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Extracellular signaling molecules have crucial roles in development and homeostasis, and their incorrect
deployment can lead to developmental defects and disease states. Signaling molecules are released from
sending cells, travel to target cells, and act over length scales of several orders of magnitude, from
morphogen-mediated patterning of small developmental fields to hormonal signaling throughout the
organism.We discuss how signals aremodified and assembled for transport, which routes they take to reach
their targets, and how their range is affected by mobility and stability.
Introduction
The exchange of information between cells is essential for the

development and homeostasis of all multicellular organisms.

Developmental signals govern cell fate decisions, tissue

morphogenesis, and the migration of cells to specific destina-

tions within the organism. In both developing and adult individ-

uals, signaling molecules coordinate physiological processes

such as neurotransmission and immune responses. Disease

states, including cancer, can occur if signals or signaling path-

ways are deployed at the wrong time or place.

Intriguingly, many of the signaling pathways that control these

diverse processes are employed repeatedly during development

and are evolutionarily conserved. For example, the Hedgehog

(Hh) signaling pathway is utilized during development of the fly

wing and the mammalian spinal cord. How then are signaling

molecules able to achieve specificity? In addition to the develop-

mental history and genotype of a tissue, the spatial and temporal

distribution of signaling molecules governs their activity. Some

signals mediate communication between direct neighbors (jux-

tacrine) or over several cell diameters (paracrine), whereas

others act at ultralong (endocrine) ranges. In the case of endo-

crine signaling, the entire body can be affected by a signal

produced in a single localized gland. The temporal distribution

of signals is also regulated. Hormones such as insulin are

released by the endocrine system only under the appropriate

conditions, and developmental signals must be activated and

repressed at the correct times in order to generate properly

patterned organisms and to prevent disease states later in life.

Many important signaling pathways and their major compo-

nents have now been cataloged and characterized. However,

we still know little about how the signals that activate these path-

ways become distributed correctly within tissues. Do signaling

molecules travel as individuals, or are they packaged as cargo

into vehicles? What routes do signaling molecules take to reach

their destination? What are the mechanisms that modulate the

direction, mobility, and stability of signals? In this review, we

discuss the extracellular movement of signals at cellular, tissue,

and organism scales. We begin by discussing the biophysical

principles underlying the transport of molecules over short and

long distances. We then describe how signaling molecules are

modified and packaged at the source for their journey. Finally,

we discuss the extracellular routes that signals take to reach
target tissues and how the modulation of a signal’s direction,

mobility, and stability can affect its range.

Biophysics of Molecular Transport
Many signals are proteins or small molecules that are secreted

by localized groups of cells. The range of a signal is the domain

over which it exerts its effects. In other words, the signaling range

is the distance from the source at which a response is observed.

Different signals have vastly different signaling ranges (Chen and

Schier, 2001, 2002; Williams et al., 2004; Blilou et al., 2005; Sa-

wamoto et al., 2006; Kicheva et al., 2007; Shilo and Barkai, 2007;

Yu et al., 2009; Gallet, 2011). For example, the ultrashort juxta-

crine signal Delta only signals to direct neighbors (Nichols

et al., 2007), the medium- to long-range paracrine TGF-b signals

Dpp and Nodal act over distances from 40 to 200 mm, respec-

tively, corresponding to approximately 15 cell diameters (Bollen-

bach et al., 2008; Harvey and Smith, 2009), and ultralong-range

endocrine signals such as insulin are secreted from localized

sources but act throughout the entire body.

Several factors control signaling range, including the concen-

tration of signal at the source, aswell as the activity, mobility, and

stability of the signal. First, the signaling range can be influenced

by the amount of the signal that is produced; high rates of signal

production result in high levels of extracellular signal. Higher

levels of extracellular signal enhance the likelihood that mole-

cules will reach receptors on distant cells. Some signals are

thought to be secreted during development with a constant

flux from source cells over long timescales (Wartlick et al.,

2011), whereas others, such as neurotransmitters, are stored in

a readily accessible pool at the source and only released in

a short pulse upon stimulation by specific inputs. Second, the

strength or signaling ability of a ligand affects its signaling range.

For example, a mutation or polymorphism that decreases

receptor binding but does not affect the distribution of a ligand

will nonetheless shorten its signaling range. Third, the ability of

a signal to move through a tissue will affect its signaling range;

molecules that move more freely or directionally through tissues

will move farther from their source than molecules that are

restricted in their movement. Fourth, signal stability helps deter-

mine signaling range. For example, very stable signals can move

a long distance away from their source before being degraded.

Finally, even highly expressed, stable, active, and diffusive
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Figure 1. Biophysics of Signal Movement
(A) Directional movement and random walks. The distance L that a molecule
moving in a constant direction covers with N steps of step size d is L = Nd.
However, diffusing molecules do not move in a constant direction but rather
undergo random walks, in which the direction of motion changes randomly
after each step due to collision with surrounding molecules. A diffusing
molecule will therefore on average cover a distance L=d

ffiffiffiffi

N
p

(Berg, 1993;
Phillips et al., 2009). For example, with 20 steps of size 1 a molecule moving in
a constant direction could travel a distance L = 20, whereas a randomly
walking molecule would only be displaced from its starting position by about
L = 5 on average. Conversely, to travel a distance of L = 20, a randomly walking
molecule would need to make 400 steps of size 1 on average.
(B) Timescales of diffusive and directional movement. The displacement L in
micrometers as a function of time t (in seconds) for a molecule moving in
a constant direction with a velocity v of 1 mm/s is described by L = tv (red). The
average displacement L as a function of time t for an ensemble of molecules
diffusing with a diffusion coefficient D of 100 mm2/s (e.g., a small protein
diffusing in water) is described by L=

ffiffiffiffiffiffiffiffi

2tD
p

(green). Diffusing molecules can
move rapidly away from their starting positions over short distances, but take
a long time to move long distances.
(C) Concentration thresholds, signaling range, and diffusivity in paracrine
signaling. Typically, cells must be exposed to a concentration of paracrine
signal above a certain threshold (indicated by dashed horizontal line) in order
to respond to signaling. Signals with large diffusion coefficients (right graph)
travel farther from their sources than signals with small diffusion coefficients
(left graph). However, less diffusive signals can counterintuitively have longer
signaling ranges (range 1) than more diffusive signals (range 2), since these
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signals can have short-range effects because of dilution in target

tissues.

