V,(1/2) on its moduleV,(1/16). Therefore,
p on V,(1/16) is a scalar by Schur’s lemma and hence (z.) < Cautv)(z.). Similarly,
one can verify that Kéijy2) = (o). O

The following result will be used frequently (cf. [Y2, Theorem 9.1.7]).

Theorem 2.5. LetV = V%@ V1 be a simple SVOA such that the even péftts a rational
C»-cofinite VOA of CFT type and the odd paft is a simple curren¥°-module. Therv
is both rational andZ,-rational. LetW be an irreducibleV °-module.

Q) If Vl&,o W 2 W asVO9-modules, thef is uniquely lifted to either an irreducible un-
twistedV -module or an irreducibléZ,-twistedV -module given by @ (V1 X0 W).

(2 If VIR0 W~ W as VO-modules, then there are exactly two inequivalent irre-
ducible Z,-twisted V-module structures oV and these two modules are mutually
Z»-conjugate.

Lemma 2.6. Under Hypothesi4, every irreducibleT, (0)-module is contained in an un-
twisted irreducibleV {*)-module as a submodule.

Proof. Let X be an irreduciblel, (0)-module. By Theorem 2.5 is contained in an ir-
reducibleT, (0) & 7.(1/2)-module or an irreducibl&;-twisted 7, (0) & T,(1/2)-module.

Let X be such d, (0) & Te(1/2)-module._ IfX is an untwisted representation, then a ten-
sor producfL(1/2,0) ® L(1/2,1/2)} ® X has a structure of an untwistéd®’-module
and contains as a submodule. IX is aZ,-twisted representation, then a tensor prod-
uct L(1/2,1/16) ® X has a structure of an untwisté™’-module and contain¥ as a
submodule. O

Theorem 2.7. Under Hypothesid, V(% has exactly four inequivalent irreducible mod-
ules, V(= v,(1/16), W0:= L(1/2,0)® T.(1/2) & L(1/2,1/2) ® T.(0) and

wli=V,(1/16) Ky ) WO.

Their fusion rules are as follows
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V,(1/16) x V,(1/16) = V (%), V,(1/16) x W° = w1, V,(1/16) x W= w0,
WO x WO =ylw WO x wt=v,(1/16), wlx wt=ylie,

Therefore, the fusion algebra fof{™’ is isomorphic taZ, x Z.

Proof. SinceV = V% @ V,(1/16) is aZ,-graded simple current extensioniof®’, every
irreducibleV (%!-module is lifted to either an irreduciblé-module or an irreducible,-
twisted V-module by [Y1, Theorem 3.3]. Moreover, the-twisted V-module is unique
up to isomorphism by [DLM, Theorem 10.3]. Since batli1/2,0) & L(1/2,1/2) and
T,(0) @ T.(1/2) are simple SVOAs, the spadt® = L(1/2,1/2) ® T,(0) ® L(1/2,0) ®
T,(1/2) has a unique structure of an irreduci&<)-module. As the top weight %9 is
half-integral, the induced module

w=wlew!  Wwl=V,.(1/16) Xy WO,

becomes an irreducibke-twisted V-module again by [Y1, Theorem 3.3]. It is clear from
V.(1/16)Xy0 Wl = w0 thatw?! andV,(1/16) are inequivalenv {*)-modules. Therefore,
V(%) has exactly four irreducible modules as in the assertion. We remark thavémly
V,(1/16) andW? have integral top weights.

Consider fusion rules fo¥ )-modules. By [SY, Lemma 3.12], we have the fusion
rule W0 x W0 = v (), Then it follows from the forthcoming Lemma 3.5 th&t is a
simple current/ ()-module. SinceV,(1/16) is also a simple currerit () -module, so is
Wl =V,(1/16) X, W°. By looking at ther,-twisted V-module structure oW ° @ w1,
we easily find the following fusion rules:

V,(1/16) x V,(1/16) = V(=) V,(1/16) x WO = w1, V,(1/16) x Wt =wO.

