JOURNAL OF FUNCTIONAL ANALYSIS 18, 15-26 (1975)

Asymptotic Convergence of Nonlinear Contraction Semigroups in Hilbert Space*

RONALD E. BRUCK, JR.

University of Southern California, Los Angeles, California 90007 Communicated by Tosio Kato Received January 31, 1974

DEDICATED TO THE MEMORY OF MY SISTER, SUSAN GAIL BRUCK BOPPEL, AND TO HER SON, PRYCE.

Let S be a contraction semigroup on a closed convex subset C of a Hilbert space. If the generator of S satisfies a strengthened monotonicity condition then the weak $\lim_{t\to\infty} S(t)x$ exists for all x in C. As one consequence, the method of steepest descent converges weakly for convex functions in Hilbert space; and it converges strongly for *even* convex functions.

INTRODUCTION

Let S be a nonlinear contraction semigroup on a closed convex subset C of a real Hilbert space H. In this note we introduce a simple condition on the generator A of S (which we call demipositivity) sufficient to guarantee the existence of a weak $\lim_{t\to\infty} S(t)x = S(\infty)x$ for each $x \in C$. The mapping $S(\infty)$ so defined satisfies $S(t) S(\infty) =$ $S(\infty) S(t) = S(\infty)$ for $0 \le t \le \infty$, so that S can in a sense be extended to have an idempotent right end point; $S(\infty)$ is a nonexpansive retraction of C onto the fixed-point set of S. The maximal monotone operators usually cited as examples— $\partial \varphi$ if $\varphi : H \rightarrow$ $(-\infty, +\infty]$ is a proper l.s.c. (lower semicontinuous) convex function, and I - T if $T: H \rightarrow H$ is nonexpansive—turn out to be demipositive if φ assumes a minimum and T has a fixed point, and hence generate weakly asymptotically convergent contraction semigroups.

Dafermos and Slemrod [6] have recently investigated the asymptotic

15

Copyright © 1975 by Academic Press, Inc. All rights of reproduction in any form reserved.

^{*} Partially supported by NSF Grant GP-38516.

behavior of S (which may be more complex than simple convergence) under the hypothesis that the ω -limit sets

$$\omega(x) = \bigcap_{s>0} \operatorname{Cl}\{S(t)x : t \geq s\}$$

are nonempty. Their proofs rely on compactness arguments. Brézis [1, 2] has investigated the asymptotic convergence of S if S is generated by a subdifferential; his proofs rely on careful estimates of ||(d/dt) S(t)x||. Although the questions raised in [1] inspired the present paper, our methods of proof are quite distinct from those of [1, 2, 6].

One of the consequences of our main theorem is that the method of steepest descent for convex functions converges weakly. In the classical sense this means that if $\varphi: H \to (-\infty, \infty)$ is a differentiable convex function which assumes a minimum in H and x(t) is a solution of

$$\dot{x}(t) = -\operatorname{grad} \varphi(x(t))$$

on $[0, \infty)$, then the weak $\lim_{t\to\infty} x(t)$ exists and is a minimum point of φ . We actually prove this result in the more general case where $\varphi: H \to (-\infty, +\infty]$ is only assumed to be convex and l.s.c.; if φ assumes a finite minimum, then the absolutely continuous solutions of

 $\dot{x}(t) \in -\partial \varphi(x(t))$

converge weakly to minimum points of φ .

It is apparently unknown, even in the classical case, whether the method of steepest descent for convex functions converges *strongly*. Conditions such as compactness of level sets or the uniform convexity of φ are usually imposed to guarantee strong convergence, but these are unsatisfactory in view of the weak convergence. It is therefore of interest that we establish the strong convergence if φ is also *even*.

