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Abstract

Mixed-hybrid �nite element approximation of the potential 
uid 
ow problem leads to the solution of a large symmetric
inde�nite system for the velocity and potential head vector components. Such discretization gives rise to a very accurate
approximation of the continuity equation in every element, and for low-order discretizations, the structural properties of
the discrete matrix blocks allow cheap block elimination of the positive-de�nite diagonal block and subsequent reduction
to the Schur complement system for the pressure and Lagrangian vector components. This system is then frequently
solved by the iterative conjugate gradient-type method. Whereas this approach is well known, considerably less attention
has been paid to the numerical stability aspects of such transformation. It was shown in [5] that block LU factorization
can be unstable even when the system matrix is symmetric positive de�nite. In this paper we examine this type of
conditional stability for a particular application in the underground water 
ow modelling. We show that the actual error
of the computed approximate solution depends not only on the user-de�ned tolerance in the conjugate gradient process
but also on the spectral properties of the corresponding matrix blocks eliminated during the Schur complement reduction.
It is often observed that although the backward error of the approximate solution in the iterative part is reduced to the
level of machine accuracy, the total residual norm after the back-substitution process remains at certain accuracy level.
We give a bound for this maximal attainable accuracy and illustrate our theoretical results on a model example. c© 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

The potential 
uid 
ow is one of the most important problems in such applications as underground
water pollution modelling [20] or petroleum reservoir engineering [21]. The 
uid 
ow in a saturated
porous medium can be described by Darcy’s law which relates the 
uid velocity to the potential
head (pressure) and by the continuity equation which represents the mass conservation law within
the studied domain. A number of approximation techniques has been proposed and applied including
various �nite di�erence or �nite element method schemes [20,4]. Especially successful discretizations
in accurate approximation of the 
uid velocity are the mixed �nite element formulations resulting to
large systems of linear equations with symmetric inde�nite matrices [4,3,12]. To ensure the full�l-
ment of the continuity equation in every element of discretization (and partially also to enable the
straightforward and cheap transformation of inde�nite system to symmetric positive de�nite) hybrid
version of the mixed hybrid formulation has become very popular [4]. Introducing the Lagrangian
multipliers to enforce the continuity of the 
uid velocity across the interior interelement boundaries
and using the lowest-order Raviart–Thomas discretizations [12,13] we obtain the discrete system for
the velocity components x1 and the potential head vector components x2 and x3 in the form


A (B C2) C1

(B C2)T

CT1




 x1x2
x3


=


 b1b2
b3


 ; (1.1)

where the discrete form of Darcy’s law tensor A is element-wise block diagonal and symmetric
positive de�nite; the outdiagonal block BT that ensures the continuity equation on every element is
the element-face incidence matrix (with weights equal −1); matrix CT1 corresponding to the 
uid
velocity across the interior inter-element faces has orthogonal rows and the boundary condition-face
incidence matrix CT2 stands for the full�llment of the Neumann boundary conditions (for details we
refer to [13,12]). The structural pattern of the matrix obtained from a simple problem can be seen
in Fig. 1. Since the matrix A is block diagonal and positive de�nite it can be easily inverted. We
consider the following block LU factorization:


A (B C2) C1

(B C2)T

CT1


=



I

L(1)21 −I
L(1)31 −I





U (1)
11 U (1)

12 U (1)
13

U (1)
22 U (1)

23

(U (1)
23 )

T U (1)
33


 ; (1.2)

where L(1)21 = (B C2)
TA−1, L(1)31 = C

T
1 A

−1, U (1)
11 = A, U

(1)
12 = (B C2), U

(1)
13 = C1. Then the matrix blocks

U (1)
22 , U

(1)
23 , U

(1)
32 and U (1)

33 in (1.2) form the positive-de�nite Schur complement matrix with
 U (1)

22 U (1)
23

(U (1)
23 )

T U (1)
33


=


 L(1)21
L(1)31


(U (1)

11 U (1)
12

)
: (1.3)

It was shown in [12,15] that the Schur complement matrix (1.3) remains sparse and due to the
particular structure of system (1.1) the matrix block U (1)

