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When Brains Flip Coins
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In a recent study in the journal Cell, Tervo et al. (2014) show that animals can implement stochastic choice
policies in environments unfavorable to predictive strategies. The shift toward stochastic behavior was
driven by noradrenergic signaling in the anterior cingulate cortex.
Adaptive behavior requires learning about

predictable structure in the world in order

to choose actions that maximize positive

and minimize negative outcomes. A great

deal of effort has been focused on under-

standing the diverse neural mechanisms

that support learning about the expected

values of future actions. However, in

certain situations, slavishly following the

recommendations of value learning sys-

tems may be counterproductive. One

such situation arises in competitive inter-

actions with other organisms, where

deterministic behavior allows an oppo-

nent to predict your future actions, with

consequences ranging from losing a

game to becoming someone’s prey.

Another situation in which stochastic

choice can be advantageous is in the

tradeoff between exploration and exploi-

tation. Exploitative choices toward the

action currently believed to be best are

taken at the expense of not exploring

other options that, due to the changeable

nature of the world, may now in fact be

better. Exploration does not necessarily

imply stochastic behavior; it may be pref-

erable to deterministically guide explor-

atory choices toward those options

about which there is the most uncer-

tainty. However, while optimal exploration

necessitates potentially complex com-

putations of the informational payoffs

of different choices, stochastic choice

potentially offers a simple alternative for

generating exploration. In the latest issue

of Cell, Tervo et al. (2014) report experi-

ments in which they challenged rats with

a competitive game that drove them to

exhibit stochastic behavior. Using geneti-

cally targeted manipulations, they identify

a causal role in this stochasticity for a neu-

romodulatory system strongly implicated

by prior work in controlling the balance

between exploration and exploitation.
The competitive task used in the study

required the rats to choose one of two

reward ports on each trial. A computer

competitor aimed to predict the rat’s

choice from their behavior and outcomes

on previous trials. Reward was delivered

only if the computer incorrectly predicted

the animal’s choice. The task is an adap-

tation of one previously used in primates

(Barraclough et al., 2004), which in turn

builds on work in the field of game theory

in which the task is termed ‘‘matching

pennies.’’

Animals were trained against virtual

competitors of three different strengths.

The weaker two used the animal’s choice

history to evaluate their choice bias

following each unique sequence of

actions and reward up to three trials in

length. The strongest of these predictors

was then used to guide the competitor’s

choice, with the weakest competitor only

utilizing the prediction if the bias ex-

ceeded a certain level. The strongest

competitor used a different approach,

employing a machine learning method

called boosting, which combined a large

number of weak predictors, each based

on different features of the history of

prior actions and reward, to produce a

more robust prediction of the animals’

behavior. Tervo et al. (2014) present ana-

lyses indicating that the animals’ behavior

was more stochastic, and less dependent

on the history of task events, when they

played against stronger competitors.

Tervo et al. (2014) hypothesized that

against the two weaker competitors the

animals were employing a counterpredic-

tion strategy, leading to history depen-

dence in their behavior, but that against

the strongest competitor they switched

to a stochastic, feedback-independent,

behavior mode. To test this, Tervo et al.

(2014) first trained animals against either
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competitor 2 (weaker) or competitor 3

(strongest) and then switched them to a

new task in which a specific sequence of

three choices (left, left, right) automati-

cally led to reward. Rats previously

trained against competitor 2 were able

to find the covert sequence that reliably

led to reward, while animals trained

against competitor 3 appeared not to

discover the covert sequences and

received dramatically lower reward rates

after three sessions. These striking effects

could not be explained by a difference in

how often the animals initially sampled

the covert sequence, indicating a differ-

ence in learning between the groups and

supporting the hypothesis that play

against the strongest competitor caused

the animals to switch to feedback-inde-

pendent stochastic choice behavior.

Tervo et al. (2014) then inactivated a

region of the dorsomedial prefrontal

cortex called the anterior cingulate cor-

tex (ACC), which has been implicated

in reward-guided decision making but

whose precise function remains conten-

tious. ACC inactivation in animals playing

the competitive task against competitors

1 and 2 caused their behavior to

become more stochastic, which Tervo

et al. (2014) interpret as evidence that

ACC is necessary for counterprediction

strategies. The authors did not observe

any effect of inactivating ACC in animals

playing against competitor 3, whose

behavior was already highly stochastic.

Inactivation of ACC during the covert

sequence detection task severely im-

paired their ability to generate the re-

warded sequence.

Tervo et al. (2014) proceeded to manip-

ulate noradrenergic input into ACC from

the locus coeruleus (LC) using a combina-

tion of pharmacogenetic and optogenetic

approaches. Stimulating noradrenergic
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(NA) input to theACC in animals previously

trained against competitor 2 severely

impaired learning on the covert pattern

task, recapitulating the effects observed

in animals trained against competitor 3.

Conversely, inhibiting noradrenergic input

into ACC in animals trained against

competitor 3 rescued their ability to learn

the covert pattern task. These results indi-

cate that increased noradrenergic input to

ACCplays amechanistic role in promoting

the stochastic, feedback-independent

behavior induced by play against compet-

itor 3. Consistent with this, increased LC

input to ACC during play against compet-

itor 2 increased the stochasticity of the

behavior. Elevated LC input into ACC

was further shown to disrupt performance

as well as learning of the covert pattern

task using manipulations in extensively

trained animals.

Interpretation of this striking but com-

plex pattern of manipulation results

necessarily depends on beliefs about

how the animals are solving the tasks.

