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We investigate regular sequences consisting of even and odd elements in the con- 
text of Z,-graded commutative algebra (or “superalgebra”). We associate to every 
finite module A over a Z,-commutative local ring a coherent sheaf IFpwA on a pro- 
jective space P”, and its support contains all information on odd regular sequences 
on A. We introduce the B,-version of the classical notion of regular local rings, and 
it turns out that over such rings the common length of all maximal odd A-regular 
sequences is connected with the growth of the ranks of the terms in a minimal free 
resolution of A. We also investigate properties of flat local homomorphisms and a 
partial analogue of the theorem of Vasconcelos on conormally free ideals. 0 1989 
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1. INTRODUCTION; PRELIMINARB~ 

1.1. In the context of classical commutative algebra, the concept of 
regular sequences is well investigated (cf., e.g., [ 13, 61). Two of the central 
results we would like to mention are the common length of all maximal 
regular sequences on a finite module A over a local ring R, which is called 
depth of A, and, in case that R is regular, its connection with the projective 
dimension of A which is given by the formula of Auslander and 
Buchsbaum 

pd A + depth A = dim R. (1.1.1) 

On the other hand, recent developments in quantum field theory have 
raised the interest of mathematicians into superalgebra and super-geometry 
(cf., e.g., [2,9-12, 151). Roughly speaking, the basic ideology of “super” 
consists in generalizing the classical law ab = ba to the Z,-graded 
commutative law 

ab = (- l)l’llbl ba (1.1.2) 

(cf. 1.2 for precise definitions). The standard example for this is the 
Grassmann algebra ,4 R(5 r, . . . . 5,) over a commutative ring R, and it is in 
fact a kind of prototype: It is nothing but the “odd analogon” of the 
polynomial algebra R[x,, . . . . x,] over R. The general super polynomial 
algebra over R will be /i Jt,, . . . . 5,) OR R[x,, . . . . xn], and we will con- 
sequently denote it by 

Ntlxl =Nt,, . . . . 5,IxIt . . . . x,3. 

Now it is not difficult to observe that large parts of the formal machinery 
of commutative algebra and algebraic geometry can be carried over to the 
more general Z,-graded situation. In particular, without further ado one 
can associate to every Z,-graded ring which satisfies (1.1.2) its af’ne 
spectrum X= Spec R; the only difference is that 0, is now a sheaf of 
Z,-graded commutative algebras. Thus, .there is nothing dangerous about 
“super” in general and the rule (1.1.2) in particular: We may and we will 
use mainly the techniques of classical commutative algebra and algebraic 
geometry, and anyone who is acquainted with them is invited to read this 
paper. 

Now if we accept the thesis that K[l] is the odd analogue of K[x] we 
are faced with the fact that while Spec K[x] has a quite nontrivial struc- 
ture even as topological space, Spec K[c] is simply a point with a structure 
sheaf. This is a general phenomenon: Roughly speaking, one can say that 
while even dimensions exist both infinitesimally (as directions in the 
tangent space of any point) and globally (as directions in the underlying 
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topological space of a scheme), odd dimensions are invisible in the under- 
lying topological space; they have “no topology”: They are coded into the 
structure sheaf, and from there they emerge geometrically in an 
infinitesimal way, namely, as the directions in the odd part of the tangent 
space of any point. 

Nevertheless, the odd directions have their own geometry which inter- 
feres with the geometry of the even ones, and which deserves further study. 
In particular, they exhibit specific aspects which have no classical pendant, 
and in this paper we want to investigate some of them. 

In [14], the authors proposed an “odd pendant” to the classical notion 
of regular sequences: If A is a module over a Z,-graded commutative ring 
R, an odd element p E R, is called A-regular if the sequence 

AP’AP’A 

is exact. That this definition is reasonable is shown both by the Koszul 
complex characterization of regularity (cf. 2.3) and the characterization by 
the bijectivity of the Hironaka-Grothendieck map (cf. 3.1). 

But the most striking property of this notion is the fact (apparently 
hitherto unnoticed) that if (R, M) is a local ring and p E R, is regular on a 
finitely generated R-module A then it remains so after adding any odd 
element of M’. In other words, the A-regularity of p depends only on the 
residue class of p in (M/M*), := CD. Once this is proved it generalizes to 
sequences, and we may call a subspace VG CD, A-regular if some-and 
hence any-sequence of elements p , , . . . . pk the residues of which in @ form 
a base of V is A-regular. 

Moreover, it turns out that V is A-regular iff P’(L7’) does not intersect a 
certain closed subset Sing A in P(n@) (which, however, may have no 
K-rational point). Therefore any two maximal odd A-regular sequences 
have the same length which is given by 

odpth A := dim K @ - 1 - dim Sing A 

and which we call the odd depth of A. Thus, the odd analogue of the 
classical fact that any two maximal A-regular sequences have the same 
length is true-but it holds by quite other reasons. 

Moreover, if R is a regular local ring in the sense to be defined in 3.3, 
Sing A is the support of two coherent sheaves gA and F,.,, which live on the 
projective superspace P(Z7(M/iW*)) (the underlying space of the latter is 
just P(ZZ@)), and the ith graded piece of the corresponding Z-graded 
modules is given by 

Ext;(K, A) (1.1.3) 



REGULAR SEQUENCES IN z,-ALGEBRA 63 

and 

Ext;(A, K) (1.1.4) 

respectively. It follows from the Hilbert-Serre theorem that the dimensions 
of the K-vector spaces (1.1.3) and (1.1.4) grow polynomially with i, and the 
common degree of these polynomials is just n - odpth A. 

Thus the odd depth is intimately connected with the growth of a minimal 
free resolution of A. This is a remarkable odd pendent of the formula 
( 1.1.1) which links the classical depth with the length of the (in this case 
finite) minimal free resolution. 

A further remarkable consequence of this is that a module A over a 
regular local ring R possesses a finite free resolution iff n = odpth A. If this 
is the case the classical formula ( 1.1.1) holds again. 

The main technical tool for the construction of WA, VA,, and Sing A will 
be a certain functor which we call the Koszul transform because of its 
intimate connection with the Koszul complex. If Y c X is a subscheme of a 
(super) scheme such that the conormal sheaf NyjX is locally free then the 
latter determines a vector bundle (in the super sense) 17(Nrix)*, and the 
Koszul transform assigns to every coherent sheaf d on X a coherent sheaf 
IF%‘& on the associated projective bundle P(Z7(N,,,)*). 

Although we cannot claim to have this functor well understood, it is a 
remarkable object in itself since it transforms “odd things” into even ones 
and vice versa. Moreover, it seems to have connexions (up to now not well 
understood, either) with the construction of [3], where a certain 
correspondence is established between coherent sheaves on the projective 
space P” and certain modules over the Grassman algebra. It would be 
interesting here to have more clarity. 

I wish to thank Dr. Thomas Zink for many valuable discussions. 

1.2. Concerning the framework of iZ,-graded linear algebra, we will 
generally follow [S], cf. also [ 121; in the following we recall some main 
points and fix some further notations and conventions. 

Generally, all abelian groups A (in particular, all rings, modules, vector 
spaces,...) are equipped with a Z,-grading: 

A =A,@A,. 

If a E A i for i = 0, 1 we call a homogeneous and write Ial = i; and we call a 
even or odd if i = 0 and i = 1, respectively. 

The parity assignments are always made in such a way that the parity 
rule holds: The parity of a multilinear expression is the sum modulo 2 of 
the parities of the factors. 

We also note the exchange rule: Whenever in a multilinear expression 

4x1.124 I-? 
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two adjacent terms a, b have to be interchanged the sign factor (- l)‘“l’61 
has to be introduced (cf. also Cl2 p. 1793 for further comment). 

By abuse of language, we will use the term ring to denote an associative, 
Z,-graded ring with unit element R = R,@ R, which satisfies 

I4 = Ial + I4 for a,bEROvR,, 

according to the parity rule, and which is commutative in the sense of the 
exchange rule: 

ab = (- l)““b’ ba. (1.2.1) 

Moreover, we require 

a’=0 for UER,. (1.2.2) 

It is usually required in the literature that 2 is a unit in R; then (1.2.2) is 
implied by (1.2.1). However, since we do not want this restriction we will 
show that the rules (1.2.1) and (1.2.2) are “consistent” without imposing it. 

LEMMA. Let R’ be a ring, and let R be an associative, H,-graded algebra 
over R’ which is generated as RI-algebra by a set S of homogeneous elements. 
Assume that the laws ( 1.2.1) and (1.2.2) are satisfied for all a, b E 
Rb v R; v S. Then they are satisfied for all homogeneous a, b E R, i.e., R is a 
ring again. 

Proof It is clear that we can assume that S is finite. Moreover, by 
induction we are reduced to the case that S consists of a single element, 
and the result then follows by elementary computations. 1 

It follows from the lemma that the tensor product R OR, R” of two rings 
over a third one if equipped with Z,-grading according to the parity rule 
and multiplication according to the exchange rule (cf. [8, 1.1.41) is a ring 
again. Note that a ring homomorphism cp: R + R’ is always required to 
respect the parity. Then ker cp is an ideal in the sense of the definition 
below. 

By an R-module A, where R is a ring, we will understand a E,-graded left 
unitary module over the associative ring R which, according to the parity 
rule, satisfies 

b-4 = I4 + 14 for rEROuR,, aEA,uA,. 

Setting in accordance with the exchange rule 

ar := (- l)““n’ ra, 
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A becomes a bimodule over R (i.e., (ra) r’ = r(ar’)). If A, B are R-modules 
then A 0 R B, A @B, Hom,(A, B) are R-modules in an obvious way (cf. 
[S]). Besides this, we have the purity shiftffunctor ZZ: A H IZA. The set Z7A 
consists of all symbols IZu, u E A, and the module structure on ZZA is deter- 
mined by the requirement that the map J7: A + ZZA, a H ZZu, be an odd, 
bijective R-linear map (i.e., ZZ(ru) = (- l)‘rlIn’ rZZu = (- 1)“’ rZZu). Briefly, 
we put 

A k” := & A 0 & IZA. 

Thus A k”=A@RR . k” One can think of A ki’ also as the set X k + I A equip- 
ped with componentwise addition and right multiplication with scalars and 
Z ,-grading 

A;I’=iA;&A,-, (i=O, 1). 

Thus we will use (a 1 a) = (a,, . . . . uk 1 a 1, . . . . a ,) E Ai” as shorter notation of 
a,, . . . . uk E A,, a,, . . . . a 1 E A , . We call an R-module P free of rank k ) 1 if it is 
isomorphic to R , kl’. then k ( 1 are uniquely determined by P. For the con- 
struction of the symmetric power S,P cf. [8]; S,P is a ring again. Note 
that if I/ is an odd vector space over a field K (i.e., V, = 0) then S, V is the 
classical exterior algebra over I/. 

By an ideal I in a ring R we mean a submodule of the R-module R. Thus 
I is homogeneous: 

I=InR,,+InR,, 

and R/Z is a ring again. Generally, in Z,-commutative algebra only 
homogeneous things are of interest (else one would have to do genuinely 
non-commutative algebra). 

We call an R-module A finite if there exists a surjection Rk”+ A for 
suitable k, 1; and we call R Noetheriun if all ideals in R are finite. In that 
case, any submodule of a finite R-module is finite again. 

If we speak of exact sequences 0 + A’ +’ A -+O A” -+ 0 it is tacitly 
understood that a, /? are homogenous A-homomorphisms (but they may be 
either even or odd). On the other hand, it is natural to require-and we 
will do so throughout-that in a complex of R-modules the differential is 
always an odd map (cf. [ 12, Chap. 3, Section 4, No. 11). In the Koszul 
complex (cf. 2.3) this is automatically the case; on the other hand, given a 
complex, the differential of which is in each degree homogeneous (and 
other complexes are not natural to consider), then it takes only some 
applications of the functor ZZ to convert it into a complex with an odd 
differential. 
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This convention also prescribes the HZ-grading of the R-modules 
Exti(A, A’) and Tor,R(A, A’). In particular, if R, = A, = A’, = 0 (so that we 
are in the situation of classical commutative algebra) it follows that 

Ext’,(A, A’) = Ext;(A, A’), 

and likewise with the Tor’s; here j = 0, 1 denotes the residue of i modulo 2. 
If we speak of a classical ring R we mean a ring with R, = 0. In par- 

ticular, every ring without zero divisors is classical. Moreover, the category 
of all classical rings is a full subcategory of the category of all rings in the 
sense of the definition above. 

If R is a ring we will denote by R’ the ideal which is generated by the 
odd part R, of R, and by R’ its ith power. It is easily seen that all elements 
of R’ are nilpotent. In fact, if R is Noetherian then R’ is generated by 
finitely many, say n, odd elements, and it follows that R” + ’ = 0. 

We can associate to every ring R the classical ring R := R/R’; we will 
denote the projection R -+ I? by r H F. If Zc R is an ideal in a ring and A is 
an R-module we put as usual 

gr; A := I’A/Z’ + ‘A, gr,A:= @ gr;A 
ib0 

Then gr, A is a Z-graded module over the Z-graded ring gr, R. By 
0,: Z’A + gr’, A we will denote the projection. 

We call an ideal P in a ring R prime if R/P has no zero divisors. Then 
Pz! R’, and it is easy to see that the assignments PH P, PH PO yield 
l-l-correspondences between the primes of the rings R, R, and R,. 

As usual, we call a Noetherian ring R local if it has a unique maximal 
ideal. We will also use the standard notation (R, M, K) to indicate that R is 
a local ring with maximal ideal M and residue field K. The Grassman 
algebra KC<,, . . . . 4,l over a field K is a non-classical example of a local 
ring. 

Like in the classical situation, we can associate to every ring R its affine 
spectrum Spec R (cf. [lo]). By abuse of language, we call a locally ringed 
space X= (space(X), OX) a scheme iff it is locally isomorphic to an afline 
scheme (no separability condition required). Generally, we will freely use 
the terminology and techniques of the classical scheme language, e.g., in 
forming relative Specs and Proj’s. 

If X is a scheme let 0 ’ denote the ideal subsheaf of 0 = OX generated 
by the odd part of 8. We put 8 := O/8’, g:= (space(X), a), X0 := 
(space(X), CJo). These are classical schemes, and we have natural morphisms 

We call w the underlying classical scheme of X. 
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Now if cp: X-+ Y is a morphism of schemes it is advisable to introduce 
into the usual definition of the cotangential sheaf s2i,r an additional parity 
shift: We set 52:,, := n($/s’), where 3 is the ideal sheaf which cuts out 
the diagonal in Xx y X. Then the differential of the de-Rham-complex 
049,+d12~,y-,d52;,y+ .‘. is odd, in accordance with our require- 
ments from above, and, moreover, Qxlu := ei 20 Qilr is a sheaf of 
Z,-commutative algebras again. In fact, if X-r k is smooth over a field k, 
then Spec Q X,k is nothing but the total space ZIT, of the vector bundle 
over X with graded section sheaf 17Fx, and the exterior derivative d turns 
into an odd vector field on Z7T,. (Cf. [15] for the situation in the C 5 
category.) 