22 is easily invertible and the whole system can
be reduced further without additional �ll-in [15]. An example of the structure of nonzero elements in
the Schur complement matrix (1.3) for our small example can be found in Fig. 1. Indeed, considering
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Fig. 1. Structural pattern of the inde�nite matrix and its Schur complement system from a simple problem obtained in
the mixed-hybrid �nite element approximation of the potential 
uid problem.

further the block LU factorization of matrix (1.3)
 U (1)

22 U (1)
23

(U (1)
23 )

T U (1)
33


=

(
I

L(2)21 I

)U (2)
11 U (2)

12

U (2)
22


 ; (1.4)

where L(2)21 = (U
(1)
23 )

T(U (1)
22 )

−1, U (2)
11 =U

(1)
22 , U

(2)
12 =U

(1)
23 , the matrix block U

(2)
22 forms the second Schur

complement matrix and it is equal to U (2)
22 = U

(1)
33 − L(2)21 U (2)

12 .
Given the block LU factorizations (1.2) and (1.4) the solution of the whole inde�nite system

(1.1) can be obtained using the following steps. First, we transform the right-hand vector using the
forward substitution solving the triangular systems


I

L(1)21 −I
L(1)31 −I





z(1)1

z(1)2

z(1)3


=


 b1b2
b3


 ;

(
I

L(2)21 I

) z(2)1
z(2)2


=


 z(1)2
z(1)3


 : (1.5)

The vector x3 is then computed, using some iterative technique, from the Schur complement system

U (2)
22 x3 = z

(2)
2 : (1.6)

Finally, we get the vectors x1 and x2 via the block back-substitution process in the form
U (1)

11 U (1)
12

U (2)
11


( x1

x2

)
=


 z(1)1
z(2)1


−


U (1)

13

U (2)
12


 x3: (1.7)

The outline of the paper is as follows. In Section 2, we analyse the roundo� error propagation
in the Schur complement reduction, and in Section 3, we give a bound for the ultimate accuracy
level of the approximate solutions actually computed in the �nite precision run of some conjugate
gradient-type iterative method applied to system (1.6) and in the subsequent back-substitution process
(1.7). In Section 4, we present the results from our numerical example that illustrate our theoretical
analysis. Finally, in Section 5 we give some concluding remarks and mention some possible directions
for future work.
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2. Rounding error analysis of the reduction to the Schur complement systems

While the concept of reduction to the Schur complement systems is standard and widely used in
many applications considerably less attention has been devoted to the numerical stability analysis of
such an approach. Thorough rounding error analysis of the block LU factorization has been given by
Demmel et al. [5]. They showed that such a block method is stable for symmetric positive systems
only if the system matrix is well conditioned. In this section we follow their approach for our
particular inde�nite system (1.1). We estimate the backward error associated with the approximate
solution in terms of the user tolerance prescribed for the iterative part and in terms of the spectral
norms of certain matrix blocks that appear during the block elimination process.
In the following, we assume the standard IEEE model of 
oating point arithmetic [6]. The quan-

tities computed in the �nite precision arithmetic are denoted by a bar; � denotes the computer
arithmetic machine precision. By O(m) we denote the quantities proportional to the argument m and
by N we denote the dimension of the system matrix (1.1). Since the dimensions of the individual
matrix blocks in the system are all proportional to N , in our formulae we will not distinguish between
their actual dimensions and the dimension of the whole system. The corresponding proportionality
coe�cients will be considered as a part of the O(N ) notation. Throughout the paper by ‖ · ‖ we will
denote the spectral (euclidean) matrix or vector norm.
The vector x3 is a computed result of a �nite precision run of some iterative conjugate gradient-type

method applied to the Schur complement system with the matrix U (2)
22 and the right-hand-side vector

z(2)2 . For the termination of this iterative process we shall use the stopping criterion based on the
backward error with the prescribed tolerance tol

‖z(2)2 −U (2)
22 x3‖

‖U (2)
22 ‖‖x3‖

6tol: (2.1)

Considering the result shown by Rigal and Gaches in [17]

‖z(2)2 −U (2)
22 x3‖

‖U (2)
22 ‖‖x3‖

=min{�|(U (2)
22 + �U

(2)
22 )x3 = z

(2)
2 ; ‖�U (2)

22 ‖=‖U (2)
22 ‖6�}; (2.2)

it follows that after successful termination of the iterative method there exists a perturbation matrix
�U (2)

