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0. Introduction

In the present work we study univalent functions on the unit disk of the complex plane
whose image is spiral-shaped with respect to a boundary point.

Although the classes of star-like and spiral-like functions (with respect to an interior
point) were studied very extensively, little was known about functions that are holomorphic
on the unit diskA and star-like with respect to a boundary point [4].

A breakthrough in this matter is due to Robertson [8] who suggested the inequality

+

Re{zzh’(z) 1+z
h(z) 11—z

}>o, z€A, (0.1)

as a characterization of those univalent holomorphic&A — C satisfying 2(0) = 1

such thati(A) is star-like with respect to the boundary poirl) :=lim,_ ;- h(r) =0

and with image in the right half-plane. This characterization was partially proved by
Robertson himself under an additional assumption thatimits holomorphic extension

to a neighborhood of the closed unit disk. Furthermore, he proved that this class is closely

* Corresponding author.

0022-247X/03/$ — see front mattér 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0022-247X(02)00615-7



18 D. Aharonov et al. / J. Math. Anal. Appl. 280 (2003) 17-29

related to the class of close-to-convex functions. In particuldr,gétisfying (0.1) is not
constant withk (0) = 1, theng(z) =logh(z), logh(0) = 0 is close-to-convex with

2h'(2)
Re[(l 2) ) :| <0. (0.2)

In 1984 his conjecture was proved by Lyzzaik [6]. Finally, in 1990 Silverman and
Silvia [11] gave a full description of the class of univalent functionsarthe image of
which is star-shaped with respect to a boundary point. Some dynamical characterizations of
those functions can be found in [2]. Recently, another representation of star-like functions
with respect to a boundary point was obtained by Lecko [5].

Strangely, there seems to be almost no paper on spiral-like functions with respect to
a boundary point except for [3] in which it was shown that ifs a univalent spiral-like
function with respect to a boundary point which is isogonal at this point then it is, in fact,
star-like. However, one can construct a properly spiral-like function by using an appropriate
complex power of a star-like function with respect to a boundary point.

We will show, inter alia, that each spiral-like function with respect to a boundary point
is a complex power of a star-like function with respect to the same point. Our approach is
based on some general conditions similar to (0.1) and (0.2) describing all spiral-like func-
tions and some “angle” characteristics of spiral-shaped domains with respect to a boundary
point. Note that these conditions cover the results mentioned above.

1. Spiral-shaped domainswith respect to a boundary point

Definition 1.1. A simply connected domai2? C C, O € 352, is called a spiral-shaped
domain with respect to a boundary point if there is a numberC, Rex > 0, such that
for any pointw € 2 the curvele "*w, ¢ > 0} is contained inf2.

If, in particular, we also have € R, thens? is called a star-shaped domain with respect
to a boundary point.

Since we intend to study functions which map the unit disknto spiral-shaped do-
mains, the requirement fa@ to be simply connected is natural in view of the Riemann
mapping theorem. For a simply connected dom@iand Oe 942 it is possible to define
on 2 a one-valued branch of the function arglf, in addition, 1€ $2 then we can choose
this branch in such a way that arg=10. In this manner, for any numbgre C the function

wh =exp[A(In|w| +iargw)]

is well defined on2 and attains the value 1 at the point= 1. We will denote the set of all
spiral-shaped (respectively, star-shaped) domains with respect to a boundary point which
contain the point 1 bysP (respectively, byST). Itis clear thatS7 c SP.

To continue our discussion, we find a proper method to measure the “angular size” for
spiral-shaped domains. This is down as follows:

Let a domains2 be spiral-shaped® € SP), w € £2 andr > 0. Denote the connected
component of the sefyr € R: ¢ =¥y e 2} which contains the pointy = 0 by
D, (w,t) = (au(w,1), b, (w,)). In other words,
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ay(w,t) = inf{¢
bu(w, 1) =sup{¢

=M=y € 2 forall y € (6. 0)), (1.1)

<0:
>0: e My e @ forally € (0,4)). (1.2)

Proposition 1.1. Let 2 € SP and u be a complex number witRex > 0 such that the
curve{e "w, t >0} C £2 for all w € £2. Then the limit

a(w) ::tﬂrl]oo(bu(w,t) —aﬂ(w,t)) (1.3)

exists(finitely). Moreover, this limit does not depend on a paint €2, i.e.,¢(w) =« =
constantiIn the particular case wheg® € S7 and . € R, this limit is equal to the size
of the minimal angle in whick® lies divided byu, i.e.,a =06/ u.

