

WWW.MATHEMATICSWEB.ORG

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

J. Math. Anal. Appl. 280 (2003) 17–29 www.elsevier.com/locate/jmaa

Spiral-like functions with respect to a boundary point

Dov Aharonov,^{a,*} Mark Elin,^b and David Shoikhet^{a,b}

^a Department of Mathematics, The Technion—Israel Institute of Technology, 32000 Haifa, Israel ^b Department of Applied Mathematics, ORT Braude College, 21982 Karmiel, Israel

Received 24 October 2001

Submitted by S. Ruscheweyh

Keywords: Spiral-shaped domains; Spiral-like functions with respect to a boundary point; Geometric characterization; Spiral angle measure

0. Introduction

In the present work we study univalent functions on the unit disk of the complex plane whose image is spiral-shaped with respect to a boundary point.

Although the classes of star-like and spiral-like functions (with respect to an interior point) were studied very extensively, little was known about functions that are holomorphic on the unit disk Δ and star-like with respect to a boundary point [4].

A breakthrough in this matter is due to Robertson [8] who suggested the inequality

$$\operatorname{Re}\left\{2\frac{zh'(z)}{h(z)} + \frac{1+z}{1-z}\right\} > 0, \quad z \in \Delta,$$
(0.1)

as a characterization of those univalent holomorphic $h: \Delta \mapsto \mathbb{C}$ satisfying h(0) = 1such that $h(\Delta)$ is star-like with respect to the boundary point $h(1) := \lim_{r \to 1^-} h(r) = 0$ and with image in the right half-plane. This characterization was partially proved by Robertson himself under an additional assumption that h admits holomorphic extension to a neighborhood of the closed unit disk. Furthermore, he proved that this class is closely

^{*} Corresponding author.

⁰⁰²²⁻²⁴⁷X/03/\$ – see front matter @ 2003 Elsevier Science (USA). All rights reserved. doi:10.1016/S0022-247X(02)00615-7

related to the class of close-to-convex functions. In particular, if *h* satisfying (0.1) is not constant with h(0) = 1, then $g(z) = \log h(z)$, $\log h(0) = 0$ is close-to-convex with

$$\operatorname{Re}\left[(1-z)^{2}\frac{h'(z)}{h(z)}\right] < 0.$$
(0.2)

In 1984 his conjecture was proved by Lyzzaik [6]. Finally, in 1990 Silverman and Silvia [11] gave a full description of the class of univalent functions on Δ , the image of which is star-shaped with respect to a boundary point. Some dynamical characterizations of those functions can be found in [2]. Recently, another representation of star-like functions with respect to a boundary point was obtained by Lecko [5].

Strangely, there seems to be almost no paper on spiral-like functions with respect to a boundary point except for [3] in which it was shown that if h is a univalent spiral-like function with respect to a boundary point which is isogonal at this point then it is, in fact, star-like. However, one can construct a properly spiral-like function by using an appropriate complex power of a star-like function with respect to a boundary point.

We will show, inter alia, that each spiral-like function with respect to a boundary point is a complex power of a star-like function with respect to the same point. Our approach is based on some general conditions similar to (0.1) and (0.2) describing all spiral-like functions and some "angle" characteristics of spiral-shaped domains with respect to a boundary point. Note that these conditions cover the results mentioned above.

1. Spiral-shaped domains with respect to a boundary point

Definition 1.1. A simply connected domain $\Omega \subset \mathbb{C}$, $0 \in \partial \Omega$, is called a spiral-shaped domain with respect to a boundary point if there is a number $\mu \in \mathbb{C}$, Re $\mu > 0$, such that for any point $w \in \Omega$ the curve $\{e^{-t\mu}w, t \ge 0\}$ is contained in Ω .

If, in particular, we also have $\mu \in \mathbb{R}$, then Ω is called a star-shaped domain with respect to a boundary point.

Since we intend to study functions which map the unit disk Δ onto spiral-shaped domains, the requirement for Ω to be simply connected is natural in view of the Riemann mapping theorem. For a simply connected domain Ω and $0 \in \partial \Omega$ it is possible to define on Ω a one-valued branch of the function $\arg w$. If, in addition, $1 \in \Omega$ then we can choose this branch in such a way that $\arg 1 = 0$. In this manner, for any number $\lambda \in \mathbb{C}$ the function

 $w^{\lambda} = \exp[\lambda(\ln|w| + i \arg w)]$

is well defined on Ω and attains the value 1 at the point w = 1. We will denote the set of all spiral-shaped (respectively, star-shaped) domains with respect to a boundary point which contain the point 1 by SP (respectively, by ST). It is clear that $ST \subset SP$.