22 such that

(U (2)
22 + �U

(2)
22 )x3 = z

(2)
2 ; ‖�U (2)

22 ‖=‖U (2)
22 ‖6tol: (2.3)

The best one can hope for is that the backward error of the actually computed approximate solution
gains an order equal to machine precision multiplied by a low-degree polynomial in the system
dimension N . We leave now the discussion on the maximal attainable accuracy of the particular
iterative solvers for the next section. The vector x2 is a computed result of a block back-substitution
process (1.7). From the stability analysis of this block back-substitution as well as from the analysis
of the Cholesky factorization of the positive-de�nite block U (2)

11 (see [22, pp. 9–27]) it follows that


U (2)

11 U (2)
12

U (2)
22


+


 �U (2)

11 �U (2)
12

�U (2)
22





(
x2
x3

)
=


 z(2)1
z(2)2


 ; (2.4)
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where the perturbation matrix satis�es∥∥∥∥∥∥

 �U (2)

11 �U (2)
12

�U (2)
22



∥∥∥∥∥∥6O(max{tol; N 3=2�})

∥∥∥∥∥∥

U (2)

11 U (2)
12

U (2)
22



∥∥∥∥∥∥ : (2.5)

We note here that it is essential to keep the matrix U (2)
11 factorized and to get its inverse via

triangular solves in the last stage of block back substitution. Computing the inverse of the matrix
U (2)
11 explicitly would lead to the extra factor �(U (2)

11 ) in bound (2.5). Using the backward error
analysis of the forward substitution (see, e.g., [7, pp. 87–89]) we can write


(
I

L(2)21 I

)
+


 �L(2)11
�L(2)21 �L(2)22






 z(2)1
z(2)2


=


 z(1)2
z(1)3


 ; (2.6)

where ∥∥∥∥∥∥

 �L(2)11
�L(2)21 �L(2)22



∥∥∥∥∥∥6O(N�)

∥∥∥∥∥
(
I

L(2)21 I

)∥∥∥∥∥ : (2.7)

Assuming again the matrix U (1)
22 having been factorized by the Cholesky decomposition, for the

computed matrix block L(2)21 it follows (see also [22]) that

L(2)21U
(1)
22 = (U

(1)
23 )

T + �E(2)21 ; ‖�E(2)21 ‖6O(N 3=2�)‖L(2)21 ‖‖U (1)
22 ‖: (2.8)

The standard rounding error formulae for the matrix–matrix multiplication [7, p. 66] give the bound
for the error in the computation of the Schur complement matrix U (2)

22 in the form

U (2)
22 =U

(1)
33 − L(2)21U (1)

23 + �E
(2)
22 ; ‖�E(2)22 ‖6O(N�){‖U (1)

33 ‖+ ‖L(2)21 ‖‖U (1)
23 ‖}: (2.9)

Substituting (2.4) into (2.6), considering the equalities U (2)
11 = U

(1)
22 , U

(2)
12 = U

(1)
23 , and using bounds

(2.8), (2.9) and the same approach as in [5] we can show that the computed approximate solutions
x2 and x3 satisfy the perturbed Schur complement system



 U (1)

22 U (1)
23

(U (1)
23 )

T U (1)
33


+


 �U (1)

22 �U (1)
23

�U (1)
32 �U (1)

33





(
x2
x3

)
=


 z(1)2
z(1)3


 ; (2.10)

where the perturbation matrix can be bounded as follows:∥∥∥∥∥∥

 �U (1)

22 �U (1)
23

�U (1)
32 �U (1)

33



∥∥∥∥∥∥6O(max{tol; N 3=2�})



∥∥∥∥∥∥

 U (1)

22 U (1)
23

(U (1)
23 )

T U (1)
33



∥∥∥∥∥∥+

∥∥∥∥∥
(
I

L(2)21 I

)∥∥∥∥∥
∥∥∥∥∥∥

U (2)

11 U (2)
12

U (2)
22



∥∥∥∥∥∥

 :

(2.11)

