

Spiral-like functions with respect to a boundary point

Dov Aharonov, ${ }^{\text {a,** }}$ Mark Elin, ${ }^{\text {b }}$ and David Shoikhet ${ }^{\text {a,b }}$
${ }^{a}$ Department of Mathematics, The Technion-Israel Institute of Technology, 32000 Haifa, Israel
${ }^{\text {b }}$ Department of Applied Mathematics, ORT Braude College, 21982 Karmiel, Israel

Received 24 October 2001
Submitted by S. Ruscheweyh

Keywords: Spiral-shaped domains; Spiral-like functions with respect to a boundary point; Geometric characterization; Spiral angle measure

0. Introduction

In the present work we study univalent functions on the unit disk of the complex plane whose image is spiral-shaped with respect to a boundary point.

Although the classes of star-like and spiral-like functions (with respect to an interior point) were studied very extensively, little was known about functions that are holomorphic on the unit disk Δ and star-like with respect to a boundary point [4].

A breakthrough in this matter is due to Robertson [8] who suggested the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{2 \frac{z h^{\prime}(z)}{h(z)}+\frac{1+z}{1-z}\right\}>0, \quad z \in \Delta \tag{0.1}
\end{equation*}
$$

as a characterization of those univalent holomorphic $h: \Delta \mapsto \mathbb{C}$ satisfying $h(0)=1$ such that $h(\Delta)$ is star-like with respect to the boundary point $h(1):=\lim _{r \rightarrow 1^{-}} h(r)=0$ and with image in the right half-plane. This characterization was partially proved by Robertson himself under an additional assumption that h admits holomorphic extension to a neighborhood of the closed unit disk. Furthermore, he proved that this class is closely

[^0]related to the class of close-to-convex functions. In particular, if h satisfying (0.1) is not constant with $h(0)=1$, then $g(z)=\log h(z), \log h(0)=0$ is close-to-convex with
\[

$$
\begin{equation*}
\operatorname{Re}\left[(1-z)^{2} \frac{h^{\prime}(z)}{h(z)}\right]<0 \tag{0.2}
\end{equation*}
$$

\]

In 1984 his conjecture was proved by Lyzzaik [6]. Finally, in 1990 Silverman and Silvia [11] gave a full description of the class of univalent functions on Δ, the image of which is star-shaped with respect to a boundary point. Some dynamical characterizations of those functions can be found in [2]. Recently, another representation of star-like functions with respect to a boundary point was obtained by Lecko [5].

Strangely, there seems to be almost no paper on spiral-like functions with respect to a boundary point except for [3] in which it was shown that if h is a univalent spiral-like function with respect to a boundary point which is isogonal at this point then it is, in fact, star-like. However, one can construct a properly spiral-like function by using an appropriate complex power of a star-like function with respect to a boundary point.

We will show, inter alia, that each spiral-like function with respect to a boundary point is a complex power of a star-like function with respect to the same point. Our approach is based on some general conditions similar to (0.1) and (0.2) describing all spiral-like functions and some "angle" characteristics of spiral-shaped domains with respect to a boundary point. Note that these conditions cover the results mentioned above.

1. Spiral-shaped domains with respect to a boundary point

Definition 1.1. A simply connected domain $\Omega \subset \mathbb{C}, 0 \in \partial \Omega$, is called a spiral-shaped domain with respect to a boundary point if there is a number $\mu \in \mathbb{C}, \operatorname{Re} \mu>0$, such that for any point $w \in \Omega$ the curve $\left\{e^{-t \mu} w, t \geqslant 0\right\}$ is contained in Ω.

If, in particular, we also have $\mu \in \mathbb{R}$, then Ω is called a star-shaped domain with respect to a boundary point.

Since we intend to study functions which map the unit disk Δ onto spiral-shaped domains, the requirement for Ω to be simply connected is natural in view of the Riemann mapping theorem. For a simply connected domain Ω and $0 \in \partial \Omega$ it is possible to define on Ω a one-valued branch of the function $\arg w$. If, in addition, $1 \in \Omega$ then we can choose this branch in such a way that $\arg 1=0$. In this manner, for any number $\lambda \in \mathbb{C}$ the function

$$
w^{\lambda}=\exp [\lambda(\ln |w|+i \arg w)]
$$

is well defined on Ω and attains the value 1 at the point $w=1$. We will denote the set of all spiral-shaped (respectively, star-shaped) domains with respect to a boundary point which contain the point 1 by $\mathcal{S P}$ (respectively, by $\mathcal{S T}$). It is clear that $\mathcal{S T} \subset \mathcal{S P}$.

To continue our discussion, we find a proper method to measure the "angular size" for spiral-shaped domains. This is down as follows:

Let a domain Ω be spiral-shaped ($\Omega \in \mathcal{S P}$), $w \in \Omega$ and $t \geqslant 0$. Denote the connected component of the set $\left\{\psi \in \mathbb{R}: e^{-\mu(t-i \psi)} w \in \Omega\right\}$ which contains the point $\psi=0$ by $\Phi_{\mu}(w, t)=\left(a_{\mu}(w, t), b_{\mu}(w, t)\right)$. In other words,

$$
\begin{align*}
& a_{\mu}(w, t)=\inf \left\{\phi \leqslant 0: e^{-\mu(t-i \psi)} w \in \Omega \text { for all } \psi \in(\phi, 0)\right\}, \tag{1.1}\\
& b_{\mu}(w, t)=\sup \left\{\phi \geqslant 0: e^{-\mu(t-i \psi)} w \in \Omega \text { for all } \psi \in(0, \phi)\right\} . \tag{1.2}
\end{align*}
$$

Proposition 1.1. Let $\Omega \in \mathcal{S P}$ and μ be a complex number with $\operatorname{Re} \mu>0$ such that the curve $\left\{e^{-t \mu} w, t \geqslant 0\right\} \subset \Omega$ for all $w \in \Omega$. Then the limit

$$
\begin{equation*}
\alpha(w):=\lim _{t \rightarrow+\infty}\left(b_{\mu}(w, t)-a_{\mu}(w, t)\right) \tag{1.3}
\end{equation*}
$$

exists (finitely). Moreover, this limit does not depend on a point $w \in \Omega$, i.e., $\alpha(w) \equiv \alpha=$ constant. In the particular case when $\Omega \in \mathcal{S T}$ and $\mu \in \mathbb{R}$, this limit is equal to the size θ of the minimal angle in which Ω lies divided by μ, i.e., $\alpha=\theta / \mu$.