To continue our discussion, we find a proper method to measure the "angular size" for spiral-shaped domains. This is down as follows:

Let a domain Ω be spiral-shaped ($\Omega \in S\mathcal{P}$), $w \in \Omega$ and $t \ge 0$. Denote the connected component of the set { $\psi \in \mathbb{R}$: $e^{-\mu(t-i\psi)}w \in \Omega$ } which contains the point $\psi = 0$ by $\Phi_{\mu}(w, t) = (a_{\mu}(w, t), b_{\mu}(w, t))$. In other words,

19

$$a_{\mu}(w,t) = \inf \left\{ \phi \leqslant 0: \ e^{-\mu(t-i\psi)} w \in \Omega \text{ for all } \psi \in (\phi,0) \right\},\tag{1.1}$$

$$b_{\mu}(w,t) = \sup\{\phi \ge 0: e^{-\mu(t-i\psi)}w \in \Omega \text{ for all } \psi \in (0,\phi)\}.$$
(1.2)

Proposition 1.1. Let $\Omega \in SP$ and μ be a complex number with $\operatorname{Re} \mu > 0$ such that the curve $\{e^{-t\mu}w, t \ge 0\} \subset \Omega$ for all $w \in \Omega$. Then the limit

$$\alpha(w) := \lim_{t \to +\infty} \left(b_{\mu}(w, t) - a_{\mu}(w, t) \right) \tag{1.3}$$

exists (finitely). Moreover, this limit does not depend on a point $w \in \Omega$, i.e., $\alpha(w) \equiv \alpha =$ constant. In the particular case when $\Omega \in ST$ and $\mu \in \mathbb{R}$, this limit is equal to the size θ of the minimal angle in which Ω lies divided by μ , i.e., $\alpha = \theta/\mu$.

Proof. Definition 1.1 implies that if $e^{-\mu t_0}e^{i\mu\phi}w \in \Omega$ then for all $t \ge t_0$ the point $e^{-\mu t}e^{i\mu\phi}w$ is contained in Ω . Consequently, $a_{\mu}(w,t)$ is decreasing and $b_{\mu}(w,t)$ is increasing (with respect to t). So, the limit in (1.3) exists. To prove that α is finite, it is enough to show that the functions $a_{\mu}(w,t)$ and $b_{\mu}(w,t)$ are bounded. Fix $t \ge 0$. We show that

$$b_{\mu}(w,t) \leqslant \frac{2\pi \operatorname{Re} \mu}{|\mu|^2} \tag{1.4}$$

and

$$a_{\mu}(w,t) \ge -\frac{2\pi \operatorname{Re} \mu}{|\mu|^2} \tag{1.5}$$

in Ω .

This is clear if $\operatorname{Im} \mu = 0$. For if $\phi = -2\pi/\mu \in \Phi_{\mu}(w, t)$, then Ω contains the circle $\{e^{-\mu(t-i\psi)}w, \psi \in [\phi, 0]\}$ centered at the origin and Ω is not simply connected. Thus, without loss of generality, assume that $\operatorname{Im} \mu > 0$.

The spiral-shapedness of Ω implies that the curve Γ_1 defined by

$$\Gamma_1(t_1) = e^{-\mu(t+t_1)}w, \quad t_1 \in \left[0, \frac{2\pi \operatorname{Im} \mu}{|\mu|^2}\right]$$

lies in Ω . If inequality (1.4) is not satisfied then $\phi = 2\pi \operatorname{Re} \mu/|\mu|^2 \in \Phi_{\mu}(w, t)$ and, therefore, the curve Γ_2 defined by

$$\Gamma_2(\psi) = e^{-\mu(t-i\psi)}w, \quad \psi \in [0,\phi],$$

also lies in Ω . Then the curve $\Gamma_2\Gamma_1^{-1}$ lies in Ω winds once about the origin. This contradicts the simply connectedness of Ω , and condition (1.4) is proved.

As the function $a_{\mu}(w, t)$ is decreasing we can suppose that $t > 2\pi \operatorname{Im} \mu/|\mu|^2$. Once again the spiral-shapedness of Ω implies that the curve Γ_3 defined by

$$\Gamma_3(t_1) = e^{-\mu(t+t_1)}w, \quad t_1 \in \left[-\frac{2\pi \operatorname{Im} \mu}{|\mu|^2}, 0\right],$$

lies in Ω . If inequality (1.5) is not satisfied then $\phi = -2\pi \operatorname{Re} \mu/|\mu|^2 \in \Phi_{\mu}(w, t)$ and, therefore, the curve Γ_4 defined by

$$\Gamma_4(\psi) = e^{-\mu(t-\iota\psi)}w, \quad \psi \in [\phi, 0],$$

also lies in Ω . Then the curve $\Gamma_4 \Gamma_3^{-1}$ lies in Ω winds once about the origin. As above this contradicts the simply connectedness of Ω , and condition (1.5) is also proved.

Now we show that $\alpha(w)$ does not depend on $w \in \Omega$.

Let *K* be any compact connected subset of Ω . For each point $w_0 \in K$ there exists $\epsilon > 0$ such that the neighborhood

$$U(w_0, \epsilon) = \left\{ e^{-\mu(t-i\psi)} w_0, -\epsilon < t < \epsilon, -\epsilon < \psi < \epsilon \right\}$$

is contained in Ω .

Let $w_1 \in U(w_0, \epsilon)$. Then

$$w_1 = e^{-\mu t'} \hat{w}, \quad \hat{w} = e^{i\mu\psi'} w_0, \quad \text{where } |t'| < \epsilon, \ |\psi'| < \epsilon.$$

By formulae (1.1) and (1.2) we have

$$b_{\mu}(\hat{w},t) - a_{\mu}(\hat{w},t) = b_{\mu}(w_0,t) - a_{\mu}(w_0,t),$$

and thus $\alpha(\hat{w}) = \alpha(w_0)$.