Moreover, due to the fact that the Schur complement system matrix (1.3) is symmetric positive
de�nite, the computed lower triangular factor in the decomposition (1.4) can be bounded by a small
multiple of the square root of the condition number of matrix (1.3) (for details we refer to [5]).
The computed upper triangular factor in (2.11) can be bounded, up to the quantities proportional to
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the machine precision, by the norm of matrix (1.3). Detailed analysis can be found in [5] or [11].
Consequently, bound (2.11) can be written in the form

∥∥∥∥∥∥

 �U (1)

22 �U (1)
23

�U (1)
32 �U (1)

33



∥∥∥∥∥∥6O(max{tol; N 3=2�})

∥∥∥∥∥∥

 U (1)

22 U (1)
23

(U (1)
23 )

T U (1)
33



∥∥∥∥∥∥
√√√√√�


 U (1)

22 U (1)
23

(U (1)
23 )

T U (1)
33


:

The computed vector x1 is obtained from the �rst equation in the block back-substitution process
(1.7). Considering the previous bound and using again the fact that the matrix block U (1)

11 = A is
during the backsubstitution factorized in triangular factors it can be shown that the whole computed
approximate solution satis�es the block triangular system





U (1)
11 U (1)

12 U (1)
13

U (1)
22 U (1)

23

(U (1)
23 )

T U (1)
33


+



�U (1)

11 �U (1)
12 �U (1)

13

�U (1)
22 �U (1)

23

�U (1)
32 �U (1)

33






 x1x2
x3


=



z(1)1

z(1)2

z(1)3


 ;

∥∥∥∥∥∥∥∥∥



�U (1)

11 �U (1)
12 �U (1)

13

�U (1)
22 �U (1)

23

�U (1)
32 �U (1)

33



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



U (1)
11 U (1)

12 U (1)
13

U (1)
22 U (1)

23

U (1)
32 U (1)

33



∥∥∥∥∥∥∥∥∥

6O(max{tol; N 3=2�})

√√√√√�

 U (1)

22 U (1)
23

(U (1)
23 )

T U (1)
33


:

(2.12)

From the standard analysis the computed right-hand-side vector in the forward substitution (1.5)
satis�es (see [7, p. 87])






I

L(1)21 −I
L(1)31 −I


+



�L(1)11

�L(1)21 �L(1)22

�L(1)31 �L(1)32 �L(1)33








z(1)1

z(1)2

z(1)3


=


 b1b2
b3


 ;

∥∥∥∥∥∥∥∥∥



�L(1)11

�L(1)21 �L(1)22

�L(1)31 �L(1)32 �L(1)33



∥∥∥∥∥∥∥∥∥
6O(N�)

∥∥∥∥∥∥∥∥∥




I

L(1)21 −I
L(1)31 −I



∥∥∥∥∥∥∥∥∥
:

(2.13)

Similar to (2.6), the matrix blocks L(1)21 and L
(1)
31 are computed results of the Cholesky process applied

to the multiple right-hand-side system with the positive-de�nite matrix A. From the rounding error
analysis of the Cholesky factorization [22] we have

L(1)21
L(1)31


 (A+ �A) =

(
(B C2)T

CT1

)
; ‖�A‖6O(N 3=2�)‖A‖; (2.14)
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or equivalently,


L(1)21
L(1)31


A=

(
(B C2)T

CT1

)
+


 �E(1)21
�E(1)31


 ;

‖�E(1)21 ‖6O(N 3=2�)‖A‖‖L(1)21 ‖; ‖�E(1)31 ‖6O(N 3=2�)‖A‖‖L(1)31 ‖:
(2.15)

Using the identities U (1)
12 = (B C2), U

(1)
13 = C1, having the computed Schur complement matrix (1.3)

expressed in the form


 U (1)

22 U (1)
23

(U (1)
23 )

T U (1)
33


=


L(1)21
L(1)31


 (U (1)

12 U (1)
13 ) +


 �E(1)22 �E(1)23

�E(1)32 �E(1)33


 ;

∥∥∥∥∥∥

 �E(1)22 �E(1)23

�E(1)32 �E(1)33



∥∥∥∥∥∥6O(N�)

∥∥∥∥∥∥

L(1)21
L(1)31



∥∥∥∥∥∥ ‖(U (1)

12 U (1)
13 )‖

(2.16)

and substituting equality (2.12) into (2.13) it can be shown that the computed approximate solution
is an exact solution of the perturbed problem