Proof. Definition 1.1 implies that if $e^{-\mu t_{0}} e^{i \mu \phi} w \in \Omega$ then for all $t \geqslant t_{0}$ the point $e^{-\mu t} e^{i \mu \phi} w$ is contained in Ω. Consequently, $a_{\mu}(w, t)$ is decreasing and $b_{\mu}(w, t)$ is increasing (with respect to t). So, the limit in (1.3) exists. To prove that α is finite, it is enough to show that the functions $a_{\mu}(w, t)$ and $b_{\mu}(w, t)$ are bounded. Fix $t \geqslant 0$. We show that

$$
\begin{equation*}
b_{\mu}(w, t) \leqslant \frac{2 \pi \operatorname{Re} \mu}{|\mu|^{2}} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{\mu}(w, t) \geqslant-\frac{2 \pi \operatorname{Re} \mu}{|\mu|^{2}} \tag{1.5}
\end{equation*}
$$

in Ω.
This is clear if $\operatorname{Im} \mu=0$. For if $\phi=-2 \pi / \mu \in \Phi_{\mu}(w, t)$, then Ω contains the circle $\left\{e^{-\mu(t-i \psi)} w, \psi \in[\phi, 0]\right\}$ centered at the origin and Ω is not simply connected. Thus, without loss of generality, assume that $\operatorname{Im} \mu>0$.

The spiral-shapedness of Ω implies that the curve Γ_{1} defined by

$$
\Gamma_{1}\left(t_{1}\right)=e^{-\mu\left(t+t_{1}\right)} w, \quad t_{1} \in\left[0, \frac{2 \pi \operatorname{Im} \mu}{|\mu|^{2}}\right]
$$

lies in Ω. If inequality (1.4) is not satisfied then $\phi=2 \pi \operatorname{Re} \mu /|\mu|^{2} \in \Phi_{\mu}(w, t)$ and, therefore, the curve Γ_{2} defined by

$$
\Gamma_{2}(\psi)=e^{-\mu(t-i \psi)} w, \quad \psi \in[0, \phi],
$$

also lies in Ω. Then the curve $\Gamma_{2} \Gamma_{1}^{-1}$ lies in Ω winds once about the origin. This contradicts the simply connectedness of Ω, and condition (1.4) is proved.

As the function $a_{\mu}(w, t)$ is decreasing we can suppose that $t>2 \pi \operatorname{Im} \mu /|\mu|^{2}$. Once again the spiral-shapedness of Ω implies that the curve Γ_{3} defined by

$$
\Gamma_{3}\left(t_{1}\right)=e^{-\mu\left(t+t_{1}\right)} w, \quad t_{1} \in\left[-\frac{2 \pi \operatorname{Im} \mu}{|\mu|^{2}}, 0\right]
$$

lies in Ω. If inequality (1.5) is not satisfied then $\phi=-2 \pi \operatorname{Re} \mu /|\mu|^{2} \in \Phi_{\mu}(w, t)$ and, therefore, the curve Γ_{4} defined by

$$
\Gamma_{4}(\psi)=e^{-\mu(t-i \psi)} w, \quad \psi \in[\phi, 0]
$$

also lies in Ω. Then the curve $\Gamma_{4} \Gamma_{3}^{-1}$ lies in Ω winds once about the origin. As above this contradicts the simply connectedness of Ω, and condition (1.5) is also proved.

Now we show that $\alpha(w)$ does not depend on $w \in \Omega$.
Let K be any compact connected subset of Ω. For each point $w_{0} \in K$ there exists $\epsilon>0$ such that the neighborhood

$$
U\left(w_{0}, \epsilon\right)=\left\{e^{-\mu(t-i \psi)} w_{0},-\epsilon<t<\epsilon,-\epsilon<\psi<\epsilon\right\}
$$

is contained in Ω.
Let $w_{1} \in U\left(w_{0}, \epsilon\right)$. Then

$$
w_{1}=e^{-\mu t^{\prime}} \hat{w}, \quad \hat{w}=e^{i \mu \psi^{\prime}} w_{0}, \quad \text { where }\left|t^{\prime}\right|<\epsilon,\left|\psi^{\prime}\right|<\epsilon .
$$

By formulae (1.1) and (1.2) we have

$$
b_{\mu}(\hat{w}, t)-a_{\mu}(\hat{w}, t)=b_{\mu}\left(w_{0}, t\right)-a_{\mu}\left(w_{0}, t\right)
$$

and thus $\alpha(\hat{w})=\alpha\left(w_{0}\right)$.
Furthermore, it is clear that

$$
b_{\mu}\left(w_{1}, t\right)-a_{\mu}\left(w_{1}, t\right)=b_{\mu}\left(\hat{w}, t+t^{\prime}\right)-a_{\mu}\left(\hat{w}, t+t^{\prime}\right)
$$

Hence, the limits as $t \rightarrow \infty$ in the both sides of the two latter equations coincide, that is, $\alpha\left(w_{1}\right)=\alpha\left(w_{0}\right)$, so it is a constant function on $U\left(w_{0}\right)$. Finding a finite covering system of neighborhoods $U_{1}, U_{2}, \ldots, U_{n}$ of K, we can conclude that $\alpha(w) \equiv$ constant on $U_{1} \cup U_{2} \cup \cdots \cup U_{n} \supset K$, so α does not depend on $w \in \Omega$.

