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The anonymization of health data streams is important to protect these data against potential privacy
breaches. A large number of research studies aiming at offering privacy in the context of data streams
has been recently conducted. However, the techniques that have been proposed in these studies generate
a significant delay during the anonymization process, since they concentrate on applying existing privacy
models (e.g., k-anonymity and l-diversity) to batches of data extracted from data streams in a period of
time. In this paper, we present delay-free anonymization, a framework for preserving the privacy of elec-
tronic health data streams. Unlike existing works, our method does not generate an accumulation delay,
since input streams are anonymized immediately with counterfeit values. We further devise late valida-
tion for increasing the data utility of the anonymization results and managing the counterfeit values.
Through experiments, we show the efficiency and effectiveness of the proposed method for the real-time
release of data streams.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Recently, data streams of health records have been widely uti-
lized in many applications, such as real-time diagnosis systems,
biomedical data analysis, and health monitoring services [1–4].
Diagnosis systems, for example, diagnose patients’ diseases by
monitoring the behavior of their real-time health data, and bio-
medical data analysts study the patterns of diseases by using the
data streams from bio-signal sensors. In many cases, the data
streams are entrusted to third parties who analyze the data in
place of the data holders, because of the effective data utilization.

Meanwhile, health data streams typically contain private attri-
butes, such as age, gender, various bio-signals, and diagnoses. Pri-
vacy problems can arise in relation to these types of data during
the transmission of the data streams to third parties, which can
provide paths for a privacy attack. For example, consider a data
stream with the schema (tupleID, time, age, sex, diagnosis) released
from a hospital for the purpose of a biomedical study. The schema
does not contain any direct identifiers, such as SSNs (social security
numbers), that can distinguish individuals. However, using some
background knowledge, i.e., time, age, and sex, an attacker can
identify the diagnosis of the target individual [5,6].
To protect data streams from background knowledge attacks,
several privacy-preserving methods have been recently proposed
[7–14]. These methods ensure that the released data streams meet
the requirements of typical privacy models, such as k-anonymity
[5] and l-diversity [6]. Although these methods differ in the way
they transform the data streams to offer privacy protection, they
are all based on the tuple accumulation strategy. That is, streaming
tuples are postponed until they satisfy the given publication condi-
tion, i.e., reach a certain privacy level or satisfactory data utility.
We call this type of method the accumulation-based method.

Fig. 1 shows an example of offering privacy protection in data
streams by using the accumulation-based method. Assume an in-
put stream of tuples, where a tuple consists of multiple attributes
that include personal attributes, i.e., QI (quasi-identifiers) and SI
(sensitive information). In the accumulation-based method, the
anonymization system continues to accumulate and cluster the in-
put tuples until the given privacy condition, such as k-anonymity
and l-diversity, is satisfied. In Fig. 1, tuple 1, which has arrived at
time T1 and has been accumulated in Cluster 1, waits for tuple 2.
When tuple 2 arrives, it is assigned to Cluster 1, then the cluster
becomes 2-diverse. When a certain cluster satisfies the privacy
condition, the tuples in the cluster are generalized and released.
Then, the QIs of the tuples in the cluster become indistinguishable
from each other according to the privacy condition. Consequently,
an adversary cannot identify an exact tuple from the anonymized
data by using the QIs (i.e., background knowledge). Thus, an
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Fig. 1. Privacy protection of a data stream using the accumulation-based method
(an example of offering 2-diversity).
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adversary cannot be certain about the target’s SI, although he or
she can infer the list of possible SIs.

In addition to employing accumulation to satisfy the required
privacy level, most existing methods aim at accumulating more tu-
ples than necessary, in order to reduce the information loss that is
caused by the applied data generalization. For example, tuple 4 in
Fig. 1 is accumulated in Cluster 3 instead of Cluster 2, because if it
was accumulated in Cluster 2 this would lead to increased infor-
mation loss.

There are two inevitable delay problems in the accumulation-
based methods: accumulation and computation delay. The former
is directly relevant to the accumulation of the input tuples. For
example, in Fig. 1, the release of tuple 3 is delayed until tuple 6
has arrived. The delay is due to the time taken to calculate the
information loss. To assign an input tuple to an appropriate cluster
that generates the minimum information loss, the information loss
of every cluster must be calculated. Computing the information
loss of all clusters takes a significant amount of time, which pro-
hibits the release of large data streams in real time.

To solve these problems, in this paper, we propose a DF (delay-
free anonymization) framework to preserve the privacy of elec-
tronic health data streams in real time. We consider two types of
attributes of an input tuple: the quasi-identifier (QI) and the sensi-
tive information (SI). In the DF framework, QIs are released with
artificially generated l-diverse SI values. For example, in Fig. 2, tu-
ple 1 is anonymized with ST1, which is the l-diverse set of the SI.
We organize the set with the original SI from the input tuple and
the artificially generated SI. Then, QI1 has multiple SIs (SIa and
SId), which satisfies 2-diversity. Thus, attackers cannot identify
Fig. 2. Privacy protection of a data stream using the delay-free anonymization
approach (an example of offering 2-diversity).
the exact SI of the target QI. In this manner, our anonymization
process preserves the privacy of the health data streams.

