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Let S be a contraction semigroup on a closed convex subset C of a Hilbert 
space. If the generator of S satisfies a strengthened monotonicity condition 
then the weak lim,,, S(t)x exists for all x in C. As one consequence, 
the method of steepest descent converges weakly for convex functions in 
Hilbert space; and it converges strongly for even convex functions. 

INTRODUCTION 

Let 5’ be a nonlinear contraction semigroup on a closed convex 
subset C of a real Hilbert space H. In this note we introduce a simple 
condition on the generator A of S (which we call demipositivity) 
sufficient to guarantee the existence of a weak lim,,, S(t)x = S( co)x 
for each x E C. The mapping S( co) so defined satisfies S(t) S(co) = 
S(a) S(t) = S( co) for 0 < t < co, so that S can in a sense be 
extended to have an idempotent right end point; S( co) is a nonexpan- 
sive retraction of C onto the fixed-point set of S. The maximal 
monotone operators usually cited as examples-+ if v : H -+ 
(- co, + co] is a proper 1.s.c. (lower semicontinuous) convex function, 
and I - T if T: H -+ H is nonexpansive-turn out to be demi- 
positive if q~ assumes a minimum and T has a fixed point, and hence 
generate weakly asymptotically convergent contraction scmigroups. 

Dafermos and Slemrod [6] h ave recently investigated the asymptotic 
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behavior of S (which may be more complex than simple convergence) 
under the hypothesis that the w-limit sets 

w(x) = 0 Cl{S(t)x : t g? s> 
s>o 

are nonempty. Their proofs rely on compactness arguments. &&is 
[l, 21 has investigated the asymptotic convergence of S if S is gener- 
ated by a subdifferential; his proofs rely on careful estimates of 
fl(d/dt) S(t)x (I. Although the questions raised in [l] inspired the 
present paper, our methods of proof are quite distinct from those of 
[I, 2, 61. 

One of the consequences of our main theorem is that the method 
of steepest descent for convex functions converges weakly. In the 
classical sense this means that if 9: H + (-cc, co) is a differentiable 
convex function which assumes a minimum in H and x(t) is a solution 
of 

2(t) = -grad g)(x(t)) 

on [0, co), then the weak lim,,, x(t) exists and is a minimum point 
of q. We actually prove this result in the more general case where 
?‘: H -+ (-co, +a] is only assumed to be convex and 1.s.c.; if y 
assumes a finite minimum, then the absolutely continuous solutions of 

converge weakly to minimum points of q. 
It is apparently unknown, even in the classical case, whether the 

method of steepest descent for convex functions converges strongly. 
Conditions such as compactness of level sets or the uniform convexity 
of v are usually imposed to guarantee strong convergence, but these 
are unsatisfactory in view of the weak convergence. It is therefore of 
interest that we establish the strong convergence if q is also even. 

1. WEAK ASYMPTOTIC CONVERGENCE 

Throughout this paper H will denote a real Hilbert space with 
inner product (a, a), C a nonempty closed convex subset of H, and S 
a contraction semigroup on C. (That is, S = (S(t): 0 < t < co> is a 
family of nonexpansive self-mappings of C such that S(0) = 1, 
S(t, + t2) = S(t,) S(t,) for all t, , t, E [0, co), and S(.)x is strongly 
continuous for each x E C.) “lim” and “+” refer to convergence in 
the norm topology, while “w-1im” and “-” denote weak convergence. 
A will be multivalued operator on H, i.e., a subset of H x H. 
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The following conditions seems to be crucial in guaranteeing weak 
asymptotic convergence. 

DEFINITION. A is jrmly positive if 

(i) (v, x - y) > 0 for all [x, v] E A and y E A-l(O), and 

(ii) there exists y0 E A-l(O) such that 0 E A(x) whenever v E A(x) 
and (v, x - yO) = 0. 