Proof. Definition 1.1 implies that ife=#*0¢i*¢w e £2 then for all 1 > to the point
e iy is contained ing2. Consequentlya, (w, 1) is decreasing and, (w,?) is
increasing (with respect tg. So, the limit in (1.3) exists. To prove thatis finite, it is
enough to show that the functioag(w, t) andb, (w, t) are bounded. Fix > 0. We show
that

27 Re
bu(w, ) < T8 (1.4)
[
and
27 Reu
a,(w,t) > — (1.5)
: |2
in $2.

This is clear if Imp = 0. For if ¢ = =27/ € @, (w, 1), then$2 contains the circle
{e= =1y € [¢, 0]} centered at the origin an@® is not simply connected. Thus,
without loss of generality, assume that jns- 0.

The spiral-shapedness @f implies that the curvéy defined by

2 Imuj|
w2 I

lies in £2. If inequality (1.4) is not satisfied thep= 27 Reu/|u|? € @, (w, 1) and, there-
fore, the curve» defined by

D) =e M7y 4 [0, ¢l

also lies inf2. Then the curveif“zl“fl lies in £2 winds once about the origin. This contra-
dicts the simply connectednesssef and condition (1.4) is proved.
As the functiona, (w, t) is decreasing we can suppose that 27 Im w/lnl?. Once
again the spiral-shapednesstafimplies that the curvéi defined by
27 Im

7T 2“ bl O}?

[l
lies in £2. If inequality (1.5) is not satisfied thepp = —27 Reu/|u|? € @, (w, ) and,
therefore, the curvéy, defined by

Ly(y) =e =Wy g e(e,0],

I'n(n) = E_M(H_tl)w, e |:0,

N(t) =e Mty e |:—
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also lies ins2. Then the curv<a*“41“3*l lies in £2 winds once about the origin. As above this
contradicts the simply connectednesgfand condition (1.5) is also proved.

Now we show thatv(w) does not depend on € £2.

Let K be any compact connected subsefoffor each pointvg € K there existg > 0
such that the neighborhood

U(wo, €) = {e’“(’*"‘wwo, —e<t<e, —e <y <e€}

is contained inf2.
Let w1 € U(wg, €). Then

wr=e M B, =" w, where|t'| <€, |¥/| <e.
By formulae (1.1) and (1.2) we have
by(w, 1) —a,(W,t) =b,(wo,t) —a,(wo, 1),
and thusx () = a(wg).
Furthermore, it is clear that
bu(w1, 1) —ay (w1, 1) =by (W, t +1") —a, (b, +1").

Hence, the limits ag — oo in the both sides of the two latter equations coincide,
that is,a(w1) = a(wp), SO it is a constant function obl (wo). Finding a finite covering
system of neighborhood$,, Uo, ..., U, of K, we can conclude that(w) = constant on
UpuUzU---UU, DK, sox does not depend an € £2.

In the case when the domaiR is star-shaped (i.euy € R), the quantityb;(w, ) —
a1(w, ) equals exactly the size of the circle arch of the radiug (which lies in £2)
divided byu. The proposition is proved.o

Definition 1.2. Let © be a complex number with Re> 0. Also let 2 be a simply
connected domain such thate® 2. 2 will be called u-spiral-shaped (with respect to
a boundary point) if for any poinb € £2 the following two conditions hold:

(@) e w, >0} C £2;
(b) the limite in (1.3) exists and is equals to 1:

o= t—limoo(b“(w’ 1) —ayu(w, t)) =1.

The set of allu-spiral-shaped domain@ € SP will be denoted by-SP.

Itis clear that
ST= | J u-sP.

neRy
We investigate some propertiesofspiral-shaped domains.

Lemma 1.1. (i) If Reu > 0 and 2 is of the classSP, thens2 € u-SP if and only if
Q=" .= {7/ 7e2}en-SP.
Moreover,s? is star-shaped.
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(ii) If exists2 € u-SP Nv-SP, wherew, v e C with Reu > 0, Rev > 0, thenu = v.

Proof. In addition to formulae (1.1) and (1.2) let us denote
az (W, 1) =inf{g: e 7UTIDP e 2},
by (0, 1) =sup(p: e TPy e 2},

whered = w™/* € 2.