In the following section on transport biophysics, we describe

the differences between stationary and dynamic sources, intro-

duce diffusion, active transport, and fluid flow as mechanisms

of signal movement, and discuss how signal stability influences

signaling range.

Stationary and Dynamic Sources

Signal sources are often localized and stationary, and the

signaling molecules that they secrete travel away from the

source. Although this review focuses on the extracellular move-

ment of signaling molecules, it is worth pointing out that signals

can also be distributed by other means. For example, cell divi-

sions that partition mRNA along a cell lineage (Pfeiffer et al.,

2000; Dubrulle and Pourquié, 2004; Harfe et al., 2004) or highly

dynamic expression patterns (Doitsidou et al., 2002; Boldajipour

et al., 2008) can move the source and thus transport signals.

Furthermore, signals can act at long distances by traveling inside

neurites, nanotubes, and other cellular extensions (Huang and

Kunes, 1996; Rustom et al., 2004; Watkins and Salter, 2005;

Davis and Sowinski, 2008; Sherer and Mothes, 2008; Hurtig

et al., 2010; Wang et al., 2010). Conversely, signals can be

perceived far from cell bodies by neurites, growth cones, filopo-

dia, cytonemes, and other thin extensions (Miller et al., 1995;

Ramı́rez-Weber and Kornberg, 1999; Ribeiro et al., 2002; Sato

and Kornberg, 2002; Wolf et al., 2002; De Joussineau et al.,

2003; Hsiung et al., 2005; Lidke et al., 2005; Roy et al., 2011).

Mechanisms of Signal Movement

The ability of a signal to move through a tissue is the primary

determinant of signaling range. Paracrine and endocrine signals

must travel over vastly different distances in order to reach

their final targets. For example, during fly development tissues

are patterned by paracrine signals that move tens of microme-

ters over hours to days (Wartlick et al., 2011), whereas in the

large vascular system of humans the endocrine signal insulin is

transported over meters within minutes from the pancreas to

the target tissue. Three principal mechanisms are used for the

transport of molecules: diffusion, directional active transport,

and fluid flow. Each transport mechanism has features that

make it uniquely suited for the movement of different signals in

different tissue contexts. In the following, we discuss which

mechanisms are optimized for paracrine and endocrine signals,

respectively.

There has been much debate about whether movement of

paracrine signals involves directional active transport from

sending to receiving cells, or whether a diffusive process would

be sufficiently reliable to guarantee timely and robust transport

(Wolpert, 2009). One limitation with signal movement by diffusive

transport is that it takes a very long time for diffusing molecules

to travel long distances away from their source (Figure 1). Let us

consider a typical protein with a diameter of 5 nm (corresponding

to a molecular weight of 40–50 kDa). The Stokes-Einstein equa-

tion describes the diffusivity D of a molecule with a radius R

moving through a fluid with a viscosity h at a temperature T as
relatively immobile signals ‘‘pile up’’ near the source at levels above the
threshold required for a cellular response.
(D) Mobility and stability affect signaling range. Molecules that are cleared
uniformly and rapidly in the target field accumulate to lower concentrations.
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D= kBT/6phR (kB is the Boltzmann constant) (Berg, 1993; Phillips

et al., 2009). A protein with a diameter of 5 nm moving through

water at room temperature would therefore be expected to

have a diffusion coefficient of approximately 100 mm2/s. The

timescale of diffusion increases with the square of the distance.

More precisely, the average time t it takes molecules with a diffu-

sion coefficient D to diffuse a distance L in one dimension is

approximately t = L2/2D (Berg, 1993; Phillips et al., 2009). Stable

proteins with a diffusion coefficient of 100 mm2/s could therefore

easily traverse a one-dimensional field of 1 mm within approxi-

mately 2 hr. However, it would take close to 6 days on average

to traverse 1 cm and more than 150 years to travel a distance

of 1m. This illustrates that diffusion is useful for signal movement

over short but not long distances. In 1970, Francis Crick

reasoned that developing embryonic tissues are sufficiently

small for diffusing molecules to reach target cells in a timely

fashion, and therefore signal dispersal by diffusion could be a

plausible mechanism for patterning tissues during development

(Crick, 1970).

Directional active transport mechanisms and fluid flow

commonly exhibit constant velocities that allow transport of

endocrine signals over long distances. The time it takes mole-

cules to travel a distance L by directional transport is linear

and not quadratic as in the case of diffusion (Phillips et al.,

2009). For example, flow velocities of 300–500 mm/s in human

blood vessels (Phillips et al., 2009) and in the vasculature of olive

trees (López-Bernal et al., 2010) have been measured. A mole-

cule moving by fluid flow in the blood system would be able to

travel about 1 mm within 3 s, 1 cm within 30 s, and 1 m within

40 min. This very fast transport mechanism is employed mostly

by endocrine signals; diffusion alone would take years to trans-

port these molecules to their distant target tissues. Thus, diffu-

sive transport is sufficient to move paracrine signaling molecules

over short distances, whereas some long-range paracrine and

most endocrine signals moving over longer distances require

directional active transport or fluid flow to shorten the transport

time by several orders of magnitude.

