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Non-Abelian global strings are expected to form during the chiral phase transition. They have orien-
tational zero modes in the internal space, associated with the vector-like symmetry SU(N);+r broken
in the presence of strings. The interaction among two parallel non-Abelian global strings is derived for
general relative orientational zero modes, giving a non-Abelian generalization of the Magnus force. It is
shown that when the orientations of the strings are the same, the repulsive force reaches the maximum,

whereas when the relative orientation becomes the maximum, no force exists between the strings. For
the Abelian case we find a finite volume correction to the known result. The marginal instability of the
previously known Abelian 7’ strings is discussed.

© 2008 Published by Elsevier B.V.

1. Introduction

Topological strings play very important roles in physics. Their
study ranges from the cosmic strings which are formed in the early
universe [1] to the vortices in the condensed matter physics i.e.
Abrikosov flux tubes in type II superconductors, the superfluid vor-
tices in “He and cold atoms, and so on. They are accompanied with
the spontaneous symmetry breaking at phase transitions. In high
energy physics, topological strings appear in the standard model,
GUTs and other particle models [2]. In cosmology they had long
been the strong candidates for the formation of the galaxies and
CMB fluctuations. Although this possibility is now excluded, the
study of cosmic strings is under the significant developments re-
cently due to several reasons [3]. Depending on whether a broken
symmetry is global or local, strings are called global or local, re-
spectively. In the early stage of developments, global cosmic strings
were not focused because their energy is logarithmically diver-
gent. Later it was recognized that the divergence is not a problem
because a finite volume system or nearest strings give a natural
infrared cutoff. Then their interaction, reconnection (intercommu-
tation) and formation of a network were extensively discussed [1,
4-6].

One of the important recent developments concerns the non-
Abelian strings. Here we use the term “non-Abelian string” for a
string which arises at the symmetry breaking G — H for which
the unbroken subgroup H is non-Abelian. Recently the non-Abelian
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local/semi-local strings have been found in superstring theory [7]
and in supersymmetric QCD [8]. Since these strings are BPS i.e. at
the critical coupling, no static force exists and the so-called mod-
uli matrix approach [9,10] provides the most generic solutions and
their complete moduli space [11]. Their interaction, scattering and
reconnection have been studied in the moduli space approxima-
tion [12]. Non-Abelian semi-local strings have been further stud-
ied [10,13].

In contrast to these remarkable developments, the non-Abelian
global strings have not been so much investigated yet, as was so
in the case of the Abelian global strings. Despite this, they are
interesting for several reasons. First, different from the Abelian
global strings, the non-Abelian strings have the internal degrees
of freedom which are called orientation; the presence of a string
breaks the symmetry H further H — H’ and consequently the zero
modes corresponding to H/H’ appear along the string. Then we
have a continuously infinite number of strings with the same ten-
sion which are parameterized by this orientation, namely a point
in H/H'. The interaction among the strings with different orien-
tations is not trivial at all, which is the main issue of the present
Letter. Second, it was shown that non-Abelian global strings with
domain walls indeed form during the chiral phase transition in
QCD [14] where the SU(N) x SU(N)r(XZy,a) symmetry is broken
to its diagonal subgroup SU(N)p4+r where N indicates the number
of flavors. In Ref. [14], they explicitly took into account the effect
of anomaly.

Before the discovery of the non-Abelian global strings in QCD,
it was already shown that the Abelian global strings which are
called the n’ strings may exist in the early universe [15]. When
the temperature becomes very high, the chiral anomaly is not ef-
fective [16]. It is because the instantons require both color electric
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and magnetic fields. But the fluctuation of the electric field is sup-
pressed at high temperature due to the Debye screening. Therefore,
if the temperature for the chiral phase transition is so high that the
U(1)a symmetry is effectively restored,! the Abelian strings arise
during the spontaneous symmetry breaking of this effective U(1)a
symmetry due to the chiral condensate (qq), where q(q) indicates
the (anti)quark fields. The 1’ strings become unstable as the tem-
perature decreases and the instanton effects become substantial.
The authors in Ref. [18] expected that they can be stable if they
accompany three domain walls.

In this Letter, we consider non-Abelian global strings which
arise during the chiral phase transition when we can neglect
the effect of the anomaly, which is just the case considered in
Refs. [15,18]. We derive the interactions among the non-Abelian
global strings in the U(N)L x U(N)r linear 0 model. There are
lots of interesting questions about the formation, evolution of the
strings, etc. As a first step, however, we consider the interaction
among the static two non-Abelian strings with various relative
orientations using the Abrikosov approximation. In Section 2, the
non-Abelian string solution with general orientation is constructed
in the U(N)L x U(N)g linear o model. The interaction among the
static two non-Abelian strings is derived in Section 3. In the case
when the orientations of two strings are the same the calculation
reduces to that of two Abelian strings. We find even for this case
a finite-volume correction to the known result [1,4-6]. We end in
Section 4 with conclusion and discussion.