Since the inclusiong “~i®y ¢ 2 ande "~ ®) ¢ 2 are one and the same, we
have

bu(wa t) - aﬂ(w7 t) = bi‘[(ﬁ)a t) - ai‘[(ﬁ)a t)
Thus the limits of both sides of this equation are either equal to 1 or both differ from 1.

Assertion (i) is proved.
In turn, (i) implies that the domains

21 =7 =" zeR) and 2:=Q7":={", 7€ 2}
are contained i -SP. It means that for any poinb € 2 we havew; = w™/* e £21 and
w2 = w"/’ € £27. S0, we see: any point; € £2; if and only if the pointw; = w;/“ lies
in £21. In other words 21 = .{2;/“.

Suppose now that ayg# argv. Lemma 1.2 implies that the domaiR; is (ux/v)-
spiral-shaped, i.e., by Definition 1.2, it contains the following spiral which goes around the
origin:

(e "Wy >0 C 21, whenw € 21.
This contradicts the inclusiof?; € 7-SP (see Proposition 1.1). So gug= argv.

Suppose now, thalfu| # |v|, for example,u = Rv, R > 1. Again we havef2; =
92“/“ = Qzl/R. Since the domai2; is contained in some angle which is equaktothen

the domain21 is contained in the angle which size ismf R < 7 and this contradicts to
the inclusion2; € 7-SP. Thus we havee =v. 0O

The proved lemma states that each spiral-shaped domain (with respect to a boundary
point) is u-spiral-shaped with a unigue numherReu > 0. Now we show thaf. can not
be arbitrary in the right half-plane.

Proposition 1.2. (i) If £21 € 7-SP and|u/7 — 1| < 1, then@ = 217 € u-SP.
(i) In case for some € C there exists2 that belongs tqu-SP, then|u /7 — 1] < 1.

Proof. Without loss of a generality we assume that a domaine 7-SP lies in I, :=
{z € C: Rez > 0}. First we will show that for anyr-spiral-shaped domaif?; C 71, the
domains2 = £2; is simply connected ifv — 1| <1 or Rg1/v) > 1/2.

Since the domai2; is simply connected and €021, thens2; is simply connected
if and only if the mapping — z" is one-to-one on2;. It means that for anw € 21 the
following equation:

w’ =z" (1.6)
has no solution € £21\w.
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Suppose that = relV, |y| < /2, is the solution of the latter equation. Substituting
w = pe'?, |¢| < /2, we rewrite (1.6) in the following form:

v(lnp +i¢) =vdnr +iy) +2rki, keZ\0,
1 Inp+i¢g—Inr—iy -y +,—|np+|nr
v 2rki T onk ' 2wk
This equality implies that
1 T 1 1
e—-<——=—<=.
v o 2mlk|  2lk] 2
The latter inequality contradicts our supposition tha{®e) > 1/2. Thus the domain
2 = £2{ is simply connected. It is easy to see by Definition 1.1 tltat SP. By
Lemma 1.1 € u-SP with u = vrr. Assertion (i) is proved.
To prove assertion (ii), we suppose tiat u-SP, where the numbar = /7 satisfies
Re(1/v) < 1/2, and so Rél/v) = (1 — €)/2 for somee € (0, 1).
A given pointw € £2 andt large enough, it follows by Definition 1.2 that:

1- g < byr (W, 1) — ayr (w, 1) < 1.

In other words, there exist valués andé, such that
¢TIy ¢ 2, j=12,
and
1—e<d2— 1.
Thus, forr big enough and for alp € [¢1, $2]
eIy e 2. 1.7)
In particular, the pointg="7¢~$1y) ande=""(~%2y), where¢; = ¢1 and ¢ = ¢1 +

1— ¢, belong tos2.
It follows by Definition 1.2 that

e VT Ei=i0)) ) < R, j=12

for all 11, r, > ¢t. Hence we can choose those numbe@ndr, such that
1 1-¢ —1N
; = 2 +1 2 .
This implies that

e VT(=id)) v (i2—ig2) ) (1.8)

It follows by Lemma 1.1 that the domai@t; = 21/" € 7-SP. Thus the domaim2, =
912 = 22/ € 2n1-SP, therefore a one-valued branch of the functionwarig correctly
defined on the domaif®,. Further, Eq. (1.8) implies that

e~ (—idn) y,, — p=2m(2—idy) Y2mi(A=€)y,, e O, (1.9)
where wy = w?V € £2,. Equality (1.9) means that for the same point of the simply

connected domais; there are two values of its argument. That is a contradiction which
proves assertion (ii). O
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2. Theclass Snail(A)

Definition 2.1. A univalent functionf : A — C on the unit diskA is said to be of class
SnailA) (respectivelyu-Snail A)) if

(@ f(O)=1andlim_ - f(r)=0;
(b) f(A) € SP (respectivelyf(A) € u-SP).