Stability

The stability of a signaling molecule is another important deter-

minant of signaling range. Highly stable signals can spread

over large distances, whereas unstable signals can act only

locally (Figure 1D). Specific clearance mechanisms such as

signal uptake by cells and signal degradation by extracellular

enzymes ensure that cells within tissues are exposed to the

appropriate levels of signaling molecules (Scholpp and Brand,

2004; Boldajipour et al., 2008; Hagemann et al., 2009; Yan

et al., 2009; Naumann et al., 2010). Localized degradation can

help to generate more intricate signal distributions than those

achieved by simple active transport or diffusive mechanisms

alone (White et al., 2007). Feedback regulation of signal stability

also plays an important role in some paracrine signaling

processes. Theoretical studies have demonstrated that ‘‘self-

enhanced clearance’’ can provide a simple but powerful mecha-

nism that fine-tunes the distribution of a signaling molecule and

renders patterning processes robust to many kinds of perturba-

tions, such as changes in the rate of signal production (Eldar

et al., 2003; Barkai and Shilo, 2009; Lander et al., 2009).

In summary, the clearance kinetics (i.e., localized or uniform,

linear or nonlinear) and the transport mechanism, (i.e., diffusion
or directional transport) together affect the dynamics of signal

distribution and therefore ultimately the signaling range.

Preparing for the Journey
Before signals begin their extracellular journey, they often

undergo posttranslational modifications that can affect their

production, activity, mobility, and stability. These modifications

can dramatically affect signal transport and in some cases

have been suggested to necessitate the packaging into vehicles

to allow mobility. In the following, we illustrate these concepts

with two examples. We discuss how the prodomains of Trans-

forming Growth Factor-b (TGF-b) family ligands and lipid modifi-

cations of Hedgehog (Hh) ligands decrease their mobility and

describe how thesemolecules can bemobilized to act at a longer

range by association with carrier proteins or by packaging into

membranous particles.

Posttranslational Modifications Affect Signaling Range

TGF-b superfamily members have multiple roles in development

(e.g., patterning of the germ layers, dorsal-ventral patterning,

and establishing left-right asymmetry), homeostasis (e.g., regu-

lation of proliferation, immune response, and blood vessel main-

tenance), and disease (e.g., cancer, heart disease, and Marfan

syndrome). These ligands are produced as proproteins consist-

ing of a prodomain and a mature domain and are processed via

cleavage by specific convertases (Figure 2). In many cases, the

prodomain stays attached to the mature ligand after processing

and regulates signal activity, stability andmobility (De Crescenzo

et al., 2001; Le Good et al., 2005; Blanchet et al., 2008; Tian et al.,

2008; Sengle et al., 2011). Prodomains can target ligands to the

extracellular matrix to restrict their mobility and to create a ligand

pool that can be rapidly mobilized. Tethering of complexes to the

extracellular matrix can be achieved via interactions with latent

TGF-b binding proteins (LTBPs) (Nunes et al., 1997), fibrillin

microfibrils (Neptune et al., 2003; Sengle et al., 2008; Nistala

et al., 2010), and heparin sulfate proteoglycans (HSPGs, dis-

cussed in more detail below). The tethered latent complex can

then be mobilized and activated by extracellular stress signals

that terminally remove the prodomain (Lyons et al., 1988; Annes

et al., 2003;Wolfman et al., 2003). Proteolytic cleavage of LTBPs,

competition with binding to microfibrils as well as mechanical

forces have been implicated in mobilizing the latent ECM-bound

TGF-b complex (Ge and Greenspan, 2006; Chaudhry et al.,

2007; ten Dijke and Arthur, 2007; Maeda et al., 2011).

Many paracrine ligands are lipid modified and inserted into the

plasma membrane to restrict their mobility or to decrease their

secretion or signaling activity (Willert et al., 2003; Cong et al.,

2004; Takada et al., 2006; Komekado et al., 2007; Kurayoshi

et al., 2007; Franch-Marro et al., 2008; Steinhauer and Treisman,

2009). For example, Hh proteins are cholesterylated at their

C-termini (Porter et al., 1996), which increases their membrane

affinity and restricts their dispersal (Gallet, 2011) (Figure 3A).

Mutant Shh proteins lacking the cholesterol modification have

an extended distribution and an increased signaling range (Li

et al., 2006), leading to dramatic patterning defects (Huang

et al., 2007a, 2007b).

Specific proteins are dedicated to handle lipid-modified Hh.

Dispatched is thought to be required for the release of Hh from

cell surfaces and its subsequent long-range signaling activities.

Mutants for dispatched retain cholesterol-modified Hh on the
Developmental Cell 21, July 19, 2011 ª2011 Elsevier Inc. 147



Figure 2. TGF-b Signal Trafficking
(A) Proprotein cleavage. TGF-b superfamily ligands are produced as propro-
teins, dimerize, and require cleavage of the prodomain by convertases (e.g.,
Furin). For many TGF-b ligands the prodomain (blue) stays attached to the
mature domain (green) after cleavage. Modified from ten Dijke and Arthur
(2007).
(B) Tethering to the extracellular matrix and release. Prodomain-mature
domain complexes can be tethered to the extracellular matrix (brown), e.g., via
the interaction of the prodomain with latent TGF-b binding proteins (LTBP,
red). After cleavage of LTBP and the prodomain (e.g., by matrix metal-
loproteinases such as BMP1 and MMP2), the mature domain is released and
can now signal to distant cells. Modified from ten Dijke and Arthur (2007).
(C) Heteromerization with carrier proteins and shuttling. BMP molecules
(yellow) are thought to be relatively immobile unless bound to Chordin (blue).
During early embryogenesis in frogs, BMPs are uniformly distributed.
Production of Chordin on the dorsal side of the embryo leads to complex
formation between BMPs and Chordin. The BMP/Chordin complex is mobile
and diffuses. Repeated rounds of Chordin cleavage by a uniformly distributed
protease, subsequent release of free BMP and remobilization by Chordin
binding is thought to eventually result in the accumulation of free BMP on the
ventral side. Additional downstream feedback signaling networks can result in
robust pattern formation. Figure modified from Lewis (2008).
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cell surface and show a reduced Hh signaling range (Burke et al.,

1999). Similarly, the membrane microdomain protein Reggie-1 is

important for the secretion and spreading of Hh (Katanaev et al.,

2008). Although the precise mechanisms of Dispatched and

Reggie activity on Hh ligands remain unclear, these molecules

illustrate the importance of dedicated pathways to handle modi-

fied signaling proteins.