In the case when the domain Ω is star-shaped (i.e., $\mu \in \mathbb{R}$), the quantity $b_{1}(w, t)-$ $a_{1}(w, t)$ equals exactly the size of the circle arch of the radius $e^{-t \mu}$ (which lies in Ω) divided by μ. The proposition is proved.

Definition 1.2. Let μ be a complex number with $\operatorname{Re} \mu>0$. Also let Ω be a simply connected domain such that $0 \in \partial \Omega . \Omega$ will be called μ-spiral-shaped (with respect to a boundary point) if for any point $w \in \Omega$ the following two conditions hold:
(a) $\left\{e^{-t \mu} w, t \geqslant 0\right\} \subset \Omega$;
(b) the limit α in (1.3) exists and is equals to 1 :

$$
\alpha:=\lim _{t \rightarrow+\infty}\left(b_{\mu}(w, t)-a_{\mu}(w, t)\right)=1 .
$$

The set of all μ-spiral-shaped domains $\Omega \in \mathcal{S P}$ will be denoted by $\mu-\mathcal{S P}$.
It is clear that

$$
\mathcal{S T}=\bigcup_{\mu \in \mathbb{R}_{+}} \mu-\mathcal{S P} .
$$

We investigate some properties of μ-spiral-shaped domains.
Lemma 1.1. (i) If $\operatorname{Re} \mu>0$ and Ω is of the class $\mathcal{S P}$, then $\Omega \in \mu-\mathcal{S P}$ if and only if

$$
\hat{\Omega}=\Omega^{\pi / \mu}:=\left\{z^{\pi / \mu}, z \in \Omega\right\} \in \pi-\mathcal{S P} .
$$

Moreover, $\hat{\Omega}$ is star-shaped.
(ii) If exists $\Omega \in \mu-\mathcal{S P} \cap v-\mathcal{S P}$, where $\mu, v \in \mathbb{C}$ with $\operatorname{Re} \mu>0, \operatorname{Re} v>0$, then $\mu=v$.

Proof. In addition to formulae (1.1) and (1.2) let us denote

$$
\begin{aligned}
& a_{\pi}(\hat{w}, t)=\inf \left\{\phi: e^{-\pi(t-i \phi)} \hat{w} \in \hat{\Omega}\right\} \\
& b_{\pi}(\hat{w}, t)=\sup \left\{\phi: e^{-\pi(t-i \phi)} \hat{w} \in \hat{\Omega}\right\}
\end{aligned}
$$

where $\hat{w}=w^{\pi / \mu} \in \hat{\Omega}$.
Since the inclusions $e^{-\mu(t-i \phi)} w \in \Omega$ and $e^{-\pi(t-i \phi)} \hat{w} \in \hat{\Omega}$ are one and the same, we have

$$
b_{\mu}(w, t)-a_{\mu}(w, t)=b_{\pi}(\hat{w}, t)-a_{\pi}(\hat{w}, t) .
$$

Thus the limits of both sides of this equation are either equal to 1 or both differ from 1 . Assertion (i) is proved.

In turn, (i) implies that the domains

$$
\Omega_{1}=\Omega^{\pi / \mu}:=\left\{z^{\pi / \mu}, z \in \Omega\right\} \quad \text { and } \quad \Omega_{2}=\Omega^{\pi / v}:=\left\{z^{\pi / v}, z \in \Omega\right\}
$$

are contained in $\pi-\mathcal{S P}$. It means that for any point $w \in \Omega$ we have $w_{1}=w^{\pi / \mu} \in \Omega_{1}$ and $w_{2}=w^{\pi / \nu} \in \Omega_{2}$. So, we see: any point $w_{2} \in \Omega_{2}$ if and only if the point $w_{1}=w_{2}^{\nu / \mu}$ lies in Ω_{1}. In other words, $\Omega_{1}=\Omega_{2}^{\nu / \mu}$.

Suppose now that $\arg \mu \neq \arg \nu$. Lemma 1.2 implies that the domain Ω_{1} is $(\mu \pi / v)$ -spiral-shaped, i.e., by Definition 1.2, it contains the following spiral which goes around the origin:

$$
\left\{e^{-t(\mu \pi / \nu)} w, t \geqslant 0\right\} \subset \Omega_{1}, \quad \text { when } w \in \Omega_{1}
$$

This contradicts the inclusion $\Omega_{1} \in \pi-\mathcal{S P}$ (see Proposition 1.1). So $\arg \mu=\arg \nu$.
Suppose now, that $|\mu| \neq|\nu|$, for example, $\mu=R \nu, R>1$. Again we have $\Omega_{1}=$ $\Omega_{2}^{\nu / \mu}=\Omega_{2}^{1 / R}$. Since the domain Ω_{2} is contained in some angle which is equal to π, then the domain Ω_{1} is contained in the angle which size is of $\pi / R<\pi$ and this contradicts to the inclusion $\Omega_{1} \in \pi-\mathcal{S P}$. Thus we have $\mu=v$.

The proved lemma states that each spiral-shaped domain (with respect to a boundary point) is μ-spiral-shaped with a unique number $\mu, \operatorname{Re} \mu>0$. Now we show that μ can not be arbitrary in the right half-plane.