A (B C2) C1

(B C2)T

CT1


+



�E11 �E12 �E13

�E21 �E22 �E23

�E31 �E32 �E33






 x1x2
x3


=


 b1b2
b3


 : (2.17)

The norm of the matrix perturbation in (2.17) can be bounded as follows:

∥∥∥∥∥∥∥∥



�E11 �E12 �E13

�E21 �E22 �E23

�E31 �E32 �E33



∥∥∥∥∥∥∥∥
6O(max{tol; N 3=2�})



∥∥∥∥∥∥∥∥




A (B C2) C1

(B C2)T

CT1



∥∥∥∥∥∥∥∥

+

∥∥∥∥∥∥∥∥∥




I

L(1)21 −I
L(1)31 −I



∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥



U (1)
11 U (1)

12 U (1)
13

U (1)
22 U (1)

23

(U (1)
23 )

T U (1)
33



∥∥∥∥∥∥∥∥∥

×

√√√√√�

 U (1)

22 U (1)
23

(U (1)
23 )

T U (1)
33




 : (2.18)
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We have shown that the approximate solution computed in the �nite precision arithmetic is an exact
solution of a nearby problem. The norm of the matrix perturbation can be bounded in terms of
the user tolerance prescribed for the iterative solver and in terms of the norms of certain matrices
which appearing during the reduction to Schur complement systems. The bounds for the norm of
the corresponding residual and forward error vector can be obtained from (2.17) considering the
equalities




A (B C2) C1

(B C2)T

CT1




 �x1
�x2
�x3


=


 b1b2
b3


+


 �b1�b2
�b3


 ;


 �b1�b2
�b3


=



�E11 �E12 �E13

�E21 �E22 �E23

�E31 �E32 �E33




 �x1
�x2
�x3


 ;


 x1x2
x3


−


 �x1
�x2
�x3


=




A (B C2) C1

(B C2)T

CT1



−1

�E11 �E12 �E13

�E21 �E22 �E23

�E31 �E32 �E33




 �x1
�x2
�x3


 :

(2.19)

3. Maximal attainable accuracy of the computed approximate solution

The bound for the backward error associated with the computed approximate solution is dominated
by the prescribed user tolerance in the iterative part of the computation. Roughly, the higher the
stopping criterion, the higher is the backward error associated with the computed solution in the �nite
precision arithmetic. This prescribed level is magni�ed by the quantities that play a similar role as
the growth factor in Gaussian elimination with partial pivoting (see, e.g., [7]). In the following we
examine the spectral properties (the norms and the condition numbers) of these matrices and give
a bound for the backward error of the computed solution in terms of extremal eigenvalues or the
extremal singular values of corresponding matrix blocks in system (1.1).
The bound for the norm of lower triangular factor in (2.18) can be obtained from (2.14). Substi-

tuting (2.15) into (2.16) for the computed Schur complement matrix (1.3) we have


 �U

(1)
22

�U
(1)
23

( �U
(1)
23 )

T �U
(1)
33


=

(
(B C2)T

CT1

)
A−1((B C2) C1)

+


 �E(1)21
�E(1)31


A−1((B C2) C1) +


 �E(1)22 �E(1)23

�E(1)32 �E(1)33


 :
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Using these results in (2.18) and including the terms with the second order in � and tol into the
O(max{tol; N 3=2�}) notation we can write for the norm of the matrix perturbation∥∥∥∥∥∥∥∥



�E11 �E12 �E13

�E21 �E22 �E23

�E31 �E32 �E33



∥∥∥∥∥∥∥∥

6O(max{tol; N 3=2�})



∥∥∥∥∥∥∥∥




A (B C2) C1

(B C2)T

CT1



∥∥∥∥∥∥∥∥

+

∥∥∥∥∥∥∥∥




I

(B C2)TA−1 −I
CT1 A

−1 −I



∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥



A (B C2) C1

(B C2)TA−1(B C2) (B C2)TA−1C1

CT1 A
−1(B C2) CT1 A

−1C1



∥∥∥∥∥∥∥∥

×
√√√√�

((
(B C2)TA−1(B C2) (B C2)TA−1C1

CT1 A
−1(B C2) CT1 A

−1C1

)) : (3.20)

Considering the estimate for the condition number of the Schur complement matrix (1.3)