2. ELEMENTARY THEORY OF REGULAR SEQUENCES 

2.1. Let A be a module over a ring R and p E R, . Because of p* = 0 
we have a complex 

ALA-6A 

the cohomology of which we will denote by %‘(p, A). We call p regular on A 
or A-regular if %?(p, A) = 0; obviously, this is equivalent with the assertion 
that 

O+pAciA--e,pA+O (2.1.1) 

is an exact sequence. 
We call a sequence (p) = (p,, . . . . p,) of odd elements of R regular on A or 

A-regular if for each i the element pi is regular on A/(p,, . . . . pi- ,) A. If this 
is the case one has by (2.1.1) and induction, 

A/b, 7 . . . . PA A =PI ...PA 

It also follows from (2.1.1) and induction that this module is not zero 
whenever (p , , . . . . pn) is A-regular and A # 0. 

Remark. Later on, we will also consider regular sequences which con- 
sist of even and odd elements, and we will show that the corresponding 
theories “decouple.” 

LEMMA 2.1.1. Let 

O+A& B8-C+O (2.1.2) 
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be an exact sequence of R-modules, let p E R,. Then we have an exact 
triangle 

WP, B) 

/ \ 
WP, A) f 6 WPY C) (2.1.3) 

In particular, if p is regular on two members of (2.1.2) then it is so on the 
third, too. 

Proof: By applying I7 if necessary we may assume a, /? to be even. 
Assign to any R-module A the infinite complex 

A,: ... &A-LA& . . . . 

Then (2.1.3) arises by taking cohomology in 0 + A, -+ B, + C, -+ 0. 1 

Remarks. (3) In case that p is R-regular, the complex R, truncated at 
the zeroth term will be a free resolution of pR= R/pR. Hence 
%?(p, A) = Torp(A, pR) = Extb(pR, A) for any i> 1, and the corresponding 
long exact sequences arising from (2.1.2) collapse to (2.1.3). 

(4) If A is an R-module, p E R,, and a(p) E grX,(R) is gr,l(A)-regular 
then p is A-regular (Consider the spectral sequence associated to the 
complex A, equipped with the R’-adic filtration. Then the assumption says 
Et4 = 0 for all p, q). The converse is false, as the following counterexample 
shows: Consider over R := @[t, CI, fi] the module A = Re, + Re, with 
defining relations le,l=l, le,l=O, o$e,=te,, cle*=Be,=O. Then A has 
the vector space basis (e,, e,, 5er, Eel, Be,, 5e,, SueI, <Be,}, and 5 is A- 
regular. On the other hand, 

O-+grb,(A) “‘) + g&(A) 

is not exact: We have a,,(e,)=O but 

45) UdeJ = a1(5e2) = al(del) = 0. 

Hence a(<) cannot be regular on gr RI(A). 

2.2. 

PROPOSITION. Let 

O+A+B,+ . ..-+B.+C+O (2.2.1) 
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be an exact sequence of R-modules; suppose that (p,, . . . . p,) is a regular 
sequence on each Bi. Then (p , , . . . . p,) is regular on A iff it is regular on C. 
Moreover, if this is the case, the sequence 

O+pA+pB,+ ... +pB,-+pC+O (2.2.2) 

with p :=p,p2 ...pn is exact, too. 

Proof: It suffices obviously to consider the case m = 1. We make induc- 
tion on n: 

Let n = 1. Then the first assertion follows from Lemma 2.1.1. We are left 
to show that if p, is regular on A, B,, and C then 

O+p,A+p,B,-,p,C+O (2.2.3) 

is again exact. Without loss of generality we may assume A c B,. Then if 
p , b E p , B, maps to zero we have by the exactness of (2.2.1) at least 
p, b E A. On the other hand, since p I(p I b) = 0 and since p, is regular on A, 
we get p I b E p 1 A, and (2.2.3) is proved exact. 

Now let n > 1, let the assertion be proved for the sequence (pl, . . . . p,, _ ,), 
Put P’ := PlP2 ..‘p+,. Then 

(P , 3 ..*, p,) A-regular 

- (P 1, ..*1 pn _ ,) A-regular, and p,, p’d-regular 

++ (PI? ..*, pn- i) C-regular, p, p’A-regular, and 
0 -+ p’A -+ p’B, -+ p’C -+ 0 is exact 

++ (by the case n = 1) (pl, . . . . pnP i) C-regular, p, 
p’d-regular, and (2.2.4) is exact 

- (P, 7 . ..t p,) C-regular. 

(2.2.4) 

Moreover, if this is true, the exactness of (2.2.4) and the case n = 1 applied 
onto pn yield the exactness of (2.2.2). m 

2.3. Let R be a ring. In accordance with classical commutative 
algebra we call an even element r E R, regular on an R-module A if the map 
A +’ A is injective but not bijective. A sequence (si, . . . . sk) of even and odd 
elements of R is called regular on A or A-regular if for any i= 1, . . . . k si is 
regular on A/(s,, . . . . si _ ,) A. 

Now let (r 1 p) = (r ,, . . . . r, I pl, . . . . p,) E R,“‘” be a fixed sequence of even 
and odd elements of R, let 

(VI I Y) = (VII 7 . ..> vm I Yl? ...? v,) 
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be a sequence of m odd and n even variables, and consider the polynomial 
algebra R[qly] = Gjia,, R[qly], in its natural Z-grading. The derivation 

acts on it, and we get a complex of R-modules 

K(rI PI: ...A mlYl,-4-* NlllYl,-+O. 

For any R-module A we call K(r I p; A) := K(r ( p) 0 R A the Koszul complex 
of A with respect to (rl p) (cf. also [ 12, Chap. 3, Section 4, Nos. 2, 3, 63). 

THEOREM. Suppose that either m = 0, or that R is noetherian, A is finite, 
and all ri lie in the radical of R. Then the following assertions are equivalent: 

(i) (r 1 p) is A-regular; 

(ii) H,(K(r(p; A))=Ofor all i> 1; 
(iii) H,(K(rlp; A))=O. 

We first note: 

LEMMA. Let PER,, let C.: ... -+dC, + d C, 4 0 be any chain complex 
of R-modules. If 

H,(C. OR K(P; RI) = 0 (2.3.1) 

then 

H,(C.)=O, (2.3.2) 

and 

p is regular on H, (C. ). (2.3.3) 

Proof At any rate, we have 

H,(C. OR K(P; RI) 

= ((c,, c,)EC,OC,,: dc, +pc,=O}/ 

{(dc, + PC,, dc, + pco); ($3 Cl, ~o)~GOC,OGJ). (2.3.4) 

Suppose that (2.3.1) holds. In order to prove (2.3.2) we suppose dc, =O, 
c, EC,. Then (c,, 0) lies in the numerator of (2.3.4), hence (2.3.1) implies 

(c,, 0) = (dc’, + PC’, , dc; + PC;). (2.3.5) 
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In particular, (cl,, cb) lies in the numerator of (2.3.4) hence (2.3.1) implies 

(c;, cb) = (dc; + pc;, dc; + pcb’). 

From this and (2.3.5) we get 

cl = dc; + p(dc;’ + pc;) = d(c; - PC;), 

and (2.3.2) is proved. 
For the proof of (2.3.5) suppose that p annihilates the homology class 

Cc,], i.e., pc, = dc, with c1 E C,. Then we get again (-cl, cO) = (dc; + pc’, , 
dc’, + pcb), in particular c0 - pcb = dc’, , i.e., [co] = p[cb]. # 

Proof of the Theorem. The implication (i) -+ (ii) was first observed in 
[ 143 for the case A = R; the general case can be done in the same way. 
(ii) -+ (iii) is trivial. In order to prove (iii) -+ (i) we do induction on n. The 
case n = 0 is the classical one (cf. [ 11). For n > 0 we may write K(r 1 p; A) = 
K(rIp’;A)ORK(pn;R) with p’:=(~,,...,p~-~). Now H,(K(rJp;A))=O 
implies by the lemma above that H,(K(rJp’; A)) =O, and hence, by 
hypothesis of induction, (rl p’) is A-regular. Moreover, the lemma says 
that P,, is regular on H,(K(rIp’; A))= A/(r(p’) A, and hence (r(p) is 
A-regular. 1 

2.4. Now we may “decouple” the odd and even elements in regular 
sequences. 

THEOREM. Let A be a finite module over a noetherian ring R. 

(i) Let (sl, . . . . sk) be a sequence of even and odd elements which is 
A-regular, and suppose that all si lie in the radical of R. Then for any 
permutation ICE Sk the sequence (s,(,), . . . . s,(~)) is A-regular, too. 

(ii) Zf (rIp)E R,“‘“, and all r, lie in the radical of R, then (r) p) is 
A-regular iff both (r) and (p) are Alregular. 

Proof. Ad (i). Since any permutation is a product of transpositions of 
adjacent elements, we may assume k = 2. The case that s, , s2 are both odd 
follows from Theorem 2.3, while if they are both even the assertion is 
classical. Therefore we are left to prove: 

LEMMA. Let rE RO, PER,. Then (rip) is regular on A iff (p(r) is also. 

Proof. Assume that (p I r) is A-regular. Then the sequence 
0 + pA + A -+ p pA + 0 is exact, hence (cf. [4, Chap. IV, Section 1, No. 1, 
Proposition 31) 

Ass, pA = Ass, A. (2.4.1) 
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Hence r is a non-zero divisor on A, too. Moreover, Lemma 2.1.1 applied 
onto 

O+A’- A+A/rA-+O (2.4.2) 

shows that p is A/rA-regular, i.e., (r(p) is A-regular. 
Now assume that (r 1 p) is A-regular. Then (2.4.2) and Lemma 2.1.1 show 

that %?(p, A) -+’ %?(p, A) is an isomorphism. Since r lies in the radical of R 
the Nakayama lemma implies that %(p, A) = 0, i.e., p is regular on A, and 
(2.4.1) now implies that r is regular on pA = A/pA. 1 

Continuation of Proof: Assertion (i) is proved. In view of it, we are left 
to show that if (r) and (p) are A-regular then (p) is regular on A/(r) A. 
This is easily done by induction on m, using Lemma 2.1.1 applied onto 

0 ---+ A/(r,, . . . . ri) A a A/(r,, . . . . ri) A 

----+ A/(r,, . . . . ri+ ,) A - 0. 

The theorem is proved. 1 

2.5. Let A be an R-module, let p, c1 E R,, r E R,, and suppose that p 
is A-regular. We look for conditions which guarantee that p’ := p + ar is 
A-regular, too. By Lemma 2.1.1, the exact sequence 

O-+pA‘=+As,pA--+O 

induces an exact triangle 

Hence: 

LEMMA 2.5.1. p’ is A-regular iff 6 is an isomorphism. 

Now any element of %(p’, PA) has the form [pa] with p’pa = 0; and S 
acts by 

6: [pa] H [p’a] = [pa] + [ara] =: (1 -t N)[pa]. 
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LEMMA 2.5.2. N* maps %(p’, pA) into r%(p’, pA). 

Proof Let [~a] + %(p’, PA), i.e., p’pa = arpa =O. Then N[pa] = 
[aru], and we have 

aru = pa’ (2.51) 

with suitable a’ EA. Thus 

N’[pu] = N[pu’] = [aru’]. (2.5.2) 

Now we have, due to (2.5.1), 

p(au’) = - apu’ = - a(aru) = 0, 

and 
p’(au’) = (p + ar)(au’) = 0; 

hence [au’] E U(p’, PA). Now (2.5.2) yields 

N*[pu] = r[au’]. m 

Now, if rk = 0 for some k > 0 then N 2k = 0, and hence 6 is invertible. But 
in fact, we can do much more: 

LEMMA 2.5.3. Let (R, M) be a local ring, A a finite R-module, and let 
p, p’ E R ,, p - p’ E My. Assume that p is A-regular. Then p’ is A-regular, 
too. 

Proof Obviously, it suflices to do the case p - p’ = ar where a E R,, 
r E M,. Then, in the notations from above, we claim that the map (1 - N ‘): 
%‘(p’, PA) 5 is an isomorphism. 

It is injective: (1 - N ‘) c = 0 implies by Lemma 2.5.2 and induction that 
c = N 2k~ E rk%?(p’; PA) for all k > 1; and since W(p’, PA) is finite and r E MO, 
we get c = 0. It is surjective due to 

WP’, PA) = (1 -N*) WP’, PAI + @(P’, PA) 

and the Nakayama lemma. 
Now we have (l-N*)=(l+N)(l-N); hence 6=1+N is an 

isomorphism, too, and Lemma 2.5.1 yields that p’ is A-regular. B 

2.6. Let (R, M) be a local ring. We introduce the notation 

@ := cDR := (M/M*), = RJR,M,. 

This is a finite dimensional vector space over K= R/M; let cp: M, + @ 
denote the projection. 
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Remark. The geometric meaning of @ is that it is the odd part of the 
conormal sheaf of the embedding of the closed point into Spec R. 

THEOREM. Let A be a finite, non-zero R-module. 

(1) Let (P,, .-, p,) E R; be an A-regular sequence. Then the elements 
cp(p,), . . . . cp(p,) E @ are linearly independent. 

(2) Let Vr @ be any K-subspace. The following assertions are 
equivalent : 

(i) There exists a basis I, . . . . q(p,) of V with p,, . . . . ~,,ER, 
such that (p,, . . . . p,, ) is A-regular; 

(ii) For every basis I, . . . . cp(p,) of V with p,, . . . . p,,~ R,, the 
sequence (p ], . . . . p,) is A-regular. 

If they are true we call the subspace V E @ A-regular. 

Proof Let C;=, d,cp(p,) =0 be a relation of linear dependence with 
d ,, . . . . dk _, E R,, dk E R,\M,, d, + ,, . . . . d, E M,. Since dk is a unit, we get 

k-l 

pk= - C d,d,‘p;+p” with p”~Mf. 
,=I 

Now pk is regular on A’ := p, . ..pkp.A and, by Theorem 2.4, pk-pU will 
be, too. But this element annihilates A’ although A’ #O, which is a 
contradiction. Thus (i) is proved. Before proceeding we note: 

LEMMA 2.6.1. Let (p I, . . . . p,) be regular on A, let p’, , . . . . ph E RI such that 
p, - p( E M2 for all i. Then (p’,, . . . . p’,) is regular on A, too. 