Proposition 1.2. (i) If $\Omega_{1} \in \pi-\mathcal{S P}$ and $|\mu / \pi-1| \leqslant 1$, then $\Omega=\Omega_{1}^{\mu / \pi} \in \mu-\mathcal{S P}$.
(ii) In case for some $\mu \in \mathbb{C}$ there exists Ω that belongs to $\mu-\mathcal{S P}$, then $|\mu / \pi-1| \leqslant 1$.

Proof. Without loss of a generality we assume that a domain $\Omega_{1} \in \pi-\mathcal{S P}$ lies in $\Pi_{+}:=$ $\{z \in \mathbb{C}: \operatorname{Re} z>0\}$. First we will show that for any π-spiral-shaped domain $\Omega_{1} \subset \Pi_{+}$the domain $\Omega=\Omega_{1}^{v}$ is simply connected if $|v-1| \leqslant 1$ or $\operatorname{Re}(1 / v) \geqslant 1 / 2$.

Since the domain Ω_{1} is simply connected and $0 \in \partial \Omega_{1}$, then Ω_{1}^{ν} is simply connected if and only if the mapping $z \mapsto z^{\nu}$ is one-to-one on Ω_{1}. It means that for any $w \in \Omega_{1}$ the following equation:

$$
\begin{equation*}
w^{v}=z^{v} \tag{1.6}
\end{equation*}
$$

has no solution $z \in \Omega_{1} \backslash w$.

Suppose that $z=r e^{i \psi},|\psi|<\pi / 2$, is the solution of the latter equation. Substituting $w=\rho e^{i \phi},|\phi|<\pi / 2$, we rewrite (1.6) in the following form:

$$
\begin{aligned}
& v(\ln \rho+i \phi)=v(\ln r+i \psi)+2 \pi k i, \quad k \in \mathbb{Z} \backslash 0, \\
& \frac{1}{v}=\frac{\ln \rho+i \phi-\ln r-i \psi}{2 \pi k i}=\frac{\phi-\psi}{2 \pi k}+i \frac{-\ln \rho+\ln r}{2 \pi k} .
\end{aligned}
$$

This equality implies that

$$
\operatorname{Re} \frac{1}{v}<\frac{\pi}{2 \pi|k|}=\frac{1}{2|k|} \leqslant \frac{1}{2} .
$$

The latter inequality contradicts our supposition that $\operatorname{Re}(1 / v) \geqslant 1 / 2$. Thus the domain $\Omega=\Omega_{1}^{\nu}$ is simply connected. It is easy to see by Definition 1.1 that $\Omega \in \mathcal{S P}$. By Lemma 1.1, $\Omega \in \mu-\mathcal{S P}$ with $\mu=\nu \pi$. Assertion (i) is proved.

To prove assertion (ii), we suppose that $\Omega \in \mu-\mathcal{S P}$, where the number $\nu=\mu / \pi$ satisfies $\operatorname{Re}(1 / v)<1 / 2$, and so $\operatorname{Re}(1 / v)=(1-\epsilon) / 2$ for some $\epsilon \in(0,1)$.

A given point $w \in \Omega$ and t large enough, it follows by Definition 1.2 that:

$$
1-\frac{\epsilon}{2} \leqslant b_{\nu \pi}(w, t)-a_{v \pi}(w, t) \leqslant 1
$$

In other words, there exist values $\tilde{\phi}_{1}$ and $\tilde{\phi}_{2}$ such that

$$
e^{-v \pi\left(t-i \tilde{\phi}_{j}\right)} w \in \Omega, \quad j=1,2
$$

and

$$
1-\epsilon \leqslant \tilde{\phi}_{2}-\tilde{\phi}_{1} .
$$

Thus, for t big enough and for all $\phi \in\left[\tilde{\phi}_{1}, \tilde{\phi}_{2}\right]$

$$
\begin{equation*}
e^{-v \pi(t-i \phi)} w \in \Omega \tag{1.7}
\end{equation*}
$$

In particular, the points $e^{-v \pi\left(t-i \phi_{1}\right)} w$ and $e^{-v \pi\left(t-i \phi_{2}\right)} w$, where $\phi_{1}=\tilde{\phi}_{1}$ and $\phi_{2}=\tilde{\phi}_{1}+$ $1-\epsilon$, belong to Ω.

It follows by Definition 1.2 that

$$
e^{-\nu \pi\left(t_{j}-i \phi_{j}\right)} w \in \Omega, \quad j=1,2
$$

for all $t_{1}, t_{2} \geqslant t$. Hence we can choose those numbers t_{1} and t_{2} such that

$$
\frac{1}{v}=\frac{1-\epsilon}{2}+i \frac{t_{2}-t_{1}}{2}
$$

This implies that

$$
\begin{equation*}
e^{-v \pi\left(t_{1}-i \phi_{1}\right)} w=e^{-v \pi\left(t_{2}-i \phi_{2}\right)} w . \tag{1.8}
\end{equation*}
$$

It follows by Lemma 1.1 that the domain $\Omega_{1}=\Omega^{1 / v} \in \pi-\mathcal{S P}$. Thus the domain $\Omega_{2}=$ $\Omega_{1}^{2}=\Omega^{2 / \nu} \in 2 \pi-\mathcal{S P}$, therefore a one-valued branch of the function $\arg w$ is correctly defined on the domain Ω_{2}. Further, Eq. (1.8) implies that

$$
\begin{equation*}
e^{-2 \pi\left(t_{1}-i \phi_{1}\right)} w_{2}=e^{-2 \pi\left(t_{2}-i \phi_{1}\right)} e^{2 \pi i(1-\epsilon)} w_{2} \in \Omega_{2}, \tag{1.9}
\end{equation*}
$$

where $w_{2}=w^{2 / v} \in \Omega_{2}$. Equality (1.9) means that for the same point of the simply connected domain Ω_{1} there are two values of its argument. That is a contradiction which proves assertion (ii).

