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Abstract

We analyse two cases of the minimal extension of the Standard Model when one or two right-handed fields are
added to the three left-handed fields. A second Higgs doublet (two Higgs doublet model – 2HDM) is included in
our model. We calculate one-loop radiative corrections to the mass parameters which produce mass terms for the
neutral leptons. In both cases we numerically analyse light neutrino masses as functions of the heavy neutrino masses.
Parameters of the model are varied to find light neutrino masses that are compatible with experimental data of solar
Δm2� and atmospheric Δm2

atm neutrino mass differences for normal hierarchy. We choose values for the parameters of
the tree-level by numerical scans, where we look for the best agreement between computed and experimental neutrino
oscillation angles.
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1. Description of the model

The mass terms for the neutrinos can be written in a
compact form as a mass term with a (nL+nR)× (nL+nR)
symmetric mass matrix

Mν =
(

0 MT
D

MD M̂R

)
, (1)

where MD is a nL×nR Dirac neutrino mass matrix, while
the hat indicates that M̂R is a diagonal matrix. Mν can
be diagonalized as

UT Mν U = m̂ = diag
(
m1,m2, . . . ,mnL+nR

)
, (2)

where the mi are real and non-negative. In order to im-
plement the seesaw mechanism [1] we assume that the
elements of MD are of order mD and those of MR are of
order mR, with mD � mR. Then, the neutrino masses
mi with i = 1, 2, . . . , nL are of order m2

D/mR, while those
with i = nL + 1, . . . , nL + nR are of order mR.

In the standard seesaw, one-loop corrections to the
mass matrix, i.e. the self energies, are determined by

the neutrino interactions with the Z boson, the neutral
Goldstone boson G0, and the Higgs boson h0. Each dia-
gram contains a divergent piece but the sum of these
three contributions turns out to be finite.

Once the one-loop corrections are taken into account
the neutral fermion mass matrix is given by

M(1)
ν =

(
δML MT

D + δM
T
D

MD + δMD M̂R + δMR

)
≈

(
δML MT

D
MD M̂R

)
(3)

where the 03×3 matrix appearing at tree level (1) is re-
placed by the contribution δML. This correction is a
symmetric matrix, it has the largest influence as com-
pared to other corrections.

The expression for one-loop corrections is given by
[2]

δML =
∑

b

1
32π2 Δ

T
b U∗Rm̂

⎛⎜⎜⎜⎜⎜⎜⎜⎝ m̂2

m2
H0

b

− �
⎞⎟⎟⎟⎟⎟⎟⎟⎠
−1

ln

⎛⎜⎜⎜⎜⎜⎜⎜⎝ m̂2

m2
H0

b

⎞⎟⎟⎟⎟⎟⎟⎟⎠ U†RΔb

+
3g2

64π2m2
W

MT
DU∗Rm̂

⎛⎜⎜⎜⎜⎝ m̂2

m2
Z

− �
⎞⎟⎟⎟⎟⎠
−1

ln
⎛⎜⎜⎜⎜⎝ m̂2

m2
Z

⎞⎟⎟⎟⎟⎠ U†RMD, (4)
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with Δb =
∑

k bkΔk, where bk are two-dimensional com-
plex unit vectors, Δk are the Yukawa matrices, and the
sum

∑
b runs over all neutral physical Higgses H0

b .
Neutral Higgses are characterized by the unit-length

vectors b which hold special orthogonality conditions.
We use the set of values

bZ =

(
i
0

)
, b1 =

(
1
0

)
, b2 =

(
0
1

)
, b3 =

(
0
i

)
. (5)

It coincides with a special case of the invariant mixing
angles that define the diagonalization matrix of the neu-
tral Higgs squared-mass matrix [3]. The Higgs potential
of the 2HDM becomes CP-conserving in this case.

2. Case nR = 1

First we consider the minimal extension of the stan-
dard model by adding only one right-handed field νR to
the three left-handed fields contained in νL.

We define Δi =
(√

2 mD/v
)
�aT

i , where �aT
1 =

(
0, 0, 1

)
and �aT

2 =
(
0, n, eiφ

√
1 − n2). Diagonalization of the

symmetric mass matrix Mν (1) in block form is

UT MνU = UT
(

03×3 mD�a1

mD�aT
1 M̂R

)
U =

(
M̂l 0
0 M̂h

)
. (6)

The non zero masses in M̂l and M̂h are determined ana-
lytically by finding eigenvalues of the hermitian matrix
MνM

†
ν . These eigenvalues are the squares of the masses

of the neutrinos M̂l = diag(0, 0,ml) and M̂h = mh. Solu-
tions m2

D = mhml and m2
R = (mh −ml)2 ≈ m2

h correspond
to the seesaw mechanism.