Furthermore, it is clear that

$$b_{\mu}(w_1, t) - a_{\mu}(w_1, t) = b_{\mu}(\hat{w}, t + t') - a_{\mu}(\hat{w}, t + t').$$

Hence, the limits as $t \to \infty$ in the both sides of the two latter equations coincide, that is, $\alpha(w_1) = \alpha(w_0)$, so it is a constant function on $U(w_0)$. Finding a finite covering system of neighborhoods U_1, U_2, \ldots, U_n of K, we can conclude that $\alpha(w) \equiv \text{constant}$ on $U_1 \cup U_2 \cup \cdots \cup U_n \supset K$, so α does not depend on $w \in \Omega$.

In the case when the domain Ω is star-shaped (i.e., $\mu \in \mathbb{R}$), the quantity $b_1(w, t) - a_1(w, t)$ equals exactly the size of the circle arch of the radius $e^{-t\mu}$ (which lies in Ω) divided by μ . The proposition is proved. \Box

Definition 1.2. Let μ be a complex number with $\operatorname{Re} \mu > 0$. Also let Ω be a simply connected domain such that $0 \in \partial \Omega$. Ω will be called μ -spiral-shaped (with respect to a boundary point) if for any point $w \in \Omega$ the following two conditions hold:

(a) $\{e^{-t\mu}w, t \ge 0\} \subset \Omega;$

(b) the limit α in (1.3) exists and is equals to 1:

$$\alpha := \lim_{t \to +\infty} \left(b_{\mu}(w, t) - a_{\mu}(w, t) \right) = 1.$$

The set of all μ -spiral-shaped domains $\Omega \in SP$ will be denoted by μ -SP.

It is clear that

$$\mathcal{ST} = \bigcup_{\mu \in \mathbb{R}_+} \mu \text{-} \mathcal{SP}.$$

We investigate some properties of μ -spiral-shaped domains.

Lemma 1.1. (i) If Re $\mu > 0$ and Ω is of the class SP, then $\Omega \in \mu$ -SP if and only if $\hat{\Omega} = \Omega^{\pi/\mu} := \{z^{\pi/\mu}, z \in \Omega\} \in \pi$ -SP.

Moreover, $\hat{\Omega}$ is star-shaped.

(ii) If exists $\Omega \in \mu$ - $SP \cap \nu$ -SP, where $\mu, \nu \in \mathbb{C}$ with $\operatorname{Re} \mu > 0$, $\operatorname{Re} \nu > 0$, then $\mu = \nu$.

Proof. In addition to formulae (1.1) and (1.2) let us denote

 $a_{\pi}(\hat{w},t) = \inf\{\phi: e^{-\pi(t-i\phi)}\hat{w} \in \hat{\Omega}\},\$

 $b_{\pi}(\hat{w},t) = \sup\{\phi: e^{-\pi(t-i\phi)}\hat{w} \in \hat{\Omega}\},\$

where $\hat{w} = w^{\pi/\mu} \in \hat{\Omega}$.

Since the inclusions $e^{-\mu(t-i\phi)}w \in \Omega$ and $e^{-\pi(t-i\phi)}\hat{w} \in \hat{\Omega}$ are one and the same, we have

$$b_{\mu}(w,t) - a_{\mu}(w,t) = b_{\pi}(\hat{w},t) - a_{\pi}(\hat{w},t).$$

Thus the limits of both sides of this equation are either equal to 1 or both differ from 1. Assertion (i) is proved.

In turn, (i) implies that the domains

 $\Omega_1 = \Omega^{\pi/\mu} := \{ z^{\pi/\mu}, \ z \in \Omega \} \text{ and } \Omega_2 = \Omega^{\pi/\nu} := \{ z^{\pi/\nu}, \ z \in \Omega \}$

are contained in π -SP. It means that for any point $w \in \Omega$ we have $w_1 = w^{\pi/\mu} \in \Omega_1$ and $w_2 = w^{\pi/\nu} \in \Omega_2$. So, we see: any point $w_2 \in \Omega_2$ if and only if the point $w_1 = w_2^{\nu/\mu}$ lies in Ω_1 . In other words, $\Omega_1 = \Omega_2^{\nu/\mu}$.

Suppose now that $\arg \mu \neq \arg \nu$. Lemma 1.2 implies that the domain Ω_1 is $(\mu \pi / \nu)$ -spiral-shaped, i.e., by Definition 1.2, it contains the following spiral which goes around the origin:

$$\{e^{-t(\mu\pi/\nu)}w, t \ge 0\} \subset \Omega_1, \text{ when } w \in \Omega_1.$$

This contradicts the inclusion $\Omega_1 \in \pi$ -SP (see Proposition 1.1). So $\arg \mu = \arg \nu$.

Suppose now, that $|\mu| \neq |\nu|$, for example, $\mu = R\nu$, R > 1. Again we have $\Omega_1 = \Omega_2^{\nu/\mu} = \Omega_2^{1/R}$. Since the domain Ω_2 is contained in some angle which is equal to π , then the domain Ω_1 is contained in the angle which size is of $\pi/R < \pi$ and this contradicts to the inclusion $\Omega_1 \in \pi$ -SP. Thus we have $\mu = \nu$. \Box

The proved lemma states that each spiral-shaped domain (with respect to a boundary point) is μ -spiral-shaped with a unique number μ , Re $\mu > 0$. Now we show that μ can not be arbitrary in the right half-plane.