2. The class Snail(Δ)

Definition 2.1. A univalent function $f: \Delta \mapsto \mathbb{C}$ on the unit disk Δ is said to be of class $\operatorname{Snail}(\Delta)$ (respectively, μ-Snail(Δ)) if
(a) $f(0)=1$ and $\lim _{r \rightarrow 1^{-}} f(r)=0$;
(b) $f(\Delta) \in \mathcal{S P}$ (respectively, $f(\Delta) \in \mu-\mathcal{S P}$).

In the particular case where μ is positive (that is, $f(\Delta)$ is star-shaped) we write $f \in$ μ-Fan(Δ).

Observe that $f \in \mu-\operatorname{Fan}(\Delta)$ if and only if f is univalent, its image $f(\Delta)$ is star-shaped with respect to the origin and the smallest wedge containing $f(\Delta)$ is of angle μ.

Now we formulate our main result.
Theorem 2.1. Let $f: \Delta \mapsto \mathbb{C}$ be a holomorphic function and $f(0)=1$. Let $\mu \in \mathbb{C}$, $|\mu / \pi-1| \leqslant 1$. The following assertions are equivalent.
(I) $f \in \mu-\operatorname{Snail}(\Delta)$.
(II) $f_{1}(z)=f(z)^{\pi / \mu} \in \pi-\operatorname{Fan}(\Delta)$, i.e., f_{1} is star-like with respect to the boundary point $z=1$ function and the smallest wedge which contains its image is exactly of angle π.
(III) The function f satisfies the following condition:

$$
\begin{equation*}
\operatorname{Re}\left(\frac{2 \pi}{\mu} \cdot \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z}\right)>0, \quad z \in \Delta \tag{2.1}
\end{equation*}
$$

and it is possible to replace the number μ in this inequality with a number v only if $\nu=R \mu, R>1$.
(IV) The function $s(z):=z f(z) /(1-z)^{\mu / \pi}$ is ϕ-spiral-like of order $\cos \phi-r /(2 \pi)$, where $\mu=r e^{i \phi}$, i.e., s is a univalent function satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left(e^{-i \phi} \frac{z s^{\prime}(z)}{s(z)}\right)>\cos \phi-\frac{r}{2 \pi}, \quad z \in \Delta \tag{2.2}
\end{equation*}
$$

and it is possible to replace the number μ in this inequality with a number v only if $\nu=R \mu, R>1$.
(V) The function f satisfies three following conditions:
(a) f is univalent in Δ;
(b) $\operatorname{Re}\left(\mu\left(f(z) / f^{\prime}(z)\right) \bar{z}\right) \geqslant \operatorname{Re}\left(\mu\left(f(0) / f^{\prime}(0)\right) \bar{z}\right)\left(1-|z|^{2}\right)$;
(c) $L \lim _{z \rightarrow 1}\left(f(z) / f^{\prime}(z)(z-1)\right)=\pi / \mu$, where L means that the limit considered is the angular limit.

Moreover, if f is a univalent function on Δ which satisfies one of the conditions (II)-(V) with a some complex number μ, $\operatorname{Re} \mu>0$, then μ lies in the disk $|\mu / \pi-1| \leqslant 1$ and $f \in \mu-\operatorname{Snail}(\Delta)$.

Remark. Note that if $f(1):=\angle \lim _{z \rightarrow 1} f(z)$ exists then one can define $Q(z):=f^{\prime}(z) \times$ $(z-1) /(f(z)-f(1))$ which is called the Wisser-Ostrowski quotient (see, for exam-
ple, [7]). Thus, it follows by the above assertion (Vc) that $f \in \operatorname{Snail}(\Delta)$ is star-like whenever $\angle \lim _{z \rightarrow 1} Q(z)$ is a real number (cf., $[3,10]$).

The proof of the theorem is done in several steps.
Step 1. (I) \Leftrightarrow (II) By Lemma 1.1, it is immediate that if $f \in \mu-\operatorname{Snail}(\Delta)$ then $f_{1}(z)=$ $f(z)^{\pi / \mu} \in \pi-\operatorname{Fan}(\Delta)$, and if $f_{1}(z) \in \pi-\operatorname{Fan}(\Delta)$ then $f(z)=f_{1}(z)^{\mu / \pi} \in \mu-\operatorname{Snail}(\Delta)$.

Step 2. (III) \Leftrightarrow (IV) This equivalence is verified by the substituting $s(z)=z f(z) /$ $(1-z)^{\mu / \pi}$ in (2.2) and $f(z)=(1-z)^{\mu / \pi} s(z) / z$ in (2.1). Indeed, it is easy to see that

$$
\left(\frac{2 \pi}{\mu} \cdot \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z}\right)=\frac{2 \pi}{|\mu|}\left(e^{-i \phi} \cdot \frac{z s^{\prime}(z)}{s(z)}+\frac{|\mu|}{2 \pi}-e^{-i \phi}\right),
$$

and this equality proves our assertion.
Step 3. (II) \Leftrightarrow (III) To prove this equivalence we need some lemmata. The first lemma is a reformulation of a result of Silverman and Silvia [11, Theorem 9] (see also [6,8]) in terms of classes $\mu-\operatorname{Fan}(\Delta)$:

Lemma 2.1. Let μ be a positive number, $\mu \leqslant 2 \pi$. A function $f: \Delta \mapsto \mathbb{C}, f(0)=1$, belongs to $\bigcup_{l \leqslant \mu} l-\operatorname{Fan}(\Delta)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{2 \pi}{\mu} \cdot \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z}\right)>0, \quad z \in \Delta \tag{2.3}
\end{equation*}
$$

and $f \neq 1$ identically.
Let us assume now that (II) holds. Then by Lemma 2.1

$$
\begin{equation*}
\operatorname{Re}\left(2 \cdot \frac{z f_{1}^{\prime}(z)}{f_{1}(z)}+\frac{1+z}{1-z}\right)>0, \quad z \in \Delta \tag{2.4}
\end{equation*}
$$

