
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
SnapShot: Antiviral Restriction  
Factors 
Silvia F. Kluge, Daniel Sauter, and Frank Kirchhoff 
Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
33

1 Entry EntryUncoating

Reverse
transcription

Reverse
transcriptionNuclear import Translation Assembly

UncoatingIntegration Transcription

Retroviruses

IFLUAV, THOV HCV Herpes-, orthomyxo-, flavi-, reo-, adeno-, poxviruses

Release 12 25 6 9

874

4 6 7 7

Viral core

Provirus

Proteasome

dN + 
PPP

dNTPs

ssDNA

dsDNA

vRNP

vRNP

dsDNA

ssDNA

dsDNA dsDNA

Defective
provirus

ssDNA

gRNA

Viral
proteins

Viral
proteins

Viral
proteins

Viral RNA Viral RNAMembranous web

NS5A

– RNA

+ RNA

Tetherin

Tetherin

SERINC5

SERINC5

gRNA
mRNA

mRNA

gRNA

IF
IT

M

IF
IT

M

IFITM

TRIM5

Fv1

MxB

SAMHD1

Vpx Vpr

KAP1

KAP1
Nef

Env

Vpu

ZAP

HERC5

eIF2α

PKR

SLFN11

Vif

Nef

APOBEC

APOBEC

APOBEC

APOBEC

APOBEC

MxA

IF
IT

M

APOBEC

Viperin

CH25H

IFIT

eIF3
PKR

TRS1 NS5A US11E3L vIRF-2

eIF2α

A
P

O
B

E
C

IF
IT

M

See online version for legend and references.774 Cell 163, October 22, 2015 ©2015 Elsevier Inc. DOI http://dx.doi.org/10.1016/j.cell.2015.10.019

Restriction 
factor Virus(es) targeted Mechanism(s) of restriction Viral antagonist(s) or evasion mechanism(s) IFN- 

inducible
Positive 
selection

1

IFITM family Retro-, orthomyxo-, flavi-, filo-, corona-, 
rhabdo-, bunya-, reoviruses 

Inhibits membrane fusion, modification of lipid components, or  
membrane fluidity

None known Some Some

SERINC3, 5 Retroviruses (HIV, SIV, MLV, EIAV) Reduces membrane fusion Nef (HIV, SIV), Glyco-Gag (MLV), S2 (EIAV) N N

CH25H Flavi-, retro-, filo-, bunya-, rhabdo-, herpesviruses Inhibits membrane fusion by generating 25-hydroxycholesterol None known Y Unknown

2
TRIM5a, TRIM-Cyp Retroviruses (HIV, SIV, MLV, EIAV) Accelerates uncoating, thereby inhibiting reverse transcription Capsid mutation Y Y

Fv1 MLV Targets the viral capsid protein and interferes with uncoating Capsid mutation N Y

3
APOBEC3 family Hepadna-, retroviruses Induces hypermutation by deamination, inhibits reverse transcription of HIV 

by binding to RNA and suppressing tRNA3Lys priming
Vif (lentiviruses), Bet (spumaviruses), Gag (gam-
maretroviruses)

Some Some

SAMHD1 Retroviruses Hydrolyzes cellular dTNP and degrades viral RNA Vpx (HIV-2, some SIV), Vpr (some SIV) Y Y

4
MxA IFLUAV, THOV Inhibits vRNP nuclear import Nucleoprotein mutations (pandemic IFLUAV) Y Y

MxB HIV, SIV Prevents integration of proviral DNA by inhibiting uncoating, nuclear uptake, 
and/or integrity/stability of the PIC

Capsid mutation Y Y

5 KAP1/TRIM28 HIV-1 Induces deacetylation of HIV integrase None known N N

6

KAP1/TRIM28 Herpes-, retroviruses Silences transcription and induces latency vPK (KSHV) N N

Viperin/RSAD2 HCV, DENV Inhibits formation of the HCV replicon complex by sequestration of hVAP-33 
and interaction with NS5A, interacts with NS3 (DENV)