Since V is holomorphic,V is self-dual. Hence/ ‘% and V,(1/16) are self-dualV (%! -
modules. Then by considering top weights we see that all irredugibté-modules are
self-dual. Then by thé3-symmetry of fusion rules (cf. [FHL]), we have the desired fusion
rules. O

By the fusion rules forL(1/2, 0)-modules, we note tha’! as a Vile)-module is
a direct sum of copies ol.(1/2,1/16). Set the space of highest weight vectors of
wt by 0.(1/16) := {v € W1 | L¢(0O)v = (1/16) - v}. Then as a Vite) ® T.(0)-module,
wl~L(1/2,1/16)® Q.(1/16). By Theorem 2.5, the spae2. (1/16) naturally carries an
irreducibleZ,-twisted T, (0) & T,(1/2)-module structure, which may depend on a choice
of irreducibleZy-twisted L(1/2,0) & L(1/2, 1/2)-module structures oh(1/2, 1/16).

Proposition 2.8. If the Zp-twisted T, (0) & T,(1/2)-moduleT,(1/16) is irreducible as a
T,(0)-module, then it¥,-conjugate is isomorphic t@.(1/16) as aZ,-twisted7,(0) &
T.(1/2)-module. In this case there are exactly three inequivalent irreducihi@®)-
modules, T, (0), T.(1/2) and T,(1/16). Conversely, ifT,(1/16) as a T.(0)-module is
reducible, then so i9.(1/16) and in this case there are exactly six inequivalent irre-
ducibleT,(0)-modules.
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Proof. Assume thatT,(1/16) is irreducible as &, (0)-module. In this case there are
exactly two inequivalent irreducibl&,-twisted 7,(0) & 7,(1/2)-module structures on
T.(1/16) by Theorem 2.5. Therefore, an irreducilfie-twisted 7, (0) & T.(1/2)-module
structure or¥, (1/16) given in Theorem 2.2 and i#5;-conjugate are inequivalent. This im-
plies that there are exactly two inequivalent irreducible untwist€d -module structures
onL(1/2,1/16) ® T,(1/16). Thus by the classification in Theorem 2V(1/16) and w1
are isomorphic a€.(1/2, 0) ® T.(0)-modules. By Lemma 2.6, every irreducitilg(0)-
module appears in an irreducibl ™ -module as a submodule. Th#is(0) has exactly
three inequivalent irreducible modules as in the assertion.

Conversely, ifl, (1/16) as aT,(0)-module is reducible, then it is a direct sum of two in-
equivalentirreduciblé, (0)-module by Theorem 2.5. In this case we note hdfl/16) is
ao,-stableV %'-module, that is, the,-conjugateV, (1/16)° of V,(1/16) is isomorphic
to V,(1/16) itself as aV (%)-module. We note thaD,(1/16) is also a reducibld, (0)-
module. For, ifQ.(1/16) is irreducible, therT,(1/16) and Q. (1/16) are in the relation of
Z»-conjugate, and hencg (1/16) is also irreducible, a contradiction. Thigk (1/16) is
a direct sum of two inequivalent irreduciblg(0)-submodule. If7,(1/16) and Q.(1/16)
contain isomorphic irreducibl&, (0)-submodules, theff,(1/16) and Q.(1/16) are iso-
morphic irreducibleZ;-twisted 7, (0) @ T,(1/2)-modules by Theorem 2.5. This implies
that V,(1/16) is isomorphic tow?! as aV (%)-module, which is a contradiction. Now the
assertion follows from Lemma 2.6.0

Corollary 2.9. If 7,(1/16) is irreducible as aT,(0)-module, thenV (™) @ W1l is a Z,-
graded simple current extension Bf™ which is isomorphic t&/ = V(%) @ V,(1/16).

Proof. If T,(1/16) is an irreducibleT, (0)-module, then by the previous proposition the
Z»-conjugate of7,(1/16) is isomorphic toQ,.(1/16) as Z-twisted T,(0) & T.(1/2)-
modules. Hence the.-conjugateV, (0) ® V,(1/2)-module ofV,(1/16) = L(1/2,1/16) ®
T,(1/16) is isomorphic tow! = L(1/2,1/16) ® Q.(1/16) and soo, € Aut(V %)) in-
duces a VOA isomorphism between two extensiéis’ & V,(1/16) and V(%) ¢ w1

of v, o

Remark 2.10. The corollary above implies that the-twisted orbifold construction applied
to V yieldsV itself again.