Proof: By induction on n, using Lemma 2.5.3 and Theorem 2.4. 1 

LEMMA 2.6.2. Let (pl, . . . . p,) be regular on A, let for i= 1, . . . . n, 
P: = C:= 1 crjPj3 where (c,.) is an n x n matrix with det(co) $M. Then 
(p’,, . . . . p;) is regular on A, too. 

Proof By standard techniques, one has an isomorphism of the Koszul 
complexes K((p); A) = K((p’); A), and Theorem 2.3 yields the assertion. 1 

Combining these lemmata, one easily accomplishes the proof of the 
theorem. m 

It is remarkable that the theorem ceases to be valid for non-finite A: In 
order to construct a counterexample, we take a sequence (X ( 5, n) of 2 ( 1 
variables over a field K and consider the local ring R = K[x],~~,,[~, 01. It 
is embedded into its full ring of quotients Q = K(x)[{, ~1. Now (xa, <) is a 
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Q-regular sequence in Q, and it follows (one can apply the theorem for 
this) that (r + xv, 5) is Q-regular, too. 

Now if we consider A := Q/(5 + xv]) Q as an R-module, it follows that 5 
is A-regular while 5 + xn is not. One notes that this is possible only due to 
the fact that A possesses subfactors for which the Nakayama lemma fails. 

The following “global” property of odd regular sequences is also 
remarkable (although we will not use it in the sequel): 

COROLLARY. Let R be a noetherian ring and A a finite R-module with 

supp A = Spec R. (2.6.1) 

Let (p) = (p,, . . . . p,) be an odd A-regular sequence, and suppose that I? 
(cf. 1.2) is reduced. Then the homomorphism 

& j?(p). R’/R~ 

is injective. 

Proof. We have to show that any relation 

i;,ciP,=o with c,ER,, (2.6.2) 

implies 
c ,, . . . . c,ER’. (2.6.3) 

Due to (2.6.1) we have A P # 0 for any P E Spec R. Applying the theorem 
onto the R,-module AP we get that the images of the pi in 
@ Rp = (R P) ,/P&R P), are linearly independent. Therefore (2.6.2) implies 
c,/l, . . . . c,/l E PR,, and hence 

Cl, . ..) C,EP for all P E Spec R. (2.6.4) 

Since R is reduced, the intersection of all P E Spec R is just R’. Therefore 
(2.6.4) implies (2.6.3). u 

3. REGULAR IDEALS AND REGULAR LOCAL RINGS 

3.1. It is certainly no surprise that the Hironaka-Grothendieck 
characterization of regular sequences (cf. [6, (15.1.9)] or [7, Chap. III, 
Section 11) can be extended to the Z,-graded case; but we will need it later 
on. Let R be a fixed noetherian ring. First we note: 

LEMMA. Let 01: A -+ B be a surjection of R-modules, suppose that p E R, is 
regular on B and that the induced map AIpA -+ BJpB is an isomorphism. 
Then c( is an isomorphism, too. 
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Proof: The hypothesis implies that Ker M c pA, and we are to show that 
Ker CI = 0. Now if pa E Ker cx we get from pa(a) = 0, the regularity of p on 
B, and the surjectivity of c1 that ~(a) =&a’) with some a’ E A, i.e., 
a - pa’ E Ker c1 c pA. This implies pa E p2A = 0. 1 

Let A be an R-module which is equipped with a filtration A =F,, I> 
F, 2 . . . . put as usual gr, A := eiaO F,/F,+ ,. Let (Y,, . . . . r,,,lp,, . . . . p,)~ 
Rz x R; and let ZC R be the ideal generated by these elements. We define a 
new filtration of A by FI := F, + ZF, _ 1 + ... + Z’A. Then we have a 
surjection of Z-graded R-modules 

t,kgr,AQ,R/ZCx, ,... ,x,I~~, . . . . 5,1-grFsA 

defined by 

lx 1, . . . . x, and 5 1, . . . . 5, are even and odd indeterminates, respectively). 

THEOREM. (i) If the sequence (r(p) = (r,, . . . . rm 1 pl, . . . . p,) is regular on 
gr,A (in the sense of 2.3) then $ is bijective. 

(ii) Conversely, if II/ is bijective, A is finite, and the r,, . . . . r,,, lie in the 
radical of R, then (r 1 p) is regular on gr F A. 

Things become easier to visualize in the case that F, = 0, i.e., gr, A = A. 
$ is then the homomorphism 

AIZACx,, . . . . x, It,, -., &,I-+ gr,A, 
Cal ~2” k+ gIgI + Ivi(arppy) 

(3.1.1) 

(gr,A is the module associated to the I-adic filtration on A), and we get: 

COROLLARY 3.1.1. Zf A is a finite module and r, , . . . . r,,, lie in the radical 
of R then (3.1.1) is an isomorphism iff (r 1 p) is regular on A. 

Proof of the Theorem. First we prove the assertions for the special case 
mjn=Oll: Put p :=p,. Then it is obvious that: 

$ is injective 

++it holds true that 

ao+a,~~Fk+,+~F/t with a,EFk,a,EFkm, (3.1.2) 

implies 

aoEFk+, +pF, and a,EFk+pFk-,. (3.1.3) 
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Now if p is regular on gr FA and (3.1.2) is given, then we have 
p.~~-,(a,)=O in grF(A), hence ak-l(a,)=p-~k-l(u2) with some 
a2EFkml, hence a,+pa,EFk and 

a,EFk+pFk-l. (3.1.4) 

From (3.1.2) and (3.1.4) we get 

aoEFk+l+PFk. (3.1.5) 

(3.1.4) and (3.1.5) together yield (3.1.3). 
Conversely, suppose that (3.1.2) implies (3.1.3), and let ~.a,-,(a,)=O; 

i.e., putting a, := -pa,, (3.1.2) is fulfilled. Then (3.1.3) yields a,=pa,+a, 
with a,EF,-,, a,EFk; hence a,_,(a,)=p .~~-,(a& and p is proved 
regular on gr,A. 

Now we may prove the theorem by induction on n: In the start of 
induction n = 0 the classical proof given in [6, Proposition 15.1.91 applies. 
Now let n > 0. We put 

J:=(~,,...,rmlpl,...,pn-,)R, 

F:‘:=Fi+.IFi-,+ ... +J’A. 

Then the F:’ form another filtration on A, and we have 

(3.1.6) 

Consider the map 

F; = F:’ + p,F:p ,. 

~“:gr,(A)O,R/JCx,,...,x,l5,,...,~,-,1-,gr,~,A (3.1.7) 

defined in the same way as II/, As in the classical case, we factor $I by 

grFAORR/ICx,,...,x,lr,,...,5,1 
=gr,A@,R/J[x,,..., xml51, ..., 5,-,l~,RI~nNSnl 

i” @ lR/&pCS”l 
+ gr,.A OR R/p,RCS,,I -f+ gr,,A. 

Then we get: 

II/ is an isomorphism 

- $‘I@ ’ R/p.R[Sl and I,V are isomorphisms, 

-(by the case mln=Oll) $“@lR,p,RCr, is an 
isomorphism, and pn is regular on gr,.. A, 

++ (applying the lemma above) $” is an isomorphism, and 
pn is regular on gr F,S A 
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c) (observing that the 1.h.s. of (3.1.7) is a direct sum of 
copies of gr, A @ R R/J) +” is an isomorphism, and pn 
is regular on gr F A @ R R,iJ 

++ (by hypothesis of induction and (3.1.6)) (rip) is 
A-regular. 1 

In case that m=O we only need to look at the last piece of (3.1.1): 

COROLLARY 3.1.2. Let I := (p,, . . . . p,) R, where p,, . . . . p,,~ R,. Then 
(P 1, .'., p,) is regular on a finite R-module A iff the sequence 

0 + IA cj A + I”A + 0 
(3.1.7) 

aHp, “.p,a 

is exact. 

Proof: Exactness of (3.1.7) means that I/~: (A/ZA[<,, . . . . (,I), + gr’f A is 
bijective. Now if for k < n the element o = C [a,] cfl E (A/ZA[[,, . . . . <n])k 
maps under $ to zero then we get for any pLo with Ili,,l = k 
f $n(Ca,,l 5”‘) = $,(o t(‘)m~pO) = $dm) P (‘)-@O=O ((1) denotes here the 
multiindex (1, . . . . 1)); hence by assumption [a,,] = 0 for all pO; hence 
o=o. 1 

3.2. Let R be a ring and Ic R be an ideal. Then we have a 
surjection of R/Z-algebras 

S,,,U/~*) -, gr, R (3.2.1) 

which is induced by the identity Z/I* = gr: R. Following the terminology of 
[6], we call I a regular ideal if 

(a) Z/I2 is a projective R/I-module, and 
(b) (3.2.1) is an isomorphism. 

PROPOSITION. Let R be a local ring. An ideal I G R is regular iff it can be 
generated by an R-regular sequence. In that case, any minimal base of I is an 
R-regular sequence. 

ProoJ: Let (r(p) = (rl, . . . . rm( p,, . . . . p,) be a base of I and 
(x ,, . . . . x,) t,, . . . . 5,) be a set of even and odd variables. Then we have a 
commutative diagram of surjections of R/I-algebras 

RIICx I 5 1 ) gr,R (xl<) t p (Crl I C51) 

\/ \/ 
SR,,W2) (Crl I Ctl) 
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Here the horizontal line is the Hironaka-Grothendieck map while the 
ascending line is (3.2.1). 

Now if I is regular then Z/I* is projective and hence free over R/I, and if 
(Y) 5) was chosen to be a minimal base of Z it follows that all lines of the 
diagram are isomorphisms. By Corollary 3.1.1, (r [ 5) is a regular sequence. 

Conversely, if (r ( c) is a regular sequence then it is obviously an unshor- 
tenable base of I. Moreover, the horizontal line and hence all lines of the 
diagram are isomorphisms, which shows that I is regular. l 

Remark. Since regularity of an ideal is in an obvious sense a local 
property, we may loosely say that the regular ideals are just the ideals 
which are locally generated by regular sequences. 

3.3. We call a ring R oddly regular if R’ is a regular ideal of R, and 
we call R evenly regular if w is regular in the classical sense of the word; i.e., 
all local rings i? p, P E Spec i?, are (classically) regular local rings. We call R 
regular iff it is both evenly and oddly regular. This terminology will be 
justified in the theorem below. First we note: 

COROLLARY. For a local ring R the following conditions are equivalent: 

(i) R is oddly regular; 

(ii) R’ can be generated by an odd R-regular sequence; 

(iii) Every minimal base of R’ is an odd R-regular sequence. 

Moreover, if this is the case, and if (rip) is an R-regular sequence then 
R/(r 1 p) R is oddly regular again. 

Proof: By Proposition 3.2 and Theorem 2.4. 1 

By elementary conclusions, one has: 

LEMMA. Let (R, M) be a local ring and let be given a sequence 
(rjp)EM;ln. 

(i) We have M=(r(p)R iff fi=(i)R and R’=(p) R. 

(ii) The sequence (r(p) is a minimal base of M iff (7) is a minimal 
base of fi and (p) is a minimal base of R’. 

From this and Corollary 3.3 one has: 

THEOREM. A local ring (R, M) is regular iff M is a regular ideal of R. 

We also note: 

PROPOSITION. For an ideal I c M in an oddly regular local ring (R, M), 
the following conditions are equivalent: 

4X1/124/1-6 
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(i) I is regular; 

(ii) The canonical map 

(Z/MI) I --) (M/M ‘) 1 = @ (3.3.2) 

is injective, and the ideal 7~ ii is regular. 

ProoJ: If Z is regular the regularity of 7 follows by applying 
Corollary 3.3(ii) and Theorem 2.4, while the injectivity of (3.3.2) follows 
from Theorem 2.4 and Theorem 2.6(i). The results quoted yield also the 
reversed implication (ii) + (i). 1 

Remark. If R is not oddly regular then regularity of Z does not any 
longer imply regularity of 7; cf. Remark 3.6(2). 

3.4. For later use, we recall the following well-known flatness 
criterion (cf. [4, Chap. III, Sction 5, No. 2, Theorem 11; the proof applies 
to the Z,-graded case as well): 

Let R be a noetherian ring, Zc R an ideal, and A an R-module which is 
ideally separated in the I-adic topology; i.e., for every ideal JG R, JOR A is 
I-adically separated. 

LEMMA 3.4.1. A is flat over R iff we have: 

(i) A/IA is flat over R/Z, and 

(ii) the canonical map gr, R @ R A --f gr, A is bijective. 

Remark. Any local homomorphism cp: R -+ R’ of local rings makes R’ 
ideally separated in the M,-adic topology (cf. [4, Chap. III, Section 5, 
No. 4, Proposition 21). 

For technical reasons, we call a local homomorphism cp: (R, M, K) + 
(R’, M’, K’) special if the induced map 

gr, R OK K’ + gr,, R’ (3.4.1) 

is bijective. This implies that M’= MR’+ (M’)‘, and hence, by the 
Nakayama lemma, M’ = R’M. From the lemma above we deduce: 

LEMMA 3.4.2. cp is special iff it is ji’at and satisfies M’ = R’M. 

Remarks. (1) A local homomorphism q: R + R’ is etale iff it is special 
and the induced field extension Kq K’ is separable and of finite type. 

(2) Let q: R + R’ be a local homomorphism of regular local rings of 
the same dimension, and assume M’= MR’. Then cp is special. Indeed, 
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(3.4.1) is then in every grading a surjection of K-vector spaces of the same 
dimension. 

We recall (cf. [6, (19.8.5)]) that a classical local ring ( W, A4 w) is called 
Cohen ring if either W is a field of characteristic zero or W is a complete 
regular local ring of Krull dimension 1, with A4 w = Wp, p := Char W> 0. 
We also recall the following well-known facts: 

LEMMA 3.4.3. (i) For every field K there exists a Cohen ring W which 
has K as residue field. 

(ii) If cp: W -+ C/J is a local homomorphism, W being a Cohen ring, C 
being any complete local ring and Jc C being an ideal, then there exists a 
factorization of cp into W --* C -+ CJJ. 

Remarks. This is trivially true also for non-classical C, since 
q(W) = q( W,) c (C/J), = Co/Jo, and CO is a complete local ring again. 

We will need the following version of [6, Theorem (19.8.8)(i)]: 

LEMMA 3.4.4. Let (R, M, K) be a complete local ring, and let 
(rlP)EROmin be a minimal system of generators of M. Then there exists a 
surjective local homomorphism 

cp: ~CC~l511=~CC~,,...,~,l5,,...,5,11-*R, (3.4.2) 

where W is a Cohen ring and (xl 5) zs a sequence of variables such that cp 
carries (xl 5) into (r(p). 