A is demipositive if (i) and (ii) hold and y0 also satisfies 

(iii) the conditions x, - x, v, E A(x,), (vn) bounded, and 
lim,(v, , x, - y,,) = 0 imply 0 E A(x). 

THEOREM 1. Suppose A is demipositive and x: [0, 00) ---t H is 
absolutely continuous and satisfies 

x(t) E D(A) for all t > 0, (1.1) 

k(t) 6 --A(x(t)) a.e., (1.2) 

II WI EL”@, a). (1.3) 

Then w-lim t-tm x(t) exists and belongs to A-“(O). 

Proof. Choose M > 0 and a null set N C [0, co) such that 
k(t) exists, i(t) E -A(x(t)), and /I k(t)11 < M, for all t E [0, co)\N. 
For any y E A-l(O), 

(44 t II x(t) - y II2 = @(t), x(t) - Y) e 0, (1.4) 

since -i(t) E A(x(t)) and part (i) of the definition is satisfied. Since x 
is absolutely continuous, so is 4. I/ x(t) - y 1j2, and (1.4) implies 
II 44 - Y II is d ecreasing in t. Thus a finite lim,,, I/ x(t) - y I] exists 
for all y E A-l(O). 

Fix an element y0 which satisfies part (iii) of the definition and set 

h(t) = -w, x(t) - Yo) if t E [0, co)\N, 
= 0 if t EN. 

By (1.4), h > 0, and since lim,,, 11 x(t) - y,, 11 exists and h(t) = 
-(d/4 4 II 49 - yo /I2 a.e., we have also h ~Ll(0, co). 

By a (*)-sequence we shall mean a sequence (tn) C [0, co)\N such 
that t, T + co and lim, h(t,) = 0. Since h ~Ll(0, co), (*)-sequences 
certainly exist. Now we claim the existence (and, necessarily, the 
uniqueness) of a point x* such that x* E A-l(O) and x(t,J - x* for 
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every (*)-sequence (tn). Indeed, since lim,,, [I x(t) - y0 /I exists, 
{x(t): t 3 O> is weakly sequentially precompact, so it is enough to 
show that the conditions 

x(tn> - x*, 44 2 x** (1.5) 
for (*)-sequences (So) and (t,) imply X* = x** E A-l(O). 

Certainly (1.5) implies x*, x** E A-l(O). Indeed, h(tn) = 
tvn 3 x(&J - y,,) where v% = -i(t,) E A(x(t,)), and (vJ is bounded 
(since Ij 3i*(t,)l) < M); lim,(v, , X(&J - y,,) = 0 because (tn) is a 
(*)-sequence, so by part (iii) of the definition the w-lim, x(tn) = x* 
is in A-l(O). Similarly, x** E A-i(O). 

Now we appeal to a lemma of Opial [8]: if (w,) C W, w, - w, and 
w’ # w, then 

lim inf I/ w, - 
?I w iI < limninf 11 w, - w’ 11. 

In the present situation this means that if x* # x** then 

limjnf 11 x(tn) - xx II < lim>f jj x(&J - x** 11. (1.6) 

But x*,x** E A-r(O) so by our previous remarks both lim,,, j/ x(t) -x*(1 
and lim t+30 II 44 - x** II exist. Hence (1.6) implies 

‘t;il II x(t) - x* (I < 1’iI (I x(t) - x** II. 
This is impossible since the roles of x* and x** are interchangeable, 
hence the assumption x* # x** is false. We have shown the existence 
of x* E A-l(O) such that x(&) - x* for every (*)-sequence (tJ. 

Call a sequence (So) C [0, 03) an almost-( *)-sequence if s, T + co 
and there exists a (*)-sequence (tn) such that lim,(s, - tn) = 0. 
Since 1) k )/ < Ma.e., and x is absolutely continuous, 11 x(sn) - x(tn)jI < 
Ml s, - t, I, so lim, 11 x(s,) - x(&)11 = 0. Thus X(X%) - x* when- 
ever (sJ is an almost-(*)-sequence. 