�

((
(B C2)TA−1(B C2) (B C2)TA−1C1

CT1 A
−1(B C2) CT1 A

−1C1

))
6�2((B C2 C1))�(A) (3.21)

and applying the standard techniques for bounding the norm of a block matrix one can get the bound
for the backward error in terms of the user tolerance tol and of the norms or the condition numbers
of the matrix blocks A and (B C2 C1).∥∥∥∥∥∥∥∥



�E11 �E12 �E13

�E21 �E22 �E23

�E31 �E32 �E33



∥∥∥∥∥∥∥∥

6O(max{tol; N 3=2�})
[
‖A‖+ ‖(B C2 C1)‖+ (1 + ‖(B C2 C1)‖‖A−1‖)

× max{‖A‖; ‖(B C2 C1)‖+ ‖(B C2 C1)‖2‖A−1‖}√�(A)�((B C2 C1))] : (3.22)

It was shown in [13] that for our particular potential 
uid 
ow application (1.1) the spectrum of
the symmetric positive-de�nite block A satis�es

�(A)⊂ [c1N 1=3; c2N 1=3]; (3.23)

where c1 and c2 are positive constants independent of the system parameters and are dependent on
the properties of Darcy’s tensor and on the geometry of considered domain. Assuming at least one
Dirichlet boundary condition it was also shown that the singular values of the o�-diagonal block
(B C2 C1) are included in the interval

sv((B C2 C1))⊂ [c3N−1=3; c4] (3.24)
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for some positive constants c3 and c4, again independent of the parameters of the linear system
(1.1). The constants c1, c2, c3 and c4 describe the underlying potential 
uid 
ow problem and as
we will show later they play a substantial role in the estimates for the �nal accuracy of the actual
computation. For details we refer to [14], see also [13]. Considering the inclusion sets (3.23) and
(3.24) in (3.22) we obtain∥∥∥∥∥∥∥∥



�E11 �E12 �E13

�E21 �E22 �E23

�E31 �E32 �E33



∥∥∥∥∥∥∥∥
6O(max{tol; N 3=2�})

[
c2N 1=3 + c4 +

√
c2=c1 (c4=c3)N 1=3

×(1 + (c4=c1)N−1=3)max{c2N 1=3; c4 + (c24=c1)N
−1=3}

]
: (3.25)

Bound (3.25) can be slightly simpli�ed. For realistic problems in our application one usually has
c1N 1=3¡c2N 1=3 � 16c46

√
5 +

√
2 and c3N−1=3 � c2N 1=3. We note here that these inequalities are

true for all practically available problem sizes N . In this case for the eigenvalues of the symmetric
inde�nite system matrix (1.1) we have (see [15,14])

�






A (B C2) C1

(B C2)T

CT1




⊂ [− c4;−(c23=c2)N−1] ∪ [c1N 1=3; c4]: (3.26)

The bound for the matrix perturbation (3.25) then becomes of the order∥∥∥∥∥∥∥∥



�E11 �E12 �E13

�E21 �E22 �E23

�E31 �E32 �E33



∥∥∥∥∥∥∥∥
6O(max{tol; N 3=2�}N−1=3)

√
c2
c51

c44
c3

(3.27)

and, consequently, the residual norm and the error norm of the computed approximate solution can
be estimated in the form∥∥∥∥∥∥


 �b1�b2
�b3



∥∥∥∥∥∥6O(max{tol; N 3=2�}N−1=3)

√
c2
c51

c44
c3

∥∥∥∥∥∥

 �x1
�x2
�x3



∥∥∥∥∥∥ ; (3.28)

∥∥∥∥∥∥

 �x1
�x2
�x3


−


 x1x2
x3



∥∥∥∥∥∥6O(max{tol; N 3=2�}N 2=3)

√
c32
c51

c44
c33

∥∥∥∥∥∥

 �x1
�x2
�x3



∥∥∥∥∥∥ : (3.29)