Now we may show the super version of Cohen’s Structure Theorem. 

PROPOSITION. If R is a complete, equicharacteristic regular local ring 
then R r K[ [x 1411 with afield K and a sequence of variables (x 15). 

Proof: We choose a surjection 4p: W[ [x 1 l]] -+ R as in the preceding 
lemma. Now if p := Char K, the hypotheses imply cp(M ,+,) = ~(p. W) = 
p. R=O. Hence cp induces a factor map $: W[[xl5]]/M,,,[[xI <]I = 
KR[ [x ) 5 ]] --) R. This induces a map 

gr~,~,,,KRCIX,1,11KRCCx1511 -+grMRR. (3.4.3) 

The regularity of R implies that this is in each grading a surjection of finite 
vector spaces of the same dimension; hence (3.6.3) is bijective. By [4, 
Chap. 3, Section 2, No. 8, Corollary 31 we get that 1+5 is bijective, too. 1 

COROLLARY. Let R be a equicharacteristic regular local ring of Krull 
dimension zero. Then R = K[t] with a field K and a sequence (r) of odd 
variables. In other words, R is an ordinary Grassman algebra over a field. 
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ProojI The hypotheses imply that i? is regular of Krull dimension zero; 
hence Z? is a field. It follows M= R’ and hence (M,#= Rk=O for 
k > dim KR QR, which implies that R is complete. The proposition yields the 
assertion. 1 

Remark. The condition that R is equicharacteristic cannot be dropped: 
Consider R = H[& q]/(p - <u), where p is a prime. Now (5, u ) p - 5~) is 
obviously a regular sequence in Z[l, ~1. It follows that (5, q) is a regular 
sequence in R. Since M, = (<, q) R it follows that R is oddly regular. 
Moreover, Z? g Z/pi?, so that Zi is regular of Krull dimension zero. On the 
other hand, R is obviously not equicharacteristic. (Strangely enough, we 
have Char R = p2!) 

We will need also the following result from [S, Proposition (10.3.1)]: 

LEMMA 3.4.5. Let (R, M, K) be a local ring and KG K’ be a field exten- 
sion. Then there exists a special homomorphism (R, M, K) -+ (R’, M’, K’) 
which induces K 4 K’. 

Proof Although Grothendieck’s original proof goes through in the 
Z,-graded case as well, we will give another one since we need its idea later 
On. 

First of all we note that since R + ff is special and residually rational, we 
may assume that R is complete. Let W, W’ be Cohen rings with residue 
fields K, K’, respectively. By Lemma 3.4.3, there is an augmentation $ of 
the diagram 

w- -I”- +W’ 

I i 
K-K 

so that we may consider W’ as W-algebra. Moreover, it is clear by 
Remark (2) after Lemma 3.4.2 that $ is special. By Lemma 3.4.3 we may 
view R as W-algebra, and we claim that R’ := R@ w W’ solves our task. 

By Lemma 3.4.4, we may write R = W[[x ( 5 J]/Z with an ideal Z. It then 
follows R’ = W’[ [xl l]]/ZW’, so that R’ is a local ring again. Moreover, 
the flatness of + implies the flatness of 1 R@ $: R + R’, and it is also 
obvious that M,, = R’MR = (Char K. 1, x, 5) R’. Applying Lemma 3.4.2 we 
get the assertion. m 

Remark. This proof cannot replace the original proof of [S]: It 
depends on Lemma 3.4.3(i), and the latter is in [6], a corollary of the 
lemma above. 
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3.5. We call an ideal I in a local ring (R, M) conormally free iff Z/Z* 
is a free R/I-module. It is clear from the definitions that any regular ideal is 
conormally free. 

THEOREM. Let (R, M) be a local ring and IE M be an ideal. 

(i) Zf Z is conormally free then the canonical maps of K-vector spaces 

(Z/MI) 0 --) 7/m (3.51) 

and 

(Z/MI), -+ (M/W), = @ (3.5.2) 
are injective. 

(ii) Zf R is regular and equicharacteristic then I is a regular ideal iff it 
is conormally free. 

Before proving the theorem we will need two lemmata. 

LEMMA 3.5.1. Let R be a local ring and o E Ri (cf 1.2). Let A be afinite 
nonzero R-module such that u2A = 0. Then the arising sequence 

A”-A”-A (3.53) 
cannot be exact. 

Proof Suppose the converse. Factoring out the annihilator of A and 
localizing with respect to some minimal associated prime of A, we may 
suppose that R is artinian. Thus we have at our disposal the length 
function A’ M [(A’), which is defined for any finite R-module A’. We note 
that if 0’: A’ + A’ is a homogeneous endomorphism with (o’)* = 0 then 
/(o’(A’)) d L( A’)/2, and the equality holds iff A’ +w’ A’ dw’ A’ is exact. 

We may write 

u= i: sip, 
I=1 

with crl, . . . . cr”, ~1, . . . . P,~R,. Let (5, q)= (tl, . . . . 5,, vI, . . . . v,) and 
(E a= cr,, .“, cm ri,, . . . . ii,) be two sequences of odd variables; put 

5:= f (~i-a,)(il,-p,)~R:=R[~,,], 
1.= I 

and consider the ideal 

2:=(9,-a,,..., r,-o”,ri,-P,,...,Yln-PPn)R. 
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Set 
jp” .- .- I’ii + 8’zd 3 grl A := A(i)/J(i + I), 

gr A := $ gr’ A. 
,=O 

We consider the R-linear map 

AC5,vl-+gr& drrYI-, C4F-~Y (r-P)“1 

(class in grial+‘“‘A) for SEA, p,v~Z;. 
This should be viewed as a version of the Hironaka-Grothendieck map. 

Obviously, it is surjective, and because of o*A = 0 it annihilates b*A[& t,~] 
with 6 :=C;z1 tiyli. Hence we get a factor map 

$: ACti rl1/6*ACt, VI--) gr A. 

Now [(gr A) = /(A/LI’A); by a variable shift we get 

GsrA)=W[L r11/~2AC5, ~1). 

Thus Ic/ is a surjection of modules of equal length and hence it is bijective. 
Now the multiplication map d: A + A induces a map gr(5): gr A --f gr A, 

and the latter acts by 

gr(B)[b] = [56] = [wb] = o[b]. 

Thus the diagram 

AC5~rll~‘AC5~rl ’ * grA 

I 
0 

I 
@(W 

AC& vlP*AC5, ~1 ’ + #-A 

is commutative. 
Now we have for each i 3 0 a surjection 

(~A(i)+~2A)/(~A(i+‘)f~2A) -+ Im gr’(6). 

Hence 

a(&2/s2A)= 1 e((aA(‘)+~ZA)/(aA(i+‘)+~ZA)) 
iP0 

B 1 /(Im gr’(8)) 
i20 

=e(dACt, rlW*AC5, ~1)). 
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By the exactness of (3.5.3) and our remarks from above we get 

By a variable shift argument, the 1.h.s. of this is equal to /(as) with 
B := A[& q]/S2A[& ~1. Hence (3.5.4) implies (again by the remarks from 
above) that B + a B + a B is exact. But this is certainly false: If we choose 
any a E A \O the class of a~, ... qn is annihilated by 6 without being a 
multiple of 6. 1 

Remarks. (1) Let (R, M, K) be a local ring and A a finite R-module 
with Supp A E {M}. Then there exists a composition series 

and every factor A’/A ‘+’ is isomorphic either to K or to I7K. Setting 
k, := Card{i: A’/A’+’ ?z K), k, := k - k,, it follows from the Jordan- 
Holder theorem that these numbers are independent of the choice of (3.5.5). 
Thus the length is in the Z,-graded situation actually a pair of numbers 
k. 1 k,. With some analogy, if A is any module over any ring R we may 
consider the sets 

Ass, A = {P E Spec R: There exists an injection R/P + A of parity i} 

for i=O, 1. Thus AssA=Ass,AuAss, A. 

(2) With a modification (actually a simplification) of the technique 
of the proof above, one can show: 

Let A be an artinian module over a local ring R and w = C;=, piai with 
elements pl, . . . . p,, crl, . . . . (T, E R,. Then one has 

(3.5.6) 

This estimate is sharp, at least if Char K= 0: In that case one can show 
with some combinatorial work that putting A := R := K[p,, . . . . p,,, 
or, . . . . o,] equality is attained in (3.5.6). Note also that already for n = 4 
the factor in (3.5.6) becomes 1 - 126/256 < l/2. Thus, in the proof of the 
lemma, the information o*A = 0 had to be fully exploited. 

LEMMA 3.5.2. Let R’ be a ring and R = R’[<,, . . . . tk] with a sequence 
5 , , . . . . tk of odd variables. Let cp: R + R’ be the homomorphism given by 
cp 1 Rr = 1 RC and cp(ri) = 0 for all i. Let I c R be an ideal such that 

I/I* = (R/I)“” (3.5.7) 
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for some n > 0. Then. with I’ := q(Z) we have 

r/(r)* = (R’/zy’O. (3.5.8) 

Proof: By induction, we may assume k = 1, < := <,. Let a, + 
56 1, . . . . a,, + cb, with a,, . . . . a, E Rb, b,, . . . . b, E R’, be elements of I such that 
their residues mod 1’ form a base of the free R/Z-module 1/I*. Let B denote 
the ideal of R’ generated by b 1, . . . . b,. 

CLAIM. Given a relation 

Cr,a,=O 

with r, , . . . . r,, E R’ there exist elements cti, d,, E R’ such that 

ri = c (cdaj - d,,b,) 

and 
1 d,a, = 0 

(3.5.9) 

(3.510) 

(3.511) 

for all i. 

Proof of the Claim. (3.5.9) can be rewritten to 

1 &,(a, + (;bi) = 0. 
I 

Because of (3.5.7) this implies {r, E Z; i.e., we may write 

tri = C (aj + tbj)(d, + 5~~1. 

Comparison of coefticients yields (3.5.10) and (3.5.11). 1 

CLAIM. For all 120, the relation (3.5.9) implies rl, . . . . r,,EI’+ B’. 

Proof of the Claim. By induction on 1, the start 1= 1 being given by 
(3.5.10). Now if the claim is true for I = I,, and we are given the relation 
(3.5.9), we may apply the hypothesis of induction onto the arising relation 
(3.5.11). We get d,EI’+B”‘, and (3.5.10) now yields rl, . . . . r,e 
I’+B(I’+B”)=I’+B”+‘. 1 

Continuation of ProojY Now observe that B”+ ’ = 0. Hence the 
preceding claim says that the images of a,, ..,, a, in I’/(r)* form a free base 
of this R’/Z’-module, and the lemma is proved. 1 
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Proof of the Theorem. Ad (i). If (3.51) was not injective there would 
be a minimal base (Y) p) E I, mln of I such that ?, = 0, i.e., r, E Ri. Now, 
setting J := (Y:, r2, . . . . rm ) p) R, we claim that 

R/J& R/J& R/J (3.5.12) 

is exact. Indeed, if a E R and rl[a] = 0 then r,a E J, and the conormal 
freeness implies a E I= J+ r, R. Hence [a] E r ,(R/J), and (3.5.12) is proved 
exact. Now Lemma 3.5.1 yields a contradiction. 

Quite similarly, if (3.5.2) was not injective there would be a minimal base 
(rlP)EVn such that p 1 E M’. Setting J’ := (r ) p ,, . . . . p,) R, one would get 
with analogous arguments that p, is R/J’-regular. But this contradicts 
Theorem 2.6. 

Ad (ii). Let (R, M, K) be equicharacteristic and regular, and let ZE M 
be conormally free. We have to show that I is regular. 

First we note that if (r ( p) is a minimal base of Z it follows from assertion 
(i) and Corollary 3.3 that (p) is an R-regular sequence, and that R/(p)R is 
regular again. On the other hand, a direct verification shows that the ideal 
Z/(p) R in R/(p) R is conormally free again; thus we are reduced to the case 
that Z is generated by even elements. Using Proposition 3.2, we may assume 
that R is complete, and using Proposition 3.4, we may write 
R = R[sl, . . . . <,I, where k is a classical regular local ring. Now, by the 
preceding lemma, 7~ i? is conormally free again, and by a classical result of 
[16] (cf. also [7]) it follows that 7 is regular. By Proposition 3.3, Z is 
regular. 1 

Remarks. (3) One feels that there should be a proof of assertion (ii) of 
the theorem which does not make use of Cohen’s Structure Theorem (and 
hence of the axiom of choice) and which also applies in the non- 
equicharacteristic case. In fact, one expects an adaption of the approach in 
[16]. A partial result of that kind is the following: First one notes that if 
ZE R is regular and R is oddly regular then pd~Z@ R i? < co. Conversely, if 
the latter condition is satisfied and if Z is conormally free one can show 
that there exists a minimal base (r I, . . . . r m 1 p , , . . . . p,) of Z such that 
(r 1, ...,rm-I PI, . . . . p,) is an R-regular sequence. The proof closely follows 
that of [ 161, using the injectivity of (3.5.1) in an essential way (In order to 
get the needed non-zerodivisor in Z, apply [16, Proposition 1.31 onto the 
kernel of i?mln+Z@Ri?+O). 

Curiously enough, there is not guarantee anymore for r,: Take 
R = K[xl 5, VI/(X’ + &) where K is a field. Then Z := Rx is conormaly free, 
and ZOR R is a free R-module; nevertheless, Z is not regular. 

3.6. In this section we study some questions on flat local 
homomorphisms. 
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PROPOSITION 3.61. Let cp: (R, M, K) -+ (R’, M’, K’) be aflat local homo- 
morphism. 

(i) MR’ is a conormally free ideal in R’. 

(ii) The induced (KG K’)- linear map 

QR = (M/M*), -+ (M’/(M’)*), = QR, (3.6.1) 

is injective. 

(iii) If R’ is oddly regular then so is R. 

(iv) If R’ is regular and equicharacteristic then so is R. 

Remark. (4) Of course, the even analogue of (3.6.1), i.e, the map 
W/M2), + W’lbW2),, is in general not injective. 

Prooj Ad (i). Due to flatness, we have 

MR’/M2R’=(M/M2)@RR’=(MjM2)QR,MR’/MR’ (3.6.2) 

and this is, of course, free over R’IMR’. 