Signal Assemblies and Vehicles

Signals are often assembled into higher-order complexes that

modulate and regulate their dispersal. For example, hormones

such as cortisol have long been known to utilize carrier proteins

for long-rangemovement through the blood stream. The Stokes-

Einstein equation introduced above states that larger molecules

move more slowly, but paradoxically, in the context of live

animals, larger assemblies are often more mobile than the free

molecules. In vivo, large assemblies can act as vehicles that

transport signals that would otherwise be immobilized on cell

surfaces. We illustrate this concept with three examples. We first

introduce how carrier proteins can change the mobility of TGF-b
148 Developmental Cell 21, July 19, 2011 ª2011 Elsevier Inc.
family signals. Thenwe describe strategies tomove hydrophobic

proteins such as Hh through aqueous environments, and last we

discuss how some signals are packaged for long-range trans-

port in membranous particles.

Association with Carrier Proteins. The association of many

TGF-b superfamily signals with carrier proteins enhances ligand

mobility and thereby increases signaling ranges (Figure 2C). For

example, Bone Morphogenetic Proteins (BMPs) use carrier

proteins to regulate their dispersal during patterning of the

dorsal-ventral axis (Eldar et al., 2002; Shimmi et al., 2005; van

der Zee et al., 2006; Ben-Zvi et al., 2008; Umulis et al., 2009).

In Xenopus, BMPs have very low mobility, possibly due to

high-affinity interactions with extracellular matrix (ECM) mole-

cules (Ohkawara et al., 2002). The secreted BMP antagonist

Chordin/Sog forms a complex with BMPs and inhibits their

activity. Mathematical modeling suggests that BMP-Chordin

complexes are highly diffusive compared to BMPs that are not

complexed with Chordin (Ben-Zvi et al., 2008). BMPs are initially

uniformly distributed in the embryo, whereas Chordin is locally

produced on the dorsal side. Repeated rounds of BMPmobiliza-

tion by Chordin, subsequent enhanced diffusion of the

heteromeric complex, and finally cleavage of Chordin in the

BMP-Chordin complex by a uniformly distributed protease are

thought to eventually result in the clearance of BMP on the dorsal

side and effective transport by ‘‘shuttling’’ to the ventral side.

Moving Hydrophobic Signals through Aqueous Environments.

As discussed above, several signaling molecules require hydro-

phobic modifications for their normal activity. Although such

hydrophobic molecules should be trapped by plasma mem-

branes, they often move over long distances through predomi-

nantly aqueous extracellular environments. This conundrum is

partially resolved by the observation that hydrophobic signals

can form oligomers and can be packaged into lipoprotein

complexes that hide hydrophobic residues or modifications

(Figure 3).

Hydrophobic domains may be hidden in the center of oligo-

mers, whereas hydrophilic domains are exposed to the aqueous

extracellular milieu (Figure 3B). For example, Hh molecules form

large multimeric complexes (Zeng et al., 2001; Chen et al., 2004;

Feng et al., 2004; Goetz et al., 2006; Vyas et al., 2008). Mutation

of a conserved lysine in the Hh protein abolishes oligomerization

(Vyas et al., 2008), and the mutant signal is thereby restricted to

act at a shorter range than the wild-type signal. Recent studies in

cell culture suggest that the formation of Shh oligomers depends

on lipid modifications, but that the hydrophobic modifications

are cleaved off before the oligomers are released from the Shh

producing cells (Dierker et al., 2009; Ohlig et al., 2011).

Another strategy to overcome the problem of moving a hydro-

phobic molecule through an aqueous environment is the use of

carriers that bind signals and bury their hydrophobic residues

or modifications within the complex. Some hydrophobic sig-

naling molecules are packaged into lipoprotein particles that

can diffuse through tissues. Lipoprotein particles are secreted

vesicles composed of a phospholipid monolayer containing the

lipoprotein apolipoprotein (Figure 3C; Eaton, 2008). The hydro-

phobic proteins Wingless (Wg) and Hh are thought to be pack-

aged into lipoprotein particles for long-range signaling (Greco

et al., 2001; Panáková et al., 2005; Neumann et al., 2009) and

fail to disperse from their sources when lipoprotein levels are



Figure 3. Trafficking of Hydrophobic Signal
Molecules
Signaling molecules (blue) are often modified by
lipid attachments (red), and they can be inserted
into membranes (A). In order to act on cells at a
distance from the producing cell, these signaling
molecules have to move through a hydrophilic
environment. Formation of oligomers (B) and
lipoprotein particles (C) are thought to mask
hydrophobic residues or modifications and have
been implicated in the transport of hydrophobic
signals such as Hh and Wg. Figure modified from
Eaton (2008).
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decreased (Panáková et al., 2005). Other lipid-based mecha-

nisms have also recently been discovered to control the distribu-

tion of signals (Pizette et al., 2009), but how these mechanisms,

oligomerization and packaging into lipoprotein particles are con-

nected remains unclear.

Other Membranous Vehicles. Comparable in size to typical

lipoprotein particles, exosomes are membrane-encapsulated

vesicles proposed to operate as vehicles for the packaging

and transport of signaling molecules (Liégeois et al., 2006;

Lakkaraju and Rodriguez-Boulan, 2008; Korkut et al., 2009;

Ristorcelli et al., 2009; Sheldon et al., 2010; Higginbotham

et al., 2011). Their role in vivo is controversial, but it is well estab-

lished that exosomes originate from endosomal multivesicular

compartments whose outer membrane fuses with the plasma

membrane to release the vesicles contained therein.