Proposition 1.2. (i) If $\Omega_1 \in \pi$ -SP and $|\mu/\pi - 1| \leq 1$, then $\Omega = \Omega_1^{\mu/\pi} \in \mu$ -SP. (ii) In case for some $\mu \in \mathbb{C}$ there exists Ω that belongs to μ -SP, then $|\mu/\pi - 1| \leq 1$.

Proof. Without loss of a generality we assume that a domain $\Omega_1 \in \pi$ -SP lies in $\Pi_+ := \{z \in \mathbb{C}: \text{Re } z > 0\}$. First we will show that for any π -spiral-shaped domain $\Omega_1 \subset \Pi_+$ the domain $\Omega = \Omega_1^{\nu}$ is simply connected if $|\nu - 1| \leq 1$ or $\text{Re}(1/\nu) \geq 1/2$.

Since the domain Ω_1 is simply connected and $0 \in \partial \Omega_1$, then Ω_1^{ν} is simply connected if and only if the mapping $z \mapsto z^{\nu}$ is one-to-one on Ω_1 . It means that for any $w \in \Omega_1$ the following equation:

$$w^{\nu} = z^{\nu} \tag{1.6}$$

has no solution $z \in \Omega_1 \setminus w$.

Suppose that $z = re^{i\psi}$, $|\psi| < \pi/2$, is the solution of the latter equation. Substituting $w = \rho e^{i\phi}$, $|\phi| < \pi/2$, we rewrite (1.6) in the following form:

$$\nu(\ln \rho + i\phi) = \nu(\ln r + i\psi) + 2\pi ki, \quad k \in \mathbb{Z} \setminus 0,$$

$$\frac{1}{\nu} = \frac{\ln \rho + i\phi - \ln r - i\psi}{2\pi ki} = \frac{\phi - \psi}{2\pi k} + i\frac{-\ln \rho + \ln r}{2\pi k}.$$

This equality implies that

$$\operatorname{Re}\frac{1}{\nu} < \frac{\pi}{2\pi |k|} = \frac{1}{2|k|} \leqslant \frac{1}{2}.$$

The latter inequality contradicts our supposition that $\operatorname{Re}(1/\nu) \ge 1/2$. Thus the domain $\Omega = \Omega_1^{\nu}$ is simply connected. It is easy to see by Definition 1.1 that $\Omega \in S\mathcal{P}$. By Lemma 1.1, $\Omega \in \mu$ -SP with $\mu = \nu \pi$. Assertion (i) is proved.

To prove assertion (ii), we suppose that $\Omega \in \mu$ -SP, where the number $\nu = \mu/\pi$ satisfies $\operatorname{Re}(1/\nu) < 1/2$, and so $\operatorname{Re}(1/\nu) = (1 - \epsilon)/2$ for some $\epsilon \in (0, 1)$.

A given point $w \in \Omega$ and t large enough, it follows by Definition 1.2 that:

$$1-\frac{\epsilon}{2}\leqslant b_{\nu\pi}(w,t)-a_{\nu\pi}(w,t)\leqslant 1.$$

In other words, there exist values $\tilde{\phi_1}$ and $\tilde{\phi_2}$ such that

$$e^{-\nu\pi(t-i\phi_j)}w\in\Omega, \quad j=1,2,$$

and

 $1 - \epsilon \leqslant \tilde{\phi_2} - \tilde{\phi_1}.$

Thus, for *t* big enough and for all $\phi \in [\tilde{\phi_1}, \tilde{\phi_2}]$

$$e^{-\nu\pi(t-i\phi)}w\in\Omega.$$
(1.7)

In particular, the points $e^{-\nu\pi(t-i\phi_1)}w$ and $e^{-\nu\pi(t-i\phi_2)}w$, where $\phi_1 = \tilde{\phi_1}$ and $\phi_2 = \tilde{\phi_1} + 1 - \epsilon$, belong to Ω .

It follows by Definition 1.2 that

 $e^{-\nu\pi(t_j-i\phi_j)}w\in\Omega, \quad j=1,2,$

for all $t_1, t_2 \ge t$. Hence we can choose those numbers t_1 and t_2 such that

$$\frac{1}{\nu} = \frac{1-\epsilon}{2} + i\frac{t_2 - t_1}{2}.$$

This implies that
 $e^{-\nu\pi(t_1 - i\phi_1)}w = e^{-\nu\pi(t_2 - i\phi_2)}w.$ (1.8)

It follows by Lemma 1.1 that the domain $\Omega_1 = \Omega^{1/\nu} \in \pi - SP$. Thus the domain $\Omega_2 = \Omega_1^2 = \Omega^{2/\nu} \in 2\pi - SP$, therefore a one-valued branch of the function $\arg w$ is correctly defined on the domain Ω_2 . Further, Eq. (1.8) implies that

$$e^{-2\pi(t_1 - i\phi_1)} w_2 = e^{-2\pi(t_2 - i\phi_1)} e^{2\pi i(1 - \epsilon)} w_2 \in \Omega_2,$$
(1.9)

where $w_2 = w^{2/\nu} \in \Omega_2$. Equality (1.9) means that for the same point of the simply connected domain Ω_1 there are two values of its argument. That is a contradiction which proves assertion (ii). \Box

2. The class $\text{Snail}(\Delta)$

Definition 2.1. A univalent function $f : \Delta \mapsto \mathbb{C}$ on the unit disk Δ is said to be of class Snail(Δ) (respectively, μ -Snail(Δ)) if

(a) f(0) = 1 and lim_{r→1⁻} f(r) = 0;
 (b) f(Δ) ∈ SP (respectively, f(Δ) ∈ μ-SP).

