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We compute the Entanglement Entropy (EE) of a bipartition in 2D pure non-abelian U (N) gauge theory. 
We obtain a general expression for EE on an arbitrary Riemann surface. We find that due to area-
preserving diffeomorphism symmetry EE does not depend on the size of the subsystem, but only on 
the number of disjoint intervals defining the bipartition.
In the strong coupling limit on a torus we find that the scaling of the EE at small temperature is given 
by S(T ) − S(0) = O (

mgap
T e− mgap

T ), which is similar to the scaling for the matter fields recently derived in 
literature. In the large N limit we compute all of the Renyi entropies and identify the Douglas–Kazakov 
phase transition.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Entanglement has become a useful tool in the study of the 
properties of the states of matter [1]. A particularly useful measure 
of entanglement in quantum systems is the Entanglement Entropy 
(EE). In a pure state, EE measures the entanglement present be-
tween a subsystem and its complement. When the subsystem is a 
subset of the configuration space (real space partition) EE can be 
computed using the replica trick [2,3].

It was suggested on the basis of the AdS/CFT arguments [4]
that in confining gauge theories with Nc colors the EE has a non-
analyticity in the large Nc limit: dependence of EE on Nc suddenly 
jumps from N2

c to N0
c as the size of the subsystem crosses a criti-

cal value. This suggestion was confirmed numerically [5] for a Z2
gauge theory, where the authors found an intrinsic ambiguity in 
the definition of the EE in the presence of gauge fields. It was 
shown that it is impossible to separate the Hilbert space into a 
tensor product of two Hilbert spaces without violating the Gauss 
law on the boundary of the bi-partition. In [5] it was suggested to 
use a “minimal way” of violating the Gauss law just in the bor-
der of the partition to compute the EE in a lattice gauge theory. 
This construction was formalized [6] for the spin-network states 
and arbitrary gauge groups.
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In the physics of black holes the EE of the matter fields in a 
gravitational background coincides with the entropy of the black 
hole for scalars and fermions [7]. In the same reference it was 
found that in the presence of gauge fields there is an additional 
contact term that makes the EE negative for spatial dimension 
D < 8 and thus cannot be interpreted as EE of any quantum field 
theory. The term was written as sum over trajectories starting 
and ending on the horizon. This observation carries a close re-
semblance with the construction of [5,8]. In two dimensions, the 
apparent negative contribution of the gauge fields to the entropy is 
an artifact which disappears as the zero modes are properly con-
sidered [9].

In condensed matter physics the (topological) EE can be used to 
classify the topological phases [10–12] of gapped systems. There is 
an intriguing possibility that EE can help to understand the gapless 
topological phases [13].

The issue of ambiguity of the EE was recently addressed in [14]
where it was found that different extensions of the physical Hilbert 
space lead to different values of the (topological) EE. Neverthe-
less, it was concluded that the ambiguity becomes irrelevant in 
the continuum limit and the usual replica method gives the cor-
rect answer.

In this letter we study the U (N) Yang–Mills theory in 1 + 1
dimensions (YM2). This theory is exactly solvable and super-
renormalizable. The simplicity of the model is explained by the 
large symmetry group of area-preserving diffeomorphisms that 
prevents the existence of any local degree of freedom. The model 
can be interpreted as a closed string theory [15] and in the large 
N limit the partition function can be written as a sum over the 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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Riemann surfaces. It was used as a toy model to test the relation-
ship between large-N QCD and the (free) string theory. We take 
advantage of the simplicity of the model and derive expressions 
for the EE of YM2 with U (N) gauge group on a Riemann surface 
of genus g for arbitrary bi-partition. We derive the entanglement
spectrum and the large N limit for the EE.

2. Definitions

2.1. Entanglement Entropy of a partition

The system under consideration is defined on one spatial and 
one (euclidean) time dimensions. We will take the subsystem A to 
be a union of l disjoint intervals in the spatial dimension. In the 
text we will refer to it as l cuts. We denote the complement of A
by Ā.

The Entanglement Entropy (EE) is defined as the von Neumann 
entropy of the reduced density matrix ρA = tr Ā ρ by

S = − trρA lnρA . (1)

More generally, we define Renyi entropy for any integer n.

Sn = 1

1 − n
ln trρn

A . (2)

Then the EE is obtained from the Renyi entropy by

S = − lim
n→1+0

∂

∂n
trρn

A . (3)

The subtle point in (3) is the definition of the derivative with re-
spect to n. In principle, if there are no divergences then every 
eigenvalue of ρA is smaller than 1 and trρn

A is absolutely conver-
gent making the analytic continuation to any real n easy. In reality, 
there are divergences and we have to deal with the analytic con-
tinuation to the real n on the case by case basis.