One model proposes that the Notch ligand Delta requires

dispersal by exosomes. Delta is tethered to the membrane via

its single-pass transmembrane domain. Interestingly, Delta

must be taken up by the sending cell in order to signal to the

receiving cell (Itoh et al., 2003; Le Borgne and Schweisguth,

2003b). It has been proposed that endocytosed Delta in the

sending cell is packaged into multivesicular bodies that are

then recycled and released as exosomes to activate Notch

signaling in receiving cells (Le Borgne and Schweisguth,

2003a). Although Delta does not need to be trafficked through

known recycling pathways to be able to signal (Windler and

Bilder, 2010), the Notch ligand Delta-like 4 can be found in exo-

somes outside of cells (Sheldon et al., 2010). Purified exosomes

can transfer the Delta-like 4 signal to other cells, suggesting the

possibility that exosomes could mediate Notch signal transfer

independent of classic cell-cell contact (Sheldon et al., 2010),

potentially at a longer range.

Other signals that act at a long range have been proposed

to be packaged into microparticles. Microparticles are large

membrane-enclosed vehicles that originate by budding from

the plasma membrane and range from 100 to 1000 nm in diam-

eter (Mause and Weber, 2010). Microparticles can move in the

vascular system and may serve as long-range and globally

distributable signal vehicles. For example, the cell death signal

Caspase I has recently been shown to be delivered to smooth

muscle cells bymicroparticles originating fromactivated immune

cells (Sarkar et al., 2009). Interestingly, large protein quantities

and evenmRNAs can be transported in exosomes andmicropar-

ticles, and these vehiclesmay thus be able tomodulate the target

cells more profoundly than an extracellular signal alone (Whale

et al., 2006; Valadi et al., 2007). These and other studies suggest

that membranous vesicles are an attractive model for the trans-
port of hydrophobic signals, but, in the absence of methods

to directly interfere with the generation of these assemblies

in vivo, their relevance for signaling remains unclear.

On the Road
What routes do signals take to reach their destination? The fore-

going biophysical considerations showed that paracrine signals

can diffuse through the extracellular matrix to act over short

distances. In contrast, endocrine signals require specialized

routes such as the vascular systems of plants and animals for

their long-range transport. In the following, we discuss how

transport routes and transport mechanisms are connected. We

begin with long-range transport mechanisms and then go on to

discuss transport over medium, short, and ultrashort ranges.

Finally, we discuss how altering the stability of signaling mole-

cules can change their range.

Highways of Fluid Convection

Highly specialized transport routes allow for the movement of

signaling molecules over long distances. In the case of plants,

long-distance transport is achieved through the vascular

systems of xylem and phloem. Trees can transport water taken

up in the roots via the xylem over several tens of meters. The

driving force behind this flow is transpiration of water in the

leaves. Due to cohesive forces betweenmolecules, the evapora-

tion of water from leaves pulls other water molecules upwards

throughout the xylem. Similarly, sugars, plant hormones and

other signaling molecules move through the phloem (Corbesier

et al., 2007; Robert and Friml, 2009; Molnar et al., 2010) due to

gradients of osmotic potential from the source to the receiving

tissue. Flow velocities in the phloem of plants range from �10

to 1000 mm/s (Canny, 1973; Windt et al., 2006).

The protein Flowering Locus T (FT) is a prominent example

of a long-range signal that is transported via the phloem and

mediates communication from leaves to the shoot apex. Flowers

arise from the shoot apex; however, the changes in day length

that occur as seasons change are sensed by leaves (Knott,

1934). Leaves transiently produce FT, and the protein travels

along the phloem to the shoot apex, where it communicates

information about day length (Zeevaart, 2006; Corbesier et al.,

2007; Tamaki et al., 2007). Thus, long-range leaf-to-shoot apex

communication through the phloem ensures that flowering

occurs in the correct growing season.

In animals, the vascular system provides a similar ‘‘highway’’

for the global distribution of signaling molecules. Hormones

such as insulin are directly secreted into the bloodstream where

they can reach almost all parts of the body leading to a rapid and

even distribution. Typical measured flow velocities of blood in
Developmental Cell 21, July 19, 2011 ª2011 Elsevier Inc. 149
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capillaries are on the order of 500 mm/s (Phillips et al., 2009),

similar to the velocities in the plant phloem discussed above

(although blood flow in larger vessels such as the aorta can be

up to two orders of magnitude higher; Bahlmann et al., 2001).

At this velocity, insulin secreted from the pancreas can reach

a muscle that is several centimeters away within seconds to

minutes. But once insulin reaches the skeletal muscle, it moves

with much slower kinetics via diffusion (Lauritzen et al., 2006).

Mathematical modeling suggests that the low mobility of insulin

in muscle is due to interactions with receptors and the increased

path lengths that molecules are required to travel due to the

presence of highly branchedmuscle fibers (i.e., increased ‘‘tortu-

osity’’) (Shorten et al., 2007). Thus, the mobility of the same

ligand can differ dramatically based on its environment.

Fluid flow driven by motile cilia also distributes signaling

molecules in organs such as the brain. Since fluid convection

dominates over diffusion in speed over long distances, this

transport mode might be advantageous in these relatively large

substructures. Neuropeptides, for example, are transported in

this manner in the cerebrospinal fluid (CSF) after being secreted

from the choroid plexus (Veening and Barendregt, 2010).

Remarkably, despite the rapid distribution of inflowing neuro-

peptides by fluid flow, it has been proposed that this transport

mode can generate a gradient of the signaling molecule Slit,

which is important for directing migrating neurons from the

choroid plexus to the olfactory bulb (Sawamoto et al., 2006).

Cilia-mediated fluid flow is also observed in the mouse node,

although it is unclear if fluid flow is required for the directional

transport of signals (Hirokawa et al., 2009) or to generate differ-

ential fluid pressure leading to asymmetric physical stimulation

of mechanosensory cilia (Basu and Brueckner, 2008).