Now let (sJ be any sequence in [0, co) such that s, t + co; we claim 
that (sJ has an almost-(*)-subsequence. Given 6 > 0 put P6 = 
{t E [0, co): t # N and h(t) < S}; since h ~Ll(0, co), the complement 
of P, has finite measure, hence only finitely many of the open intervals 
(sn. - 6, s, + 6) can fail to intersect P8 . That is, for each 6 > 0 there 
exists an integer m = m(s) such that for all n > m, there exists 
t E I’, with 1 t - s, 1 < 6. The existence of an almost-(*)-subsequence 
of (s%) is now obvious. 

Finally, suppose w-lim,,, x(t) # x*. Since {x(t): t > O> is weakly 
sequentially precompact, there must exist a sequence s, t +c.o such 
that (x(s%)) converges weakly to some vector other than x*. But (s,) 
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has an almost-(*)-subsequence (s& for which (x(sn,)) converges 
weakly to x*; the contradiction proves w-lim,,, x(t) = x*. We have 
already noted that x* E A-l(O). Q.E.D. 

The greatest interest in Theorem 1 attaches to the case where A 
is maximal monotone, since A then generates a contraction semigroup 
which is weakly asymptotically convergent. 

THEOREM 2. If the generator of a contraction semigroup S on C is 
demipositive then for each x E C the w-liml+no S(t)x = S(CO)X exists 
and the operator S( co) is a nonexpansive retraction of C onto the$xed- 
point set of S. Furthermore, S( KI) S(t) = S(t) S( 00) = S(a) for all 
o<t<m. 

Proof. It is known (e.g., [5]) that there is a one-to-one corre- 
spondence between maximal monotone operators A on H and con- 
traction semigroups on closed convex subsets of H; if A is the generator 
of S then A is maximal monotone, D(A) is dense in C, and for all 
x0 E D(A), x(t) = S(t) x0 is the unique absolutely continuous solution 
of (1.1) and (1.2) for which x(0) = x,, . x also satisfies (1.3). If A is 
demipositive then, in view of Theorem 1, w-lim,,, S(t) x,, exists and 
belongs to A-l(O) for each x,, E D(A). 

ForanyxECandwEHwithIIw\/ = 1, 

Thus 

lim sup [(S(t)% - S(s)x, w)i < 2 11 x - x0 11 
s,t+co 

for every x0 E D(A). Since D(A) is dense in C, this implies that 
{S(t)x: t 3 0) is weakly Cauchy, and hence weakly convergent as 
t+ co. 

Define S(co) by S(co)x = w-lim,,, S(t)x. Clearly S(m) maps C 
into C; since 11 . 11 is weakly I.s.c. and each S(t) is nonexpansive, S(CQ) 
is also nonexpansive, We have already noted that S(a) maps D(A) 
into A-l(O); since A-l(O) is closed and convex ([5], Lemma 2.21) and 
S(co) is continuous, therefore S(co) maps C into A-l(O). But A-l(O) 
is the fixed-point set of S, and S(co) acts as the identity on this set; 
therefore S(OO) is a nonexpansive retraction of C onto the fixed-point 
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set of S. This proves S(S) S(c0) = S(c0) for 0 < s < co. If 0 < 
s < CC then 

S(o3) S(s)x = W-;lil S(t) S(s)x 

= W-f\rg qt + s)x 

= W-;lif S(t)x = S(co)x, 

so S(m) S(s) = S(c0). Q.E.D. 

Fortunately some very useful mappings are demipositive, or are 
demipositive once they are known to be firmly positive. 

THEOREM 3. If any of the following conditions is satisjied then A 
is demipositive. 

(a) A is the subdifferential a, of a proper 1.s.c. convex function 
cpH+(-q+oo] h h w ic assumes a minimum in H; 

(b) A = I - T, h w ere T: H --f H is nonexpansive and has a 
Jixed point ; 

(c) A is maximal monotone, odd, and firmly positive; 

(d) A is maximal monotone and int A-l(O) # @ ; 

(e) A is maximal monotone, firmly positive, and weakly closed 

( i.e., x, - x, v, - v, V~ E A(x,) imply v E A(x)). 