The Schur complement system (1.6) is symmetric positive de�nite. Several possible conjugate
gradient-type methods for solving this system are available. From a number of methods we can
use some implementation of the conjugate gradient method [10] characterized by minimization of
the approximate solution energy norm or we can use the residual norm minimizing conjugate residual
[19] (minimal residual [16]) method existing also in several variants. It is a well-known fact that there
is a limitation on the accuracy of the approximate solutions generated by conjugate gradient-type
methods. It is also often observed that while the recursively updated residual vector converges to
zero, the actual residual norm of the approximate solution remains at a certain accuracy. The best
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one can then hope for is that the backward error of the computed approximate solution becomes
of the order of machine precision, i.e. the �nite precision run of the corresponding iterative method
reaches the user tolerance given as the small multiple of the machine precision. More precisely, we
want the backward error of the computed approximate solution to be bounded by the low degree
polynomial in the matrix dimension N times machine precision �. The limiting accuracy of the con-
jugate gradient method has been studied thoroughly in several papers [8,9,18]. It was shown in [9]
that the ultimate level of accuracy depends on the chosen implementation even in the symmetric
positive-de�nite case and that the conjugate gradient implementation based on three-term recurrences
is potentially less accurate than the classical implementation based on coupled two-term recurrences.
Analysis of Greenbaum [8] (see also [18]) shows that for the two-term recurrence conjugate gra-
dient implementation the maximum expectable accuracy (measured by relative residual norm of the
computed approximate solution and assuming the termination within N steps) can be bounded by
the term O(N 5=2�)�(A). Consequently, the backward error associated with the computed solution can
be bounded by O(N 5=2�) and one cannot hope for anything better when using the tolerance below
this level. A similar type of result was given for the conjugate residual method (implementation with
coupled two-term recurrences) [18]. Moreover, it was pointed out in [18] that the minimal residual
(MINRES) implementation of the same method may be unstable for ill-conditioned problems due to
the computation of certain nonorthogonal basis of Krylov subspace. This result also resembles the
behaviour described in [5] and called as the conditional stability behaviour of the algorithm.
Therefore, the lowest realistic user tolerance (when using the most appropriate implementation of

the iterative method) is of the order tol =O(N 5=2�). Consequently, for our particular implementation
from (3.27) we can write∥∥∥∥∥∥∥∥



�E11 �E12 �E13

�E21 �E22 �E23

�E31 �E32 �E33



∥∥∥∥∥∥∥∥
6O(N 5=2−1=3�)

√
c2
c51

c44
c3
: (3.30)

4. Numerical experiments

In the following we present experimental results in a numerical example that illustrates our theo-
retical analysis.
We considered a model potential 
ow problem in a rectangular domain with homogeneous

Neumann conditions and with Dirichlet condition imposed only on one part of the domain bound-
ary. The lowest-order prismatic discretization of the domain with several values of the mesh size h
was used. In our experiments we generated linear systems for several values of the discretization
parameter h. The dimensions of corresponding system matrices for these values are approximately
N ∼ 22=h3. The inclusion sets for the spectrum of the matrix block A and for the singular value
set of the matrix block (B C2 C1) were computed in the following way. The extremal eigenvalues
of the block diagonal matrix A were computed directly by the LAPACK eigenvalue solver ele-
ment by element. The extremal singular values of the block (B C2 C1) were as the squared roots
of the extremal eigenvalues of the matrix (B C2 C1)T(B C2 C1) approximated by the reduction of
this matrix to the symmetric tridiagonal form using 1000 steps of the symmetric Lanczos algo-
rithm [7] and by the subsequent eigenvalue computation of the resulting tridiagonal matrix using the
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Table 1
Spectral properties of matrix blocks and the residual norm

h Spectral properties of matrix blocks The norm of com- True residual
puted solution norm, tol = 10−14

Spectrum of A Sing. values of (BC)

1=5 [0.16e−2, 0.1e−1] [0.179e−1, 2.63] 12602.08 0.9455e−8
1=10 [0.33e−2, 0.2e−1] [0.997e−2, 2.64] 37302.81 0.1051e−7
1=15 [0.50e−2, 0.3e−1] [0.691e−2, 2.64] 69515.73 0.1481e−7
1=20 [0.66e−2, 0.4e−1] [0.528e−2, 2.64] 107777.54 0.2109e−7
1=30 [0.10e−1, 0.6e−1] [0.358e−2, 2.65] 199370.25 0.3202e−7
1=40 [0.13e−1, 0.8e−1] [0.271e−2, 2.65] 307999.99 0.4291e−7