Directional Active Transport

Thus far, we have mainly focused on fluid flow as a mechanism

for signal dispersal over long ranges. However, occasionally,

signals need to move quickly over long distances through

environments that lack fluid-flow systems. For example, an inter-

esting combination of passive diffusion and active transport

mechanisms is employed in plants to ensure the proper distribu-

tion of the plant hormone Auxin (Robert and Friml, 2009). In

Arabidopsis, Auxin is initially transported via the vasculature

from the shoot to the tip of the root (Figure 4). There, a graded

Auxin distribution controls cell identity, cell division, and cell

expansion. Given that the source of Auxin production is far

from the root, how can an inverted gradient that peaks at the

tip be generated, and how can this distribution be maintained?

Auxin can freely diffuse through extracellular spaces and also

enter cells. But once Auxin has entered a cell, its protonation

state changes and it can only leave through PINs, channel

proteins that actively transport Auxin out of cells (Figure 4A). In

cells within the root, PIN is localized to the face of the cell that

points toward the root tip (the ‘‘base’’ of the cell). Thus, a mole-

cule of Auxin diffusing in the root may enter a cell at any point

along the cell surface; however, the molecule can only leave

the cell through its base. This concentrates Auxin to the tip of

the root (Blilou et al., 2005). This Auxin reflux capacitor is impor-

tant to stabilize the maximal Auxin concentration at the root tip

and to maintain growth of the meristem.

Interestingly, this transport system is robust to changes in the

position of the initial influx; a graded Auxin distribution can even
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be generated if Auxin concentration is initially uniform or ectop-

ically localized (Figure 4D), or when the flux ceases (Grieneisen

et al., 2007). Active transport is therefore not only essential to

transport signals over long distances, but also ensures a robust

spatial localization.

Effective Diffusion

Signals that can passively traverse fields of cells by diffusion are

expedient, because their transport does not require energy

expenditure on the part of the organism. Francis Crick reasoned

that signal dispersal by diffusion could be a plausible mechanism

for patterning relatively small embryonic tissues (Crick, 1970). He

hypothesized that to employ such a diffusive mechanism, the

diffusing molecule would have to be small enough to rapidly

move through cells. Small molecules indeed play an important

role in intercellular communication. For example, small mole-

cules such as nitric oxide (NO) or hydrogen peroxide (H2O2)

act as rapidly dispersible messengers that diffuse quickly

through cells (Niethammer et al., 2009; Schreml et al., 2011).

Most paracrine protein signals cannot diffuse passively

through cells and instead move through the extracellular space

(Gurdon et al., 1994; Strigini and Cohen, 2000; Gritli-Linde

et al., 2001; McDowell et al., 2001; Rojo et al., 2002; Lenhard

and Laux, 2003; Williams et al., 2004), with the exception of a

few proteins that diffuse through a cellular environment. These

include signals that move in a syncytium (Gregor et al., 2007),

some homeodomain transcription factors that move through

cell membranes (Prochiantz and Joliot, 2003; Brunet et al.,

2007; Sugiyama et al., 2008; Wizenmann et al., 2009), and sig-

nals that move through special cellular channels such as gap

junctions in animals (Esinduy et al., 1995; Mesnil and Yamasaki,

2000; Goldberg et al., 2004; Neijssen et al., 2005; Evans et al.,

2006; Palacios-Prado and Bukauskas, 2009) and plasmodes-

mata in plants (Sessions et al., 2000; Conti and Bradley, 2007;

Molnar et al., 2010).

As discussed above, diffusion can be fast over short

distances. Therefore, molecules that are too diffusive might not

be able to accumulate to sufficiently high concentrations to

elicit efficient signaling (Figure 1). Conversely, molecules with

very low diffusivity would have extremely short signaling ranges

and would not be able to reach distant cells (Lander, 2007).

Therefore, several mechanisms are employed to fine-tune the

temporal and spatial distribution of diffusing molecules.

The Extracellular Matrix as a Signal Route. Binding to mole-

cules in the extracellular space affects signal movement. The

diffusion of a particle that is interacting with binding partners in

this manner is referred to as ‘‘effective diffusion’’ (Crank, 1979).

Interactions with binding partners can modify ligand dispersal

and activity in at least four ways. Binding can (1) alter the

mobility/diffusivity of a signal, (2) concentrate ligand at the

surface of cells, (3) promote or hinder ligand-receptor interac-

tions, and (4) influence the extracellular stability of a ligand

(Figure 5). Below, we illustrate these concepts with several

examples.

Interactions with receptors have been demonstrated to hinder

the spread of some signals. (Chen and Struhl, 1996; DeWitt

et al., 2001). For example, in regions with reduced levels of the

Dpp receptor Thickveins (Tkv), Dpp moves farther from a local-

ized source, apparently because its diffusivity is increased

(Haerry et al., 1998; Crickmore and Mann, 2006). In addition,



Figure 4. Diffusion and Active Transport by
Efflux Carrier Proteins
(A) Polar Auxin transport. Auxin can diffuse in the
cell wall (brown) and enter cells. However, once
inside the less acidic environment of the cells,
Auxin becomes deprotonated (Auxin-) and can no
longer leave the cell passively. PINs (purple) are
specific transport proteins that carry anionic
Auxin- out of the cell. PINs are highly localized,
often to the base of cells, and thereby lead to
a directional transport of Auxin. Figure modified
from Robert and Friml (2009).
(B) Root architecture and localization of PINs. The
Arabidopsis root consists of a meristematic zone,
where growth occurs, and an elongation zone. The
vasculature is indicated in red, epidermal layers
in blue, border cells in yellow and columella tiers
in green. All cells are surrounded by a cell wall
(brown). The localization of PIN proteins (purple) in
cells within the indicated subregions is shown.
Figure modified from Grieneisen et al. (2007).
(C) Establishment and maintenance of an Auxin
(blue) concentration maximum in a root with
shoot-derived Auxin flux. Three time points of
computational simulations are shown. Auxin flows
through the phloem from the shoot to the root (t1).
The distribution of PINs concentrates Auxin at
the root tip (t2) and can maintain the Auxin con-
centration maximum even when the shoot-derived
Auxin flux ceases (t3). Figure modified from
Grieneisen et al. (2007).
(D) Accumulation of Auxin (blue) at the root meri-
stem from localized ectopic Auxin production.
Three time points of computational simulations are
shown. Localized Auxin production from a single
cell at time point t1 is sufficient to generate an
Auxin maximum at the root tip (t3) due to the
distribution and subcellular localization of PINs.
Figure modified from Grieneisen et al. (2007).
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overexpression of tkv shortens Dpp’s signaling range (Haerry

et al., 1998; Lecuit and Cohen, 1998; Crickmore and Mann,

2006). The distribution of other ligands, such as Wg, is not

affected in the absence of their receptors (Han et al., 2005),

although the distribution can be influenced by overexpression

of the signal receptor (Baeg et al., 2004).