Proof. Operators of any of these types are monotone and hence 
satisfy part (i) of the definition. 

(a) Recall that q~ is proper if it is not identically + CO, and that 39) 
is the multivalued operator defined by 

+(x) = {w E H: y(y) 3 v(x) + (w, y - x) for ally E H}. 

Normalizing, we may assume 0 = min q~ If y0 is any minimum point 
of CJI then 0 E +(yJ. Let x, - x, v, E +(x,), and suppose 
lim,(v, , x, - y,,) = 0. Then lim, q(xn) = 0 because C&X,) > 0 and 

0 = dY0) 2 d%) + (%a 9 Yo - %>- 

v is weakly 1.s.c. because it is convex and strongly l.s.c., hence v(x) < 
lim inf, 9)(x,) = 0. It follows that x is a minimum point of CJJ, so that 
0 E +(x). Part (iii) of the definition (and a fortiori part (ii)) is satisfied, 
so 3~ is demipositive. 
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(b) If T: H --f H is nonexpansive then for any x, y E H 

o~~~x-y~~“-~~Tx-Ty~12=(x-y+Tx--y,(x-y)-(~x--y)) 

= (2(x - y) - (Ax - Ay), Ax - Ay), 

for A = I - T, so that 

(Ax - Ay, x - y) 3 $/I Ax - Ay 112. 

Since A-l(O) is the fixed point set of T, there exists y0 E A-l(O) and 

(Ax, x - Yo) 3 3 II Ax II2 (1.7) 

for all x E H. Let x, - x and suppose lim,(Ax, , x, - y,J = 0; 
(1.7) implies lim, Ax, = 0, and the theorem of Browder [4] that 
I - T is demiclosed shows Ax = 0. Thus A is demipositive. 

(c) We may as well assume y,, = 0 in part (ii) of the definition, 
First, A-l(O) is nonempty, convex, and symmetric about 0 (since A 
is odd), so 0 E A-l(O). S econd, if z, E A(x) and (v, X) = 0 then 
(u, y,,) < 0 for all y0 E A-l(O) because the monotonicity of A implies 
(u, x - yO) > 0. But since A is odd, also -y,, E A-l(O), so that we 
actually have (v, yO) = 0. H ence (v, x - y,,) = 0. If A is firmly 
positive with respect to y0 in part (ii) of the definition, then we must 
have 0 E A(x); so that A is also firmly positive with respect to 0. 

Let X, - X, v, E A(x,), and suppose (vn) is bounded and 

lim,(v, , x,) = 0. With out loss of generality we may suppose v,, - v. 
Since A is odd, -v, E A(-x,), and the monotonicity of A therefore 
implies 

so that 

Letting first n --f a3, then m + co, we conclude that (v, X) = 0. The 
conditions x, - x, v, E A(G), vn - vu, (s , xJ --t (v, 2) (= 0) imply 
that v E A(x) ( see [3, Lemma 1.21). Since A is firmly positive with 
respect to 0 and (v, X) = 0 this, in turn, implies 0 E A(x). Therefore A 
is demipositive with respect to y,, = 0. 

(d) Let y0 E int A-l(O), and let p > 0 be so small that y E A-l(O) 
whenever 11 y - y,, (1 < p. Let X, - x and v, E A(x,) and suppose (vJ 
is bounded and lim,(v, , x, - yO) = 0. Without loss of generality we 
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may suppose that v, # 0 for all 7t. Now y = y0 + pv,/jj vti jl E A-i(O) 
and A is monotone, so (vn , x, - y) 2 0. Hence 

(VT2 , xn - Yo) = ha > %a -Y> + P II v7z II b P II v9z Il. 