Ad (ii). The flatness implies that the induced map 

M/M 2 -+ MR’/M ‘R’ (3.6.3) 

is injective. The assertion now follows from Theorem 3.5(i). 
Ad (iii). If pr, . . . . p, is the odd part of a minimal base of M, the asser- 

tion (ii) says that the classes of cp(p,), . . . . cp(p,) in QR, are linearly indepen- 
dent. From Theorem 2.5 and Corollary 3.3 we get that (cp(p,), . . . . cp(p,)) is 
an R’-regular sequence. Since “flat + local” implies “faithfully flat” we get 
that (p,, . . . . p,) is an R-regular sequence. By Lemma 3.3 and Corollary 3.3 
we get the assertion. 

Ad (iv). By assertion (i) and Theorem 3S(ii), MR’ is a regular ideal in 
R’. Now if (r(p)EM;I’I” IS a minimal base of M, the injectivity of (3.6.3) 
implies that (cp(r) ) q(p)) is a mimimal base of MR’. By Proposition 3.2, this 
is an R’-regular sequence, and the faithful flatness of cp implies that (r I p) 
is an R-regular sequence. By Theorem 3.3, R is regular. Moreover, if 
p := Char K’ the nonvanishing of R +p R would, again due to faithful flat- 
ness, imply the nonvanishing of R’ --+p R’, contrary to our assumption. a 

PROPOSITION 3.6.2. Let cp: (R, M, K) -+ (R’, M’, K’) be a local homo- 
morphism, suppose that R is regular. 

(i) cp is flat isf 

(1) MR’ is a regular ideal in R’, and 

(2) the arising map MfM2 -+ MR’/MM’ is injective. 
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(ii) If R’ is oddly regular then q is flat ifs 

(3) the induced homomorphism 4: i? + iT’ is flat, and 

(4) the induced map GR -+ aRS (cJ (3.6.1) is injective. 

Remark. (5) The flatness of a local homomorphism cp: R + R’ does 
not always imply the flatness of 4: a -+ i?‘. In order to construct a coun- 
terexample, we consider over the polynomial algbra K[x], K being a field, 
the algebra R freely generated as K[x]-module by the symbols 1, r, 5, ye 
with multiplication table 

lrt v 
rO0 0 
5 0 0 xr 
q 0 -xr 0. 

Setting 111 := Irl :=O, ItI := I?( := 1, R becomes a local ring. 
Now x is a non-zero divisor in R. On the other hand, xr E R’ while 

r 4 R’; thus 1 E fi is a zero divisor. By Lemma 3.4, R is flat over K[x] while 
i? is not. 

(6) On the other hand, the induced map 4: i? + i? carries at least 
three imprints from the flatness of cp: R -+ R’: First, using Lemma 3.3, 
Proposition 3.6.1, and Theorem 3.5(i) we get that the induced map 
B/i@’ -+ fiR’J@i@’ is injective; second, we have Kr-dim fi’ = Kr-dim R + 
Kr-dim iT’j&i? (cf. below), and third, the induced map $*: Spec ii’ + 
Spec i? is surjective (cf. [4, Chap. II, Section 2, No. 5, Corollary 41 which 
carries over to the Z,-graded case). 

Proof. Let (r(p) EM,“‘” be a fixed minimal base of M. 
Ad (i). Suppose cp flat; then (1) is clear from Proposition 3.2. 

Moreover, due to the isomorphism (3.6.2), the classes of (q(r)\ q(p)) in 
MR’/M2R’ form a minimal base of this R’/MR’-module, which implies the 
validity of (2). 

Conversely, let ( 1) and (2) hold true, and let (x I[) be a sequence of m 1 n 
variables. Then (2) says that (q(r)1 q(p)) is a minimal base of MR’. We can 
write down the diagram 

K[xj (3 OK R’JMR’ a R’JMR’[xlt] 

a, @ 1 

I I 

a2 

gr, ROK R’JMR’ & gr MR’ R’ 

where c(, , LX~ are the Hironaka-Grothendieck maps while fl,, /I2 are 
induced in an obvious way. By assumption and Corollary 3.1, u , and ~1~ are 
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bijective, while fi, is obviously bijective. Hence /I2 is bijective, too, and by 
Lemma 3.4.1 this means that cp is flat. 

Ad (ii). Suppose again cp flat. Then (4) was proved in the preceding 
proposition. Moreover, assertion (i) says that (cp(r) 1 q(p)) is an R-regular 
sequence. Using Theorem 2.4 and Corollary 3.3 we get that (~7)) is 
R-regular. Using assertion (i) again we get (3). 

Conversely, if (3), (4) are satisfied then (3) implies by the same 
arguments as above that the sequence (q(r)) is R’-regular. Moreover, (4) 
implies by Corollary 3.3 and Theorem 2.6 that (q(p)) is R-regular. By 
Theorem 2.4, (q(r) ( q(p)) is R-regular. In particular, these elements form a 
minimal base of MR’. Thus (1) and (2) are satisfied, and an application of 
assertion (i) completes the proof. 1 

PROPOSITION 3.6.3. Let cp: (R, A4, K) -+ (R’, M’, K’) be a local 
homomorphism. 

(i) We have 

Kr-dim R’ < Kr-dim R + Kr-dim R’IMR’ (3.6.4) 

and 

(3.6.5) 

(ii) Zf cp is flat we haoe in (3.6.4), (3.6.5) equality. 

(iii) Conversely, if R and R’ are both regular, and if we have equality 
in (3.6.4), (3.6.5) then cp is flat. 

Proof: Ad (i). (3.6.5) follows from the exact sequence 

@RQKK’+@PR’+@R’IMR’+O (3.6.6) 

while (3.6.4) is standard (cf. EGA I, (0.16.3.9)). 

Ad (ii). By Proposition 3.6.l(ii), the first map of (3.6.6) is injective, 
which yields the equality in (3.6.5). The equality in (3.6.4) is standard again 
(cf. 16, Corollary 6.1.21). 

Ad (iii). We first note that Rm’= B’/i@R’. Therefore we can use 
[6, Proposition 6.1.51 to conclude that 4: i? -+ R’ is flat. On the other 
hand, the equality in (3.6.6) means that QR -+ GR, is injective. Now 
Proposition 3.6.2(ii) yields the assertion. 1 
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4. THE KOSZUL TRANSFORM 

4.1. We recall that if X is a scheme and Y a subscheme cut out by 
an ideal sheaf 4 z Ox, the conormal sheaf of Y in X is given by 
JV*=Jtf*xlr := j/.%‘. We call Y conormally locally free in X if JV* is a 
locally free Or-module. If this is the case we put JV := %‘oM(JV*, 0,) and 

ZZN* = ZZN*,,, := Spec S,JZJlr. 

This is the vector bundle over Y determined by the locally free module 
ZZN*; let 

IP(ZZN*) := Proj S,,,ZZJV 

denote the corresponding projective bundle. We are going to define 
covariant functors 

We will call each of the objects V,, A%‘,, PVd the Koszul transform of d 
along Y, and we will see that they exhibit useful information on the 
behavior of &’ in the neighborhood of Y. 

We begin with some observations on the aftine level. Therefore we fix for 
the rest of this section the following situation: R is a neotherian ring and 
ZE R an ideal such that Z/Z’ is a free R/Z-module. Let 

(r I, ...> rmlP1, . . . . P,)EWn 

be such that the classes of these elements form a base of Z/Z2 over R/Z. We 
fix a set of even and odd variables 

(51x)=(5', . ..) (m(X', . ..) x") 

(note the “opposite” parities) and consider the element 

6= f <jr,+ i xjpj~R[[Ixll. 
i=l j=l 

For any R-module A we set %?$lp) :=V(6, A[< Ix]), where ,4[r\x] = 
A OR R[(jx], and the r.h.s. is defined as in 2.1. 

LEMMA. We have Z%T$ IQ) = 0. 
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ProoJ It suffices to show riGf?$lp)=piW$‘fp) = 0 for all i, j. Now if 
o E A [5 I x] and 60 = 0 we get 0 = (a/ax,)(&) = pjo + s(&@x,), which 
shows that pjw defines the zero class. Analogously, O= (8/81i)(&) = 
r,m - &a&X,). I 

Thus $?$lp) is in fact a module over (R/Z)[~/X]. 

4.2. Now let X be a locally noetherian scheme and YE X be a 
conormally locally free subscheme which is cut out by the ideal sheaf 
9~ 0,. Let S! be a quasicoherent LoTmodule. We want to construct a 
E-graded quasicoherent module sheaf over S,,(n(9/$*)*) by constructing 
it locally as in the previous section and sticking the results together. This 
can be done straightforwardly: Let U c X be open such that 9/3’ ) U is free 
over (?dy I u, let (rlp)EHO(U, Y),“‘” be such that the classes of these 
elements form a base of y/9’ I U, and let (5 1 X) be as above a sequence of 
variables. Then we may fix an isomorphism of Oralgebras 

*: o,Ct I xl I I/ -+ &,mm’)* 

by letting (Il/(t)l IC/(X))E (n(j/j 1 lo * * mln form the right dual base to the 
base (Z7[r] IZZ[p]) of Z7($/9’). Let (temporarily) ‘S$(‘Jp) denote the 
cohomology sheaf of the complex &‘[tlx] -+‘&[~lx] +d~[5/~] with 
6 := (r ( x)[$] as in 4.1. By Lemma 4.1, it is a quasicoherent Z-graded 
module over flX[ r ( x]/9[ 4 I x] = &Jr ( x]; by means of $ it becomes an 
S,yJ7($/92)*-module. 

Now let U’cX be another open set with the indicated property, let 
(r’l p’) and (5’) x’) be as above but with respect to U’, and put 
u” := Un u’. We have to construct an isomorphism 

On u” we can write 

where M is an even (m In) x (m In) matrix with entries in H’(U”, 0). 
Considering 0, as O-algebra we may fix an isomorphism over 0, 

fp: 0”,,[5 Ix] + o,Jylx’] 

cp((eTlx)) := (5’lx’) fkf. (4.2.2) 



This setting ensures that with 6’ := (t’ 1 x’)(r’/p’) we have 6’ = (p(6). Indeed, 

Moreover, the arising diagram 

OYCt: I xl I U” ‘p ” ’ O,C<’ I x’l I Ii” 

/ 
*’ 

S&(w*)* I U” (4.2.3) 

where tj’ is constructed like II/ and cp” is the map induced by cp, is easily 
checked to be commutative. Now (4.2.2) and (4.2.3) yield together the 
isomorphism (4.2.1) wanted. 

It is easy to see that the maps (4.2.1) satisfy the cocycle condition; 
therefore the V$(rl~) can be glued together to a well-defined Z-graded 
quasicoherent module over the sheaf of Z-graded algebras S,,,n(Y/Y*)*. 

PROPOSITION. Let X be a locally noetherian scheme and Y a conormally 
locally free subscheme. 

(i) The assignement d I-+ %,d yields an additive, covariant functor 

Qcm(0,) := { quasicoherent C&-modules} -+ 
Z - Qcm(S,,,n(Y/9’)*) := {Z-graded 
quasicoherent S,yII(b/~2)*-modules}. 

If d is coherent then so is Vd. 

(ii) Any exact sequence in Qcm(C9,) 

(4.2.4) 

induces an exact triangle 

y”\. W,” 

T? d’ 4 % d ” (4.2.5) 

the connection map ~3 being homogeneous of degree 1 (so that it can be 
rewritten as a morphism 6: W&e> + g&.(l) in Z-Qcm(S,,n(Y/Y*)*). 

Proof (i) follows from the general nonsense of EGA I, while (ii) is a 
consequence of Lemma 2.1.1. 1 
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In particular, let ZG R be an ideal in a noetherian ring, assume that Z/Z* 
is projective over R/Z. Then any R-module A determines a quasicoherent 
O~module d := Co,0 R A on A’:= Spec R. With respect to Y := Spec R/Z 
we may form V,, and we put WA := ZZ’(X, %‘&). Thus we get a functor 

Mod(R) --) Z-Mod(S,,,ZZ(Z/Z*)*), Al--+-,V,. 

If Z/Z* is free over R/Z with a base formed by the residues of (r 1 p), and if 
we identify ,S,,,Z7(Z/Z2)* with R/Z[(/x] as above, then VA is just the 9721~) 
considered in 4.1. 

4.3. Let X and Y be as the beginning of the previous section. Then 
9/y’ is a locally free Co,,-module, and we may associate to it two libre 
bundles on Y: first, the vector bundle 

ZZN* = A y := Spec S,,(9/9*)* + Y, 

and, second, the projective bundle 

P(ZZN*) = P r := Proj S,JZ(9/y2)* --) Y. 

If upon writing m ) n := rank y/y2 we have n = 0 then P r is empty. 
Now if d E Qcm(0,) then, by well-known formalisms, gives rise to a 

quasicoherent sheaf AqA on A y as well as to a quasicoherent sheaf PV,d 
on P,. 

4.4. We now study the relations of %, with the Koszul complex. 
Thus we start with a noetherian ring R and an ideal Z such that Z/Z’ is free 
over R/Z with a basis formed by the classes of (rip) E I,“‘“. With the 
notations of 2.3, we recall 

Now let (5 1 x) be another set of m odd and n even variables which span the 
Z-graded polynomial ring R[( 1 x] = @ i r o R[( I x] i over R. We then have 
the standard dual pairing 

Here a, B, y, 6 are multiindices, 6,, and a,, are Kronecker symbols, 
/I! :=/?,! . ..B.!, and, in order to save signs, we used the “backwards 
notation” 

q” :=qzyf>lm_\ . ..q.I, 
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It is now easy to check that the transpose to d is multiplication with 
6 := 1 tir, + C xjpi. Thus Hom(K(r( p), R) is just the complex 

O- R[<\x]$+ R[(~x]++ ... . 

On the other hand, if A is any R-module we have due to the freeness of 
R[q ( yli over R an isomorphism 

Hom(K(r I p), A) = Hom(K(r I p), R) 0 R A. (4.4.1) 

The right-hand side of this is the complex 

Therefore we have: 

PROPOSITION. In the situation above, we have an isomorphism 

98; = H’(Hom(K(r Ip), A) (4.4.2) 

which is functional in A. Here V> denotes the ith graded part of qA. 

4.5. Let again X and Y be as in 4.2, and assume that we are given 
an exact sequence (4.2.4) of quasicoherent sheaves on X. We may “unroll” 
the exact triangle (4.2.5) into a long exact sequence of quasicoherent 
O,-modules 

80 

Clearly, this varies naturally with (4.2.4). In other words, the system 
(%i,, 6’) forms a covariant connected functor sequence from Qcm(0,) to 
Qcm(fl,). 

LEMMA. We have an isomorphism of functors 

~@%,(G,.)+%. 