Heparan sulfate proteoglycans (HSPGs) are a well-character-

ized class of ECM components that have been shown to bind to

and hinder the spread of some signals. HSPGs are often tethered

to cell surfaces and consist of a protein core to which long

heparan sulfate sugar chains are attached. Although diffusion

has not been directly measured, it is clear that the signaling

range or distribution of some signals ismodulated in the absence

of HSPGs or by overexpression of HSPGs (The et al., 1999;
Developmental Cel
Strigini and Cohen, 2000; Baeg et al.,

2001; Vincent and Dubois, 2002; Belen-

kaya et al., 2004; Takei et al., 2004; Han

et al., 2005; Oki et al., 2007; Yan and

Lin, 2009; Yan et al., 2009; Marjoram

and Wright, 2011).

The interaction of two closely related

ligands FGF7 and FGF10 with HSPGs

provides an interesting example of the

effects of signal-HSPG interactions.

FGF7 and FGF10 can both guide branch-
ing morphogenesis by activating the same receptor (Makaren-

kova et al., 2009). FGF10 binds more strongly to HSPGs than

FGF7 and therefore is thought to be less diffusive. Strikingly,

mutation of a single amino acid in FGF10 that is normally

involved in binding HSPGs increases its range to that of FGF7

and even causes FGF10 mutants to mimic FGF7 function in

branching morphogenesis, possibly due to altered diffusion

characteristics. Analogously, a basic domain in the N terminus

of Xenopus BMP4 binds strongly to HSPGs. This interaction

restricts the mobility of BMP4 and confines the protein close to

its expression domain in the nonneural ectoderm (Ohkawara

et al., 2002).

In addition to hindering signal movement, binding to HSPGs

can concentrate ligand near cell surfaces and promote
l 21, July 19, 2011 ª2011 Elsevier Inc. 151



Figure 5. Effective Diffusion
Interactions of signaling molecules with HSPGs. HSPGs are often associated
with epithelial cell surfaces. Binding to HSPGs can alter themobility of a signal,
concentrate ligand at the surface of cells, promote or hinder ligand-receptor
interactions, and influence the extracellular stability of a ligand. For example, in
the absence of HSPGs, signaling molecules may not be retained on the cell
surface and thereby fail to travel to the next cells.
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receptor-ligand interactions. HSPGs are necessary for the

proper distribution and reception of signals such as Wg, Hh,

Dpp, and Nodal (Häcker et al., 1997; Haerry et al., 1997; Oki

et al., 2007; Marjoram and Wright, 2011). Concentration of these

signals near the cell surface might be especially important in

developing epithelial tissues to prevent the release of ligand

from the epithelial surface into the lumen. Indeed, cells that

cannot synthesize HSPGs fail to retain Dpp and Wg on their

surfaces and have attenuated signaling responses (Belenkaya

et al., 2004; Takei et al., 2004; Han et al., 2005; Yan et al., 2009).

Several factors thatmodulate the interactions between ligands

and receptors, or ligands and HSPGs, have been identified (Ger-

litz and Basler, 2002; Giráldez et al., 2002; Kreuger et al., 2004;

Glise et al., 2005; Gorfinkiel et al., 2005; Crickmore and Mann,

2006, 2007; de Navas et al., 2006; Makhijani et al., 2007; Ayers

et al., 2010; Liu et al., 2010; Vuilleumier et al., 2010; Szuperák

et al., 2011; You et al., 2011). For example, the heparan sulfate

6-O endosulfatase Sulf1 removes sulfate groups from HSPGs

and thereby modulates the HSPGs that concentrate Wg at cell

surfaces. This results in decreased Wg signaling possibly due

to increased release of Wg from modulated HSPGs (Kleinschmit

et al., 2010; You et al., 2011). As Sulf1 is also a transcriptional

target of Wg signaling, this provides an elegant way to fine-

tune Wg distribution and its signaling activities. If Wg production

rates became too high, the signal concentration in the receiving

field would increase. But surplusWgwould increase Sulf1 levels,

leading to increased removal of sulfate groups from HSPGs and

reduced Wg signal retention. This strategy could ensure proper

signal distribution by buffering fluctuations in the dynamics of

signal dispersal.

Endocytosis. HSPGs, receptors, and decoy receptors can

also influence ligand stability and distribution by increasing the

probability of a ligand to be endocytosed (Scholpp and Brand,

2004; Boldajipour et al., 2008; Gallet et al., 2008; Hagemann

et al., 2009; Naumann et al., 2010). This internalization results

in clearance of ligand from the extracellular space and is thought

to be a major regulator of signal stability. For example, overex-

pression of a receptor of the TGF-b ligand Activin increases

the frequency of Activin internalization (Hagemann et al., 2009).

The accompanying decrease in signaling range may be caused

by the decreased stability of Activin or the sequestration of

Activin by its receptor.

Signal stability can also be feedback-regulated. Hh signaling

upregulates expression of the Hh receptor Ptc, leading to

increased Ptc-mediated endocytosis of Hh (Chen and Struhl,
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1996). Thus, high levels of Hh signaling promote clearance of

Hh from the extracellular space, whereas extracellular Hh is

more stable at lower levels of Hh signaling. This ‘‘self-enhanced

clearance’’ might be important to fine-tune the signal distribution

and to render patterning robust to perturbations (Eldar et al.,

2003; Barkai and Shilo, 2009; Lander et al., 2009).