Theorem 2.11. Under Hypothesi§,

(1) 2 is surjective, that ISCayy )y (€) == (oe). Aut(T. (0)).

(2) AUT,(0) ® T,(1/2)) = 2.(Cayy(v )y (e)/{oe)), Where2 denotes the canonical,-
symmetry on the SVOR(0) & T,(1/2).

() 1Caut(v 1y (@) : Cautvy(e)/(Te)| < 2.

(4) If Cautvy(e)/(te) is simple or has an odd order, then extensions(in and (2)
split. That is, Cayyy (e (€) = (0e) X Cauyv)(e)/(Te) and Aut(T,(0) & T.(1/2)) ~
2 x Aut(7,(0)).
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Proof. We have an injection fronC sy ) (e)/{oe) to Au(7,(0)) by Lemma 2.4. We
will show that every element in AUL, (0)) has its preimage i'a ¢y ) (e). By Proposi-
tion 2.8, every irreduciblé, (0)-module is contained in one G4.(0), 7.(1/2), T.(1/16)
or Q.(1/16) as a submodule. In particular, we find th&t0) is the only irreducible
T.(0)-module whose top weight is integral affd(1/2) is the only irreducibleT, (0)-
module whose top weight is in/2 + N. Let p € Aut(7,(0)). Then by considering top
weights we can immediately see tHat0)” ~ 7,(0) and7,.(1/2)” >~ T,(1/2). Then by
[Sh, Theorem 2.1] we have a lifting € Aut(7.(0) & T.(1/2)) such thato T, (0) = T, (0),
pT.(1/2) = T,(1/2) andp|z,(0) = p. Sincep is uniquely determined up to the canonical
Zo-symmetry on7,(0) & T,(1/2), we have AutT,(0) & T.(1/2)) ~ 2.Aut(T,(0)). Now
we defines € Cpyyy )y (€) by

AlLaj2mer,m =idLa/zm ®p, h=0,1/2.

Then by this liftingCa (v ) () contains a subgroup isomorphic tARit(7, (0)). More-
over, the canonicaky-symmetry on the SVOA, (0) @ T.(1/2) is naturally extended to
oe € Cayycviwey(e). Clearly wz(ﬁ) = p and hence) is surjective. Therefore, we have
the desired isomorphismSy iy ), (e) = (o¢).Aut(T,(0)) and Au(T,(0) & T.(1/2)) =~
2.(Cpyyv iy (€)/{oe)). This completes the proofs of (1) and (2).

Consider (3). By Theorem 2.7, there are exactly three irredugifte-modules whose
top weights are integral, namely, ™, V,(1/16) and W?. ThusCpy ) (e) acts on the
2-point set{V,(1/16), W1} as a permutation and so there is a subgraupf Caut(v e (€)
with index at most 2 such that,(1/16)" ~ V,(1/16) as aV ‘% -module for allz € H.
Then by [Sh, Theorem 2.1] there is a lifticige Caut(v)(e) of = such thaty1(7) = for
eachr € H. Thus|Cpyyy ey (€) : Caurv)(e)/(te)| < 2 and (3) holds.

Consider (4). Suppos€aut(v)(e)/(te) is either simple or odd. By (3)Cayty () (€)
contains a subgroup isomorphic @xyvy(e)/(z.) with index at most 2. Sincéo,) is
a normal subgroup of ¢y ) () of order 2, the indeXCpyy(y )y (€) : Cautv)(e)/(Te)|
must be 2 by the assumption and hence we obtain the desired isomomkjgM:.), (¢) =
(oe) x Caut(vy(e)/(te). In this case, it is easy to see that the extension(Agd) &
T.(1/2)) = 2.Aut(T,(0)) splits. O

Corollary 2.12. If Cautvy(e)/(t.) is simple, thenV,.(1/16) is an irreducible V,(0)-
module and7,(1/16) is an irreducibleT,(0)-module. Thereforey = V) @ V,(1/16)
andV =) @ W1 are equivalent extensions gfi™’.