Proof: With the notations of 4.2, we have 

(4.5.1) 

481/124.1-7 



96 THOMAS SCHMITT 

By well-known formalisms of homological algebra, there arises a unique 
morphism of connected functor sequences 

(4.5.2) 

which extends (4.5.1). 

THEOREM. The following conditions are equivalent: 

(i) (4.5.2) is an isomorphism; 

(ii) %7> = 0 for all i 2 1 whenever ~2’ is injective; 

(iii) U$ = 0 whenever & is injective; 

(iv) Y is regularly immersed into X (i.e., Xp is a regular ideal in Co,% p 
for all p E Y). 

Proof: We proceed by the logical scheme (i) t+ (ii) + (iii) + (iv) --, (ii). 
(i) + (ii) follows from known properties of connected functor sequences, 

while (ii) + (iii) is trivial. For the proof of (iii) --) (iv) -+ (ii) we may 
obviously assume that X= Spec R and Y = Spec R/I, where (R, M) is a 
local ring and ZG M is a conormally free ideal with minimal base (r(p). 
Now if A is an injective R-module then Hom(., A) is an exact functor. By 
Proposition 4.4 we get 

%‘L = H’(Hom(K(r 1 p)., A)) = Hom(Hi(K(r 1 p).), A). 

Therefore Ui = 0 for all injectives A implies H,(K(r ) p).) = 0, which by 
Theorem 2.3 implies the R-regularity of the sequence (r/p). By 
Proposition 3.2, Z is a regular ideal in R. Thus (iii) + (iv) is proved, while 
(iv) + (ii) follows with similar arguments, 1 

Remark. For showing (iv) -+ (i) one can argue in the local situation as 
follows: If (r 1 p) is an R-regular sequence then K(r 1 p) is a free resolution of 
R/Z with Z := (r ( p) R; hence it follows from Proposition 4.4 that Vi, is just 
Ext’,(R/Z, A). 

Now assume that Y is regularly immersed in X, so that (4.5.2) is an 
isomorphism. Then we should be able to describe the S,,ZZ(X/~2)*- 
module law on GC& in terms of the ~G:t’s, and this we want to do now. 

Applying &&‘(., &‘) := L&ti,(., &‘) onto 

o- 9/.a’- 0,/Y2- o,- 0 

we get a connection homomorphism 

6: &7L’(9/92, d) - &??A’(O,, d)( + 1). 
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Because of the local freeness of 9/9’ over 0, we have 

&d(9/Y2, d) z &t’(o,, a) Q oy (9/Y2)*. 

Therefore we may write the diagram 

z7(.Y/Y2)* Q c%ct(Oy, d) - c5%t’(O,, d)( + 1) 

I I 
n(.Y/Y’)* Q Vd - w&(+1). 

The upper line is induced by 6, the lower one describes the module law on 
%,d, and the verticals are induced by (4.5.2). Now our task is solved by: 

hOPOSITION. This diagram is commutative. 

Proof. Of course, it suffices to show this in the afftne situation 
X= Spec R, Y= Spec R/I, Z/Z* free over R/Z with base ([r] 1 [p]), where 
(rlp)EZ, mln is an R-regular sequence. 

Consider the Koszul complex K. = 1Y(r \ p). (cf. 2.3) with K, = R[y ( r~], 
and d=C pj(a/ayi) + C ri (a/aqi). 

The mapping cone of the complex morphism 

i3a da K:K.+K(-l).m’“, (2,l-t - - ( I au ay 1 
is the complex 

C.=K.@K(-l).“‘“, dc.= (“ox d:m,.)’ 
and we have the standard sequence 

0-K.“‘” + C. -+ K. -+ 0. (4.5.3) 

We claim that this is a projective resolution of the sequence 

O+ZJZ2+RJZ2+RJZ+0. (4.5.4) 

Indeed, by Theorem 2.3 and the long exact sequence belonging to (4.5.3) 
we have H,(K.) = HJC.) = 0 for i > 1 while in degree zero we find 

0 + (RJZ)“‘” + H&C.) + RJZ+O. (4.5.5) 

Identifying (R/Z) ml n with Z/Z2 by ([a] ( [LY]) H [C riai + C PjCrj], an 
elementary computation shows that (4.5.5) is the same as (4.5.4), and our 
claim is proved. 
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Now (4.5.3) induces for any R-module A the sequence 

0 -+ Hom(K., A) + Hom(C., A) + Hom(K.m’n, A) 40 

and therefore a connection map 

HI(Hom(Kmln, A)) - H’+‘(Hom(K., A)) 

(4.5.6) 

Ext;(Z/Z2, A) --% ExtR+ ‘(R/Z, A). 

With all the identifications we made it is now not hard to see that our 
assertion amounts to saying that (4.5.6) carries the class of (fl (P)E 
Hom(K., A)m’n into the class of C lib + C xjcpj = C ( - 1 )‘/‘I f,(a/aq,) + 
C cpj(a/Q,), and this is easy to check. m 

4.6. Let the data YcX, 9 be as in 4.2, let d be a quasicoherent 
sheaf on X and p E 9(X),. We call p regular on &’ if the complex 
d +* d -+ * d is exact, i.e., its cohomology sheaf V(p, &) vanishes. 
Analogously, regular sequences are defined. 

We note that p is d-regular iff pP E 0,. p is dP-regular for each p E X. Of 
course, it suffices to check this only at the closed points of X. 

Note that if d is coherent for any p as above the set 

X\supp %(p, J/) = {p E X: pP E 8,, p is dP-regular} 

is the maximal open set U such that p ) U is B 1 Uregular. Now p defines an 
even Orhomomorphism 

ZlN = n(Yp’)* + 0, 

and hence an oralgebra homomorphism 

(4.6.1) 

i.e., it determines a section Ap of the bundle A,-+ X. Moreover, it is 
standard that if 0 c A ,, denotes the image of the zero section we have 
Im(Ap) n 0 = @ iff (4.6.1) is surjective. If this is the case we may form the 
composite 

where n is the standard projection, and we get a section Pp of P r + X. 

THEOREM. Let YE X, 9 be as above, let p E X(X),, and assume that d 
is a coherent Ormodule. Then the following assertions are equivalent. 
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(0 PI” is regular on d 1 “, where tJ 2 Y is a sufficiently small 
neighborhood; 

(ii) pp is &,-regular for all p E Y, 

(iii) Im( A p) n supp( A%,d) = (25 in Z7N*; 

(iv) Putting V:=X\(Ap)-’ (O), we have suppdsI/ and 
Im(P(p I y)) n ~upp(P%,~) = Qr in P(I7N*). 

Remark. By the remarks of above, p(p I r): V --) iFD y, y is well defined. 

Proof (i) ++ (ii) is clear. For (ii) t, (iii) it obviously suffices to show: 

LEMMA. Assume that X= Spec R with a local ring (R, M), and let p E X 
be the closed point. Let Y = Spec R/I with a conormally free ideal IS M. 
Then p E I, is regular on a finite R-module A iff (Ap)(p) 4 supp PqA. 

Proof Again we choose a sequence (r ( p) of elements of Z which mod I2 
form a base of I/I* over R/I, and we identity S,,,I7(I/I’)* with R/I[t 1x1 
as in 4.2. Then, writing 

p=Ca,r’+Ca’p, with (&Ia)ER;l”, 

the morphism Ap : Spec(R/Z) = Y -+ A y = Spec(R/Z[S ( x]) is given by 
(Ap)* (5 Ix) = ([cl] ( [a]). Hence the image q := (Ap)(p) corresponds to 
the ideal Q/1[5 ) x] with 

Q:=M[{Ix]+(t-crlx-a)R[<Ix]zR[5Ix]. 

Now we have in the localization R[r ( x] o, 

S/l -p/l =I (<‘-cC) rj/l +I (+x+--d’) pi/l 

WCSlxle)‘.Q. (4.6.2) 

Putting B := A 0 R R[l ) x] a we have therefore a chain of equivalences 

q & supp(Aq,,) 

‘-‘Q~~~PP,~,,.,FG) 
tt6/1~R[tIx]~ is B-regular 

w (by (4.6.2) and Theorem 2.6( 1); here the linitude of A 
comes in) p/l E R[ 5 ) x]o is B-regular. 

Now R 4 R[< I x] e is a flat local homomorphism and hence faithfully flat. 
Therefore p is B-regular iff it is A-regular. 1 
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Completion of the Proof of the Theorem. The only nontrivial point yet 
to be done is the implication (i) + (supp G’ G V). Obviously, it suffices to 
prove that in the situation of the Lemma above, if p is A-regular and A # 0 
then (/Q)(p) # 0. Now, with the notations of the proof above, (Ap)(p) E 0 
is easily seen to be equivalent with {xl c} E Q; and it is easy to see that this 
implies {u} E M. But in that case it follows from Theorem 2.6.( 1) that p 
cannot be A-regular. The theorem is proved. 1 

5. THE SINGULAR SCHEME 

5.1. To prepare the following, we have to do some elementary 
algebraic geometry over a not necessarily algebraically closed field K; let R 
denote its algebraic closure. Let W be a fixed finite dimensional even vector 
space over K, and write kP := W x K R 

We recall that p(W) = Proj S, W*; thus we can identify p( FV) = 
P( W) x K K (more correctly written: P( W) x spec K Spec K). We will identify 
the set P(W)(K) of the K-points of IFD( W) over K with the set of l-dimen- 
sional subspaces of W. -- 

We also recall that the assignment x-,X(K) sets up a l-l correspon- 
dence 

{reduced closed subschemes of P’(m)} 

subsets of P’(m)(R) which are cut out 
c-) by homogeneous equations 

Now if XG P’(m) is closed and reduced and if there exists a closed, reduced 
XG p(W) with R= Xx K K then X is uniquely determined by X In fact, if 
7c SR R* = (S, W*) OK K is the Z-graded ideal belonging to x (so that 
X= Proj(S.m*/I)) then X exists iff 7 can be generated by elements of 
S, W*, i.e., if putting Z := rn S, W* we have I= I. SR r’*. Of course, in 
that case we have X= Proj(S, W*/Z). 

Now let PC iii be a linear subspace and SG IFD( E’) be a closed reduced 
subscheme. We define the cone over s with vertices in p( 8), 
C = Cone( P( V), S) as the union of all projective lines in P( r) which inter- 
sect both S and P(P). That is, C is characterized by 

-- -- 
C(K)=4(n-‘(S(K))u {O)+ p)\(O)), (5.1.1) 

where rc: IV\0 -+ P(m)(K) is the standard projection. It is easy to write up 
the defining ideal Zc: if (x0, . . . . xk, y,, . . . . y, k) are homogenous coor- 
dinates in P( @) such that p(P) is cut out by y, = . . . = y, k = 0 then any 



p E K[x, y] vanishes on C if upon writing cp = C xPqr(y) any cp,( y) 
vanishes on S. Hence 

Zc=K[x].(ZsnR[y]) (51.2) 

Now if S = S x K R with a subscheme S E lP( W) and likewise P = V x x R 
with a linear subspace VG W it follows easily from (51.2) and the remarks 
from above that we have 

C=Cx,R (5.1.3) 

with a unique subscheme CC P(W). Therefore we may generalize the 
definition above by putting Cone(P( V), S) := C and calling this again the 
cone over S with vertices in P(V). 

LEMMA. Let v,, . . . . vk E W be linearly independent, put V, := Ku, + ... + 
Ku, for i=O, . . . . k. Let SE P(W) be a closed subset. 

(i) We have 

Cone(P( V,), S) = Cone(P(Kvi), Cone(P( Vi- ,), S)). (51.4) 

(ii) ZfP(V,)nS=@ then 

IFD(Kvi) @ Cone(lFD( Vi- 1), S) (51.5) 

for all i = 1, . . . . k, and 

dim Cone( P( Vk), S) = dim S + k. (5.1.6) 

(iii) Zf [Fo( Vk) n S # @ then there exists an i E { 1, . . . . k} such that 

P(V,-,)nS=0 (5.1.7) 

and 
P(Kvi)~Cone(P(Vi- ,), S). (5.1.8) 

(iv) Ifk>n-dimS then P(V,)nS#@. 

(v) Assume that K is infinite. Zf k 6 n -dim S- 1 and p( Vk) n 
S = $3 then there exists a subspace V’ C_ W with Vk n V’ = 0, P( V, + V’) n 
S=@, anddim(V,+V’)=n-l-dimS. 

Proof Using the relation (51.3) and the remarks from above, assertion 
(i) is quickly reduced to the case that K is algebraically closed. But in that 
case it follows immediately from (5.1.1), and (i) is proved. Under the 
hypothesis of (ii), the relation lJJ’(Kvi) E Cone( P( Vi _ ,), S) would imply 
p(Kvi)~Cone(P(Vi-,),S) and hence, by (5.1.1), a relation vi=s+u’ with 
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sang’ and U’E V,_,. Hence z(s) E P( W) n S, contradicting the 
assumption, and (5.1.5) is proved. 

(5.1.6) follows from the well-known relation dim Cone(lFD(Ku,), S) = 
dim S + 1 and (5.1.4) by induction. In the situation of (iii), let i be maximal 
with (5.1.7). Then i<k, and because of (5.1.1) there is some 
s~z~‘(S)n(~\O). Writing S=V+CO~ with UE Vipl and CE$ (5.1.7) 
implies c # 0; hence USE Vi- i + n-‘(S). This implies (5.1.8), and (iii) is 
proved, too. 

(iv) is clear from (ii). In order to prove (v), we make an induction on 
d := n -dim S- 1 -k, the case d= 0 being trivial. In the case d> 0, the 
open set P( W)\Cone([FD( VJ, S) is not empty, and it follows from elemen- 
tary arguments that it contains a K-rational point. In other words, there 
exists a u E W\O such that P(Ku) $ Cone(P( V,), S). In particular, u $ V, 
and hence dim( V, +Ku) =dim V, f 1. Using (ii) and (iii), we get 
IFo(Ku + V,) n S = $3, and the hypothesis of induction now yields some sub- 
space V’cWwith V”n(Ku+V,)=0,dim(V”+V~+Ku)=n-l-dims, 
and P( Vk + Ku + V”) n S = @. Obviously, the subspace V’ := Ku + V” now 
solves our task. fl 

5.2. Let (R, M, K) be a fixed local ring and write @ := (M/M2), as 
in 2.6. Putting 

Y := Spec Kc; Spec R =: X, 

Y is conormally free in X, and the Koszul transform yields a functor 

Mod(R) + QW%,n~,w,~q,)> AHgA. 

If A is a finite R-module we call 

the singular scheme of A. We will see in 5.4 that it contains all information 
on the regularity of sequences of odd elements. We call the number 

odpth A := codim.,,,,Sing A 

=dim.@-I-dimSingA 

the odd depth of A; Theorem 5.4 will justify this name. We stipulate 
dim@=-l,sothatSingA=@iffodpthA=dim@. 