2. Non-Abelian global strings and orientations

Let us consider the chiral U(N)p x U(N)R linear o model. We
first introduce the N by N matrix field @;; (i, j=1,...,N) in or-
der to parameterize the symmetry breaking. This field belongs to
[N, N1 representation of SU(N). x SU(N)g. Under the global chiral
symmetry G =SU(N)L x SU(N)r x U(1)a, @ transforms as

@ - ey U, (1)

where Uy and Uy are independent SU(N) matrices and ei® is the
total U(1)a rotation.
The Lagrangian which is symmetric under G is

L=tr@?T30) —m? tr(@T®) — a1 (troT@)? — o tr[(@T0)?]  (2)

up to quartic order in @. When m? <0, A\ +X2/N>0,and A, >0,
the vacuum expectation value

(@) =v1=dy, v=,/—m2/2(Nrs+A2) (3)

breaks the symmetry G to H = SU(N)i+r X Zy and correspond-
ing N2 Nambu-Goldstone bosons appear. The action of H to (&)
is (@) — e UL (®)UT with (i, Uy, Ug) = (w, ™ 'U,U): w € Zy,
U € SU(N). The coset space has the non-trivial first homotopy
group,

G SU(N) x U(1)
H Iy

which develops both the non-Abelian as well as Abelian strings.
Therefore, the non-Abelian vortex strings we are studying here
are topological objects contrary to the pion string which is non-
topological with 1[SU(2)] =0 [19].

We will consider the cylindrically symmetric string configura-
tion along the z-axis. The most fundamental string is the non-
Abelian string which is generated by both SU(N) and U(1) gen-
erators of G. At large distance from the core of the fundamental
string, the matrix field @ (0) rotates as:

=U(N) = m[UN)]=Z, (4)

! This point is still controversial and is not settled yet. See Ref. [17], for example.

D0, = exp(i%) exp(—iTNz_l wg)mo, r)

= diag(e" f(r). g(r)..... g(r). &)
= diag(e", 1,...,1,1), (5)

where we have already taken v =1 for simplicity, and T, (a =
1,2,...,N%2 — 1) is the generators of SU(N) in the fundamental
representation which we normalize as Tr{T,T,} = 8. The (N% —
1)th generator is Ty2_; = ﬁdiag(l —N,...,1,1). Here 6 is
the angular coordinate in the x-y plane and we set @(0,r) = &y.
The full numerical solution of the string with profile functions f (r)
and g(r) is given in Ref. [24].

The string configuration breaks the symmetry H further as
SU(N)L+rR = SU(N —1)14+r x U(1)4+r. Consequently the zero modes
corresponding to

SU(N)L+R N—1

SUN = Digr x UDigr
appear along the string. Eq. (5) is in fact just one particular string
among a continuously infinite number of strings with the same
tension which are parameterized by the orientation, namely a
point in CPN~1. We will explicitly construct the two string sys-
tem with general relative orientation in the next section.

Before going to the next section we discuss stability of our so-
lutions here. Regarding dynamical stability of non-Abelian strings,
the scaling argument from the Derrick theorem [20] cannot be ap-
plied to the present case, because they are global strings whose
energy diverges in infinite size systems. They usually exist in finite
size systems, as U(1) vortex does in Helium superfluid, where the
effect from boundary prevents vortex core from collapsing. In this
meaning, once a cutoff parameter has been introduced for spatial
boundary to make the total energy finite, a modified version of the
Derrick theorem makes sense, see e.g. [21]. In contrast to texture-
like objects discussed in [21] where only gradient energy terms are
taken into consideration, our global string has a non-trivial stable
solution where gradient and potential energies are balanced with
a finite cutoff A. Also, there is an issue whether or not the global
non-Abelian string solution is stiff against small perturbations of
diagonal elements into which a vortex solution is not embedded.
Here we would briefly show this stability: first introduce a small
perturbation field vy (r, t) as g(r) — g(r)+v (r, t), and suppose that
W (r, t) = e~y (r). Plugging this into the equation of motion and
linearizing it in v (r) lead to a Schrodinger-like equation. After a
normalization, we obtain