None known Y Y

CH25H HCV Inhibits membranous web formation and NS5A dimerization None known Y Unknown

IFI16 HPV, HCMV, HSV1 Accumulates on the viral genome and prevents association of transcriptional 
activators, induces heterochromatin formation

pUL97, pUL83 (HCMV) Y Y

MxA Bunyaviruses (LACV, RVFV, BUNV) Sequesters newly synthesized viral N protein into perinuclear complexes None known Y Y

RNaseL (+OAS1) Picorna-, flavi-, toga-, corona-, reo-, pox-,  
orthomyxo-, paramyxo-, herpes-, retro-, rhabdo-,  
hepadna-, polyomaviruses

Degrades viral (m)RNA, RNaseL is activated by 2’-5’-linked oligoadenylates 
produced by OAS1

NS1 (IFLUAV), E3L, D9, D10 (VACV), s3 (ReoV), Tat 
(HIV), ns2 (murine hepatitis virus), VP3 (RotaV), L* 
(Theiler’s virus), hairpin RNA structure (poliovirus), 
genome adaptation (HCV)

Y Y

SAMHD1 Arteri-, pox-, herpesviruses Hydrolyzes cellular dNTP and degrades viral RNA None known Y Y

APOBEC3 family Herpes-, papillomaviruses Induces hypermutation by deamination None known Some Some

7

PKR Herpes-, orthomyxo-, retro-, flavi-, reo-, adeno-, 
poxviruses

Inhibits mRNA translation by eIF2a phosphorylation NS1 (IFLUAV), E2, NS5A (HCV), TRS1, IRS1 (HCMV), 
K3L, E3L (VACV), US11 (HSV1), vIRF-2, LANA2 
(KSHV), NSs (RVFV), s3, s4 (ReoV), SM, EBER-1 
(EBV), Tat (HIV), VAI RNAs (AV), C8L, K3L (Swine-
poxV), Nsp3 (RotaV), g(1)34.5 (HSV-1)

Y Y

SLFN11 HIV, other retroviruses Inhibits viral protein synthesis by altering tRNA function None known Y Y

ZAP Retro-, filo-, hepadna-, togaviruses Recruits RNA exosome complex to degrade viral RNA None known Y Y

IFIT family Flavi-, bunya-, rhabdo-, orthomyxo-, picorna-, 
coronaviruses

Inhibits cap- and IRES-dependent translation by binding to eIF3 (HCV), bind-
ing and degradation of PPP-RNA (RVFV, VSV, IFLUAV) and RNA lacking 2’-O 
methylation (WNV, JEV)

2’-O methylation of viral RNA (WNV, SARS-CoV, 
VACV), hairpin structures near the 5’ ends of viral 
RNA (VEEV), masking of the 5’ end by Vpg (EMCV)

Y Y 

8
HERC5 (+ISG15) HIV, MLV, HPV, IFLUAV Inhibits HIV and MLV assembly by ISGylation of Gag, ISGylation of IFLUAV 

NS1 and HPV L1 capsid reduces infectious virus yield
NS1 (?) (IFLUAV) Y Y

9

Tetherin/BST2/
CD317

Retro-, flavi-, filo-, rhabdo-, herpes-, corona-, 
paramyxo-, arena-, toga-, hepadnaviruses

Prevents virus release by tethering budding progeny virions to the plasma 
membrane of the infected cell

Vpu (HIV-1 M/N, SIVgsn/mon/mus), Nef (most SIV, 
HIV-1 O), K5 (KSHV), Env (HIV-2, EBOV, MARV, 
SIVagm), Nsp1 (CHIKV), gM (HSV-1), HA/NA (pan-
demic IFLUAV), F/HN (SeV), HBs (HBV)