Proof. Let H be the subgroup of p ¢y ), (€) Which fixesV,(1/16) in the action on the

2-point set{V,(1/16), W1}. It is shown in the proof of (3) of Theorem 2.11 that we have
inclusions

H < Cautv)(e)/(Te) < Cayt(vwer)(€) = (0e) X Cautv)(€)/(Te).

Therefore,o. ¢ H and hence the, permutesV,(1/16) and W!. ThenV,(1/16) is an
irreducible v, (0)-module by Proposition 2.8 and henZg(1/16) as aT.(0)-module is
irreducible. The rest of the assertion follows from Corollary 2.61
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3. 2A-framed VOA

In this section we consider VOAs with unitary Virasoro frames. For convention, we
introduce the following notion:

Definition 3.1. A simple vertex operator algebi&’, ») is called2A-framedif there is
an orthogonal decompositian= ¢® + - - + ¢ such that eacl’ generates a sub VOA
isomorphic toL(1/2, 0). The decompositiom = el + - - - + ¢" is called &2A-frameof V.

Remark 3.2. Any 2A-framed VOA is rational and’>-cofinite (cf. [DGH,Z]).
3.1. Structure codes

For a 2A-framed VOA, we can associate two linear binary codes in the following way
(cf. [M2,DGH)]). Let (V, w) be a 2A-framed VOA with a 2A-frame = e 4 - - + ¢". Set
F:=Vir(eh) ® ---® Vir(e"). ThenF ~ L(1/2,0)®" andV is a direct sum of irreducible
F-submoduled.(1/2, h1) ®---® L(1/2, hy), h; € {0,1/2,1/16}. Assign to an irreducible
F-module®;_; L(1/2, h;) its 1/16-word(az1, ..., a,) € Z5 by o; = 1 if and only ifh; =
1/16. For eachx € Z3, denote byV* the sum of all irreducibleg”-submodules whose
1/16-words are equal i@ and define a linear codeC Z5 by S = {a € Z5 | V¥ #0}. Then
we have the 116-word decompositioV = @, . V. By the fusion rules foi (1/2, 0)-
modules, we have af-graded structurd’® - VF c v*+# Namely, the dual group™
of an abelian 2-group acts onV, and we find that this automorphism group coincides
with the elementary abelian 2-group generated by Miyamoto involufign$1 < i < n}.
Therefore, allv?, a € S, are inequivalent irreduciblés” = V°-modules by [DM].

Since there is nd.(1/2, 1/16)-component inv’?, the fixed point subalgebria’s™ = v©
is of the following form:

Vo= @@ muy 0 L(1/2,h1) @ @ L(1/2, hy),
h;€{0,1/2}

wheremy, 5, denotes the multiplicity. Orv9 we can definer-type Miyamoto invo-
lutions o, for i =1,...,n. Denote byl the elementary abelian 2-subgroup of Ai?)
generated byo,: | 1 < i < n}. Then we haveV%’ = F and eachny, 5, L(1/2,h1) ®
-+ ® L(1/2, hy,) is an irreducibleF-submodule by [DM]. Thusny,,.. », € {0, 1} and we
obtain an even linear cod® := {(2h1, ..., 2h,) € Z | mp,,....n, # 0} such that

vOo— P LW/201/2@  QL(1/2.a)/2). (3.1)

The VOA Vv is a D-graded simple current extension Bfand is refereed to as@de
VOA associated to cod®. We call a pair(D, S) the structure code®f a 2A-framed
VOA V. Since powers of in an L(1/2, 0)-intertwining operator of typd.(1/2,1/2) x

L(1/2,1/2) — L(1/2,1/16) are half-integral, structure codes satighyc S-+.
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3.2. Construction of 2A-framed VOA

In this subsection we recall Miyamoto’s construction of 2A-framed VOAs in [M3]. Here
we assume the following:

Hypothesis 2.