Since lim,(v, , x, - y,,) = 0, we see that V~ -+ 0 strongly. But since A 
is maximal monotone the conditions x, - X, vu, ---t 0, v, E A(x,) imply 
0 E A(x), i.e., A is demipositive. 

(e) Let A be firmly positive and suppose X, - x, v, E A(x,), 
(un) is bounded, and lim,(v, , x, - yo) = 0 where y0 is the vector in 
part (ii) of the definition. Without loss of generality we may suppose 
V~ - U, where (since A is weakly closed) v E A(x). Thus 

l$(v, , x72) = (VYYO) G (VP 4, 

with v E A(x); by [3, Lemma 1.21, lim,(v, , xn) = (v, x), so that 
(v, x - y,,) = 0. Since A is firmly positive with respect to y,, , 
0 E A(x), i.e., A is demipositive. Q.E.D. 

Remark. Theorem 2 and Theorem 3(d) imply that if S is generated 
by A and int A-l(O) # 0, then the eu-lim,,, S(t)x exists. Actually, 
BrCzis [l, Theor. 261 has shown that in this case the strong limit exists. 

If A is maximal monotone and (I + A)-l is compact then A is 
easily seen to be weakly closed (in fact, the conditions x, - X, 
V~ E A(x,), v, - v imply x, -+ x). Thus if A is also firmly positive, 
then Theorem 2 implies the existence of a w-liml+co S(t)x; but since 
Dafermos and Slemrod [6] have shown that {S(t)x: t > 0} is strongly 
precompact in this case, the strong lim,,, S(t)x actually exists. 

2. STEEPEST DESCENT 

Theorem 2, Theorem 3, and a result of BrCzis [l] imply that the 
method of steepest descent converges weakly for convex functions. 

THEOREM 4. Let v: H + (-co, + co] be a proper 1.s.c. convex 
function which assumes a minimum in H. Then for any x,, E Cl D(v) 
there exists a unique function x: [0, UX) -+ H which is absolutely con- 
tinuous on [S, 00) for all S > 0 and which satisjies 

44 E WV) for all t > 0, (2.1) 
3(t) E --+(x(t)) a.e., (2.2) 

x(O) = x0 > (2.3) 

and w-lim,,, x(t) exists and is a minimum point of q~. 
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Proof. ag, is maximal monotone [7] and therefore generates a 
contraction semigroup on Cl II(+). But Cl II(+) = Cl D(v) [2], 
where D(y) = {x: T(X) < + co}, and BrCzis [l] has shown that 
x(t) = s(t) x,, is the unique continuous solution of (2.1)-(2.3) for 
x0 E Cl II(+) (not just x0 E D(+)). By Theorem 2 and Theorem 3(a), 
w-lim,,, x(t) therefore exists and belongs to (+1-~(0) (and hence is 
a minimum point of IJI). Q.E.D. 

THEOREM 5. Let the hypotheses of Theorem 4 hold and suppose in 
addition that g, is even. Then the strong lim,,, x(t) exists and is a 
minimum point of 9). 

Proof. Temporarily fix t, > 0 and define a function g: [0, t,] -+ 
(-co, ~0) by 

Clearly g’(t) = (a(t), x(t) + x(Q) a.e. 
Since ~(x(s)) is decreasing in s > 0 [2, p. 5171, 9” is even, and 

-i(t) E +(x(t)) a.e., we have 

a.e., in [0, to]. Thusg’(t) < 0 a.e. 
Now x(t) = S(t - 6) x(S) if t > 6 > 0, and since x(6) E D(+) by 

(2.1), x(t) is absolutely continuous on [a, to]. Thereforeg(t) is absolutely 
continuous on [S, t,] for every 6 > 0, and since g’(t) < 0 a.e., g is 
decreasing on (0, t,]. Thus g(t) > g(t,,) = 0 if 0 < t < t, . 