We also introduce the notation 

S(A)=S,(A):= {Z7V&@:dim I/=0(1, and 

V is not A-regular) 

(cf. 2.6) for a finite R-module A. 
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THEOREM. Let A be a finite module over a local ring R. 
(i) Sing A is the unique reduced subscheme of p(II@) with the follow- 

ing property: 
If cp: (R, h4, K) 4 (R’, M’, K’) is any special (cf. 3.4) homomorphism, 

A’ := A @ R R’, and if 

P(Im,)x,K’zlyI7@,.) (52.1) 

is the isomorphism induced by @)R Q K K’ = QRS, we require that 
(Sing,Ax,K’)(K’)passes under (52.1) into theset S,(A’)cP(II@,,)(K’). 

In particular, we have 

(Sing R A)(K) = S(A). (5.2.2) 

(ii) In the situation of the condition above, we have 

Sing,Ax.K’=Sing,.A’. (5.2.3) 

Remarks. (1) In the rest of this chapter, we will solely use the 
property (i) to analyze the behaviour of Sing A. 

(2) It seems that P(Z7@) in some sense plays the role of the “odd 
spectrum” of a local ring R. Indeed, while r E R, is regular on A iff it is not 
contained in any P E Ass A, any p E R ,\M: is A-regular iff its class in 
P(ZDD)(K) is not contained in (Sing A)(K). Thus Sing, A seems to be an 
odd counterpart of Ass, A. (The picture is somewhat disturbed by the fact 
that P(Z7Qp,) is covariant in R while Spec R is contravariant.) 

Proof We first show assertion (ii). For this purpose, we recall the 
recipe of constructing VA: Let (r 1 p) be a minimal base of M. If 
~!?=Cr~<~+Cp~xj is as in 4.1 the R[tlx]-module %?(6,A[4lx]) is 
annihilated by M[c 1 x], and therefore it is a K[t 1 xl-module; identifying 
K[t 1 x] = s,n(M/M’)* by letting (r 1 x) be the right dual base to the base 
(II[r] III[p]) of n(M/M*), it becomes the S,Z7(M/M*)*-module VA. 

Now, if cp is as in (i), it is flat (cf. Lemma 3.4.2), and hence 
%?(6 @ R 1, A’[( (xl) = %?(6, A[< Ix]) 0 R R’. The left-hand side of this is 
nothing but U(S’, A’[( 1 x]) with 6’ = 1 q(r,) ti + C cp(p,)xj, and 
(cp(r) 1 q(p)) is due to Lemma 3.4.2 a minimal base of M’. Therefore the 
relation above implies %A< = %A 0 K K’ as modules over SK17(M’/M’*)* = 
S,ZZ(M/M *)* OK K’. Using [4, Chap. II, Section 4, No. 3, Proposition 191 
we get (52.3). The relation (5.2.2) is a special case of Theorem 4.6. With its 
help, it is now easy to show that Sing A satisfies the requirements of (i): 
Under (5.2.1), we have S(A’) = (Sing A’)(K’) = (Sing A x K K’)(K’). 

We are left to prove the uniqueness assertion. If the data (R, M, K), A 
are given, there exists by Lemma 3.4.5 a special homomorphism 
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cp: (R, M, K) -+ (R’, M’, K) such that K’ is the algebraic closure of K. 
Now if Sing’ A is another closed subset of P(ZZ@) which satisfies 
the requirements of (i) we will have (Sing’ A x ,K’)(K’)= S(A’) = 
(Sing A x K K)(K). By the remarks of 5.1, this implies Sing’ A = Sing A. 1 

5.3. In the following we will study various transition properties of 
the singular scheme. 

Let (R, M, K) be a local ring and ZE M be an ideal. If we put 
@,:=((Z+M2)/M2),c@R we have 

@RI,= @Rl@P 

Therefore we get a fibre bundle 

*: wn@,)\wn@,) -+ vn@R,,). 

PROPOSITION 5.3.1. In the situation above, let A be a finite non-zero 
R-module with IA = 0. Then 

Sing, A = P(ZZ@,) u @ -l(Sing,,,A). (5.3.1) 

ProoJ: We first consider the case that K is algebraically closed. Then 
the closed subsets of P(ZZ@,) are identified by their K-points, and therefore 
(5.3.1) is equivalent to 

S,(A) = Wn@,)(K) u ti -‘(%,(A)), 

which is a pure tautology. 
Now let us consider the general case: Passing to the completions, we get 

a commutative diagram 

R-R/Z 

I I 

and the verticals are special. We now follow the line of proof of 
Lemma 3.4.5: There exists a residually rational local homomorphism 
W-+ Z? with a Cohen ring W, and there is a special homomorphism 
W + ii;: where FF’ is another Cohen ring which has the algebraic closure K 
of K as residue field. Setting R := ff@ w m and T:= fQ w ii;: we get the 
diagram 

A ~ II/i 

I I 
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Both verticals are special again. Setting A :=A OR R we get from 
Theorem 5.2 and the residually algebraically closed case, Sing, A x K R= 
SingR~=P(n~,)u~-‘(SingRIfA)=(~(17~,)u~~’(Sing,,,A))x.~. By 
the remarks of 5.1 we get the assertion. 1 

Now let (R, M, K) be a local ring and 

O-+A,-+A,+A,+O 

be an exact sequence of finite R-modules. By Proposition 4.2(ii) we get an 
exact triangle of Z-graded S,Z7(M/M*)*-modules 

with fr being of degree + 1. This implies 

SingA.,,,ESingA.,,,uSingA.,,, 

for every permutation rr E S3. By induction we get 

(5.3.2) 

(5.3.3) 

PROPOSITION 5.3.2. Let 

O+A+B,-, . ..-.B,+C+O 

be an exact sequence of finite R-modules, put 

U:= P(Z7@) 
\ 

fi Sing Bi. 
i=l 

Then 

SingAnU=SingCnU. 

Let again (R, M, K) be a local ring. If r E M, is regular on a finite 
R-module A then the exact triangle (5.3.2) associated with the exact 
sequence 0 -+ A + ’ A -+ AIrA -+ 0 splits up since the induced map 
er: qA -+ WA is easily seen to be zero. We get an exact sequence of Z-graded 
modules over s.ZZ(M/M*)* 

0 - WA - tkAAIrA --% gA( + 1) - 0. 

This implies Sing A/rA = Sing A. By induction we get: 
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PROPOSITION 5.3.3. Zf (r,, . . . . rk) is an even regular sequence on a finite 
R-module A we have 

Sing A/(r , , . . . . rk) A = Sing A. 

Now let cp: (R, M, K) -+ (R’, IV’, K’) be a flat local homomorphism. By 
Proposition 3.6.1, the induced linear map @ := QR + QRs =: Qi’ is injective. 
We get an imbedding 

P(zm) x K K’ 4 P(Lw). (5.3.4) 

PROPOSITION 5.3.4. Let A be a finite R-module, put A’ := A OR R’. 
Suppose that K’ is separable over K. Then, viewing (5.3.4) as inclusion, we 
have 

(Sing, A) x K K’ = (Sing,. A’) n (p(Z7@) x K K’). (5.3.5) 

Remark. It is not clear whether (5.3.5) can fail if the separability 
assumption is dropped. 

ProoJ: First we consider the residually rational case, i.e., K= K’. Using 
Theorem 5.2, we may assume that R and R’ are both complete. We can 
now follow the line of proof of Proposition 5.3.1; with its notations we get 
a diagram 

R- R’ 

The lower line is a flat homomorphism of local rings again, and the 
verticals are special. Using Theorem 5.2 we get 

(Sing,A)x.R=Sing,o,,(A@, m) 

= Sing R’~~w(AOR(R’Ow~‘))nP(nQ,,.w~) 

=(Sing,(A@,R’)nP(l7@,))x.E, 

which implies (5.3.5) for K= K’. 
Turning now to the general case, we can again suppose that R and R’ 

are complete. By the arguments in the proof of Proposition 5.3.1, we can 
write up a diagram 

w-w 

K---+K 
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where W + W’ is a special homomorphism of Cohen rings and the verticals 
are the projections onto the residue fields. Moreover, we may view R as 
W-algebra. Now the separability assumption implies by [6, Theorems 
(19.7.1) and (19.6.1)] that w’ is formally smooth over W. Hence we can 
augment the diagram 

(cf. [6, Proposition (19.3.10)]; it is applicable without problems since (R’), 
is a classical complete local ring). Thus we may factorize 50 into 

R=R@,WAR@,W’-IPi,R’, 

Now ‘pl is special again. On the other hand, applying [S, (10.2.5)] we 
learn that cp 2 is flat. Moreover, it is residually rational. Now we get (5.3.5) 
by linking Theorem 5.2(ii) with the residually rational case. a 

5.4. Let (R, M, K) be a local ring and A # 0 a finite R-module. We 
call a subspace VC @ maximally A-regular if it is A-regular (cf. 2.6) and 
there is no larger subspace V’ 3 V of @ which is A-regular, too. 

The following is our central result on odd regular sequences. 

THEOREM. (i) Let (p,, . . . . pk), k > 1, be an odd A-regular sequence, let 
V G @ be the subspace generated by the residue classes of the pi in @. Then 
we have 

Sing(p , . . .p,A)=Cone(P(Z7V), Sing A) (5.4.1) 

and 

odpth(p, . ..pkA) = odpth A- k. (5.4.2) 

(ii) Let V c @ be any linear subspace. Then V is A-regular iff 
P(I7V) n Sing A = 0. Zf this is the case then dim. Ii’V < odpth A. 

(iii) Suppose that the field K is infinite. A subspace VE @ is 
maximally A-regular ifs we have P(Z7V) n Sing A = 0 and dim,IIV= 
odpth A. 
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Remark. It follows in particular that the following assertions are 
equivalent: 

(1) Sing A = 0, i.e., odpth A = dim..n@; 
(2) @ is A-regular, i.e., any minimal base of R’ is an A-regular 

sequence. 

However, it may happen that although all p e R,\M~ are A-regular, i.e., 
Sing A has no K-points, it is nevertheless not empty. As an example, 
consider A = @[& q]/(t + fi q) C[<, n] over R= rW[& ~1. 

LEMMA 5.4.1. Let @ be an odd finite vector space over a field K, 
R := S,@, A a finite R-module, and assume that p E @\O is A-regular. Then 

Sing pA = Cone( P(Z7K,), Sing A). 

ProoJ By tensoring over K with the algebraic closure of K and using 
Theorem 5.2 we can reduce the question onto the case that K is 
algebraically closed. In that case, we have to inspect the K-rational points 
only. 

We therefore introduce the auxiliary set 

S,, := {p E GQ: p is not A-regular} 

The assertion is now equivalent to 

S;,=$+Kp. (5.4.3) 

By Lemma 2.1.1, il E S> implies I E YPA ; and since for any k E K the element 
I + kp acts on pA in the same way as 2, it follows that 1+ kp E SPA. This 
proves the inclusion 2 in (5.4.3). 

We are left to show c . Let 1 E S,,,. If 1 E S> we are done. Else we have 
by Lemma 2.1.1 an isomorphism 

VAPA)~, [PaI l-b CAal 

(classes taken modulo ApA). 
Now this is an automorphism of a finite vector space over K; hence it 

has a non-zero eigenvalue c. Substituting A by CA if necessary we may 
assume c = 1; i.e., there exists an a E A with [pa] = [La], i.e., 

with suitable a’ E A and 

(p - n)a = p/la’ (5.4.4) 

pa#plA. (5.4.5) 
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Now (54.4) can be rewritten to (p - n)(a - pa’) = 0. On the other hand, if 
there existed an u” E A with a-pa’ = (p - 1) a” we would get a contra- 
diction to (5.45). Hence p - i E S> ; i.e., I is contained in the r.h.s. of 
(54.3). 1 

LEMMA 54.2. Let (R, M, K) and A be us in the theorem, let p E R, be 
A-regular. Then 

Sing(pA) = Cone(p(UKp), Sing A). 

Proof We will reduce the situation to that of the preceding lemma. 
Using Theorem 5.2, we first may assume that R is complete. Using 
Lemma 3.4.4, we may write R = s[<]/Z, where 3 is a classical regular local 
ring, (5) is a sequence of n odd variables, and Z is an ideal with @,= 0 (cf. 
5.3). Now, by Proposition 5.3, we are reduced to the case R = SC<]. 

We may choose an exact sequence 

O-+B-+F,+ ... -+F,+A+O 

with free R-modules F,, . . . . F, and n := Kr-dim S. Because of Theorem 2.6 
we have p 4 (MR)*; hence p is regular on all F,, and Proposition 2.2 yields 
that the sequence 

O-,pB+pF,+ .‘. -,pF,+pA-+O 

is exact again. Now Proposition 5.3.2 yields 

Sing A = Sing B and Sing(pA) = Sing(pB). 

On the other hand, since 3 is classically regular, B is now a free S-module. 
In particular, any minimal base of the maximal ideal of 3 will be a 
B-regular sequence, and Proposition 5.3.3 therefore yields 

Sing B = Sing B/MgB and Sing(pB) = Sing B/(p, MS) B. 

Now C := BJMsB is a module over R/MsR = KC<], and by Proposition 
5.3.1 we have 

Sing, C=Sing.tc,C and Sing, C/PC= Sing.rtlC/pC. 

Altogether, we are reduced into the situation of the previous lemma, and 
the assertion follows. 1 

Proof of the Theorem. The relation (5.4.1) follows from the previous 
lemma and lemma 5.1 (i) by induction. Now assume that VG Q, is 
A-regular. Then [FD(ZZV)n Sing A = fzI follows from (5.4.1) and Lemma 
5.1(i) and (iii). Applying Lemma 5l(ii) we then get (51.2). 
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Conversely, if !?(ZZV) n Sing A = @ then Lemma 5.l(ii) and induction 
show that V is A-regular. The estimate dim Z7V6 odpth A follows from 
Lemma 5.l(iv). Thus the assertions (i), (ii) of the theorem are proved, 
while (iii) follows from Lemma 5.1(v) and the preceding assertions. 1 

5.5. We now return to the Koszul transform in the general setting 
of Chap 4. We will give a complete characterization of supp I%?,~ in terms 
of the singular schemes Singqdp, where p runs through the points of Y. 