(1) (D, S) is a pair of even linear even codesJ such that
(1-) D c §+,
(1-ii) for eacha € S, there is a subcodE® C D such thatE* is a direct sum of the
[8, 4, 4] Hamming codeHg and SuppE®) = Supfw), where SuppA) denotes
Ugea Supp) for a subsett of Z3.
(2) VCis the code VOA associated to the cafle
(3) {V¥ |« € S} is a set of irreduciblé’%-modules such that
(3-i) the 1/16-word of V¥ is equal tox for all « € S,
(3-ii) all V¥, o € S, have integral top weights,
(3-iii) the fusion productV® Ko V# contains at least on&**#. That is, there
is a non-trivial V%-intertwining operator of type/® x V# — v+ for any
a,BeSs.

Theorem 3.3 [M3,Y2].

(1) Under the condition(1) of Hypothesi2, all V¢, « € D, are simple currentv°-
modules.

(2) Under Hypothesi, the spaceV = @, .s V* carries a unique structure of a simple
VOA as ans-graded simple current extension Bf.

Remark 3.4. In [M3], Miyamoto assumed strongeoditions than those in Hypothesis 2.
In particular, he assumed that the structure cqdesS) are of length 8 for some positive
integerk. A refinement in [Y2] enables us to construct 2A-framed VOAs with structure
codes of any length as long as Hypothesis 2 is satisfied.

3.3. Superalgebras associated to 2A-framed VOA

Let V be a 2A-framed VOA with structure codéb, S). We assume that the pdib, S)
satisfies the condition (1-ii) of Hypothesis 2 aftl= S-. ThenV is holomorphic by
[M4,DGH]. Let w = ¢! + ... 4 ¢" be the 2A-frame ofV. We consider the commutant
subalgebra of Vigel). For simplicity, we set = e1. Assume thaf1} N SupfS) # @. Then
by the condition (1-ii) of Hypothesis 2, we ha¥e(1/2) # 0. LetV =@, .4 V* be the
1/16-word decomposition according to the structure cdqdess). SetS® = {o € S| {1} N
Suppa) =¥} andSt = {« € S | {1} N Supp) = {1}}. Thens = $° L ST (disjoint union)
and we have &,-gradingV = (P, .50 V) & (@ﬂesl v#) such thatv,(0) ® V,(1/2) =
Dyeso VY and V. (1/16) = @ﬁesl V. We shall prove thav,(1/16) is a simple current
Vv {¥)-module. We quote the following simple lemma from [Y2]:
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Lemma 3.5[Y2]. Let V be a simple rational">-cofinite VOA of CFT-type. If tw& -mo-
dulesM? and M? satisfyM* x M2 = V in the fusion algebra, then boti! and M2 are
simple currentV-modules. In particular, ifV is self-dual, then the set of all the simple
currentV-modules form a finite abelian group in the fusion algebra.

Lemma 3.6. V,(1/16) is a simple curren¥ {*)-module.

Proof. By Lemma 3.5, it suffices to show that (1/16) Xy () V.(1/16) = V(%) Let M

be an irreducibley (%’ -submodule o, (1/16) Ky ) V.(1/16). SinceV* Ky V¢ = VO

for anya € S by (1) of Theorem 3.3) containsV© as av%-submodule. Thug/ contains
a non-zero vacuum-like vector and henis isomorphic toV (% as aV (%-module
by [Li3]. Therefore, we have/,(1/16) x V,(1/16) = nV (%) for somen € N. As V is

holomorphic, bothV (%) andV,(1/16) are self-dualV {*)-modules. Now by using thsz-

symmetry of fusion rules, we obtain the desired fusion #lel/16) x V,(1/16) = V(%)

from the canonical fusion rul& ) x v,(1/16) = V,(1/16). O

Write V,(h) = L(1/2,h) ® T.(h) for h =0,1/2,1/16 as we did before. By Theo-
rem 2.2,7T,(0) & T,(1/2) forms a simple SVOA. The Virasoro vector @f(0) is given
by w — el =2+ --- + ¢" and soT,(0) is a 2A-framed VOA. We compute the structure
codes ofT, (0). Defineg, :Zg*l — 74 by Z’z’*l Sar> (e,a) € Z5fore =0,1, and set

Dfi=|aeZit|¢(@eD}, =01 $*0:={pezZjt|po(B) e S}
Proposition 3.7.