If inequality (2.1) holds for some $v \in \mathbb{C}$, then the function f_{1} satisfies the inequality

$$
\operatorname{Re}\left[\frac{2 \mu}{v} \cdot \frac{z f_{1}^{\prime}(z)}{f_{1}(z)}+\frac{1+z}{1-z}\right]>0
$$

Therefore, the function $f_{2}(z)=f_{1}(z)^{\mu / \nu}$ satisfies inequality (2.3). Thus, Lemma 2.1 implies that $f_{2} \in l-\operatorname{Fan}(\Delta)$ for some positive number $l \leqslant \pi$. Hereby, $f_{1}=f_{2}(z)^{\nu / \mu} \in$ $(l v / \mu)-\operatorname{Fan}(\Delta)$. Hence, by Lemma $1.1 l v / \mu=\pi$ or $v=\pi / l \cdot \mu$. As $l \leqslant \pi$ assertion (III) holds.

Assume now that condition (III) holds. By substitution $f(z)=f_{1}(z)^{\mu / \pi}$ we get inequality (2.4). Using Lemma 2.1 we obtain $f_{1} \in \bigcup_{l \leqslant \pi} l$-Fan(Δ). Suppose that $f_{1} \in l$-Fan(Δ) with $l<\pi$. Again by Lemma $2.1 f_{1}$ satisfies inequality (2.3) with μ replaced by l. Returning to the function $f(z)=f_{1}(z)^{\mu / \pi}$ we have

$$
\operatorname{Re}\left(\frac{2 \pi}{\mu} \cdot \frac{\pi}{l} \cdot \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z}\right)>0
$$

which contradicts our assumption. Thus, $l=\pi$, i.e., $f_{1} \in \pi-\operatorname{Fan}(\Delta)$, and we are done.
To proceed, we note that the inclusion $f \in \mu$-Snail(Δ) implies that for any $z \in \Delta$ and $t \geqslant 0$

$$
e^{-t \mu} f(z) \in f(\Delta)
$$

This means that for each $t \geqslant 0$ the function $u(t, \cdot)$ defined by

$$
u(t, z):=f^{-1}\left(e^{-t \mu} f(z)\right)
$$

is well-defined self-mapping of Δ. Differentiating $u(t, z)$ with respect to t, one can see that this is a solution of the following Cauchy problem:

$$
\left\{\begin{array}{l}
\frac{\partial u(t, z)}{\partial t}+\mu \frac{f(u(t, z))}{f^{\prime}(u(t, z))}=0, \tag{2.5}\\
u(0, z)=z, \quad z \in \Delta .
\end{array}\right.
$$

Lemma 2.2 (see [1]). Let $g \in \operatorname{Hol}(\Delta)$. The for each $z \in \Delta$, the Cauchy problem

$$
\left\{\begin{array}{l}
\frac{\partial u(t, z)}{\partial t}+g(u(t, z))=0, \\
u(0, z)=z
\end{array}\right.
$$

has a unique solution $\{u(t, z), t \geqslant 0\} \subset \Delta$ if and only if the function g satisfies the following inequality:

$$
\operatorname{Re}(g(z) \bar{z}) \geqslant \operatorname{Re}(f(0) \bar{z})\left(1-|z|^{2}\right)
$$

for all $z \in \Delta$.
Step 4. (I$) \Rightarrow(\mathrm{V})$ Let f be a μ-spiral-like function. Then condition (Va) follows at once. Hence, as mentioned above, the Cauchy problem (2.5) can be solved for all $t \geqslant 0$ and $z \in \Delta$. Applying Lemma 2.2 for the function

$$
g(z)=\mu \frac{f(z)}{f^{\prime}(z)}
$$

we get inequality (Vb).
Therefore, it remains to check condition (Vc).
As shown above, (I) is equivalent to (III) (Steps 1 and 3). Then for any v of the form $\nu=R \mu, R>1$, the following inequality holds:

$$
\operatorname{Re}\left(\frac{2 \pi z \mu}{v g(z)}+\frac{1+z}{1-z}\right)>0, \quad z \in \Delta
$$

Note also that this inequality no longer holds for other values of ν. By the RieszHerglotz formula there exists a probability measure $d \sigma$ on the unit circle such that

$$
\frac{2 \pi z \mu}{\nu g(z)}+\frac{1+z}{1-z}=\int_{|\zeta|=1} \frac{1+z \bar{\zeta}}{1-z \bar{\zeta}} d \sigma(\zeta), \quad z \in \Delta
$$

or, equivalently,

$$
\begin{equation*}
\frac{\pi \mu(z-1)}{\nu g(z)}=\int_{|\zeta|=1} \frac{1-\bar{\zeta}}{1-z \bar{\zeta}} d \sigma(\zeta), \quad z \in \Delta \tag{2.6}
\end{equation*}
$$

Note that the integral representation (2.6) is not valid in case v is different from $R \mu$, $R>1$. Decomposing σ with respect to the Dirac measure δ at the point $\zeta=1 \in \partial \Delta$,
one can write $\sigma=(1-a) \sigma_{1}+a \delta$, where $0 \leqslant a \leqslant 1$, and σ_{1} and δ are mutually singular probability measures. Also, Eq. (2.6) with $v=\mu$ implies that

$$
\frac{\pi \mu(z-1)}{((a-1) \mu) g(z)}=\int_{|\zeta|=1} \frac{1-\bar{\zeta}}{1-z \bar{\zeta}} d \sigma_{1}(\zeta), \quad z \in \Delta
$$

which is valid only if $1-a \geqslant 1$. Hence, $a=0$ and $\sigma=\sigma_{1}$ is singular with respect to δ.
Let $\left\{z_{n}\right\}$ be any sequence in Δ nontangentially convergent to 1 . This means that there is a positive number K such that for all $n=1,2, \ldots$,

$$
\frac{\left|1-z_{n}\right|}{1-\operatorname{Re} z_{n}}<K
$$

We now consider the functions $f_{n}: \partial \Delta \mapsto \mathbb{C}$ defined by

$$
f_{n}(\zeta):=\frac{1-\bar{\zeta}}{1-z \bar{\zeta}}, \quad \zeta \in \partial \Delta .
$$