Let Y G X be a conormally locally free subscheme of a locally noetherian 
scheme X. Let us compute the fibre of the projection $: [FD(ZZZV$,,) --f Y 
over p E Y. Let (Co,, Ap, Xp) be the stalk of 0, at p as local ring, let 9 be 
the ideal sheaf of Y in X. Then 

Writing as usual, Qp := (JleplJ?;) 1, we have by Proposition 3.4 an injection 
(XJJ$9p), 4 Gp and therefore a closed embedding 

THEOREM. Let d be a coherent sheaf on X. Then 

supp~~:,n~~‘((~})=Sing~~~~nIC/~‘({p~) 
for all p E Y. 

Proof It obviously suffices to prove: Let Z be a conormally free ideal in 
a local ring (R, M, K), let A be a finite R-module and VA be the Koszul 
transform of A with respect to Y = Spec(R/Z) 4 Spec R = X. Let p be the 
closed point of X. With the notations from above, we have 

supp[FPVAn$-‘({p})=SingAnt,~‘((p}). (5.5.1) 

As usual, we first consider the case that K is algebraically closed. Both 
sides of (5.5.1) are closed subsets of P(ZZ@), and hence it suffices to 
compare their K-rational points. Now Theorem 4.6 yields the answer. 

Turning to the general case, we can choose again a special 
homomorphism R + (R’, M’, K’) with K’ being algebraically closed. Setting 
I’ := ZR’ we have Z’/(Z)’ = Z/Z2 @ R,, R’fI’; hence Z is conormally free in R’. 
Moreover, setting A’ := A 0 R R’ we have as in the proof of Theorem 5.2 
that 

F;s = 9: OSRjln(,/,2,. s,.,,.n(r/(r)‘)*. 

From this the assertion easily follows. 1 
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5.6. Let X--P S be a scheme which is defined over a classical 
scheme S (i.e., 0,. 1 = 0). As usual, the embedding i: WG X determines an 
exact sequence 

!P--% i*(Qi,,)A Qb,,--+O (56.1) 

with Y := 0 r/O2 and u: p H i*(dp). 

PROPOSITION. u is injective, and the resulting short exact sequence splits 
in a natural way, so that 

i*(s2;,s) = IzY@Q~,,. 

This is a decomposition into even and odd parts. 

Proof We define a derivation 

02 = 0,/o; -+ i*(a;,,) (5.6.2) 

by [a] +-+ i*(da) for a E O,,,. This is well defined, since [a] = 0 implies 
aEBjynO,,= 0 ‘,, 0 and hence da E 0 la fujS. 

Now (5.6.2) determines an C&+-linear map !ZLs -+ i*(Qk,,), and it is easy 
to see that this is a right inverse to Y. 

On the other hand, we have a derivation 0 -+ Y, at--+ [a,], for 
a = ao@al E 0 = c!&@ 0,. It induces an Co-linear map Q&, -+ Y which 
obviously vanishes on LO’Q:,, and therefore gives rise to i*(Qk,,) -+ Y. This 
map is the left inverse to ~1. The assertions follow. 1 

Now assume that X is a scheme such that the subscheme WG X is co- 
normally locally free, i.e., Y is a locally free (Q-module. Then P(Z7Y) -+ % 
is a classical projective bundle, and the Koszul transform yields a functor 
Qco(Gx) + Qco(~ww, ), d H Pw&. Now lP(nY) is just the disjoint union 
of all [Fp(Z7QCJ with p E X; and from Theorem 5.5 we get: 

COROLLARY. For any coherent OYmodule ral, supp PV,, is exactly the 
union of all Sing, J$ with p E X. 

6. PROJECTIVE AND INJECTIVE RESOLUTIONS OVER LOCAL RINGS 

6.1. PROPOSITION. Let R be an oddly regular local ring and A a finite 
R-module with Sing A = @. 

(i) If 0 -+ A + Q’ is an injective resolution of A then 
0 -+ AJR’A -+ Q’/R’Q is an injective resolution of A/R’A over R = R/R’ 
(cf. 1.2). 

481/124/l-8 
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(ii) The injective resolution 0 + A -+ Q. is minimal (i.e., Qi is the injec- 
tive envelope of Ker(Q’ + Q’ + ’ ) for all i) zff 0 + AIR ‘A -+ Q’/R ‘Q. is 
minimal. 

(iii) Zf F.-+A+O is a projective ’ resolution of A then 
F./R’F. + AIR’A + 0 is a projective resolution of A/R’A over R. 

(iv) The projective resolution F. -+ A + 0 is minimal (i.e., 
Im(K + l 4 Fi) G MF, for all i) iff F./R’F. + A/R ‘A + 0 is minimal. 

(v) For the projective and injective dimensions we have 

pd.A=pdaA/RLA 

and 

id,A=idRAIR’A. 

For the proof, we first note: 

LEMMA 6.1.1. Let Q be an injective module over a ring R, and let IC R 
be an ideal. Then the R/I-module 

O:,Z= {qEQ:Zq=O} 

is injective. Moreover, if Q is an essential extension of a submodule A then 
0 : o I is an essential extension of 0 : A I, 

Proof Given a diagram of R/Z-modules 

o- c,- c, 
I 

we may view it as diagram of R-modules and complete it to 

o-c,--+ c, 

I I 
0:, I 4 Q. 

On the other hand, since ZCz = 0, the image of C, + Q lies automatically in 
0: Q Z. This proves the first assertion. Now if B c 0 : e I is a submodule then 
ZB = 0 implies A n B s (0:, I) n B, from which the second assertion 
follows. 1 
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LEMMA 6.1.2. Let R be a ring, Q an injective R-module and (pl, . . . . p,) 
an R-regular sequence. Then (p ,, . . . . p,) is also Q-regular, and Q/(p ,, . . . . p,)Q 
is injective over R/(p,, . . . . p,) R. 

Proof By induction, we may assume n = 1. Applying Horn R(. , Q) onto 
R + p1 R + pL R we get that p, is Q-regular; hence Ker(Q --, p1 Q) = Q/p, Q 
over R/p, R. Therefore the preceding lemma proves that Q/pi Q is injective 
over R/p, R. 1 

Proof of the Proposition. Given the injective resolution 0 + A -+ Q’, we 
can break it up at the ith place, getting an exact sequence 

Using Corollary 3.3, the previous lemma and Proposition 2.2 we get that 

0 + A/R’A -+ Q"/R'Qo + . . . + Q'/R'Q'+ B’JR’B’+ 0 

is exact and that all Qj/R’Qj are injective. Assertion (i) follows, while (iii) is 
proved quite analogous. The assertion (ii) is easily proved with the help of 
Lemma 6.1.1 and Proposition 2.2, while (iv) is obvious. Finally, (v) is a 
consequence of the previous assertions and the fact that, due to the 
nilpotency of R’, C/R’C= 0 for any R-module C implies C=O (cf. 
[4, Chap. II, Section 3, No. 2, Proposition 41). 1 

COROLLARY. Let R be an oddly regular local ring. Then for any finite 
R-module A we have 

and 
id,A<ooH(SingA=IZ(andidaAJRiA<co). 

Proof The only point yet to be proved is that finite injective or projec- 
tive dimension implies Sing A = 0. Now if 0 + A --* Q” -+ . .. + Qn -+ 0 is 
an exact sequence with all Qi injective then Lemma 6.1.2 and 
Proposition 2.2 yield that any minimal base of R’ is an A-regular sequence; 
hence Sing A = @. The same argument holds for projective resolutions. 1 

6.2. Let (R, M, K) be a regular local ring (cf. 3.3) with 
dim K M/M 2 = m I n, let E denote the injective envelope of K. 

THEOREM. Let A be a finite R-module, put B := Hom,(A, E). 

(i) For i > 0 we have natural isomorphisms of K-vector spaces 

%; = Ext,(K, A) (6.2.1) 
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and 

%T; = Ext;(K, B) = Ext,(A, K). 

(ii) lJVB is a coherent sheaf on IFD(II(M/M*)*). 
(iii) We have 

(6.2.2) 

supp PZB = supp W& = Sing A. (6.2.3) 

(iv) There exist polynomials Pi(X), Q,(X) E O[X] (j = 0, 1) such that 
for i + 0 we have 

P,,(i) (P,(i) = dim. ExtR(K, A), 

Q,(i)IQ,(i)=dim.ExtL(A,K). 

Moreover, 

max(deg P,, deg P,) = max(deg Q,, deg Q,) 

=dim SingA=n- 1 -odpth A. 

Proof Ad(i). Let LX KG E denote the standard embedding, First we 
note 

dim K Horn R( K, E) = 1. (6.2.4) 

Indeed, if there was another /I: K + E which is not a multiple of CI then 
/3(K) would be a nonzero submodule of E which does not cut u(K); but this 
contradicts the essentiality of the extension CI: Kc; E. 

Now we have the standard isomorphism of functors 

Hom.(K, Hom,( ., E)) = Hom.(K@.., E); 

taking the derived functors, we get an isomorphism 

Ext’,(K, Hom,(A, E))= Hom,(Torf(K, A), E). (6.2.5) 

On the other hand, it is well known (and easy to see by using a minimal 
resolution of A) that 

Ext,(A, K) = Hom,(Tor”(K, A), K). 

Comparing this with (6.2.5) and using (6.2.4) we get 

Ext;(A, K) = Ext;(K, B). 

Using Theorem 4.5 we now get the isomorphisms (6.2.1) and (6.2.2). 
Ad (ii). Since E is never a finite R-module (unless n = 0, in which case 

one has E = R) it is not quite obvious that PZB is coherent. 
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J.EMMA 6.2.1. If R’A = 0 then PVB is coherent. 

Proof. Let (r\ p) be a minimal base of M. In the notations of 4.1, we 
may write V:,= V(6, B[l (xl) = %?(6’, B[t]) @ K K[x] with 6’ := C <jr,. 
This is a product of Z-graded modules, and the coherence of PgB will be 
proved once we show that %(S’, B[t]) is finite over Kc{]. 

Otherwise we have for at least one graded part ( . . )” that 

Now 

dim,%‘(6’, R[<])‘“= 00. (6.2.6) 

~~~%?(6’, B[lq)i”@K(K[x])o=%(6’, B[[]), 

hence 

dim,%?‘;= co. (6.2.7) 

On the other hand, we know already that Uj = Ext’o,(A, K), and since A is 
finite and R is noetherian, this is certainly finite. Thus (6.2.7) and hence 
(6.2.6) cannot hold, and IFDVB is proved coherent. 1 

Continuation of the Proof. Turning now to the general case, the exact 
sequences 

0 + R’ + ‘A + R’A + grX, A + 0 

yield exact triangles 

f%kmlR(Ri4,E) + ~%omR(gr;t A,,!?) ) 

and by the lemma above the right lower term is coherent. 
Since R”+ ‘A = 0 it now follows by descending induction on i that 

~~~m(~d~.~) is coherent for all i. In particular, for i= 0 we get assertion 

Ad (iii). We first note: 

LEMMA 6.2.2. An element p E R, is ALregular iff it is B-regular. 

Proof. If C is any non-zero R-module then C/MC is a vector space over 
K. Hence there exists always a non-zero composite C + C/MC -+ K 4 E, 
i.e., Horn ,J C, E) # 0. 

It follows that the functor Hom,( ., E) both preserves and detects 
exactness. In particular, A + p A --) p A is exact iff B -+ p B -+ p B is so. 1 
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Continuation of the Proof: This lemma already suggests the relation 
(6.2.3); but, unfortunately, B is in general not finite over R, and thus 
Theorem 4.6 or Theorem 5.5 is not applicable. Instead of this, we do 
induction on m = Kr-dim R. 

Start of induction. If m = 0 it follows from Proposition 6.1 that R is an 
injective R-module. Moreover, if we embed K= R/MR into R by 
[l] H p, . .. P,, then R is easily seen to be an essential extension of K, and 
thus E= R. 

It follows that B is finite over R, and Sing B is well defined. We are to 
show Sing A = Sing B. Again, we use our standard technique: The case that 
K is algebraically closed is done with Theorem 4.6 and the lemma above, 
while the general case is reduced to it with the help of Theorem 5.2(ii). 

Step of induction. Choose some r E M,\Mi. Then, by Corollary 3.3 and 
known facts on classically regular local rings, R’ := R/rR is regular again 
of the embedding dimension (m - l)ln, and we want to play back the 
problem onto R’. 

First we note that, without loss of generality, we may assume that r is 
A-regular. Indeed, we may choose an exact sequence 

O-+A”-+Rki’+A-tO. (6.2.8) 

Setting B” := Horn R( A”, E) we get 

O-+B-+Eki’+B”+O. (6.2.9) 

Now we have pgE= 0 from Theorem 4.5 and PVR = 0 because of 
Remark 5.4. Therefore the exact triangles belonging to (6.2.8) and (6.2.9) 
yield isomorphisms IFoFA = lPgA.( + 1) and EJVB. = E%‘J + 1). On the other 
hand, r is certainly regular on A”, so that we can replace A by A” if 
necessary. 

Now, setting A’ := AIrA, the exact sequence 

0-A--kA-A’-0 (6.2.10) 

yields with B’ := Horn R(A’, E), 

0-B’----+BLB-0. (6.2.11) 

On the other hand, since r E M the induced maps QZr: gB !J and gr: +Z.,, 5 
are zero, so that the exact triangles belonging to (6.2.10) and (6.2.11) yield 
exact sequences 
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and 

Thus 

supp [FD%?A = supp P%?A’ (6.2.12) 

and 

supp P%?B = supp P%B.. (6.2.13) 

Now let E’ := Ker(E+‘E). Then K&E in E, and it follows from 
Lemma 6.1.1 that E’ is just the injective envelope of K considered as 
R-module. 

On the other hand, we have rA’ = 0 and therefore 

B’ = Horn .JA’, E) = Horn R,(A’r E’). 

With M’ := M,, = M/rR, the hypothesis of induction now yields 

supp P%? ,“I% lU’ = supp [FD%? ;:x M’ (6.1.14) 

(in obvious notation). On the other hand, we claim that under the natural 
identification DR = 0 RV we have 

supp P% 2: M = supp PW 21% M’ (6.2.15) 

and 

supp P% ;: M = supp PV ,“:7 M’. (6.2.16) 

Indeed, the natural surjection M/M2 -+ M’/(M’)* induces an embedding 
S,Z7(M’/(M’)‘)* 4 SKZ7(M/M2)*. Analyzing the recipe of constructing 
%? i: M and using the fact that r can be included into a minimal base of M, 
one finds 

from which (6.2.16) and analogously (6.2.15) easily follow. (For (6.1.15), 
one could also use Proposition 53.1.) Combining (6.2.14) (6.2.15) (6.2.16), 
(6.2.12), and (6.2.13), we get the statement of induction. 

Thus assertion (iii) of the theorem is proved while (iii) follows from the 
(obvious) supervariant of the Hilbert-Serre theorem. m 
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