GENDER DIFFERENCES IN CARDIOVASCULAR RISK BY TWO DIFFERENT SCORES: A FIVE YEARS FOLLOW UP ANALYSIS OF A 1500-PATIENT DATABASE

Poster Contributions
Poster Hall B1
Monday, March 16, 2015, 9:45 a.m.-10:30 a.m.

Session Title: Risk Assessment, Exercise and Atrial Fibrillation
Abstract Category: 21. Prevention: Clinical
Presentation Number: 1246-106

Authors: Ricardo G. Baeza, Victor Neira, Constanza Cea, Javier Revello Pedemonte, Luigi Gabrielli, Samuel Zvaighaft, Alvaro Huete, Monica Acevedo, Catholic University of Chile, Santiago, Chile, Clinica Las Condes, Santiago, Chile

Background: We have previously shown that Framingham traditional risk score is not correlated with the presence of CAD in the female population. This may be attributed to the fact that traditional scores underscore risk in women.

Background: We sought to evaluate gender differences in all cause mortality between Global Framingham Risk Score (FRS) and the new ACC / AHA 2013 score Atherosclerotic cardiovascular disease score (ASCVD).

Methods: From 2007 and 2012, 1500 Chilean patients were included in the analysis. All of them underwent an Angio-Coronary Computed Tomography (ACCT) and had complete information about cardiovascular risk factors and lipids. Mortality was confirmed using the national statistic registry. The presence and severity of CAD was confirmed by ACCT

Results: We included 725 patients in the final analysis. 775 patients were excluded for incomplete dataset. Mortality was 3.45% for the whole group. Mean age was 57 ±11 y/o(Male 68%, Diabetes 12%; Hypertension 42%, dyslipidemia 43%, smoking 34%). Mean FRS was 16.3 and ASCVD score was 10.6. Mean follow-up was 5 years. In women ASCVD correlates better than FRS with the presence of CAD. Mean FRS and ACC/AHA scores for the alive and dead are shown in the table.

Conclusion: the new ACC/AHA score correlated better than FRS with all-cause mortality in women. This finding encourages the use of this new score to predict cardiovascular events in women. Also, it suggests that the new score could be used in Latin American populations, as well as in Americans.

MORTALITY BY GENDER AND RISK SCORE

<table>
<thead>
<tr>
<th></th>
<th>MALE ALIVE</th>
<th>MALE DEAD</th>
<th>P VALUE</th>
<th>FEMALE ALIVE</th>
<th>FEMALE DEAD</th>
<th>P VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRS</td>
<td>17±12</td>
<td>30±18</td>
<td>0.022</td>
<td>9.8±7</td>
<td>12±4</td>
<td>0.44</td>
</tr>
<tr>
<td>ASCVD</td>
<td>11.5±11</td>
<td>22±15</td>
<td>0.023</td>
<td>8.7±10</td>
<td>28±17</td>
<td>0.015</td>
</tr>
</tbody>
</table>