1. WEAK ASYMPTOTIC CONVERGENCE

Throughout this paper H will denote a real Hilbert space with inner product (\cdot, \cdot) , C a nonempty closed convex subset of H, and Sa contraction semigroup on C. (That is, $S = \{S(t): 0 \le t < \infty\}$ is a family of nonexpansive self-mappings of C such that S(0) = I, $S(t_1 + t_2) = S(t_1) S(t_2)$ for all $t_1, t_2 \in [0, \infty)$, and $S(\cdot)x$ is strongly continuous for each $x \in C$.) "lim" and " \rightarrow " refer to convergence in the norm topology, while "w-lim" and " \rightarrow " denote weak convergence. A will be multivalued operator on H, i.e., a subset of $H \times H$. The following conditions seems to be crucial in guaranteeing weak asymptotic convergence.

DEFINITION. A is firmly positive if

- (i) $(v, x y) \ge 0$ for all $[x, v] \in A$ and $y \in A^{-1}(0)$, and
- (ii) there exists $y_0 \in A^{-1}(0)$ such that $0 \in A(x)$ whenever $v \in A(x)$ and $(v, x - y_0) = 0$.

A is demipositive if (i) and (ii) hold and y_0 also satisfies

(iii) the conditions $x_n \rightarrow x$, $v_n \in A(x_n)$, (v_n) bounded, and $\lim_{n}(v_n, x_n - y_0) = 0$ imply $0 \in A(x)$.

THEOREM 1. Suppose A is demipositive and $x: [0, \infty) \rightarrow H$ is absolutely continuous and satisfies

$$x(t) \in D(A)$$
 for all $t \ge 0$, (1.1)

$$\dot{x}(t) \in -A(x(t)) \text{ a.e.}, \tag{1.2}$$

$$\|\dot{x}(t)\| \in L^{\infty}(0, \infty). \tag{1.3}$$

Then w-lim_{$t\to\infty$} x(t) exists and belongs to $A^{-1}(0)$.

Proof. Choose M > 0 and a null set $N \subset [0, \infty)$ such that $\dot{x}(t)$ exists, $\dot{x}(t) \in -A(x(t))$, and $||\dot{x}(t)|| \leq M$, for all $t \in [0, \infty) \setminus N$. For any $y \in A^{-1}(0)$,

$$(d/dt) \frac{1}{2} || x(t) - y ||^2 = (\dot{x}(t), x(t) - y) \leq 0, \qquad (1.4)$$

since $-\dot{x}(t) \in A(x(t))$ and part (i) of the definition is satisfied. Since x is absolutely continuous, so is $\frac{1}{2} || x(t) - y ||^2$, and (1.4) implies || x(t) - y || is decreasing in t. Thus a finite $\lim_{t\to\infty} || x(t) - y ||$ exists for all $y \in A^{-1}(0)$.

Fix an element y_0 which satisfies part (iii) of the definition and set

By (1.4), $h \ge 0$, and since $\lim_{t\to\infty} ||x(t) - y_0||$ exists and $h(t) = -(d/dt) \frac{1}{2} ||x(t) - y_0||^2$ a.e., we have also $h \in L^1(0, \infty)$.

By a (*)-sequence we shall mean a sequence $(t_n) \subset [0, \infty) \setminus N$ such that $t_n \uparrow +\infty$ and $\lim_n h(t_n) = 0$. Since $h \in L^1(0, \infty)$, (*)-sequences certainly exist. Now we claim the existence (and, necessarily, the uniqueness) of a point x^* such that $x^* \in A^{-1}(0)$ and $x(t_n) \rightharpoonup x^*$ for

every (*)-sequence (t_n) . Indeed, since $\lim_{t\to\infty} ||x(t) - y_0||$ exists, $\{x(t): t \ge 0\}$ is weakly sequentially precompact, so it is enough to show that the conditions

$$x(t_n) \rightharpoonup x^*, \qquad x(s_n) \rightharpoonup x^{**}$$
 (1.5)

for (*)-sequences (s_n) and (t_n) imply $x^* = x^{**} \in A^{-1}(0)$.

Certainly (1.5) implies x^* , $x^{**} \in A^{-1}(0)$. Indeed, $h(t_n) = (v_n, x(t_n) - y_0)$ where $v_n = -\dot{x}(t_n) \in A(x(t_n))$, and (v_n) is bounded (since $||\dot{x}(t_n)|| \leq M$); $\lim_n (v_n, x(t_n) - y_0) = 0$ because (t_n) is a (*)-sequence, so by part (iii) of the definition the w- $\lim_n x(t_n) = x^*$ is in $A^{-1}(0)$. Similarly, $x^{**} \in A^{-1}(0)$.