As such, the computational problems

posed by these tasks, and how they may

be solved by the animals in the study,

deserves close attention.

Solving the covert sequence task re-

quires the ability to learn to take different

actions dependent on the agent’s recent

action history. This is impossible for sim-

ple reinforcement learning (RL) agents

typically used to model behavior on ban-

dit style tasks, which treat the problem

as one of choosing between two actions,

left or right, with the choice on each trial

made in the same state. One solution is

the use of a richer world representation

that treats choices preceded by different

action histories as occurring in distinct

states. Given such a state representation,

the task can be solved by temporal differ-

ence methods, as demonstrated in the

paper, in which the agent learns by trial

and error the value for each action in

each state. One interpretation of the

effects of ACC inactivation on covert

sequence task performance is therefore

an inability to either form or use an appro-

priate history-dependent state represen-

tation. It is worth pointing out that though

identifying an appropriate state represen-

tation can be seen as building a ‘‘model’’

of the world, solving the task does not

require the use of a forward model that

predicts future states given the current
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state and chosen action. As such,

deficits in this task do not speak to

whether animals are using model-based

or model-free reinforcement learning as

these terms are normally used (Sutton

and Barto, 1998).

The covert pattern task can alterna-

tively be solved by an agent lacking a

history-dependent state representation

but endowed with a richer repertoire of

possible actions, which encompasses

composite actions that are sequences

of unitary left-right choices. The use

of composite actions in learning,

termed hierarchical RL, can offer striking

advantages in complex environments

(Botvinick et al., 2009). Given such an

enriched action space, temporal differ-

ence methods are again sufficient to

solve the task. The ACC inactivation

results are thus consistent with recent

proposals that ACC plays a role in hierar-

chical RL and specifically the selection of

composite actions (Holroyd and Yeung,

2012).

In the matching pennies task, Tervo

et al. (2014) interpret structure in behavior

during play against weak opponents as

evidence of counterprediction of the

opponent’s strategy. During play against

the weakest opponent, some animals

scored significantly above the 50%

chance level, demonstrating that they

are learning something useful. However,

in matching pennies, but unlike in

three action competitive games such as

paper-scissors-stone, learning to coun-

terpredict the opponent’s strategy is

hard to distinguish from learning action

values through reinforcement learning.

We also note that unlike in versions of

matching pennies used in prior monkey

experiments where visual stimuli indi-

cated which of the two options the

computer choose on each trial, the only

feedback the animals received in the cur-

rent study was the presence or absence

of reward, i.e., they lack information about

the counterfactual outcome that would

have been available had they chosen the

other option. Irrespective of whether the

sensitivity to recent history observed in

play against weak competitors is seen

as evidence of counterprediction or rein-

forcement learning, performance above

chance level in matching pennies almost

certainly shares with the covert sequence

task the requirement to learn about the
r Inc.
value of actions following different choice

histories.

The findings that enhanced NA input to

ACC promotes stochastic behavior and

reduces sensitivity to recent outcomes

are consistent with two prominent the-

ories of NA function. Yu and Dayan

(2005) proposed that NA signals unex-

pected uncertainty, i.e., variability in the

outcome of actions, above and beyond

that predicted by recent observations.

Unexpected uncertainty is a sign that

something has changed in the environ-

ment and hence that previously learned

predictive relationships are likely to be

unreliable. The normative response to

this lack of confidence in current beliefs

is to reduce their influence over choice

behavior, leading to increased stochastic-

ity and exploration. Encoding of unex-

pected uncertainty by LC neurons has

recently received support from human

neuroimaging (Payzan-LeNestour et al.,

2013). A largely compatible theory by

Aston-Jones and Cohen (2005) proposed

that enhanced tonic (as opposed to

phasic) NA activity signals a shift to

exploratory behavior, though unlike in Yu

and Dayan’s proposal this may occur in

response to decreases in the utility of

the previous behavior or due to evidence

that the environment has recently

changed. A recent study tracking pupil

diameter, which is thought to correlate

with baseline LC neuronal activity, pro-

vides correlational evidence for a role of

NA signaling in exploratory choice (Jepma

and Nieuwenhuis, 2011).

Though the NA manipulations identify a

component of the mechanism through

which playing against competitor 3 leads

to a failure to learn the covert pattern

task, these results raise many further

questions. A key question is what is

happening to activity in the LC during

play against the strong competitor and

subsequent failure to lean the covert

pattern task, and specifically whether

the LC has switched to the tonic state,

with elevated baseline activity and

reduced phasic responses, identified by

Aston-Jones and Cohen with exploratory

behavior. A second and related question

is whether the use of DREADD receptors

to manipulate release from NA terminals

has differential effects on tonic and

phasic responses. Assuming that the

behavioral effects are indeed mediated
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by a persistent change in LC activity, a

next step is identifying the inputs to LC

responsible for this change and the

learning processes in these regions that

cause the switch to stochastic behavior.

If this switch is indeed a result of meta

learning, i.e., learning about the extent to

which lower-level controllers should be

allowed to guide behavior, it is an inter-

esting computational question why these

same meta learning processes fail to

return behavioral control back to value-

based decision making in the face of the

dramatic change in reward statistics

when animals switch to the covert pattern
task. Finally, the network dynamics that

actually generate the stochastic choices

remain to be identified and located.

Clearly, these latest results are not the

last we will hear from the stochastic side

of the brains’ behavioral repertoire.
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