2.2. Replica method

A standard way to compute EE is the replica method [3,16]. 
In order to compute trρn

A one replaces the base manifold of the 
quantum field theory Σ by its n-sheeted ramified covering Σn , 
with ramification points being the end points of the l cuts. We 
denote the partition functions of the QFT on Σ and on Σn as Z
and Zn correspondingly. It was shown [3] that

trρn
A = Zn

Zn
. (4)

Thus the computation of the Entanglement Entropy is reduced to 
the computation of the partition function on Σn . EE is given by

S = − lim
n→1

∂

∂n

Zn

Zn
= ln Z − 1

Z
lim
n→1

∂

∂n
Zn. (5)

2.3. Pure Yang–Mills theory in 2 dimensions

Two-dimensional Yang Mills (YM2) is an exactly solvable, super-
renormalizable model and has been studied extensively [17,18]. 
The model is fully specified by the choice of a gauge group G and 
a Riemann surface Σ . The action is given by

S[A] = 1

4e2

∫
Σ

d2x
√

g gμλgρν tr Fμν Fρλ, (6)

where F a
μν = ∂μ Aa

ν − ∂ν Aa
μ + f abc Ab

μ Ac
ν is the field strength ten-

sor associated with the gauge group G and gμν is the metric on 
the Riemann surface Σ . The action (6) is invariant with respect to 
area-preserving diffeomorphisms [18]. This large symmetry group 
is responsible for the simplicity of the theory.

The partition function is given by

Z =
∫

DAe−S[A]. (7)

Notice that both the action and the partition function are invariant 
with respect to the transformation

e → √
re gμν → rgμν. (8)

This implies that the coupling constant e and the area A will 
always enter together, so from now on we absorb e into the defi-
nition of the area.

2.4. Partition function

Let us fix G to be U (N) or SU(N). The partition function can be 
computed explicitly [17,19]

Z(A, g) =
∑

R

(dR)χ(Σ)e− A
2N C2(R), (9)

where the sum runs over all irreducible representations of the 
gauge group, including the trivial one [17]. Here, C2(R) is the 
quadratic Casimir, dR is the dimension of the representation R , 
N is the t’Hooft coupling constant and χ(Σ) is the Euler char-
acteristic of the Riemann surface Σ .

In general, one encounters divergences when computing the 
partition function (7) in the presence of the external gravitational 
field. There are only two local counter terms needed to cancel 
them [20].

I1 = u

∫
d2x

√
g (10)

I2 = − v

2π

∫
d2x

√
g R (11)

So the partition function has to be modified accordingly

Z ′(A,Σ, u, v) = eu A−vχ(Σ) Z(A,Σ). (12)

Thus taking the regularization scheme into account gives a 2-
parametric family of theories with u and v being parameters.

3. Entanglement Entropy in YM2 theory

We are going to merge the results reviewed in the previous 
section. Since the partition function depends only on the total area 
and the Euler characteristic of the Riemann surface, thus applica-
tion of the replica method is straightforward.

In order to compute Zn we need to know the Euler character-
istic χ(Σn) of the n-sheeted ramified covering Σn . This is given 
by Riemann–Hurwitz theorem. We have 2l ramification points of 
degree n.

χ(Σn) = nχ(Σ) − 2l(n − 1). (13)

Direct application of the replica (5) gives

trρn
A = e−vl(2−2n)

∑
R dnχ(Σ)−2l(n−1)

R e−AnC2(R)/2N

(
∑

R dχ(Σ)

R e−AC2(R)/2N)n
. (14)

Already at this point we see dependence on u canceled as it 
always happens in using the replica trick. Combining (3) and (14)
we get the EE
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S = 2lv + ln

(∑
R

dχ(Σ)

R e− A
2N C2(R)

)

−
∑

R dχ(Σ)

R e− A
2N C2(R) ln(dχ(Σ)−2l

R e− A
2N C2(R))∑

R dχ(Σ)

R e− A
2N C2(R)

. (15)

This formula is the first major result of this letter. A special case 
of this expression for l = 1 and v = 0 was obtained in [21].