Now we appeal to a lemma of Opial [8]: if $(w_n) \subset H$, $w_n \rightharpoonup w$, and $w' \neq w$, then

$$\liminf_n \|w_n - w\| < \liminf_n \|w_n - w'\|.$$

In the present situation this means that if $x^* \neq x^{**}$ then

$$\liminf_{n} \|x(t_{n}) - x^{*}\| < \liminf_{n} \|x(t_{n}) - x^{**}\|.$$
(1.6)

But $x^*, x^{**} \in A^{-1}(0)$ so by our previous remarks both $\lim_{t\to\infty} ||x(t) - x^*||$ and $\lim_{t\to\infty} ||x(t) - x^{**}||$ exist. Hence (1.6) implies

$$\lim_{t\to\infty} \|x(t) - x^*\| < \lim_{t\to\infty} \|x(t) - x^{**}\|.$$

This is impossible since the roles of x^* and x^{**} are interchangeable, hence the assumption $x^* \neq x^{**}$ is false. We have shown the existence of $x^* \in A^{-1}(0)$ such that $x(t_n) \rightarrow x^*$ for every (*)-sequence (t_n) .

Call a sequence $(s_n) \subset [0, \infty)$ an almost-(*)-sequence if $s_n \uparrow +\infty$ and there exists a (*)-sequence (t_n) such that $\lim_n (s_n - t_n) = 0$. Since $||\dot{x}|| \leq M$ a.e., and x is absolutely continuous, $||x(s_n) - x(t_n)|| \leq M |s_n - t_n|$, so $\lim_n ||x(s_n) - x(t_n)|| = 0$. Thus $x(s_n) \to x^*$ whenever (s_n) is an *almost*-(*)-sequence.

Now let (s_n) be any sequence in $[0, \infty)$ such that $s_n \uparrow +\infty$; we claim that (s_n) has an almost-(*)-subsequence. Given $\delta > 0$ put $P_{\delta} = \{t \in [0, \infty): t \notin N \text{ and } h(t) < \delta\}$; since $h \in L^1(0, \infty)$, the complement of P_{δ} has finite measure, hence only finitely many of the open intervals $(s_n - \delta, s_n + \delta)$ can fail to intersect P_{δ} . That is, for each $\delta > 0$ there exists an integer $m = m(\delta)$ such that for all $n \ge m$, there exists $t \in P_{\delta}$ with $|t - s_n| < \delta$. The existence of an almost-(*)-subsequence of (s_n) is now obvious.

Finally, suppose w-lim_{$t\to\infty$} $x(t) \neq x^*$. Since $\{x(t): t \ge 0\}$ is weakly sequentially precompact, there must exist a sequence $s_n \uparrow +\infty$ such that $(x(s_n))$ converges weakly to some vector other than x^* . But (s_n)

has an almost-(*)-subsequence (s_{n_i}) , for which $(x(s_{n_i}))$ converges weakly to x^* ; the contradiction proves $w-\lim_{t\to\infty} x(t) = x^*$. We have already noted that $x^* \in A^{-1}(0)$. Q.E.D.

The greatest interest in Theorem 1 attaches to the case where A is maximal monotone, since A then generates a contraction semigroup which is weakly asymptotically convergent.

THEOREM 2. If the generator of a contraction semigroup S on C is demipositive then for each $x \in C$ the w-lim_{$t\to\infty$} $S(t)x = S(\infty)x$ exists and the operator $S(\infty)$ is a nonexpansive retraction of C onto the fixedpoint set of S. Furthermore, $S(\infty) S(t) = S(t) S(\infty) = S(\infty)$ for all $0 \leq t \leq \infty$.