In the particular case where is positive (that is,f(A) is star-shaped) we writ¢ €
u-FanA).

Observe thaff € u-FanA) if and only if f is univalent, its image (A) is star-shaped
with respect to the origin and the smallest wedge contaifiyy) is of anglep.
Now we formulate our main result.

Theorem 2.1. Let f: A +— C be a holomorphic function ang’(0) = 1. Let u € C,
|u/m — 1] < 1. The following assertions are equivalent.

() f € pu-Snaila).
() f1(z) = f(z)™/* e m-FanA), i.e., f1 is star-like with respect to the boundary point
z = 1 function and the smallest wedge which contains its image is exactly of angle
(I The functionf satisfies the following condition

Re<2_n . 2f(2) N 1+z

w o  fi@  1-z
and it is possible to replace the numberin this inequality with a number only if
v=Ru,R>1

(IV) The functions (z) := zf (z)/(1—z)*/™ is ¢-spiral-like of ordercosp —r/(21), where
w=re'?, i.e.,s is a univalent function satisfying the condition

>>Q z€A, (2.1)

/7
Re( -0 2 &) > C0Sp— ——, zeA, (2.2)
s(z) 2
and it is possible to replace the numheiin this inequality with a number only if
v=Ru, R>1.

(V) The functionf satisfies three following conditions
(@) fisunivalentinA;
(b) Re(u(f(2)/f'(2))7) = Re(u(f(0)/f'(0)2)(L— |z|?);
() Zlim,_1(f(2)/f'(2)(z — 1)) = m/u, where/ means that the limit considered is
the angular limit.

Moreover, if f is a univalent function om which satisfies one of the conditiofig—(V)
with a some complex nhumbear, Reu > 0, thenu lies in the diskju/m — 1] < 1 and
f € u-SnailA).

Remark. Note that if (1) := Zlim,_1 f(z) exists then one can defin@(z) := f'(z) x
(z—=1)/(f(2) — f(1)) which is called the Wisser—Ostrowski quotient (see, for exam-
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ple, [7]). Thus, it follows by the above assertion (Vc) thfat SnailA) is star-like when-
ever/lim,_,1 Q(z) is a real number (cf., [3,10]).

The proof of the theorem is done in several steps.

Stepl. ()< (1) By Lemma 1.1, it is immediate that if € u-SnailA) then f1(z) =
f ()" e m-Fan(A), and if f1(z) € n-Fan(A) then f(z) = fi(zx)*/™ € u-SnailA).

Step 2. (lll)<(IV) This equivalence is verified by the substitutingz) = zf(z)/
(1—2)"7™ in(2.2) andf(z) = (1 — 2)*7s(z)/z in (2.1). Indeed, it is easy to see that

<g ') n 1+z> _ 2_71(el-¢ (@) Ll e,»¢,>’
w  f@m l-z [ s(z)  2rn

and this equality proves our assertion.

Step3. (1)< (1ll) To prove this equivalence we need some lemmata. The first lemma
is a reformulation of a result of Silverman and Silvia [11, Theorem 9] (see also [6,8]) in
terms of classeg-FanA):

Lemma2.1. Letu be a positive numbeg, < 2. Afunctionf : A — C, f(0) = 1, belongs
to Uzgu I-Fan(A) if and only if
/7
1
Re(g zf'(2) n +z
w  f@ 1-z
and f # 1identically.

>>o, z€A, (2.3)

Let us assume now that (Il) holds. Then by Lemma 2.1

2f1(2) 1+z>
Re<2 o T1o) 70 zea (2.4)

If inequality (2.1) holds for some € C, then the functiory; satisfies the inequality

2 ’ 1

Re|:_u L #h@ + +Zj| > 0.

v fiz) 1l-z
Therefore, the functionf2(z) = f1(z)"/" satisfies inequality (2.3). Thus, Lemma 2.1
implies that f> € [-FanA) for some positive number < . Hereby, f1 = fo(z)"/* €
(lv/uw)-FanA). Hence, by Lemma 1.v/u =7 orv=umx/l- u. Asl < z assertion (IIl)
holds.