(6)

v+ %g{// +[1+ @ = 2c f2(r) — 2(k (N — 1) + 1)3g%(")]¥ =0.
(7)

We solve an eigenvalue problem for w? with the boundary con-
dition v’ (0) = ¥'(A) = 0. If all the eigenvalues of w? are positive
for given k and N, the string solution is stable. (1) In the case
of k =0 (the critical coupling), f(r) and g(r) are decoupled and
it is immediately found that g(r) = 1/2, and then " + %df’ +
[14 w? — 6g(r)2]y = 0. The Bessel function gives the solution and
only positive w?’s satisfy the boundary condition. (2) The case of
Kk # 0 is more complicated. After the substitution of the full so-
lutions for f(r) and g(r) numerically obtained in Ref. [24], for
instance for x = 0.2 and N = 3, we found w? = 1.9851 as the low-
est eigenvalue. We thus see that the non-Abelian string solutions
are dynamically stable as expected from the topology arguments.
The complete analysis on the stability is beyond the scope of the
present Letter.

In the situation that the U(1)4 symmetry in our Lagrangian is
gauged, our non-Abelian strings become semi-local strings (with
finite energy) [22], then dynamical stability mechanism by Hind-
marsh [23], which is related to magnitudes between gauge and
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Fig. 1. Configuration of two global strings with interval d = 2a in polar coordinate
(p.0).

scalar couplings, might work even in infinite size systems. Al-
though the vortex solution discussed in [23] is not topological,
Hindmarsh has also mentioned the instability arising from small
fluctuation of the solution. But this is not our present case with
global U(1)a.

3. Interaction between two strings

Now we consider the interaction among arbitrary two strings.
Let us place two strings ¢i, parallel along the z-axis with the
separation 2a in the x-y plane. For definiteness those positions
are (p,0)=(a,0) and (a, ) as in Fig. 1 where (p, ) are the po-
lar coordinates in the x-y plane. As the orientation in the internal
space CPN=1 in (6) is concerned, only the relative orientation mat-
ters. Let us take the reference string ¢ as in Eq. (5):

o1 =diag(e,1,...,1,1). (8)

Then starting from the same orientation with ¢ in (8), the most
general orientation (6) for the second string ¢, is obtained by act-
ing SU(N)L4+r on it. However as far as two string interaction is
concerned, only an SU(2).+r(C SU(N)L+r) rotation is enough to be
considered without loss of generality. (This corresponds to consid-
ering a CP! submanifold inside the whole CPN=1.) We thus have

(S 0

0 In—2
where g is an element of SU(2):
g:cos<g>12+iﬁ~6sin(g) (9)
2 2

with ¢ = (01, 02, 03) the Pauli matrices and 7 a unit three vector.
Since the rotation by o3 does not change the relative orientation
between ¢ and ¢y, n; is fixed to 0. If we define 8 by

e =ny —iny, (10)

then « and B parameterize CP! ~ S2. Consequently, ¢, is simpli-
fied as
e"e? cosz(%)+sin2(%) %(176“’2)@“’ sina 0
—$(1—€%2)e~# sinar cos?(%)+e2 sin®(%)
0 | YY)

For a = 0 the orientations of the two strings become the same,
and the problem is reduced to the one of the Abelian strings [5,6].
¢1,2 becomes an anti-string by changing the sign of 61 ;.

Let us now calculate the interaction among two parallel non-
Abelian (anti-)strings with general orientations in the internal
space. The interaction energy density of the two string system is
obtained by subtracting two individual string energies from the to-
tal configuration energy:

F(p,0,a,0) = tr(|dPeot|* — 911> — |32 ?), (12)

where @ is the total string configuration and we have used the
fact that for sufficiently large value of a the potential energies can
be approximated by V (@) = V (¢p1) = V (¢p2) = 0. We employ the
Abrikosov ansatz for the configuration where

Dot = P1¢2 OT P201. (13)

¢ = (11)

We see that either ansatz gives the same result, so we do not have
to worry about the ordering of the matrices.? Further, for sim-
plicity, ¢12 and @y are approximated to their values at spatial
infinity, Eqs. (8), (11). This approximation is justified when the in-
terval of the strings is much longer than the coherence length (the
transverse size of strings [24]):

axs»ml. (14)
Then Eq. (12) is simplified and we get:
—a? + p? )

(15)

F(p,0,a,a)==+(1
(p.0,a,a) (+Cosa)(a4+p4—202/’2“’5(29)

Here and below, the upper (lower) sign corresponds to the in-
teraction energy density for the string-string (string-anti-string)
configuration. For o =0, F reduces to that of Abelian global strings
[5,6]. However in contrast to the results in Refs. [5,6], we have
got the 6 dependent interaction energy density which reaches the
maximum (minimum) at 6 =0, 1 when p >a (o < a) for string-
string configuration. The 6 dependence gives a correction to [5,6]
for the Abelian case (o = 0).