Proof. It is known (e.g., [5]) that there is a one-to-one correspondence between maximal monotone operators A on H and contraction semigroups on closed convex subsets of H; if A is the generator of S then A is maximal monotone, D(A) is dense in C, and for all $x_0 \in D(A)$, $x(t) = S(t) x_0$ is the unique absolutely continuous solution of (1.1) and (1.2) for which $x(0) = x_0 \cdot x$ also satisfies (1.3). If A is demipositive then, in view of Theorem 1, $w-\lim_{t\to\infty} S(t) x_0$ exists and belongs to $A^{-1}(0)$ for each $x_0 \in D(A)$.

For any $x \in C$ and $w \in H$ with ||w|| = 1,

$$\begin{aligned} |(S(t)x - S(s)x, w)| \\ \leqslant ||S(t)x - S(t)x_0|| + |(S(t)x_0 - S(s)x_0, w)| + ||S(s)x_0 - S(s)x|| \\ \leqslant 2 ||x - x_0|| + |(S(t)x_0 - S(s)x_0, w)|. \end{aligned}$$

Thus

$$\limsup_{s,t\to\infty}|(S(t)x-S(s)x,w)|\leqslant 2\,\|\,x-x_0\,\|$$

for every $x_0 \in D(A)$. Since D(A) is dense in C, this implies that $\{S(t)x: t \ge 0\}$ is weakly Cauchy, and hence weakly convergent as $t \to \infty$.

Define $S(\infty)$ by $S(\infty)x = w-\lim_{t\to\infty} S(t)x$. Clearly $S(\infty)$ maps Cinto C; since $\|\cdot\|$ is weakly l.s.c. and each S(t) is nonexpansive, $S(\infty)$ is also nonexpansive. We have already noted that $S(\infty)$ maps D(A)into $A^{-1}(0)$; since $A^{-1}(0)$ is closed and convex ([5], Lemma 2.2]) and $S(\infty)$ is continuous, therefore $S(\infty)$ maps C into $A^{-1}(0)$. But $A^{-1}(0)$ is the fixed-point set of S, and $S(\infty)$ acts as the identity on this set; therefore $S(\infty)$ is a nonexpansive retraction of C onto the fixed-point set of S. This proves $S(s) S(\infty) = S(\infty)$ for $0 \le s \le \infty$. If $0 \le s < \infty$ then

$$S(\infty) S(s)x = w \lim_{t \to \infty} S(t) S(s)x$$
$$= w \lim_{t \to \infty} S(t + s)x$$
$$= w \lim_{t \to \infty} S(t)x = S(\infty)x,$$

Q.E.D.

so $S(\infty) S(s) = S(\infty)$.

Fortunately some very useful mappings are demipositive, or are demipositive once they are known to be firmly positive.

THEOREM 3. If any of the following conditions is satisfied then A is demipositive.

- (a) A is the subdifferential $\partial \varphi$ of a proper l.s.c. convex function $\varphi: H \rightarrow (-\infty, +\infty]$ which assumes a minimum in H;
- (b) A = I T, where $T: H \rightarrow H$ is nonexpansive and has a fixed point;
- (c) A is maximal monotone, odd, and firmly positive;
- (d) A is maximal monotone and int $A^{-1}(0) \neq \emptyset$;
- (e) A is maximal monotone, firmly positive, and weakly closed (i.e., $x_n \rightarrow x, v_n \rightarrow v, v_n \in A(x_n)$ imply $v \in A(x)$).

Proof. Operators of any of these types are monotone and hence satisfy part (i) of the definition.

(a) Recall that φ is *proper* if it is not identically $+\infty$, and that $\partial \varphi$ is the multivalued operator defined by

$$\partial \varphi(x) = \{ w \in H : \varphi(y) \ge \varphi(x) + (w, y - x) \text{ for all } y \in H \}.$$

Normalizing, we may assume $0 = \min \varphi$. If y_0 is any minimum point of φ then $0 \in \partial \varphi(y_0)$. Let $x_n \rightarrow x$, $v_n \in \partial \varphi(x_n)$, and suppose $\lim_n (v_n, x_n - y_0) = 0$. Then $\lim_n \varphi(x_n) = 0$ because $\varphi(x_n) \ge 0$ and

$$0 = \varphi(y_0) \geqslant \varphi(x_n) + (v_n, y_0 - x_n).$$

 φ is weakly l.s.c. because it is convex and strongly l.s.c., hence $\varphi(x) \leq \lim \inf_n \varphi(x_n) = 0$. It follows that x is a minimum point of φ , so that $0 \in \partial \varphi(x)$. Part (iii) of the definition (and a fortiori part (ii)) is satisfied, so $\partial \varphi$ is demipositive.