Assume now that condition (I11) holds. By substitutigiiz) = f1(z)*/™ we get inequal-
ity (2.4). Using Lemma 2.1 we obtaify € | J,, /-Fan4). Suppose thafy € I-Fan(4)
with [ < 7. Again by Lemma 2.1f; satisfies inequality (2.3) withu replaced byi.
Returning to the functiorf (z) = f1(z)*/™ we have

!
w2 O 1)
w I fl@ 11—z
which contradicts our assumption. Thiss «, i.e., f1 € =-Fan(A), and we are done.

To proceed, we note that the inclusigne ©-SnailA) implies that for any; € A and

t>0

e f(2) € f(A).
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This means that for eaah> 0 the functionu(z, -) defined by

u(t,z):= f‘l(e_’“f(z))

is well-defined self-mapping ad. Differentiatingu (¢, z) with respect ta, one can see that
this is a solution of the following Cauchy problem:

{ o) | fwta)

TR TOTONS Re (2.5)
u0,z2)=z, z€A.

Lemma 2.2 (see [1]).Let g € Hol(A). The for eachy € A, the Cauchy problem

{ 8u;tt, 2 + g(u(r,2)) =0,
u(0,z) =z,

has a unique solutiofu(z, z),t > 0} C A ifand only if the functiorg satisfies the following
inequality

Re(g(2)7) = Re(£(0)2) (L1 - Iz1?),
forall z € A.

Step4. ()= (V) Let f be au-spiral-like function. Then condition (Va) follows at once.
Hence, as mentioned above, the Cauchy problem (2.5) can be solved for 8lland
z € A. Applying Lemma 2.2 for the function

2@ =p f (@)
@)’
we get inequality (Vb).
Therefore, it remains to check condition (Vc).
As shown above, (1) is equivalent to (Ill) (Steps 1 and 3). Then foriany§ the form
v = Ru, R > 1, the following inequality holds:

<27tzu n 1+z
vg(z) 11—z

Note also that this inequality no longer holds for other values.oBy the Riesz—
Herglotz formula there exists a probability measdiseon the unit circle such that

2 1 1 r
TZI +z:/ +Z€da(§), Le A
vg(z) 1-z 1-z¢

I¢1=1

>>O, z€A.

or, equivalently,

-1 1-¢
-1 _ / 278 Uo@), zeA (2.6)
vg(2) 1-—z¢
1£1=1
Note that the integral representation (2.6) is not valid in aagedifferent fromRu,
R > 1. Decomposings with respect to the Dirac measu$eat the pointt =1 € 9A,
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one can writes = (1 — a)o1 + a8, where 0< a < 1, ando1 and$ are mutually singular
probability measures. Also, Eg. (2.6) with= . implies that

mu(z—1) / 1-¢
= =d , A,
(@-Dms0 ~ J 1 . 2

which is valid only if 1— a > 1. Hencea = 0 ando = o7 is singular with respect té.
Let {z,} be any sequence in nontangentially convergentto 1. This means that there is
a positive numbek suchthatforalk =1,2,...,

11— zp]
— <
1—Rez,
We now consider the functions, : 9 A — C defined by
fo=2"5 rena
n = 1— ZE ) .

Itis easy to see that each functignmaps the unit circld A onto the circldw — ¢, | = ¢,
where

1_211
Cn({) 1—|Z|2’ n 9
Hence,
211 — zyl
| (O] < 2lcal = ﬁ <2K
n

foralln=1,2,.... Settingv =  in (2.6) and applying Lebesgue’s bounded convergence
theorem we obtain

lim M:/ lim 1_€_da(§)=1.

n—00 g(Zn) n—o0o ] — ¢
[¢1=1
Therefore,
Lim —T@ _fjim 89 _ T

’

=1 f()z—1D)  =lpi-1)  pu
and condition (Vc) follows.