LAPACK double-precision subroutine DSYEV [1]. The corresponding numerical values are included
in Table 1.
In the iterative part of the solution, the coupled two-term conjugate residual implementation was

used [19]. As the stopping criterion we took the backward error associated with the computed
approximate solution. The spectral norm of the Schur complement matrix �U

(2)
22 in (2.1) was replaced

by the Frobenius norm and the corresponding residual norm was in the actual computation was
approximated by the norm of the updated residual which is usually converging to zero, or at least,
reaches the level much less than the true residual of the actually computed approximate solution. The
user tolerance 10−14 chosen for this experiment was very optimistic and actually it was below the
maximally attainable accuracy level of the conjugate residual method. In Table 1 we consider also
the true residual norms of the whole computed approximate solution. We can observe that ultimate
residual accuracy is almost on the same level for all values of the discretization parameter h. This
level is given essentially by the values of the positive constants c1, c2, c3 and c4 (see the discussion
in the previous section). The slight increase in the residual norm can be explained by the increase
of the system dimension N which is included in the term O(N 5=2−1=3�) and which also contributes
to the increase of the norm of the approximate solution (see also Table 1 and Eq. (2.19)).
In the second experiment, we have examined the dependence of the actual residual norm of the

computed approximates on the user tolerance tol chosen in the iterative part of the computation. We
have also investigated the norms of three residual vector blocks that correspond to three blocks of
right-hand-side vector in the process of reduction to the Schur complement systems. From Table 2 it
is clear that the accuracy of the block related to the Schur complement system (1.6) is given roughly
by the residual norm corresponding to the user tolerance value tol. The accuracy levels in the other
two blocks remain the same for the di�erent values of the tolerance tol and their absolute values
are roughly given by the multiplication factors that appear in the analysis of a corresponding step
in the block elimination process. In Fig. 2 we plotted the true and recursive residual norm history
for the example with the discretization parameter h = 1=15 together with the levels of accuracies
obtained for di�erent values of the prescribed tolerance level tol. Here we can also observe that the
user tolerance tol = 10−14 is actually below the attainable accuracy of the conjugate residual method
applied to the Schur complement system (1.6).
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Table 2
Residual of the computed solution versus user tolerance

tol True residual True residuals of system blocks, h= 1=15
whole system

‖�b1‖∞ ‖�b2‖∞ ‖�b3‖∞
10−6 0.5879e0 0.5684e−13 0.2392e−9 0.2138e−1
10−8 0.5865e−2 0.5684e−13 0.2375e−9 0.2694e−3
10−10 0.6112e−4 0.5683e−13 0.2106e−9 0.3124e−5
10−12 0.5971e−6 0.4916e−13 0.2297e−9 0.2241e−7
10−14 0.1566e−7 0.3798e−13 0.2046e−9 0.6595e−9

Fig. 2. Di�erent values of accuracy level with respect to the user tolerance level.

5. Conclusions

In this paper we examined the rounding error propagation in the process of reduction of the
augmented symmetric inde�nite system to the system with the positive-de�nite Schur complement
matrix. Using a similar approach as in [5] we have shown that such a transformation is conditionally
stable, i.e., the stability is guaranteed only if certain matrices in this block elimination process are
well conditioned. We have analysed the condition number of corresponding matrix blocks for our
particular application in the underground water 
ow modelling. It was shown that the level of
accuracy in solution of linear system can be bounded in terms of parameters which are dependent
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on the underlying problem characteristics such as the properties of Darcy’s tensor or as the geometry
of the domain. Using these quantities we gave a bound for the maximally attainable accuracy of the
approximate solution computed in the �nite precision arithmetic.
Similar rounding error analysis was also considered recently by Arioli in [2] for the solution of

augmented systems arising in sparse quadratic programming. His approach is based on the null space
method combining a direct QR factorization of the out-diagonal block in the system matrix with
an iterative solver on the corresponding null space. Since the Householder QR decomposition is
backward stable [7] it is shown in [2] that in the case of the termination of the iterative solver on
the level of its limiting accuracy, the backward error of the computed approximate solution maybe
bounded by the term proportional to the machine precision �. The computational comparison of these
two approaches as well as of the other variants of the null space approach remains to be done in
the future and will be published elsewhere.
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