(b) If $T: H \to H$ is nonexpansive then for any $x, y \in H$

$$0 \le ||x - y||^2 - ||Tx - Ty||^2 = (x - y + Tx - Ty, (x - y) - (Tx - Ty))$$
$$= (2(x - y) - (Ax - Ay), Ax - Ay),$$

for A = I - T, so that

$$(Ax - Ay, x - y) \geq \frac{1}{2} \parallel Ax - Ay \parallel^2.$$

Since $A^{-1}(0)$ is the fixed point set of T, there exists $y_0 \in A^{-1}(0)$ and

$$(Ax, x - y_0) \ge \frac{1}{2} ||Ax||^2$$
(1.7)

for all $x \in H$. Let $x_n \to x$ and suppose $\lim_n (Ax_n, x_n - y_0) = 0$; (1.7) implies $\lim_n Ax_n = 0$, and the theorem of Browder [4] that I - T is demiclosed shows Ax = 0. Thus A is demipositive.

(c) We may as well assume $y_0 = 0$ in part (ii) of the definition. First, $A^{-1}(0)$ is nonempty, convex, and symmetric about 0 (since A is odd), so $0 \in A^{-1}(0)$. Second, if $v \in A(x)$ and (v, x) = 0 then $(v, y_0) \leq 0$ for all $y_0 \in A^{-1}(0)$ because the monotonicity of A implies $(v, x - y_0) \geq 0$. But since A is odd, also $-y_0 \in A^{-1}(0)$, so that we actually have $(v, y_0) = 0$. Hence $(v, x - y_0) = 0$. If A is firmly positive with respect to y_0 in part (ii) of the definition, then we must have $0 \in A(x)$; so that A is also firmly positive with respect to 0.

Let $x_n \rightarrow x$, $v_n \in A(x_n)$, and suppose (v_n) is bounded and $\lim_n(v_n, x_n) = 0$. Without loss of generality we may suppose $v_n \rightarrow v$. Since A is odd, $-v_n \in A(-x_n)$, and the monotonicity of A therefore implies

$$(v_n\pm v_m$$
 , $x_n\pm x_m)\geqslant 0,$

so that

$$(v_n, x_n) + (v_m, x_m) \ge |(v_n, x_m) + (v_m, x_n)|.$$

Letting first $n \to \infty$, then $m \to \infty$, we conclude that (v, x) = 0. The conditions $x_n \rightharpoonup x$, $v_n \in A(x_n)$, $v_n \rightharpoonup v$, $(v_n, x_n) \to (v, x)$ (= 0) imply that $v \in A(x)$ (see [3, Lemma 1.2]). Since A is firmly positive with respect to 0 and (v, x) = 0 this, in turn, implies $0 \in A(x)$. Therefore A is demipositive with respect to $y_0 = 0$.

(d) Let $y_0 \in \text{int } A^{-1}(0)$, and let $\rho > 0$ be so small that $y \in A^{-1}(0)$ whenever $||y - y_0|| \leq \rho$. Let $x_n \rightharpoonup x$ and $v_n \in A(x_n)$ and suppose (v_n) is bounded and $\lim_{n \to \infty} (v_n, x_n - y_0) = 0$. Without loss of generality we may suppose that $v_n \neq 0$ for all *n*. Now $y = y_0 + \rho v_n / || v_n || \in A^{-1}(0)$ and A is monotone, so $(v_n, x_n - y) \ge 0$. Hence

$$(v_n, x_n - y_0) = (v_n, x_n - y) + \rho ||v_n|| \ge \rho ||v_n||.$$

Since $\lim_{n}(v_n, x_n - y_0) = 0$, we see that $v_n \to 0$ strongly. But since A is maximal monotone the conditions $x_n \to x$, $v_n \to 0$, $v_n \in A(x_n)$ imply $0 \in A(x)$, i.e., A is demipositive.