Y Y
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Restriction factors are cellular proteins that inhibit viral replication and represent a first line of defense against viral pathogens. They show an enormous structural and functional 
diversity and target almost every step of the viral replication cycle. Although there is no unambiguous definition of restriction factors (Doyle et al., 2015), these proteins frequently 
share several characteristics: they are germ-line encoded, cell-intrinsic proteins that can be found in almost all cell types. While their expression is often upregulated by interferons 
(IFNs), many of them are constitutively expressed, allowing them to act very early during viral infection. Restriction factors frequently target conserved viral components, such 
as the viral genomes or membranes, and may thus be active against diverse viral families. Notably, some of them are so-called moonlighting proteins, also exhibiting biological 
functions outside of immunity. In some cases, restriction of viral replication may result from a cell-regulatory function rather than direct interference with the viral replication cycle. 
Viruses have evolved sophisticated means to evade or directly counteract many restriction factors. As a consequence of the continuous arms race with their viral antagonists, 
restriction factors usually evolve rapidly and show evolutionary signatures of adaptation. Sites under positive selection often directly interact with viral components, either to target 
them for inhibition or because they are being targeted by viral antagonists. As a consequence of virus-host adaptation, restriction factors are usually less effective against viruses 
in their natural hosts but represent potent barriers against cross-species transmissions. Finally, their specific interaction with viral components allows some restriction factors to 
act as pattern recognition receptors that do not only directly inhibit viral pathogens, but also sense them to induce antiviral immune responses.

The term “restriction factor” was established in the early 1970s, when researchers discovered that expression of Fv1 protects mice against infection by an otherwise lethal 
dose of MLV (Lilly, 1970). Later, it became evident that primate lentiviruses, such as HIV-1, are subject to similar restrictions. A functional screen for suppressors of HIV-1 identi-
fied rhesus TRIM5a as a potent inhibitor and determinant of retroviral species specificity (Stremlau et al., 2004). Similar to Fv1, TRIM5a and the related TRIM-CypA protein target 
incoming retroviral capsids and block viral replication by preventing viral cDNA synthesis. Other well-characterized retroviral restriction factors include APOBEC3G, Tetherin, and 
SAMHD1. APOBEC3G is a cytidine deaminase that is packaged into viral particles and inhibits viral cDNA synthesis by affecting the processivity of reverse transcription and by 
causing inactivating G-to-A hypermutations in the proviral genome (Sheehy et al., 2002). Tetherin inhibits the release of budding progeny virions because one of its two membrane 
anchors is inserted into the viral envelope while the other remains in the cell membrane (Van Damme et al., 2008; Neil et al., 2008). SAMHD1 suppresses reverse transcription in 
non-dividing cells by depleting dNTPs, which are required for effective cDNA synthesis, and perhaps also by degrading viral RNA (Hrecka et al., 2011; Laguette et al., 2011). With 
the exception of TRIM5a, that is evaded by viral capsid mutations, these restriction factors are all counteracted by accessory proteins of HIV and related lentiviruses: APOBEC3 
proteins by Vif, Tetherin by Vpu of pandemic HIV-1 group M as well as Nef of many other primate lentiviruses, and SAMHD1 by HIV-2 and SIV Vpx or Vpr proteins. Very recently, 
SERINC5 and SERINC3 have been identified as the enigmatic factors that impair the infectivity of HIV and SIV particles and are antagonized by the viral protein Nef (Rosa et al., 
2015; Usami et al., 2015).

Cellular proteins inhibiting HIV-1 have received enormous research interest, and a variety of additional antiviral factors, such as IFITM proteins, CH25H, KAP1/TRIM28, 90K, 
MOV10, MxB, SLFN11, and ZAP have been described. The discovery of all of these factors has relevance far beyond HIV/AIDS and other retroviruses because many of them have 
broad antiviral activity. For example, Tetherin suppresses the release of a large variety of enveloped viruses, including filo-, rhabdo-, arena-, and herpesviruses. Similarly, IFITMs 
and CH25H may impair virion infectivity of diverse virus families by altering the lipid composition of the viral membrane. Another striking example of a broadly active antiviral protein 
is PKR. This kinase inhibits viral mRNA translation by inhibiting the initiation factor eIF2a.