In the particular case where μ is positive (that is, $f(\Delta)$ is star-shaped) we write $f \in \mu$ -Fan(Δ).

Observe that $f \in \mu$ -Fan(Δ) if and only if f is univalent, its image $f(\Delta)$ is star-shaped with respect to the origin and the smallest wedge containing $f(\Delta)$ is of angle μ .

Now we formulate our main result.

Theorem 2.1. Let $f : \Delta \mapsto \mathbb{C}$ be a holomorphic function and f(0) = 1. Let $\mu \in \mathbb{C}$, $|\mu/\pi - 1| \leq 1$. The following assertions are equivalent.

- (I) $f \in \mu$ -Snail(Δ).
- (II) f₁(z) = f(z)^{π/μ} ∈ π-Fan(Δ), i.e., f₁ is star-like with respect to the boundary point z = 1 function and the smallest wedge which contains its image is exactly of angle π.
 (III) The function f satisfies the following condition:

$$\operatorname{Re}\left(\frac{2\pi}{\mu} \cdot \frac{zf'(z)}{f(z)} + \frac{1+z}{1-z}\right) > 0, \quad z \in \Delta,$$

$$(2.1)$$

and it is possible to replace the number μ in this inequality with a number ν only if $\nu = R\mu$, R > 1.

(IV) The function $s(z) := zf(z)/(1-z)^{\mu/\pi}$ is ϕ -spiral-like of order $\cos \phi - r/(2\pi)$, where $\mu = re^{i\phi}$, i.e., *s* is a univalent function satisfying the condition

$$\operatorname{Re}\left(e^{-i\phi}\frac{zs'(z)}{s(z)}\right) > \cos\phi - \frac{r}{2\pi}, \quad z \in \Delta,$$
(2.2)

and it is possible to replace the number μ in this inequality with a number ν only if $\nu = R\mu$, R > 1.

- (V) *The function f satisfies three following conditions:*
 - (a) f is univalent in Δ ;
 - (b) $\operatorname{Re}(\mu(f(z)/f'(z))\overline{z}) \ge \operatorname{Re}(\mu(f(0)/f'(0))\overline{z})(1-|z|^2);$
 - (c) $\angle \lim_{z \to 1} (f(z)/f'(z)(z-1)) = \pi/\mu$, where \angle means that the limit considered is the angular limit.

Moreover, if f is a univalent function on Δ which satisfies one of the conditions (II)–(V) with a some complex number μ , Re $\mu > 0$, then μ lies in the disk $|\mu/\pi - 1| \leq 1$ and $f \in \mu$ -Snail(Δ).

Remark. Note that if $f(1) := \angle \lim_{z \to 1} f(z)$ exists then one can define $Q(z) := f'(z) \times (z-1)/(f(z) - f(1))$ which is called the Wisser–Ostrowski quotient (see, for exam-

ple, [7]). Thus, it follows by the above assertion (Vc) that $f \in \text{Snail}(\Delta)$ is star-like whenever $\angle \lim_{z \to 1} Q(z)$ is a real number (cf., [3,10]).

The proof of the theorem is done in several steps.

Step 1. (I) \Leftrightarrow (II) By Lemma 1.1, it is immediate that if $f \in \mu$ -Snail(Δ) then $f_1(z) = f(z)^{\pi/\mu} \in \pi$ -Fan(Δ), and if $f_1(z) \in \pi$ -Fan(Δ) then $f(z) = f_1(z)^{\mu/\pi} \in \mu$ -Snail(Δ).

Step 2. (III) \Leftrightarrow (IV) This equivalence is verified by the substituting $s(z) = zf(z)/(1-z)^{\mu/\pi}$ in (2.2) and $f(z) = (1-z)^{\mu/\pi}s(z)/z$ in (2.1). Indeed, it is easy to see that

$$\left(\frac{2\pi}{\mu} \cdot \frac{zf'(z)}{f(z)} + \frac{1+z}{1-z}\right) = \frac{2\pi}{|\mu|} \left(e^{-i\phi} \cdot \frac{zs'(z)}{s(z)} + \frac{|\mu|}{2\pi} - e^{-i\phi}\right),$$

and this equality proves our assertion.

Step 3. (II) \Leftrightarrow (III) To prove this equivalence we need some lemmata. The first lemma is a reformulation of a result of Silverman and Silvia [11, Theorem 9] (see also [6,8]) in terms of classes μ -Fan(Δ):

Lemma 2.1. Let μ be a positive number, $\mu \leq 2\pi$. A function $f : \Delta \mapsto \mathbb{C}$, f(0) = 1, belongs to $\bigcup_{l \leq \mu} l$ -Fan (Δ) if and only if

$$\operatorname{Re}\left(\frac{2\pi}{\mu} \cdot \frac{zf'(z)}{f(z)} + \frac{1+z}{1-z}\right) > 0, \quad z \in \Delta,$$
(2.3)

and $f \neq 1$ identically.