This can be written in compact form as follows. For any op-
erator X , that is diagonal in the character basis we introduce the 
notation

〈X〉 =
∑

R dχ(Σ)

R e− A
2N C2(R) XR∑

R dχ(Σ)

R e− A
2N C2(R)

, (16)

where XR = 〈R|X |R〉 is the eigenvalue of X on the state labeled by 
the irrep R . Then we can rewrite (15) as

S = 2lv + ln Z − 〈
ln

(
dχ(Σ)−2l

R e− A
2N C2(R)

)〉
. (17)

3.1. Torus

In order to lighten up the notations and to give the area A
a thermal interpretation we choose Σ to be a torus. This corre-
sponds to a gauge theory with periodic boundary conditions in a 
thermal bath. In this case χ(Σ) = 0. We take one of the radii to 
be 1

T and the other one to be 1.
Thus the Entanglement Entropy is given by

S = 2lv + ln

(∑
R

e− 1
2T N C2(R)

)

−
∑

R e− 1
2T N C2(R) ln(d−2l

R e− 1
2T N C2(R))∑

R e− 1
2T N C2(R)

, (18)

where we also replaced A by 1
T .

3.2. Strong coupling

The sum over irreps is essentially a strong coupling (low tem-
perature) expansion. In the strong coupling limit we keep con-
tributions from the trivial and the fundamental representations. 
Quadratic Casimir is normalized such that C2(�) = N and d� = N . 
We have

S(T ) = 2lv + e− 1
2T

(
1 + 2l ln N + 1

2T

)
+ . . . . (19)

At this point we make two observations.
First, at zero temperature the Entanglement Entropy is com-

pletely determined by the regulator

S(0) = 2lv. (20)

Second, since the mass gap in the problem is set by the eigen-
values of the quadratic Casimir mgap = C2(�)

2N the EE scales as

S(T ) − S(0) = O

(
mgap

T
e− mgap

T

)
. (21)

This scaling is similar to the scaling found for the matter fields 
[22–24], but with additional factor of 1

T . This factor is natural since 
the entropy is essentially an average of the logarithm of the den-
sity matrix and it goes as the Boltzmann weight times 1

T . Eq. (21)
is another new result of this paper.
3.3. Weak coupling

Weak coupling limit is more tricky. In this limit the sum over 
representations is not well behaved. Of course, we expect the En-
tanglement Entropy to be divergent at high temperature, as it 
should approach the scaling of the thermal entropy. To observe 
this scaling, we take a simple gauge group. Let G = SU(2). Repre-
sentations of SU(2) are labeled by an integer m. We have

dR = m, C2(R) = m2 − 1

2
. (22)

The partition function is given by

Z =
∞∑

m=1

e− m2−1
8T = e

1
8T

2

(
ϑ3

(
0, e− 1

8T
) − 1

)
, (23)

where ϑ3 is a Jacobi theta function. In the weak coupling limit 
(T 	 1) EE scales as

S(T ) = 3

2
ln T + 1

2
ln 8π − γ + O

(
ln T

T 1/2

)
, (24)

where γ is the Euler–Mascheroni constant.

3.4. Higher genus

The situation is a little different for genus g > 1. First of all, the 
quantity (5) does not immediately have the EE meaning, but we 
will retain the same terminology.

In this case Eq. (14) still holds, with one important difference: 
dR enters the sum with a negative power, thus making the sum 
over R absolutely convergent. The low temperature (large area) be-
havior is found in the same way as before.

In the zero-area limit YM2 theory becomes a TQFT. The Entan-
glement Entropy is given by

Stop
l = 2lv + ln Z top + 2(l + g − 1)

Z top

∑
R

d2−2g
R ln dR (25)

where we have denoted

Z top =
∑

R

d2−2g
R . (26)

Note, that sum in (25) is convergent, but this is not surprising as 
the area does not have a thermal interpretation anymore.

3.5. Entanglement spectrum on the torus

Using the previous results we can also study the eigenvalues of 
the logarithm of the partial density matrix, the so-called entangle-
ment spectrum [25]. It is introduced as follows. Given a reduced 
density matrix ρA we can define an operator.

ρA = e−He (27)

If we denote the eigenvalues of ρA by ΛR and their degeneracies 
by gR then we have

trρn
A =

∑
R

gRΛn
R , (28)

comparing with (14) we obtain (λ = A/2N)

ΛR = exp(−λC2(R) − 2l ln dR)∑
R e−λC2(R)

, (29)

gR = d2l
R (30)
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we find then that the eigenvalues of He (the entanglement spec-
trum) are

ξR = λC2(R) + (
2l − χ(Σ)

)
ln dR , (31)

each of them with degeneracy gR .

4. Large N limit

In two dimensions the large N Yang–Mills theory on a sphere 
has the celebrated 3-rd order Douglas–Kazakov phase transition 
[26]. For the other base manifolds the large N limit is either not 
well behaved (for χ(Σ) < 0) or trivial (for χ(Σ) = 0). In this sec-
tion we will study the EE in the large N limit on a sphere.