Finally, endocytosis can be used as an active transport mech-

anism to move signals over short distances. Transcytosis—the

movement of molecules by cellular uptake and subsequent

release—can be either directional or nondirectional active trans-

port. Transcytosis directionally transports diverse molecules

across tissue barriers such as the placenta or the blood-brain

barrier (Tuma and Hubbard, 2003; Su et al., 2010) and potentially

also redistributes PINs in plants (Kleine-Vehn et al., 2010). Active

transport by transcytosis has also been suggested to be neces-

sary for the nondirectional, diffusion-like dispersal of some

signaling molecules during Drosophila development (González

et al., 1991; Entchev et al., 2000; González-Gaitán, 2003; Kruse

et al., 2004; Kicheva et al., 2007; Gallet et al., 2008), but repeated

uptake and release of signals has not been demonstrated.

Neuronal Signaling Routes

In the previous sections, we discussed signal movement mech-

anisms that generally act over timescales of minutes and hours.

In contrast, the tasks of the nervous system (e.g., response to

sensory stimuli or control of muscle tone) necessitate unique

signaling systems that are several orders of magnitude more

rapid. The contrast between the nervous system and other

tissues nicely illustrates the different strategies utilized for

long-range communication.

Signals in the nervous system can act at millisecond time-

scales, i.e., at much higher speeds than most developmental

and physiological signals. Neurons achieve this speed of infor-

mation transfer by minimizing the distances over which extracel-

lular signals travel. Information is transmitted intracellularly

through changes in membrane potential, and extracellular sig-

naling is generally restricted to synapses, in contrast to the

long-range dispersal of developmental signals. Synaptic vesi-

cles store classic neurotransmitters (e.g., dopamine, GABA,

acetylcholine), which upon release diffuse across the �20 nm

synaptic cleft in less than 1ms. Thus, signaling between neurons

is extremely rapid, and an input from the periphery can be trans-

mitted via a relay of several neurons to muscles within less than

100 ms and over distances of more than 1 m.

The regulation of signal secretion is a key step in signal trans-

mission in the nervous system. Classic neurotransmitters are

synthesized in the cytoplasm and transported into synaptic vesi-

cles that reside at the presynaptic membrane. Storage of signals

allows rapid deployment, a strategy that is uniquely suited to

rapid communication in the nervous system but is not found

for most developmental signals. Exocytosis of neurotransmitters

is triggered by increases in calcium levels. Diffusion of released

neurotransmitters in the extracellular matrix of the synapse

appears to be unhindered, although it has been proposed that

the synaptomatrix might play a role in neurotransmitter solubility

(Vautrin, 2010). After release, signaling is spatially and temporally

restricted by the reuptake of neurotransmitters and, in some

cases, by enzymatic turnover. Thus, signaling in the nervous

system shares with other systems mechanisms such as signal

release, degradation and clearance. In contrast to most other
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signals, however, neurotransmitters are freely diffusible, act at

very short time and length scales, and can be recycled.

In addition to classic neurotransmitters, neurons can also

release hormones and neuropeptides (Scalettar, 2006). In

contrast to the limited range of classic neurotransmitters in the

synaptic cleft, neuropeptides can diffuse over tens of microme-

ters (Jan and Jan, 1982). These molecules are stored in large

dense core vesicles, organelles that are also found in neuroen-

docrine and endocrine cells. Release is stimulus dependent,

but in contrast to the short-term and very local exocytosis of

synaptic vesicles at active zones of synapses, dense core vesi-

cles can undergo exocytosis for several minutes and release

neuropeptides at axon terminals and the neuronal soma, thus

inducing long-term and widespread responses (Nässel, 2009).

Similar to many other signalingmolecules, neuropeptides (and

endocrine signals) undergo complex biosynthesis steps pre-

ceding their release. Proneuropeptides are translocated into

the lumen of the endoplasmic reticulum, transported through

the Golgi complex, and sorted into large dense core vesicles.

Posttranslational processing includes the cleavage of propepti-

des by convertases and carboxypeptidases, C-terminal amida-

tion, and N-terminal cyclization of glutamine. The generation

of multiple, modified peptides from a common precursor is

thought to contribute to protection fromextracellular peptidases.

After release, neuropeptides diffuse to nearby target neurons.

Although it is clear that the extracellular range of neuropeptides

is limited by dilution and inactivation by membrane-bound pepti-

dases (Stephenson and Kenny, 1987), the extracellular diffusion

of neuropeptides has garnered relatively little attention.

Prospects
Research in the last decade has significantly increased our

knowledge of the mechanisms underlying the dispersal of

many signaling molecules important for development and

homeostasis. The modification and packaging of signals have

been recognized as important determinants of range, interac-

tions with extracellular factors have been shown to modulate

signal movement and activity, and different routes of signal

transfer have been described.

Many questions remain. First, the modifications of morpho-

gens and the stoichiometry of morphogen vehicles are poorly

described. For example, how heterogeneous are signal modifi-

cations and assemblies? What is the exact composition of

lipoprotein particles? How does vehicle composition influence

dispersal and activity? Second, the in vivo biophysical properties

of signals are poorly understood. For example, what is the con-

centration and flux of signals from the source? What are the

diffusion coefficients and half-lives of signals? What are the

signal concentrations that elicit specific responses in vivo?

How can highly related signals have different ranges of activity

(Chen and Schier, 2001; Tanaka et al., 2007)? Third, the localiza-

tion of many signaling molecules within tissues remains unchar-

acterized. For example, do most signals form gradients? Are

there different extracellular compartments that partition signals

into specific domains? How complex are the trafficking routes

of signaling molecules? Finally, it is unclear how the many extra-

cellular factors modulate signal movement. Do they affect signal

diffusion, clearance, trafficking, release, localization, or activity?

The recent developments in imaging technologies (Helmstaedter
et al., 2008; Lichtman et al., 2008; Huang et al., 2010) promise

answers to these questions in the near future.
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