(e) Let A be firmly positive and suppose $x_n \rightarrow x$, $v_n \in A(x_n)$, (v_n) is bounded, and $\lim_n (v_n, x_n - y_0) = 0$ where y_0 is the vector in part (ii) of the definition. Without loss of generality we may suppose $v_n \rightarrow v$, where (since A is weakly closed) $v \in A(x)$. Thus

$$\lim_{n}(v_n, x_n) = (v, y_0) \leqslant (v, x),$$

with $v \in A(x)$; by [3, Lemma 1.2], $\lim_{n}(v_n, x_n) = (v, x)$, so that $(v, x - y_0) = 0$. Since A is firmly positive with respect to y_0 , $0 \in A(x)$, i.e., A is demipositive. Q.E.D.

Remark. Theorem 2 and Theorem 3(d) imply that if S is generated by A and int $A^{-1}(0) \neq \emptyset$, then the w-lim_{$t\to\infty$} S(t)x exists. Actually, Brézis [1, Theor. 26] has shown that in this case the *strong* limit exists.

If A is maximal monotone and $(I + A)^{-1}$ is compact then A is easily seen to be weakly closed (in fact, the conditions $x_n \rightarrow x$, $v_n \in A(x_n), v_n \rightarrow v$ imply $x_n \rightarrow x$). Thus if A is also firmly positive, then Theorem 2 implies the existence of a w-lim_{$t\rightarrow\infty$} S(t)x; but since Dafermos and Slemrod [6] have shown that $\{S(t)x: t \ge 0\}$ is strongly precompact in this case, the strong $\lim_{t\rightarrow\infty} S(t)x$ actually exists.

2. Steepest Descent

Theorem 2, Theorem 3, and a result of Brézis [1] imply that the method of steepest descent converges weakly for convex functions.

THEOREM 4. Let $\varphi: H \to (-\infty, +\infty]$ be a proper l.s.c. convex function which assumes a minimum in H. Then for any $x_0 \in \operatorname{Cl} D(\varphi)$ there exists a unique function $x: [0, \infty) \to H$ which is absolutely continuous on $[\delta, \infty)$ for all $\delta > 0$ and which satisfies

$$x(t) \in D(\partial \varphi)$$
 for all $t > 0$, (2.1)

$$\dot{x}(t) \in -\partial \varphi(x(t))$$
 a.e., (2.2)

$$x(0) = x_0$$
, (2.3)

and w-lim_{$t\to\infty$} x(t) exists and is a minimum point of φ .

Proof. $\partial \varphi$ is maximal monotone [7] and therefore generates a contraction semigroup on $\operatorname{Cl} D(\partial \varphi)$. But $\operatorname{Cl} D(\partial \varphi) = \operatorname{Cl} D(\varphi)$ [2], where $D(\varphi) = \{x: \varphi(x) < +\infty\}$, and Brézis [1] has shown that $x(t) = S(t) x_0$ is the unique continuous solution of (2.1)–(2.3) for $x_0 \in \operatorname{Cl} D(\partial \varphi)$ (not just $x_0 \in D(\partial \varphi)$). By Theorem 2 and Theorem 3(a), w-lim_{t\to\infty} x(t) therefore exists and belongs to $(\partial \varphi)^{-1}(0)$ (and hence is a minimum point of φ). Q.E.D.

THEOREM 5. Let the hypotheses of Theorem 4 hold and suppose in addition that φ is even. Then the strong $\lim_{t\to\infty} x(t)$ exists and is a minimum point of φ .

Proof. Temporarily fix $t_0 > 0$ and define a function $g: [0, t_0] \rightarrow (-\infty, \infty)$ by

$$g(t) = ||x(t)||^2 - ||x(t_0)||^2 - \frac{1}{2} ||x(t) - x(t_0)||^2.$$

Clearly $g'(t) = (\dot{x}(t), x(t) + x(t_0))$ a.e.

