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Abstract

A graph is called matching covered if for its every edge there is a maximum matching containing it. It is shown that minimal
matching covered graphs without isolated vertices contain a perfect matching.
© 2006 Elsevier B.V. All rights reserved.
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Let Z+ denote the set of nonnegative integers. We consider finite undirected graphs G = (V (G), E(G)) without
multiple edges or loops [2], where V (G) and E(G) are the sets of vertices and edges of G, respectively. For a vertex
u ∈ V (G) define the set NG(u) as follows:

NG(u) ≡ {e ∈ E(G)/e is incident with u}.
In a connected graph G the length of the shortest u − v path [2] is denoted by �(u, v), where u, v are vertices of the

graph G. For a vertex w ∈ V (G) and U ⊆ V (G) set

�(w, U) ≡ min
u∈U

�(w, u).

The set of all maximum matchings [2,4] of a graph G is denoted by M(G), and for e ∈ E(G) define the set M(e)

as follows:

M(e) ≡ {F ∈ M(G)/e ∈ F }.
A vertex u ∈ V (G) is said to be covered (missed) by a matching F ∈ M(G) if NG(u) ∩ F �= � ( NG(u) ∩ F = �).

A matching F ∈ M(G) is called perfect if it covers every vertex v ∈ V (G).
For a graph G define the subgraph C(G) as follows:

C(G) ≡ G\{e ∈ E(G)/for every F ∈ M(G)e /∈ F }.
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The graph G is said to be matching covered if G = C(G), and is said to be minimal matching covered if it satisfies
the following condition, too:

G − e �= C(G − e) for every e ∈ E(G).

In this paper it is proved that every minimal matching covered graph without isolated vertices contains a perfect
matching.

The idea of the subgraph C(G) of a graph G is not new in graph theory. It stems from the idea of the core of a graph
introduced in [1,3]. Roughly speaking, the core of a graph G is the subgraph C(G) if the cardinality of a maximum
matching of G equals that of minimum point cover for G, and is the empty graph otherwise.

The same is true for the idea of matching covered graph. In the “bible” of matching theory [4] one can find a detailed
analysis of the structure of 1-extendable graphs (connected matching covered graphs containing a perfect matching)
and all necessary references of its development. In terms of [4] the main result of the present paper can be reformulated
in the following way: connected minimal matching covered graphs are 1-extendable.

Non-defined terms and conceptions can be found in [2,4,5].

Lemma. If G is a connected, matching covered graph, which does not contain a perfect matching, then

(1) for every edge e = (u, v) ∈ E(G) there is a F ∈ M(G) such that F misses either u or v;
(2) if for edges e, e′ ∈ E(G) M(e) = M(e′) then e = e′.

Proof. (1) For every F ∈ M(G) consider the sets A(F) and B(F) defined in the following way:

A(F) ≡ {w ∈ V (G)/F covers w},
B(F) ≡ {w ∈ V (G)/F misses w}.

Clearly, for each F ∈ M(G) the following holds:

V (G) = A(F) ∪ B(F), A(F ) ∩ B(F) = �, A(F ) �= �, B(F ) �= �.

For an edge e = (u, v) ∈ E(G) define a mapping �e : M(G) → Z+ as follows:

�e(F ) ≡ min{�(u, B(F )), �(v, B(F ))} where F ∈ M(G).

Choose F0 ∈ M(G) satisfying the condition:

�e(F0) ≡ min
F∈M(G)

�e(F ).

Let us show that F0 misses either u or v. For the sake of contradiction assume F0 to cover both u and v. Let
w0, (w0, w1), w1, . . . , wk−1, (wk−1, wk), wk be a simple path of the graph G satisfying the conditions:

w0 ∈ B(F), {w1, . . . , wk} ⊆ A(F0), {wk−1, wk} = {u, v}, k = 1 + �e(F0),

k�2.