4.1. Free energy in large N

In order to take the large N limit we make group theory ex-
plicit. This procedure is discussed in great detail in [17,18,26,27]
so we will be very brief.

The irreps of U (N) are labeled by non-decreasing integers n1 ≤
n2 ≤ . . . ≤ nN . Quadratic Casimir and the dimensions of the irreps 
are parametrized as follows.

C2(R) =
N∑

i=1

ni(ni − 2i + N + 1), (32)

dR =
∏
i< j

(
1 − ni − n j

i − j

)
. (33)

Then introducing x = i
N , n(x) = ni

N , h(x) = −n(x) + x − 1
2 , and

ρ(x) = dx

dh
, (34)

we write the partition function on arbitrary Riemann surface of 
Euler characteristic χ as

Z(A,χ) = eN2 F (A) =
∫

Dρe−N2 Sχ
eff , (35)

where

Sχ
eff = A

2

1∫
0

dhρ(h)h2

− χ

∫
dh

∫
dsρ(h)ρ(s) ln |h − s| − A

24
− 3

2
χ. (36)

We are keeping χ arbitrary because we want to apply the ex-
pressions to the partition function on Σn . Integral in (35) can be 
evaluated via the saddle point approximation. Since ni ’s are or-
dered ρ(x) ≤ 1. This restriction is responsible for the DK phase 
transition.

4.2. Sphere

We take χ > 0 and solve the saddle point equation [26,27].

ρ(h) = A

π

1

χ

√
2χ

A
− h2. (37)

Evaluating the action on this solution we find

Z(A,χ) = exp N2
[
χ

2
ln

χ

2A
+ χ + A

24

]
. (38)

Notice that the last two terms in this expression are precisely of 
the form (12).
We first compute the Renyi entropy Sn for l = 1. Combining (5), 
(13) and (38) and setting χ(Σ) = 2 we have

Sn = N2
(

ln
1

A
+ 1 − lnn

1 − n

)
, (39)

and the EE is given by

S = N2 ln
1

A
. (40)

These expressions are another new result of this letter.
For general l we encounter an issue. The Euler characteristic 

doesn’t stay positive for arbitrary n, that is, χ(Σn) > 0 implies 
n < l

l−1 . So if we proceed as before, our expression will be valid 
only for n slightly bigger than 1. This raises a question about the 
validity of the naive analytic continuation. Nonetheless, a sensible 
answer is obtained

S = lN2 ln
1

A
. (41)

The end points of the cuts simply add additional degrees of free-
dom and the EE gets a contribution.

We point out that a similar issue arises on a torus in the large 
N limit with the difference that for any n > 1 the Euler charac-
teristic changes sign and the analytic continuation is impossible. 
This leads to a divergence of the limit (3). Even though all Renyi 
entropies are well defined, the analytic continuation to EE is im-
possible.

The expressions (40) and (41) are valid only for weak coupling 
(small area) since at some value of area Acr the condition ρ(x) ≤ 1
is violated.

4.3. Douglas–Kazakov phase transition

The EE is sensitive to the DK phase transition. After some gym-
nastics with elliptic functions (in line with [26]) we find that near 
the critical point xc = π2 we have for S = Sstrong(x) − Sweak(x)
(with x = A/χ )

S(x)

N2
= −2l

(
x − xc

π2

)2[2x + xc

3π2

]
+ . . . (42)

thus the Entanglement Entropy also has a critical point at x = xc . 
In this point although the EE is continuous, but its 2nd derivative 
is discontinuous. This is a signal of the DK phase transition. This 
result coincides with the large N expansion discussed in [28] for 
the geometric entropy.

5. Conclusions

We have computed the Entanglement Entropy of 2D pure Yang–
Mills theory on a Riemann surface of arbitrary genus with any 
number of disjoint intervals in the bipartition. We found an ex-
ponential scaling at low temperatures which is similar to the ones 
found for the matter fields [22,23]. We have investigated the be-
havior of the EE near the DK phase transition and found that it has 
a critical point at the phase transition. For the higher genus Rie-
mann surfaces the small area (topological) limit is convergent and 
the EE well defined.

We did not find the non-analytic behavior predicted in [4], but 
it was expected as YM2 does not know about any length scales 
except the size of the system. Another way to say it: all of the 
dependence of the EE on the length of the cut L has the form 
of the Heaviside function S ∼ N2θ(L), so that ∂ S

∂L ∼ N2δ(L), thus 
the critical value of L is pushed to 0 by the symmetries of the 
model.
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It would be interesting to study the EE with additional mat-
ter fields and take advantage of the integrability of the Schwinger 
model. We leave this for the future work.
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