The (sum of) tension, the energy of the strings per unit length,
is obtained by integrating the energy density over the x-y plane:

L 2
E(a,a,L):j:/dp/ dopF(p,0,a)
0 0

==£m(1+cosa)[—In4—2Ina+In(a® +L?)], (16)

where the IR cutoff L is introduced to make the integral finite. The
force between the two (anti-)strings are then obtained by differen-
tiating E by the interval:

faol)=52F 41 +cosay = — ¢
P =T8T A @+I2

T
~ (1 +cosa)z, (17)

where the last expression is for a <« L — oo. This is just the force
between two Abelian (anti-)strings known as the Magnus force,
multiplied by (1 4 cos«)/2. We can see that when the orientation
of the strings are the same (« = 0) the repulsive (attractive) force
reaches the maximum and is the same as that between Abelian
global string and (anti-)string [5,6], where the second term in
the middle equation gives a finite-volume (finite L) correction to
[5,6]. On the other hand, when the relative orientation becomes
the maximum (o = ), no force exists between the strings. Note
that although the most stable configuration is given by the strings
with the maximum relative angle (« = 1), it is not possible for the
strings to change « because it is non-normalizable and must be
fixed by the boundary condition at infinity. This change is possible
only if strings emit infinite number of Nambu-Goldstone bosons «
in CPN-1, (See Fig. 2.)

So far we have considered the case of the strings in infinite re-
gion where the relative orientation « is non-normalizable and is
fixed. However « becomes a normalizable mode in a finite volume
(finite L) which is realistic in experiments such as the heavy-
ion collider. In such a case, the force among orientations of two
strings can be considered. The interaction energy (16) shows a re-
pulsive force exists between aligned orientations of two strings.
The stable configuration is for « = w where two orientations are
anti-aligned. Therefore we conclude that they behave like antifer-
romagnet.

2 One can show that trd(¢1¢$2)d(¢1¢2) = trd(dap1)d(d2¢1) Up to reparameteri-
zation of g and coordinates.
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Fig. 2. Dependence of the force between two non-Abelian strings on the separation
d = 2a for several «.

4. Discussion

In this Letter, we have considered the interactions among two
non-Abelian strings in U(N)y x U(N)g linear ¢ model. This model
also has an Abelian string solution [15,18], the 1’ string. However,
it is not the fundamental string and is made of N non-Abelian
strings:

®(0) = diag(eie, ..et? eie)

~ diag(e,...,1,1) x diag(1,€",...,1) x ---

x diag(1,1,...,€"). (18)

There are no force among any of these non-Abelian strings, which
indicates that the »’ string is marginally unstable to decay into
N non-Abelian strings. No binding energy implies that they de-
cay with arbitrary momentum or by fluctuations. This result holds
in the presence of the chiral anomaly at lower temperatures; the
Abelian string with N domain walls will decay into N non-Abelian
strings, where each is attached by one domain wall. In that case,
the instability increases since once the Abelian string decays, the
domain wall pulls the string away to infinity. Therefore we do not
have a cosmological domain wall problem.

The same type of the non-Abelian strings also appear in the low
energy theory of supersymmetric QCD [8] and in the high density
QCD (color superconductors) [25] as fundamental strings. In these
cases, the strings accompany the gauge fields which may change
the interaction among them. The case of strings in color supercon-
ductors is reported [26] in which the universal repulsion is found
unlike the case of global strings in this Letter.

Another interesting issue is how the non-Abelian strings emit
or interact with the Nambu-Goldstone bosons (the pions and the
n’ meson). In the case of global U(1) strings, this can be described
by using the two index antisymmetric tensor fields of the Kalb-
Ramond action [27]. The non-Abelian tensor fields [28] may be
suitable to describe the non-Abelian case.

Thermal effect was studied for non-Abelian local and semi-local
vortices [29]. Finite temperature effect is important to study strings
at a collider or in the early universe.

The inclusion of the bare quark mass would be a next step.
If the quark mass enters in the theory, the chiral symmetry be-
comes not intact. Then a new topological object would appear
where strings with different orientations are separated by bead-
like solitons. Also, the ring-shaped string may appear. We remain
the study of these new topological objects as a future work.
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