(1) The structure codes @ (0) with respect to the 2A-frame + - - - + ¢" are (DY, §9.9).
(2) T.(1/2) has thel/16-word decompositioff, (1/2) = @, .00 T.(1/2)*.

Proof. Fora € S°, defineV®¢ to be the sum of all irreducibl®;_; Vir (¢!)-submodules
of V® whose Vilel)-components are isomorphic fq1/2, ¢/2) for ¢ =0, 1. By (1-ii) of
Hypothesis 2y ®¢ £ 0 for all « € S° ande =0, 1. Thereforey* = V0 @ v*! and we
obtain the ¥16-word decomposition¥, (0) = P, 50 V*° and V,(1/2) = @, .50 V*1.
SinceD = ¢o(D°) Lig1 (DY), VOCis isomorphic to Vitel) ® Uy, wherel o denotes the
code VOA associated to the even cad® Thus7,(0) has the ¥16-word decomposition
T,(0) = P e500 Te(0)* such that7, (0)° ~ Upo. Hence the structure codes Bf(0) are
(D%, 599, The proof of (2) is similar. O

The following is easy to see:

Lemma 3.8. If the structure codeéD, S) satisfy the conditioril) of Hypothesig, then so
do (D9, 59,

ThusT,(0) = @, 500 T.(0)* is an S°O-graded simple current extension Bf(0)° by
(1) of Theorem 3.3. In addition, by using (2) of Theorem 3.3, we can reconsf (@}t
without reference t/.
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Proposition 3.9. T, (1/2) is a simple currenf, (0)-module.

Proof. It suffices to show théf, (1/2) Xr,g) T.(1/2) = T, (0) by Lemma 3.5. Le/ be an
irreducibleT, (0)-submodule of, (1/2) X7, (o) 7. (1/2). SinceT,(1/2) has a ¥16-word de-
compositionT, (1/2) = @, <500 T.(1/2)* by Proposition 3.77,(1/2)° as aRQ)"_, Vir (¢')-
module is isomorphic to

P LW/22/20 - &L1/2 /2.
B=(B2.-...Bn)eDL

Therefore, by the fusion rules @f(1/2, 0), M containsL(1/2, 0)®"~1 as aR_, Vir(e')-
submodule. SaVf contains a non-trivial vacuum-like vector and heneis isomor-
phic to 7,(0) as aT,(0)-module by [Li3]. Therefore, there exists anc N such that
T.(1/2) x T,(1/2) = nT,(0). SinceV is holomorphic, botlT, (0) and7,(1/2) are self-dual
T,.(0)-modules. So by thé&z-symmetry of fusion rules, we obtain the desired fusion rule
T.(1/2) x T,(1/2) = T, (0) from the canonical fusion rul&,(0) x 7,(1/2) = T,(1/2). O

To summarize, we obtain:
Proposition 3.10. Let V be a 2A-framed VOA with a 2A-frame= ¢ + ... + ¢" and
its associated structure codép, S). Suppose that the paiD, S) satisfies the condition
(1-ii) of Hypothesi®, D = S+ andV,1(1/16) # 0. ThenV ande?! satisfy Hypothesis.
4. Thebaby-monster SVOA

Let (V% ") be the moonshine VOA constructed in [FLM]. The full automorphism
group of V¥ is the MonsteM, the largest sporadic finite simple group. We apply our
results toV? and study the baby-monster SVOA. As shown in [DME], has a 2A-frame

o’ =el + ...+ ¢*8 and one of its structure codes are determined in [DGH,M4].

Theorem 4.1 [DGH,M4]. The moonshine VOK® has a 2A-frame such that its associated
structure codegD?, S?) are as follows

S*:= Span, [(a, @, @), (11%0%9), (0°%11%) € 3% |« e RM(1,4)}, D" :=(s")",
whereRM(1, 4) is a Reed—Miiller code defined as follows
RM(L, 4) := Span,, {(1%9), (1%0®), (1*0*1%0%), ({1100%), ({10}%)} < Z3°.

Lemma 4.2. For any conformal vectoe of V* with central chargel/2, V% ande satisfy
Hypothesisl.