It is easy to see that each function f_{n} maps the unit circle $\partial \Delta$ onto the circle $\left|w-c_{n}\right|=c_{n}$, where

$$
c_{n}(\zeta)=\frac{1-\bar{z}_{n}}{1-|z|^{2}}, \quad n=1,2, \ldots
$$

Hence,

$$
\left|f_{n}(\zeta)\right| \leqslant 2\left|c_{n}\right|=\frac{2\left|1-z_{n}\right|}{1-\operatorname{Re} z_{n}}<2 K
$$

for all $n=1,2, \ldots$. Setting $v=\mu$ in (2.6) and applying Lebesgue's bounded convergence theorem we obtain

$$
\lim _{n \rightarrow \infty} \frac{\pi\left(z_{n}-1\right)}{g\left(z_{n}\right)}=\int_{|\zeta|=1} \lim _{n \rightarrow \infty} \frac{1-\bar{\zeta}}{1-z_{n} \bar{\zeta}} d \sigma(\zeta)=1
$$

Therefore,

$$
\angle \lim _{z \rightarrow 1} \frac{f(z)}{f^{\prime}(z)(z-1)}=\angle \lim _{z \rightarrow 1} \frac{g(z)}{\mu(z-1)}=\frac{\pi}{\mu},
$$

and condition (Vc) follows.
Step 5 . (V) \Rightarrow (I) Note that by condition (Va) the image $f(\Delta)$ is a simply connected domain. By Lemma 2.2, condition (Vb) implies that the Cauchy problem (2.5) is solved, and its solution is a self-mapping of the unit disk Δ for each $t \geqslant 0$. Solving directly the Cauchy problem (2.5) and using the univalence of f we get

$$
u(t, z):=f^{-1}\left(e^{-t \mu} f(z)\right) \in \Delta \quad \text { for each } t \geqslant 0
$$

Thus for all $z \in \Delta$ the curve $\left\{e^{-t \mu} f(z), t \geqslant 0\right\}$ is contained in $f(\Delta)$, i.e., $f \in \operatorname{Snail}(\Delta)$.
Assume that for some $v \in \mathbb{C}$ with $\operatorname{Re} v>0$ the function f belongs to v-Snail (Δ). We have seen already in Step 4 that in this case

$$
\angle \lim _{z \rightarrow 1} \frac{f(z)}{f^{\prime}(z)(z-1)}=\frac{\pi}{v}
$$

Comparing this equality with (Vc), we get $v=\mu$. This completes the proof of the theorem.

3. An application

In this section we use the well-known notion of subordinated functions.
Definition 3.1. A function $s_{1} \in \operatorname{Hol}(\Delta, \mathbb{C})$ is said to be subordinated to $s_{2} \in \operatorname{Hol}(\Delta, \mathbb{C})$ $\left(s_{1} \prec s_{2}\right)$ if there exists a holomorphic function ω with $|\omega(z)| \leqslant|z|, z \in \Delta$, such that $s_{1}=s_{2} \circ \omega$.

The following description of spiral-like functions (with respect to the origin) is due to Ruscheweyh (see [9, Corollaries 1 and 2]).

Lemma 3.1. Let $s \in \operatorname{Hol}(\Delta, \mathbb{C})$ with $s(0)=s^{\prime}(0)-1=0$. Let $\alpha \in(-\pi / 2, \pi / 2)$ and $0 \leqslant \beta<\cos \alpha$. Then

$$
\begin{equation*}
\operatorname{Re}\left(\exp (i \alpha) \frac{z s^{\prime}(z)}{s(z)}\right)>\beta, \quad z \in \Delta \tag{3.1}
\end{equation*}
$$

if and only if one of the following two conditions holds:
(a) for all $u, v \in \bar{\Delta}$ we have

$$
\begin{equation*}
\frac{u s(v z)}{v s(u z)} \prec\left(\frac{1-u z}{1-v z}\right)^{2(\cos \alpha-\beta) \exp (-i \alpha)} \tag{3.2}
\end{equation*}
$$

(b) for all $t \in(0,2 \cos \alpha)$ the function s satisfies the inequality

$$
\begin{equation*}
|s(z(1-\exp (i \alpha) t))| \leqslant F(t, \alpha, \beta)|s(z)| \quad \text { for all } z \in \Delta \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
F(t, \alpha, \beta)=|1-\exp (i \alpha) t|\left(1-\frac{t}{2 \cos \alpha}\right)^{2 \cos \alpha(\beta-\cos \alpha)} \tag{3.4}
\end{equation*}
$$