Let us assume now that (II) holds. Then by Lemma 2.1

$$\operatorname{Re}\left(2 \cdot \frac{zf_{1}'(z)}{f_{1}(z)} + \frac{1+z}{1-z}\right) > 0, \quad z \in \Delta.$$
(2.4)

If inequality (2.1) holds for some $\nu \in \mathbb{C}$, then the function f_1 satisfies the inequality

$$\operatorname{Re}\left[\frac{2\mu}{\nu} \cdot \frac{zf_1'(z)}{f_1(z)} + \frac{1+z}{1-z}\right] > 0.$$

Therefore, the function $f_2(z) = f_1(z)^{\mu/\nu}$ satisfies inequality (2.3). Thus, Lemma 2.1 implies that $f_2 \in l$ -Fan(Δ) for some positive number $l \leq \pi$. Hereby, $f_1 = f_2(z)^{\nu/\mu} \in (l\nu/\mu)$ -Fan(Δ). Hence, by Lemma 1.1 $l\nu/\mu = \pi$ or $\nu = \pi/l \cdot \mu$. As $l \leq \pi$ assertion (III) holds.

Assume now that condition (III) holds. By substitution $f(z) = f_1(z)^{\mu/\pi}$ we get inequality (2.4). Using Lemma 2.1 we obtain $f_1 \in \bigcup_{l \leq \pi} l$ -Fan(Δ). Suppose that $f_1 \in l$ -Fan(Δ) with $l < \pi$. Again by Lemma 2.1 f_1 satisfies inequality (2.3) with μ replaced by l. Returning to the function $f(z) = f_1(z)^{\mu/\pi}$ we have

$$\operatorname{Re}\left(\frac{2\pi}{\mu}\cdot\frac{\pi}{l}\cdot\frac{zf'(z)}{f(z)}+\frac{1+z}{1-z}\right)>0,$$

which contradicts our assumption. Thus, $l = \pi$, i.e., $f_1 \in \pi$ -Fan(Δ), and we are done.

To proceed, we note that the inclusion $f \in \mu$ -Snail(Δ) implies that for any $z \in \Delta$ and $t \ge 0$

$$e^{-t\mu}f(z) \in f(\Delta).$$

This means that for each $t \ge 0$ the function $u(t, \cdot)$ defined by

$$u(t,z) := f^{-1} (e^{-t\mu} f(z))$$

is well-defined self-mapping of Δ . Differentiating u(t, z) with respect to t, one can see that this is a solution of the following Cauchy problem:

$$\begin{cases} \frac{\partial u(t,z)}{\partial t} + \mu \frac{f(u(t,z))}{f'(u(t,z))} = 0, \\ u(0,z) = z, \quad z \in \Delta. \end{cases}$$
(2.5)

Lemma 2.2 (see [1]). Let $g \in Hol(\Delta)$. The for each $z \in \Delta$, the Cauchy problem

$$\begin{cases} \frac{\partial u(t,z)}{\partial t} + g(u(t,z)) = 0, \\ u(0,z) = z, \end{cases}$$

has a unique solution $\{u(t, z), t \ge 0\} \subset \Delta$ if and only if the function g satisfies the following inequality:

$$\operatorname{Re}(g(z)\overline{z}) \ge \operatorname{Re}(f(0)\overline{z})(1-|z|^2),$$

for all $z \in \Delta$.

Step 4. (I) \Rightarrow (V) Let f be a μ -spiral-like function. Then condition (Va) follows at once. Hence, as mentioned above, the Cauchy problem (2.5) can be solved for all $t \ge 0$ and $z \in \Delta$. Applying Lemma 2.2 for the function

$$g(z) = \mu \frac{f(z)}{f'(z)},$$

we get inequality (Vb).

Therefore, it remains to check condition (Vc).

As shown above, (I) is equivalent to (III) (Steps 1 and 3). Then for any ν of the form $\nu = R\mu$, R > 1, the following inequality holds:

$$\operatorname{Re}\left(\frac{2\pi z\mu}{\nu g(z)} + \frac{1+z}{1-z}\right) > 0, \quad z \in \Delta.$$

Note also that this inequality no longer holds for other values of v. By the Riesz-Herglotz formula there exists a probability measure $d\sigma$ on the unit circle such that

$$\frac{2\pi z\mu}{\nu g(z)} + \frac{1+z}{1-z} = \int_{|\zeta|=1} \frac{1+z\zeta}{1-z\overline{\zeta}} d\sigma(\zeta), \quad z \in \Delta,$$

or, equivalently,

$$\frac{\pi\mu(z-1)}{\nu g(z)} = \int_{|\zeta|=1} \frac{1-\bar{\zeta}}{1-z\bar{\zeta}} d\sigma(\zeta), \quad z \in \Delta.$$
(2.6)

Note that the integral representation (2.6) is not valid in case ν is different from $R\mu$, R > 1. Decomposing σ with respect to the Dirac measure δ at the point $\zeta = 1 \in \partial \Delta$,

one can write $\sigma = (1 - a)\sigma_1 + a\delta$, where $0 \le a \le 1$, and σ_1 and δ are mutually singular probability measures. Also, Eq. (2.6) with $\nu = \mu$ implies that

$$\frac{\pi\mu(z-1)}{((a-1)\mu)g(z)} = \int_{|\zeta|=1} \frac{1-\overline{\zeta}}{1-z\overline{\zeta}} d\sigma_1(\zeta), \quad z \in \Delta,$$

which is valid only if $1 - a \ge 1$. Hence, a = 0 and $\sigma = \sigma_1$ is singular with respect to δ .