Proof. Itis shown in [C] and [M1] that all theanformal vectors with central chargg¢2l
are conjugate under the Monstér= Aut(V?). Thus we may assume that= ¢1. Since
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{1} C SuppS?), V,1(1/16) # 0. Itis easy to verify that the structure codé¥', S°) satisfy
(1-ii) of Hypothesis 2. Thereford/? ande! satisfy Hypothesis 1 by Proposition 3.100

Now sete = ¢! and consider the commutant subalgebrg0) of Vir (e) in V. By the
lemma above, we have the following decomposition:

Vi=L(1/2,00® TH(0) & L(1/2,1/2) ® T*(1/2) & L(1/2,1/16) ® T/ (1/16)

with 7(h) # 0 for h = 0,1/2, 1/16. By Theorem 2.2, we know thdt'(0) @ 7.%(1/2)
forms a simple SVOA anm*f(l/lG) is an irreducibleZ,-twisted Tf (0)® T, (1/2)-module.
Moreover, the algebraic structures ﬁﬁ(O) ® 7, (1/2) and 7, (1/16) are independent of
choice of a conformal vectar = ¢! € V7 because all the conformal vectors with central
charge J2 are conjugate undéf = Aut(V").

Lemma 4.3. Cpyyvny (e)/(ze) is the baby-monster sporadic finite simple grdiip

Proof. It is shown in [C] and [M1] that the map — t., defines a one-to-one corre-
spondence between conformal vectors/ihwith central charge /2 and involutions of
2A-conjugacy class oM. Therefore,Cp vt (e) = Cayrvt)(te). We know thatCy(z,)

is isomorphic to a 2-fold central extensidgn.) - B of the baby-monster simple grolp
(cf. [ATLAS]). So the assertion holds.O

By the lemma above, the commutant subalgebéd) affords an action oB. We set
VB := T/(0), VBL := T,(1/2) and VB:= T(0) ® T(1/2) and we callVB the baby-
monster vertex operator superalgeb¥sle also seVB; := T, (1/16) for convention. Now
we state our main result which gives a new proof of [H62].

Theorem 4.4.

(1) Aut(VB% ~B andAut(VB) ~ 2 x B.

(2) VBr as a VB-module is irreducible. Thus, there are exactly three irreducibl@-VB
modules, VB, VB! and VB .

(3) The fusion rules for irreducible ViBmodules are as follows

VB! x VB! = VR, VB! x VB = VB, VBr x VBy = VB + VB

Proof. (1) follows from Theorem 2.11 and Lemma 4.3. By Corollary 2.YB; as a
VB®-module is irreducible. Then (2) follows from Proposition 2.8. Consider (3). We only
have to show the fusion ruMB; x VBr = VB + VBL. By considering the A16-word de-
composition ofVBr, we haveVB; x VBr = noVB® + n1VB! for someng, n1 € N. Since

top weights ofvVB°, VB! andVB; are distinct, every irreducibB%-module is self-dual.
Then by theSs-symmetry of fusion rules we obtain the desired fusion rule.

The classification of irreducibMB°-modules has interesting corollaries.
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Corollary 4.5. The irreducible 2A-twisted “-module as arL(1/2, 0) ® VB®-module has
a shape

L(1/2,1/2) VB’ ® L(1/2,0) @ VB' @ L(1/2,1/16) ® VBy.
Proof. Follows from Theorems 4.4, 2.7 and Proposition 2.8

Remark 4.6. A straightforward construction of the 2A-twisted and 2B-twistedmodules
is already obtained by Lam [L].

Corollary 4.7. For any conformal vectoe € V¢ with central chargel/2, there is no auto-
morphismp on V7 such thato(V, (h)) = Vf (h) for h =0,1/2andp| vz ) = oe.