We have proven 

II 49 - 44lw < 2 II X(a12 - 2 II x(to)l/2 (2.4) 

whenever 0 < t < t, . This implies, first, that 2 I/ x(t)lj2 is decreasing 
in t, and hence is convergent as t --t co; and second, that {x(t): t > O> 
is a Cauchy net, and hence converges strongly to some x* E H. Of 
course x* = z0-lim,,, x(t), which is by Theorem 4 a minimum 
point of v. Q.E.D. 

Remark. More generally, suppose 0 < t, < t, < *** < t, , 
(4 , 42 >***, A,} C (0, co), and C Xi = 1; then by the same reasoning 

(q). x(t) + c M,) < 0, 
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a.e., in [Q &I, so II x(t) + Z +($)I1 is a decreasing function of t on 
[0, tl]. It follows by induction that jl C h,x(t,)lj > [I x(&J/. Passing to 
the limit, we see that for each T > 0 the point of Cl co(x(t): 0 < t < T) 
which is closest to 0 is X(T). (2.4) . IS a special case of this fact since it is 
equivalent to 

COROLLARY 1. Suppose K: D(K) C H --f H is positive and self- 
adjoint. Then for each x0 E H the initial value problem 

x(t) ED(K) for all t > 0, (2.5) 

n(t) = --K(x(t)) for all t > 0, P-6) 

r(0) = x0 (2.7) 

has a unique continuous solution X: [0, oz) -+ H and lim,,, x(t) exists 
and = P,,,(K~(xo) (where P,,,tK) is the orthogonal projection of H onto 
the null space of K). 

Proof. Put p)(x) = &Kx, X) for x E D(K), q(x) = + co for 
x $ D(K). Then it is easy to see that v is an even, proper, I.s.c. convex 
function on H with 8~ = K. By Theorem 5 the problem (2.1)-(2.3) 
has for each x0 E Cl D(K) = H a unique solution x and lim,,, x(t) 
exists and belongs to (+-i(O) = N(K). Equations (2.1)-(2.3) imply 
(2.5)-(2.7) (the fact that (2.6) is satisfied for all t > 0 is a well-known 
feature of linear semigroup theory). Finally, 

(x(t) - xo , Y> = Jot (44, Y> ds = Joi -VW>>, Y> ds 

zzz s ot -(x(s), Ky) ds = 0, 

for all y E N(K), so x(t) - x,, E N(K)J- for all t > 0. Letting x* = 
lh,, x(t), we therefore find x* - x,, EN(K)‘- and x* EN(K); 
so x* = P‘qK)(XJ. Q.E.D. 

It is still an open question whether the method of steepest descent 
converges strongly for convex functions which are not even. Since 
w-limt+..a x(t) exists, one might expect the means (l/T) JOT x(t) dt 
to converge strongly as T --t co, even if x(T) does not; but in fact 
these are equivalent. 
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THEOREM 6. If the hypotheses of Theorem 4 hold, then 

Proof. BrCzis [l] has shown that the solution x(t) of (2.1)-(2.3) 
satisfies t Ij i(t)jj2 E L1(O, Go), and that d+x/dt exists for all t > 0 and 
Ij d+x/dt 11 is decreasing on (0, GO) (it may be unbounded near 0). We 
shall write i(t) instead of d+x/dt. Since Jj f /I is decreasing, 

t dt ) jl k(T)\\” = f T2 11 k(T)ll”. 

Since t I/ i( ELI(O, co), therefore lim,,, T 11 i(T)\1 = 0. Integrating 
by parts, 

x(T) - + jo’ x(t) dt = + jO= t*(t) dt. 

Since lim,,, ti(t) = 0, this implies 

Q.E.D. 

Note added in proof. The Yosida approximations of a contraction semigroup 
which has a fixed point are always weakly asymptotically convergent. That is, if S has 
generator A, for h > 0 put A, = X-I[1 - (1 + XA)-‘1 and let S, be the semigroup 
generated by A,. It follows from Theorem 3(b) that A,, is semipositive, and hence 
W-limt+m SA(t)x exists and is a fixed point of S for each x in H. 
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