The definition of a “real” restriction factor is intensively debated. Viruses are interacting with and hijacking hundreds of cellular proteins to ensure efficient viral replication. Thus, 
overexpression or knockdown of many cellular factors may result in the identification of proteins with putative antiviral effects. Moreover, only a minority of the antiviral factors 
described to date show all features reported to be characteristic for a restriction factor. In fact, antiviral proteins without any (known) viral antagonist or evasion mechanism (e.g., 
IFITMs and SLFN11) have been proposed to be called “resistance factors” (Doyle et al., 2015). Here, we more broadly apply the term “restriction factor” to intrinsic cellular factors 
known to display antiviral activity. We apologize to both the purists who apply criteria that are more stringent and to all of the scientists who discovered interesting antiviral factors 
that we did not mention. We are only just beginning to understand the enormous diversity of antiviral factors and the highly sophisticated ways exploited by viruses to antagonize 
or evade them. No matter which definition of a restriction factor we apply, there will certainly be discoveries of novel antiviral proteins that will not satisfy the criteria.

ABBREVIATIONS

Antiviral factors: IFITM, interferon-induced transmembrane protein; SERINC, serine incorporator; CH25H, cholesterol 25-hydroxylase; TRIM, tripartite motif-containing protein; Fv1, 
Friend virus susceptibility-1; APOBEC3, apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3; SAMHD1, SAM domain and HD domain-containing protein 1; MxA, 
myxovirus resistance gene A; MxB, myxovirus resistance gene B; KAP1, KRAB-associated protein 1; RSAD2, radical S-adenosyl methionine domain-containing 2; IFI16, interferon-
inducible protein 16; OAS1, 2’-5’-oligoadenylate synthetase 1; PKR, (ds)RNA-dependent protein kinase R; SLFN11, Schlafen family member 11; ZAP, zinc-finger antiviral protein; 
IFIT, interferon-induced protein with tetratricopeptide repeats; HERC5, HECT and RLD domain-containing E3 ubiquitin protein ligase 5; ISG15, interferon-stimulated gene 15; BST2, 
bone marrow stromal cell antigen 2.
 
Viruses: HIV, human immunodeficiency virus; SIV, simian immunodeficiency virus; MLV, murine leukemia virus; EIAV, equine infectious anemia virus;  IFLUAV, influenza A virus; THOV, 
Thogoto virus; HCV, hepatitis C virus; DENV, Dengue virus; HPV, human papilloma virus; HCMV, human cytomegalovirus; HSV1, herpes simplex virus 1; LACV, La Crosse encephalitis 
virus; RVFV, Rift Valley fever virus; BUNV, bunyamweravirus; VSV, vesicular stomatitis virus; WNV, West Nile virus; JEV, Japanese encephalitis virus; KSHV, Kaposi’s sarcoma-associ-
ated herpesvirus; VACV, vaccinia virus; reoV, reovirus; EBV, Epstein-Barr virus; RotaV, rotavirus; AV, adenovirus; VEEV, Venezuelan equine encephalitis virus; SARS-CoV, severe acute 
respiratory syndrome corona virus; EMCV, encephalomyocarditis virus; MARV, Marburg virus; CHIKV, Chikungunya virus; SeV, Sendai virus; HBV, hepatitis B virus; EBOV, Ebola virus.
 
Viral proteins: Nef, negative factor; NS5A, nonstructural protein 5A; Vif, viral infectivity factor; Vpr, viral protein R; Vpu, viral protein unknown; Vpx, viral protein X; Env, envelope; vIRF-2, 
viral IRF2-like protein; US11, tegument protein unique short 11.
 
Other: eIF2a, eukaryotic translation initiation factor 2a; eIF3, eukaryotic translation initiation factor 3.
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