Moreover, this bound is sharp.
By using this result and Theorem 2.1 one can characterize the class $\operatorname{Snail}(\Delta)$ in terms of subordinated functions. Indeed, to do this we just have to substitute $s(z)=z f(z) /$ $(1-z)^{\mu / \pi}$ in (3.2) and (3.3), where $f \in \mu-\operatorname{Snail}(\Delta)$. Now by Theorem 2.1, we already know that s satisfies the inequality

$$
\operatorname{Re}\left(e^{-i \phi} \frac{z s^{\prime}(z)}{s(z)}\right)>\cos \phi-\frac{|\mu|}{2 \pi}, \quad z \in \Delta
$$

where $\phi=\arg \mu$ if and only if $f \in \mu-\operatorname{Snail}(\Delta)$. Therefore, setting

$$
\alpha:=-\phi=-\arg \mu \quad \text { and } \quad \beta:=\cos \phi-\frac{|\mu|}{2 \pi}
$$

in (3.2)-(3.4), we get $2(\cos \alpha-\beta)=|\mu| / \pi$. Thus one can rewrite conditions (a) and (b) of Lemma 3.1 in the form

$$
\frac{u\left(\frac{v z f(v z)}{(1-v z)^{\mu / \pi}}\right)}{v\left(\frac{u z f(v z)}{(1-u z)^{\mu / \pi}}\right)}=\frac{f(v z)(1-u z)^{\mu / \pi}}{f(u z)(1-v z)^{\mu / \pi}} \prec\left(\frac{1-u z}{1-v z}\right)^{(|\mu| / \pi) \exp (i \arg \mu)}
$$

and

$$
\begin{align*}
& \left|\frac{z(1-\exp (-i \phi) t) f(z(1-\exp (-i \phi) t))}{(1-z(1-\exp (-i \phi) t))^{\mu / \pi}}\right| \leqslant F(t,-\phi, \beta)\left|\frac{z f(z)}{(1-z)^{\mu / \pi}}\right| \\
& \quad=|1-\exp (-i \phi) t|\left(1-\frac{t}{2 \cos \phi}\right)^{-\cos \phi|\mu| / \pi}\left|\frac{z f(z)}{(1-z)^{\mu / \pi}}\right|
\end{align*}
$$

So, we have proved the following characterization of the class μ-Snail (Δ).
Corollary 3.1. Let $f: \Delta \mapsto \mathbb{C}$ be a holomorphic function and $f(0)=1$. Let $\mu \in \mathbb{C}$, $|\mu / \pi-1| \leqslant 1$ and $\phi=\arg \mu \in(-\pi / 2, \pi / 2)$. Then $f \in \mu-\operatorname{Snail}(\Delta)$ if and only if one of the following conditions holds:
(a) for all $u, v \in \bar{\Delta}$

$$
\left(\frac{1-u z}{1-v z}\right)^{\mu / \pi} \frac{f(v z)}{f(u z)} \prec\left(\frac{1-u z}{1-v z}\right)^{\mu / \pi}
$$

(b) for all $t \in(0,2 \cos \phi)$

$$
\left|\frac{f\left(z\left(1-e^{-i \phi} t\right)\right)}{f(z)}\right| \leqslant\left|\left(\frac{1-z\left(1-e^{-i \phi} t\right)}{1-z}\right)^{\mu / \pi}\right|\left(1-\frac{t}{2 \cos \phi}\right)^{-\operatorname{Re} \mu / \pi}
$$

Furthermore, setting in Corollary $3.1 u=0, v=1$, we obtain
Corollary 3.2. If $f \in \mu-\operatorname{Snail}(\Delta)$, then

$$
\left(\frac{1}{1-z}\right)^{\mu / \pi} f(z) \prec\left(\frac{1}{1-z}\right)^{\mu / \pi}
$$

In particular, if $f \in \mu-\operatorname{Fan}(\Delta)$ with $\mu \leqslant \pi$, then $\operatorname{Re}\left(f(z) /(1-z)^{\mu / \pi}\right)>1 / 2$.
The case of star-like functions (i.e., $\mu \in \mathbb{R}$) is of a special interest (see, for example, [3]). In this situation one can formulate the following consequence of Corollary 3.1.

Corollary 3.3. Let $f: \Delta \mapsto \mathbb{C}$ be a holomorphic function and $f(0)=1$. Let $l \in(0,2)$. Then $f \in(l \pi)-\operatorname{Fan}(\Delta)$ if and only if for all $t \in(-1,1)$

$$
\left|\frac{f(z t)}{f(z)}\right| \leqslant\left(\left|\frac{1-z t}{1-z}\right| \frac{2}{1+t}\right)^{l}
$$

References

[1] D. Aharonov, S. Reich, D. Shoikhet, Flow invariance conditions for holomorphic mappings in Banach spaces, Math. Proc. Roy. Irish Acad. Sect. A 99 (1999) 93-104.
[2] M. Elin, S. Reich, D. Shoikhet, Dynamics of inequalities in geometric function theory, J. Inequal. Appl. 6 (2001) 651-664.
[3] M. Elin, S. Reich, D. Shoikhet, Holomorphically accretive mappings and spiral-shaped functions of proper contractions, Nonlinear Anal. Forum 5 (2000) 149-161.
[4] A.W. Goodman, Univalent Functions, Vols. I, II, Mariner, Tampa, FL, 1983.
[5] A. Lecko, On the class of functions starlike with respect to a boundary point, J. Math. Anal. Appl. 261 (2001) 649-664.
[6] A. Lyzzaik, On a conjecture of M.S. Robertson, Proc. Amer. Math. Soc. 91 (1984) 108-110.
[7] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[8] M.S. Robertson, Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl. 81 (1981) 327-345.
[9] S. Ruscheweyh, A subordination theorem for Φ-like functions, J. London Math. Soc. (2) 13 (1976) 275-280.
[10] D. Shoikhet, Semigroups in Geometrical Function Theory, Kluwer Academic, Dordrecht, 2001.
[11] H. Silverman, E.M. Silvia, Subclasses of univalent functions starlike with respect to a boundary point, Houston J. Math. 16 (1990) 289-299.

[^0]: * Corresponding author.

 0022-247X/03/\$ - see front matter © 2003 Elsevier Science (USA). All rights reserved. doi:10.1016/S0022-247X(02)00615-7