Since $\varphi(x(s))$ is decreasing in s > 0 [2, p. 517], φ is even, and $-\dot{x}(t) \in \partial \varphi(x(t))$ a.e., we have

$$egin{aligned} arphi(x(t)) &\geqslant arphi(x(t_0)) = arphi(-x(t_0)) \ &\geqslant arphi(x(t)) + (-\dot{x}(t), -x(t_0) - x(t)) \ &= arphi(x(t)) + g'(t), \end{aligned}$$

a.e., in $[0, t_0]$. Thus $g'(t) \leq 0$ a.e.

Now $x(t) = S(t - \delta) x(\delta)$ if $t \ge \delta > 0$, and since $x(\delta) \in D(\partial \varphi)$ by (2.1), x(t) is absolutely continuous on $[\delta, t_0]$. Therefore g(t) is absolutely continuous on $[\delta, t_0]$ for every $\delta > 0$, and since $g'(t) \le 0$ a.e., g is decreasing on $(0, t_0]$. Thus $g(t) \ge g(t_0) = 0$ if $0 < t \le t_0$.

We have proven

$$||x(t) - x(t_0)||^2 \leq 2 ||x(t)||^2 - 2 ||x(t_0)||^2$$
(2.4)

whenever $0 < t \le t_0$. This implies, first, that $2 ||x(t)||^2$ is decreasing in t, and hence is convergent as $t \to \infty$; and second, that $\{x(t): t \ge 0\}$ is a Cauchy net, and hence converges strongly to some $x^* \in H$. Of course $x^* = w$ -lim_{$t\to\infty$} x(t), which is by Theorem 4 a minimum point of φ . Q.E.D.

Remark. More generally, suppose $0 < t_1 < t_2 < \cdots < t_n$, $\{\lambda_1, \lambda_2, \dots, \lambda_n\} \subset (0, \infty)$, and $\sum \lambda_i = 1$; then by the same reasoning

$$(\dot{x}(t), x(t) + \sum \lambda_j x(t_j)) \leq 0,$$

a.e., in $[0, t_1]$, so $||x(t) + \sum \lambda_j x(t_j)||$ is a decreasing function of t on $[0, t_1]$. It follows by induction that $||\sum \lambda_j x(t_j)|| \ge ||x(t_n)||$. Passing to the limit, we see that for each T > 0 the point of $\operatorname{Cl} \operatorname{co}\{x(t): 0 \le t \le T\}$ which is closest to 0 is x(T). (2.4) is a special case of this fact since it is equivalent to

$$||x(t_0)|| \leq ||\frac{1}{2}x(t) + \frac{1}{2}x(t_0)||.$$

COROLLARY 1. Suppose $K: D(K) \subset H \rightarrow H$ is positive and selfadjoint. Then for each $x_0 \in H$ the initial value problem

$$x(t) \in D(K) \quad \text{for all} \quad t > 0, \tag{2.5}$$

$$\dot{x}(t) = -K(x(t)) \quad \text{for all} \quad t > 0, \qquad (2.6)$$

$$x(0) = x_0 \tag{2.7}$$

has a unique continuous solution $x: [0, \infty) \to H$ and $\lim_{t\to\infty} x(t)$ exists and $= P_{N(K)}(x_0)$ (where $P_{N(K)}$ is the orthogonal projection of H onto the null space of K).

Proof. Put $\varphi(x) = \frac{1}{2}(Kx, x)$ for $x \in D(K)$, $\varphi(x) = +\infty$ for $x \notin D(K)$. Then it is easy to see that φ is an even, proper, l.s.c. convex function on H with $\partial \varphi = K$. By Theorem 5 the problem (2.1)-(2.3) has for each $x_0 \in \text{Cl } D(K) = H$ a unique solution x and $\lim_{t\to\infty} x(t)$ exists and belongs to $(\partial \varphi)^{-1}(0) = N(K)$. Equations (2.1)-(2.3) imply (2.5)-(2.7) (the fact that (2.6) is satisfied for all t > 0 is a well-known feature of linear semigroup theory). Finally,

$$(x(t) - x_0, y) = \int_0^t (\dot{x}(s), y) \, ds = \int_0^t -(K(x(s)), y) \, ds$$
$$= \int_0^t -(x(s), Ky) \, ds = 0,$$

for all $y \in N(K)$, so $x(t) - x_0 \in N(K)^{\perp}$ for all $t \ge 0$. Letting $x^* = \lim_{t \to \infty} x(t)$, we therefore find $x^* - x_0 \in N(K)^{\perp}$ and $x^* \in N(K)$; so $x^* = P_{N(K)}(x_0)$. Q.E.D.