Let $\{z_n\}$ be any sequence in Δ nontangentially convergent to 1. This means that there is a positive number *K* such that for all n = 1, 2, ...,

$$\frac{|1-z_n|}{1-\operatorname{Re} z_n} < K.$$

We now consider the functions $f_n : \partial \Delta \mapsto \mathbb{C}$ defined by

$$f_n(\zeta) := \frac{1-\bar{\zeta}}{1-z\bar{\zeta}}, \quad \zeta \in \partial \Delta.$$

It is easy to see that each function f_n maps the unit circle $\partial \Delta$ onto the circle $|w - c_n| = c_n$, where

$$c_n(\zeta) = \frac{1 - \bar{z}_n}{1 - |z|^2}, \quad n = 1, 2, \dots$$

Hence,

$$\left|f_n(\zeta)\right| \leqslant 2|c_n| = \frac{2|1-z_n|}{1-\operatorname{Re} z_n} < 2K$$

for all n = 1, 2, ... Setting $\nu = \mu$ in (2.6) and applying Lebesgue's bounded convergence theorem we obtain

$$\lim_{n\to\infty}\frac{\pi(z_n-1)}{g(z_n)}=\int_{|\zeta|=1}\lim_{n\to\infty}\frac{1-\zeta}{1-z_n\bar{\zeta}}\,d\sigma(\zeta)=1.$$

Therefore,

$$\angle \lim_{z \to 1} \frac{f(z)}{f'(z)(z-1)} = \angle \lim_{z \to 1} \frac{g(z)}{\mu(z-1)} = \frac{\pi}{\mu},$$

and condition (Vc) follows.

Step 5. (V) \Rightarrow (I) Note that by condition (Va) the image $f(\Delta)$ is a simply connected domain. By Lemma 2.2, condition (Vb) implies that the Cauchy problem (2.5) is solved, and its solution is a self-mapping of the unit disk Δ for each $t \ge 0$. Solving directly the Cauchy problem (2.5) and using the univalence of f we get

$$u(t,z) := f^{-1} \left(e^{-t\mu} f(z) \right) \in \Delta \quad \text{for each } t \ge 0.$$

Thus for all $z \in \Delta$ the curve $\{e^{-t\mu} f(z), t \ge 0\}$ is contained in $f(\Delta)$, i.e., $f \in \text{Snail}(\Delta)$. Assume that for some $\nu \in \mathbb{C}$ with $\text{Re } \nu > 0$ the function f belongs to ν -Snail (Δ) . We have seen already in Step 4 that in this case

$$\angle \lim_{z \to 1} \frac{f(z)}{f'(z)(z-1)} = \frac{\pi}{\nu}$$

Comparing this equality with (Vc), we get $v = \mu$. This completes the proof of the theorem. \Box

3. An application

In this section we use the well-known notion of subordinated functions.

Definition 3.1. A function $s_1 \in \text{Hol}(\Delta, \mathbb{C})$ is said to be subordinated to $s_2 \in \text{Hol}(\Delta, \mathbb{C})$ $(s_1 \prec s_2)$ if there exists a holomorphic function ω with $|\omega(z)| \leq |z|, z \in \Delta$, such that $s_1 = s_2 \circ \omega$.

The following description of spiral-like functions (with respect to the origin) is due to Ruscheweyh (see [9, Corollaries 1 and 2]).

Lemma 3.1. Let $s \in \text{Hol}(\Delta, \mathbb{C})$ with s(0) = s'(0) - 1 = 0. Let $\alpha \in (-\pi/2, \pi/2)$ and $0 \leq \beta < \cos \alpha$. Then

$$\operatorname{Re}\left(\exp(i\alpha)\frac{z\,s'(z)}{s(z)}\right) > \beta, \quad z \in \Delta,\tag{3.1}$$

if and only if one of the following two conditions holds: (a) for all $u, v \in \overline{\Delta}$ we have

$$\frac{us(vz)}{vs(uz)} \prec \left(\frac{1-uz}{1-vz}\right)^{2(\cos\alpha-\beta)\exp(-i\alpha)};\tag{3.2}$$

(b) for all $t \in (0, 2\cos\alpha)$ the function *s* satisfies the inequality

$$s(z(1 - \exp(i\alpha)t)) \leqslant F(t, \alpha, \beta) |s(z)| \quad \text{for all } z \in \Delta,$$
(3.3)

where

$$F(t,\alpha,\beta) = \left|1 - \exp(i\alpha)t\right| \left(1 - \frac{t}{2\cos\alpha}\right)^{2\cos\alpha(\beta - \cos\alpha)}.$$
(3.4)

Moreover, this bound is sharp.