Proof. Suppose such an automorphigmexists. We remark thgp also preserves the
spaceV/(1/16) asp € Cautvsy(e). We view V,/(1/16) as a(V?)(™)-module by a re-
striction of the vertex operator mafy: (-, z) on V4. Consider ther,-conjugate(V %) (%) -
moduler(l/lG)"E. By Theorem 4.4 and Proposition 2.8, (1/16)% is not isomorphic

to V2(1/16) as a(V?) = -module. On the other hand, we can take a canonical linear iso-
morphisme : V/(1/16) — V (1/16)7 such thatf z , 1. (a, 2)pv = ¢¥y:(0ea, 2)v for
anya € (V%)% andv e V(1/16) by definition of the conjugate module. Then we have

Yyi /160 (@ Depv = @Yy (0ea, 2) pv = ¢Yyi(pa, 2) pv = ppYy:(a, 2)v

for anya € (V%)™ andv € V. (1/16). Thusgp defines av?){%!-isomorphism between
V,(1/16) andV, (1/16)°, which is a contradiction. O

Corollary 4.8. The 2A-orbifold construction applied to the moonshine idAyields V*
itself again.

Proof. Follows from Theorem 4.4 and Corollary 2.120

Remark 4.9. The statement in the corollary above was conjectured by Tuite [Tu]. In [Tul],
Tuite has shown that ar¥, -orbifold construction o/ * yields either the moonshine VOA
V% or the Leech lattice VOAV 4 under the uniqueness conjecture of the moonshine VOA
which states thaV? constructed by Frenkel et al. [FLM] is the unique holomorphic VOA
with central charge 24 whose weight one subspace is trivial.

Finally, we end this paper by presenting the modular transformations of characters of
VBP-modules. Here the character means the conformal character, ngtdimeension,
of modules. Recall the characters b§1/2, 0)-modules. By an explicit construction of
L(1/2,0)-modules in Section 2.1 (cf. [FFR]), one can easily prove the following:

1 o 00
ChL(l/z,o)(t) = Eql/48{ l_[(1+ qn+l/2) + 1—[(1 . qn+l/2)},
n=0 n=0
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o0 o0

1
chry2,1/2)(t) = Eq—1/48 1_[(1+qn+1/2) _ 1_[(1_ qn+l/2) ’
n=0 n=0

o
chuajz116(t) = Y [[(1+4").
n=1

The following modular transformations are well known:

chy2,0(=1/1) = : chy1/2,0/(7) + 1 chy(1/2,1/2)(7) + 1 chr/2,1/16/(7),

] 2 ] 2 ] ﬁ ]
chp1y2,1/2(=1/7) = z chy1/2,0(7) + 1 chr /2,172 () — 1 chr/2,1/16/(7),

3 2 s 2 s \/é s
chy/2,1/16(—=1/7) = 1 chy/2,0(7) — 1 chy/2,1/2) (7).

’ V2 NZ)

Setj(r) := J(r) — 744, where/ (r) is the famous Si(Z)-invariant. Since cp; (t) = j(r)
and

chy: (1) = chy/2,0)(7) chypo(T) + chy (1/2,1/2)(7) chygi(t) + chy 172 1/16/(T) Chve, (7),

we can write down the characters of irreducimB-modules by using those df? and
L(1/2,0)-modules. This computation is already done in [Ma] by using Matsuo—Norton
trace formula. The results are written as a rational expression involving the fungtions
chy /2, (1), h =0,1/2,1/186, their first and second derivatives and the Eisenstein series
E>(t) andE4(t), see [Ma].

By Zhu’s theorem [Z], the linear space spannedtiy,go(t), ch g (1), chyg, (1)} af-
fords an Sk(Z)-action. Using the modular transformations fotr) and ch /21 (7),
h=0,1/2,1/16, we can show the following modular transformations:

My (—1/) = 5 Clyga(o) + 5 chyge () + %2 chye, (1),
chyg(—1/7) = }ch\, (7)) + }ch\, (1) — ich\/ (1)
B! - 2 B0 2 Bt ﬁ Br s
1 1
chyg, (—1/7) = 72 chypo(t) — ﬁ chygt (7).

Namely, we have exactly the same modular transformation laws for the Ising model
L(1/2,0). As in Theorem 4.4, we also note that the fusion algebra&/&¥is also canoni-
cally isomorphic to that of.(1/2, 0). Therefore, we may say that1/2, 0) andVE° form

a dual-pair inside the moonshine VOA.
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