It is still an open question whether the method of steepest descent converges strongly for convex functions which are not even. Since $w-\lim_{t\to\infty} x(t)$ exists, one might expect the means $(1/T) \int_0^T x(t) dt$ to converge strongly as $T \to \infty$, even if x(T) does not; but in fact these are equivalent.

THEOREM 6. If the hypotheses of Theorem 4 hold, then

$$\lim_{T\to\infty} \left\| x(T) - \frac{1}{T} \int_0^T x(t) \, dt \right\| = 0.$$

Proof. Brézis [1] has shown that the solution x(t) of (2.1)–(2.3) satisfies $t \parallel \dot{x}(t) \parallel^2 \in L^1(0, \infty)$, and that d^+x/dt exists for all t > 0 and $\parallel d^+x/dt \parallel$ is decreasing on $(0, \infty)$ (it may be unbounded near 0). We shall write $\dot{x}(t)$ instead of d^+x/dt . Since $\parallel \dot{x} \parallel$ is decreasing,

$$\int_{T/2}^{T} t \parallel \dot{x}(t) \parallel^2 dt \geqslant \left(\int_{T/2}^{T} t \ dt
ight) \parallel \dot{x}(T) \parallel^2 = rac{3}{8} \ T^2 \parallel \dot{x}(T) \parallel^2.$$

Since $t \parallel \dot{x}(t) \parallel^2 \in L^1(0, \infty)$, therefore $\lim_{T \to \infty} T \parallel \dot{x}(T) \parallel = 0$. Integrating by parts,

$$x(T) - \frac{1}{T} \int_0^T x(t) dt = \frac{1}{T} \int_0^T t \dot{x}(t) dt.$$

Since $\lim_{t\to\infty} t\dot{x}(t) = 0$, this implies

$$\lim_{T\to\infty} \left\| x(T) - \frac{1}{T} \int_0^T x(t) \, dt \right\| = 0.$$
 Q.E.D.

Note added in proof. The Yosida approximations of a contraction semigroup which has a fixed point are always weakly asymptotically convergent. That is, if S has generator A, for $\lambda > 0$ put $A_{\lambda} = \lambda^{-1}[I - (I + \lambda A)^{-1}]$ and let S_{λ} be the semigroup generated by A_{λ} . It follows from Theorem 3(b) that A_{λ} is semipositive, and hence $w-\lim_{t\to\infty} S_{\lambda}(t)x$ exists and is a fixed point of S for each x in H.

References

- H. BRÉZIS, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in "Contributions to Nonlinear Analysis" (E. H. Zarantonello, Ed.), pp. 101–156, Academic Press, New York, 1971.
- H. BRÉZIS, Propriétés régularisantes de certains semi-groupes nonlinéaires, Israel J. Math. 9 (1971), 513-534.
- 3. H. BRÉZIS, M. CRANDALL, AND A. PAZY, Perturbations of nonlinear maximal monotone sets in Banach spaces, Comm. Pure Appl. Math. 23 (1970), 123-144.
- F. BROWDER, Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1272-1276.
- 5. M. CRANDALL AND A. PAZY, Semigroups of nonlinear contractions and dissipative sets, J. Functional Analysis 3 (1969), 376-418.

- 6. C. M. DAFERMOS AND M. SLEMROD, Asymptotic behavior of nonlinear contraction semigroups, J. Functional Analysis 13 (1973), 97-106.
- 7. G. MINTY, On the monotonicity of the gradient of a convex function, *Pacific J.* Math. 14 (1964), 243-247.
- Z. OPIAL, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.