It is possible to estimate masses of the light neutri-
nos from experimental data of solar and atmospheric
neutrino oscillations [4] assuming that the lightest neu-
trino has initial mass value min. Numerically varying
the value of min we choose parameters for the tree level
that agree with the experimental oscillation data most
accurately.

For the calculation of radiative corrections we use
the orthogonal complex vectors b defined in eq. (5).
Diagonalization of the mass matrix corrected by one-
loop contributions is performed with a unitary matrix
Uloop = UegvUϕ(ϕ1, ϕ2, ϕ3), where Uegv is an eigenma-
trix of M(1)

ν M(1)†
ν , and Uϕ is a phase matrix. The se-

cond light neutrino obtains its mass from radiative cor-
rections. The third light neutrino remains massless.

The numerical analysis shows (see Fig. 1) that we can
reach the allowed neutrino mass ranges for a heavy sin-
glet with the mass close to 104 GeV when the angle of
oscillations θatm is fixed to the experimental 3σ range
[4].

Figure 1: (Color online) Calculated masses of two light neutrinos as a
function of the heavy neutrino mass mh. Values of ml1 (ml2 ) are shown
as a band (brown line). The blue solid line represents the value of min
used for the calculations of the tree level masses.

The free parameters n, φ, mH0
2

and mH0
3

are restricted
by the parametrization used and by the oscillation data.
Figure 2 illustrates the allowed values of Higgs masses
for different values of the heavy singlet. The values of
Higgs masses spread to two separated sets.

Figure 2: (Color online) The values of the free parameters mH0
2

and
mH0

3
as functions of the heaviest right-handed neutrino mass mh. The

scale of the mh values is shown on the right. The mass of the SM
Higgs boson is fixed to mH0

1
= 125 GeV.

3. Case nR = 2

When we add two singlet fields νR to the three left-
handed fields νL, the radiative corrections give masses
to all three light neutrinos.

We parametrize Δi =
√

2
v

(
mD2�a

T
i ,mD1

�bT
i

)T
with |�a| =

1, and |�b| = 1. Diagonalizing the symmetric mass matrix
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Mν (1) in block form we write:

UT MνU =UT

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
03×3 mD2�a mD1

�b
mD2�a

T

mD1
�bT M̂R

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠U =
(

M̂l 0
0 M̂h

)
. (7)

The non zero masses in M̂l and M̂h are determined by
the seesaw mechanism: m2

Di
≈ mhi mli and m2

Ri
≈ m2

hi
,

i = 1, 2. We use m1 > m2 > m3 ordering of masses. At
tree level the third light neutrino is massless.

In numerical calculations the model parameters as
well as the derived masses of the light neutrinos are
obtained in several steps. First, the diagonal mass ma-
trix for the tree level is constructed. Having chosen
the mass for the third neutrino min, the masses of the
other two light neutrinos are estimated from experimen-
tal data on solar and atmospheric neutrino oscillations
[4]. The masses of the heavy right-handed neutrinos
are input parameters. This diagonal tree level matrix is
used to constrain the parameters that enter the tree-level
mass matrix Mν and its diagonalization matrix. Then
the diagonalization matrix is used to evaluate one-loop
corrections to the mass matrix. Diagonalization of the
corrected mass matrix yields masses for the three light
neutrinos. If the calculated mass difference is compa-
tible with the experimental oscillations data, the para-
meter set is kept. Otherwise, another set of parameters
is generated. Figure 3 illustrates the obtained results for
normal neutrino mass ordering.

Figure 3: (Color online) The masses mli of the light neutrinos as func-
tions of the heaviest right-handed neutrino mass mh1,2 for the normal
hierarchy of the light neutrinos. The wide solid lines indicate the area
of the most frequent values of the scatter data.

Figure 4 illustrates the allowed values of Higgs
masses for different values of the heavy singlet. The
values of Higgs masses spread to two separated sets as
for the nR = 1 case.

Figure 4: (Color online) The values of the free parameters mH0
2

and
mH0

3
as functions of the heaviest right-handed neutrino mass mh1,2 for

the normal hierarchy of the light neutrinos.

In the case of nR = 2 the inverted hierarchy is also
allowed [5].

4. Conclusions

1. For the case nR = 1 we can match the differences
of the calculated light neutrino masses to Δm2� and
Δm2

atm with the mass of a heavy singlet larger than
104 GeV. The parametrization used for this case
and restrictions from the neutrino oscillation data
limit the values of free parameters. One light neu-
trino remains massless.

2. In the case nR = 2 we obtain three non vanishing
masses. The numerical analysis shows that the va-
lues of parameters and Higgs masses depend on the
choice of the set of b vectors and the heavy neu-
trino masses. The radiative corrections generate
the lightest neutrino mass and have a big impact
on the second lightest neutrino mass.
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