Step5. (V)=(I) Note that by condition (Va) the imagg(A) is a simply connected
domain. By Lemma 2.2, condition (Vb) implies that the Cauchy problem (2.5) is solved,
and its solution is a self-mapping of the unit digkfor eachr > 0. Solving directly the
Cauchy problem (2.5) and using the univalenc¢ afie get

u(t,z):=fY(e " f(z))eA foreach >0.
Thus for allz € A the curvele ™ f(z), t > 0} is contained inf (A), i.e., f € SnailA).

Assume that for some € C with Rev > 0 the functionf belongs tov-SnailA). We
have seen already in Step 4 that in this case

[im—1® T
—1f'(@)E-1) v
Comparing this equality with (Vc), we get= . This completes the proof of the theo-

rem. 0O
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3. An application
In this section we use the well-known notion of subordinated functions.

Definition 3.1. A function s; € Hol(A, C) is said to be subordinated t@ € Hol(A, C)
(s1 < s2) if there exists a holomorphic functiof with |w(z)| < |z, z € A, such that
S1=S20.

The following description of spiral-like functions (with respect to the origin) is due to
Ruscheweyh (see [9, Corollaries 1 and 2]).

Lemma 3.1. Let s € Hol(A, C) with s(0) =5'(0) —1=0. Leta € (—7/2,7/2) and
0< B <cosx. Then
z5'(2)
5(z)

if and only if one of the following two conditions hoids
(a)for all u,v € A we have

Re<exp(ioc) > >pB, zeA, (3.1

us(vz) <1—uz>2(c05aﬁ>eXp(ia); 52)
vs(uz) 1-vz
(b) for all # € (0, 2 cosx) the functions satisfies the inequality
|s(z(1—expia)t))| < F(t, o, B)|s(z)| forallze A, (3.3)
where
2 cosx(S—cosw)

F(t,o,B)=|1—expio)t||1— . 34
(1,0, ) = |1 - explie) |< 20031) (3.4)

Moreover, this bound is sharp.

By using this result and Theorem 2.1 one can characterize the clas&/8naiterms
of subordinated functions. Indeed, to do this we just have to substitgie= zf(z)/
(1 — 2)*/™ in (3.2) and (3.3), wherg € u-SnailA). Now by Theorem 2.1, we already
know thats satisfies the inequality

/7
Re[ ¢ % @ > COSp — M Z€A,
s(2) 2

wheregp = argu if and only if f € u-SnailA). Therefore, setting

a:=—¢=—argu and B:=cosp — M

2

in (3.2)—(3.4), we get @osa — B) = |u|/m. Thus one can rewrite conditions (a) and (b)
of Lemma 3.1 in the form

f (vz) i
(@) fnd - u)hl (1 = uz)w'/”)exm argi0)

wzf0D VT fluz)(L— v
U((lfuz)u/ﬂ )

T~ (3.2)
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and
Z(1—exp(—ig)t) f(z(1 — exp(—ig)t)) ‘ <F(t—¢ ﬁ)‘ £ (@)
(1—z(1—exp(—ig)n)H/™ R N
. —cosp|ul/m Zf(Z)
= |1—eX[X—l¢)t|<1— 2005‘(}5) W . (33,)

So, we have proved the following characterization of the glaSnailA).

Corollary 3.1. Let f: A +— C be a holomorphic function ang'(0) = 1. Let u € C,
lu/m — 1 <land¢ =argu € (—n/2,7/2). Then f € u-Snail4) if and only if one
of the following conditions holds

(@)forall u,ve A

<1_MZ>M/:1 f(vz) . (1_%)#/71'
1—vz fuz) 1—vz ’
(b) for all ¢ € (0, 2 cosp)

fed—eT )| <1—z<1—ei¢>t)>“/”
f@ h 1-z

¢ —Reu/n
1- .
( 2003;))

Furthermore, setting in Corollary 3il= 0, v = 1, we obtain

Corollary 3.2. If f € u-Snail4), then

1 \ W7 1 W7
<1Tz> f) < (1——z> )
In particular, if f € u-FanA) with u < 7, thenRe(f (z) /(1 — 2)/™) > 1/2.

The case of star-like functions (i.e..€ R) is of a special interest (see, for example, [3]).
In this situation one can formulate the following consequence of Corollary 3.1.

Corollary 3.3. Let f: A +— C be a holomorphic function ang(0) = 1. Let!/ € (0, 2).
Thenf e (Iz)-FanA) if and only if for allz € (—1, 1)

) <<‘1—zt L)’
f@| \U1-z|1+7)"
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