 $(\dots - f(\dots -))$

By using this result and Theorem 2.1 one can characterize the class $\text{Snail}(\Delta)$ in terms of subordinated functions. Indeed, to do this we just have to substitute $s(z) = zf(z)/(1-z)^{\mu/\pi}$ in (3.2) and (3.3), where $f \in \mu$ -Snail(Δ). Now by Theorem 2.1, we already know that *s* satisfies the inequality

$$\operatorname{Re}\left(e^{-i\phi}\frac{zs'(z)}{s(z)}\right) > \cos\phi - \frac{|\mu|}{2\pi}, \quad z \in \Delta$$

where $\phi = \arg \mu$ if and only if $f \in \mu$ -Snail(Δ). Therefore, setting

$$\alpha := -\phi = -\arg \mu$$
 and $\beta := \cos \phi - \frac{|\mu|}{2\pi}$

in (3.2)–(3.4), we get $2(\cos \alpha - \beta) = |\mu|/\pi$. Thus one can rewrite conditions (a) and (b) of Lemma 3.1 in the form

$$\frac{u\left(\frac{vzJ(vz)}{(1-vz)^{\mu/\pi}}\right)}{v\left(\frac{uzf(vz)}{(1-uz)^{\mu/\pi}}\right)} = \frac{f(vz)(1-uz)^{\mu/\pi}}{f(uz)(1-vz)^{\mu/\pi}} \prec \left(\frac{1-uz}{1-vz}\right)^{(|\mu|/\pi)\exp(i\arg\mu)}$$
(3.2')

and

$$\left| \frac{z(1 - \exp(-i\phi)t) f(z(1 - \exp(-i\phi)t))}{(1 - z(1 - \exp(-i\phi)t))^{\mu/\pi}} \right| \leq F(t, -\phi, \beta) \left| \frac{zf(z)}{(1 - z)^{\mu/\pi}} \right|$$
$$= \left| 1 - \exp(-i\phi)t \right| \left(1 - \frac{t}{2\cos\phi} \right)^{-\cos\phi|\mu|/\pi} \left| \frac{zf(z)}{(1 - z)^{\mu/\pi}} \right|.$$
(3.3')

So, we have proved the following characterization of the class μ -Snail(Δ).

Corollary 3.1. Let $f: \Delta \mapsto \mathbb{C}$ be a holomorphic function and f(0) = 1. Let $\mu \in \mathbb{C}$, $|\mu/\pi - 1| \leq 1$ and $\phi = \arg \mu \in (-\pi/2, \pi/2)$. Then $f \in \mu$ -Snail(Δ) if and only if one of the following conditions holds:

(a) for all $u, v \in \overline{\Delta}$

$$\left(\frac{1-uz}{1-vz}\right)^{\mu/\pi}\frac{f(vz)}{f(uz)} \prec \left(\frac{1-uz}{1-vz}\right)^{\mu/\pi};$$

(b) for all
$$t \in (0, 2\cos\phi)$$

$$\left|\frac{f(z(1-e^{-i\phi}t))}{f(z)}\right| \leqslant \left|\left(\frac{1-z(1-e^{-i\phi}t)}{1-z}\right)^{\mu/\pi}\right| \left(1-\frac{t}{2\cos\phi}\right)^{-\operatorname{Re}\mu/\pi}$$

Furthermore, setting in Corollary 3.1 u = 0, v = 1, we obtain

Corollary 3.2. If $f \in \mu$ -Snail(Δ), then

$$\left(\frac{1}{1-z}\right)^{\mu/\pi} f(z) \prec \left(\frac{1}{1-z}\right)^{\mu/\pi}$$

In particular, if $f \in \mu$ -Fan(Δ) with $\mu \leq \pi$, then $\operatorname{Re}(f(z)/(1-z)^{\mu/\pi}) > 1/2$.

The case of star-like functions (i.e., $\mu \in \mathbb{R}$) is of a special interest (see, for example, [3]). In this situation one can formulate the following consequence of Corollary 3.1.

Corollary 3.3. Let $f : \Delta \mapsto \mathbb{C}$ be a holomorphic function and f(0) = 1. Let $l \in (0, 2)$. Then $f \in (l\pi)$ -Fan (Δ) if and only if for all $t \in (-1, 1)$

$$\left|\frac{f(zt)}{f(z)}\right| \leqslant \left(\left|\frac{1-zt}{1-z}\right|\frac{2}{1+t}\right)^l.$$

References

- D. Aharonov, S. Reich, D. Shoikhet, Flow invariance conditions for holomorphic mappings in Banach spaces, Math. Proc. Roy. Irish Acad. Sect. A 99 (1999) 93–104.
- [2] M. Elin, S. Reich, D. Shoikhet, Dynamics of inequalities in geometric function theory, J. Inequal. Appl. 6 (2001) 651–664.
- [3] M. Elin, S. Reich, D. Shoikhet, Holomorphically accretive mappings and spiral-shaped functions of proper contractions, Nonlinear Anal. Forum 5 (2000) 149–161.

- [4] A.W. Goodman, Univalent Functions, Vols. I, II, Mariner, Tampa, FL, 1983.
- [5] A. Lecko, On the class of functions starlike with respect to a boundary point, J. Math. Anal. Appl. 261 (2001) 649–664.
- [6] A. Lyzzaik, On a conjecture of M.S. Robertson, Proc. Amer. Math. Soc. 91 (1984) 108–110.
- [7] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.[8] M.S. Robertson, Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl. 81
- (1981) 327–345.
- [9] S. Ruscheweyh, A subordination theorem for Φ -like functions, J. London Math. Soc. (2) 13 (1976) 275–280.
- [10] D. Shoikhet, Semigroups in Geometrical Function Theory, Kluwer Academic, Dordrecht, 2001.
- [11] H. Silverman, E.M. Silvia, Subclasses of univalent functions starlike with respect to a boundary point, Houston J. Math. 16 (1990) 289–299.