Set e′ ≡ (w1, w2). Let us prove that e′ /∈ F0. If e′ ∈ F0 then consider the matching F1 ∈ M(G) defined as follows:

F1 ≡ (F0\{e′}) ∪ {(w0, w1)}.
It is clear that �e(F1) < �e(F0), which contradicts the choice of F0, therefore e′ /∈ F0. Take a maximum matching

F ′
0 ∈ M(e′) satisfying the condition

|F0 ∩ F ′
0| = max

F ′∈M(e′)
|F0 ∩ F ′|.
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Let us show that w0 ∈ A(F ′
0). If w0 /∈ A(F ′

0) then assume

F ′′
0 ≡ (F ′

0\{e′}) ∪ {(w0, w1)}.
Note that F ′′

0 ∈ M(G) and �e(F
′′
0 ) < �e(F0), which is impossible, therefore w0 ∈ A(F ′

0). It is not hard to see that
the choice of F ′

0 implies that there is a simple path �0, (�0, �1), �1, . . . , �2l−1, (�2l−1, �2l ), �2l (l�1) of the graph G
satisfying the conditions

{(�0, �1), . . . , (�2l−2, �2l−1)} ⊆ F ′
0, {(�1, �2), . . . , (�2l−1, �2l )} ⊆ F0,

e′ /∈ {(�0, �1), . . . , (�2l−2, �2l−1)}, �0 = w0, �2l ∈ {w1, w2}.
Set

F̃0 ≡ (F0\{(�1, �2), . . . , (�2l−1, �2l )}) ∪ {(�0, �1), . . . , (�2l−2, �2l−1)}.
Clearly, F̃0 ∈ M(G) and �e(F̃0) < �e(F0), which contradicts the choice of F0, therefore F0 misses either u or v.
(2) Suppose e, e′ ∈ E(G), e = (u, v) and e �= e′. Let us show that M(e) �= M(e′). Take a matching F1 ∈ M(G)

missing either u or v. For the sake of definiteness let us assume that F1 covers u and misses v. If e′ ∈ F1 then
M(e) �= M(e′), therefore without loss of generality we may assume that e′ /∈ F1. As F1 covers u, then there is a
w ∈ V (G) such that (u, w) ∈ F1. Set

F2 ≡ (F1\{(u, w)}) ∪ {(u, v)}.
Clearly, F2 ∈ M(G), e ∈ F2 and e′ /∈ F2, therefore M(e) �= M(e′). The proof of the lemma is complete. �

From the results [1,3] and lemma we have the following interesting result:

Corollary. Let G be a connected, bipartite, matching covered graph and let (U, W) be the bipartition of the set V (G).
If there is a w0 ∈ W and a F0 ∈ M(G) such that F0 misses w0, then for every w ∈ W there is a F ∈ M(G) such that
F misses w.

Theorem. Suppose that the graph G which does not contain an isolated vertex satisfies the following two properties:

(1) G is a matching covered graph,
(2) G − e is not a matching covered graph for every edge e ∈ E(G).

Then the graph G has a perfect matching.

Proof. Without loss of generality we may assume G to be connected. Let us show that there are two distinct edges e
and e′ such that M(e) = M(e′).

Take an arbitrary edge e0 ∈ E(G). Suppose that the edges e0, . . . , ek (k�0) are already defined, and consider the
graph G − ek . As it is not a matching covered graph, then there exists an edge ẽ �= ek such that M(ek) ⊇ M(ẽ). Set
ek+1 ≡ ẽ.

Consider the infinite sequence {ek}∞k=0 of edges of the graph G. Clearly, there are numbers i, j ∈ Z+, i < j such that
ei = ej . The construction of the sequence {ek}∞k=0 implies that

M(ei) ⊇ M(ej−1) ⊇ M(ej ) = M(ei) and ej−1 �= ej ,

therefore

M(ej−1) = M(ej ).

The lemma implies that G has a perfect matching. The proof of the theorem is complete. �

I would like to thank my Supervisor Rafayel R. Kamalian for his constant attention and support during all those
years that we worked together.



V.V. Mkrtchyan / Discrete Mathematics 306 (2006) 452 –455 455

References

[1] A.L. Dulmage, N.S. Mendelsohn, Coverings of bipartite graphs, Canad. J. Math. 10 (1958) 517–534.
[2] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[3] F. Harary, M.D. Plummer, On the core of a graph, Proc. London Math. Soc. 17 (1967) 305–314.
[4] L. Lovasz, M.D. Plummer, Matching theory, Ann. Discrete Math. 29 (1986).
[5] D.B. West, Introduction to Graph Theory, Prentice-Hall, Englewood Cliffs, 1996.


	A note on minimal matching covered graphs
	References