We would like to note that there is no accumulation delay in DF
because it immediately anonymizes the input tuples and releases
them. This is possible because there is no tuple accumulation in
our anonymization process. Furthermore, in comparison with the
accumulation-based methods, DF generates remarkably little com-
putation delay, because DF executes only simple operations (i.e.,
referring to the sensitive table and managing it) instead of compli-
cated operations (e.g., calculating the information loss).

We also considered the data utility of the anonymization re-
sults. Our anonymization method, generating l-diverse SI values,
generates counterfeit values. For example, in Fig. 2, SId in ST1 is a
counterfeit at T1. Counterfeit values function as a protection mech-
anism to prevent the disclosure of the correct SI values; however,
they also decrease data utility. To ameliorate this issue, we propose
late validation, which utilizes the SI values of the newly entered tu-
ples to validate the existing counterfeits. In Fig. 2, SId in ST1 is late
validated at T4. After tuple 4, whose SI is SId, is anonymized using
ST1; SId in ST1 is considered a real value. To measure the data util-
ity, including the utility loss from the counterfeits, we further de-
vise sensitive attribute uncertainty as the quality metric for DF.

The contributions of our delay-free anonymization framework
are summarized as follows:

� Immediate release: DF facilitates tuple-by-tuple release with
the guarantee of l-diversity. DF is characterized by no accumu-
lation delay and a low computation cost, since it immediately
releases the data streams and requires only simple operations.
The immediate release is a big advantage for applications that
utilize real-time data streams.
� High-level data utility: To anonymize data streams, DF artifi-

cially generates l-diverse SI values instead of generalizing QIs.
Thus, DF does not generate the typical information loss with
respect to QIs. In addition, the counterfeits in the sensitive table
are also minimized by late validation.

The rest of this paper is organized as follows. In Section 2, we
present the related work in this area. In Section 3, we define the
data model and propose DF. In Section 4, we present a late valida-
tion scheme for effective anonymization, and the development of
the DF algorithm. In Section 5, we discuss data utility issues in
the context of our proposed framework. Section 6 presents our
experimental evaluation and Section 7 concludes this work.
2. Related work

A large number of research studies in the area of data privacy
has been conducted in the last decade. In what follows, we first
present methods that have been proposed to offer privacy in the
context of static relational data. Following that, we discuss ap-
proaches that have been proposed for offering dynamic data pri-
vacy and data stream privacy. The latter are directly relevant to
our approach.
2.1. Privacy for static, relational data

A significant amount of work has been conducted in the area of
privacy for relational data. Several studies (e.g., [5,15,16]) proposed
methods that employ k-anonymity to block re-identification at-
tacks, in which individuals in the released microdata are identified
based on QIs. To solve this problem, k-anonymity makes k tuples
indistinguishable by generalizing the QIs. l-diversity is a model
that solves the lack of diversity in k-anonymity [6]. It makes SIs
l-diverse with indistinguishable QIs. Anatomy [17] is a technique



S. Kim et al. / Journal of Biomedical Informatics 50 (2014) 95–106 97
that also uses the l-diverse tuples similarly to the method proposed
in [6]; however, it does not generalize QIs. Thus, although an at-
tacker knows the exact target QI is included in the dataset, she
or he cannot distinguish which SI belongs to the target.

The authors of t-closeness [18] proposed a method that ad-
dresses certain limitations of l-diversity. Two possible attacks can
be made against l-diversity: a skewness attack and similarity attack.
In order to prevent these attacks, t-closeness requires that the dis-
tribution of the sensitive attribute values meets a certain condition.

The above-mentioned studies deal only with relational data and
do not consider any insertion, deletion or update operations ap-
plied on these data. As a result, these methods are not applicable
in the context of data streams.

2.2. Dynamic data privacy

Insertions, deletions, and updates frequently occur in real data-
sets. Several methods have been proposed to protect dynamically
evolving datasets, ensuring that the latest version of the data can
be safely published. It is important to note that previous privacy-
protection methods, involving static data, are not applicable in
the context of dynamic datasets because they assume only a single
data release. In dynamic datasets, a new type of privacy problem
can arise because of the potential linkage between different data
releases. Therefore, several privacy preservation techniques [19–
21] protect the privacy of dynamic releases by considering their
context or maintaining extra information.

Byun et al. presented an anonymization method for dynamic
data; however, this work considered only insertion operations
[19]. Xiao et al. in [20] proposed m-invariance, a privacy method
which considers both insertion and deletion operations. Bu et al.
addressed another privacy problem that occurs by the permanent
sensitive values in the dynamic datasets [21].

The methods proposed in these studies deal with multiple re-
leases, which are analogous to data streams. However, they cannot
be employed to anonymize data streams since they deal with the
anonymization of the entire table and cannot be applied on data
that becomes available in real time.

2.3. Data stream privacy

Recently, there have been several studies on preserving the pri-
vacy of data streams. Data streams consist of sequences of tuples
transmitted in real time, and hence, the assumption concerning
the requirements of the privacy preservation technique is different
from that in the previous privacy protection methods. To preserve
the privacy of data streams, the unit of anonymization must be a
tuple, and the anonymization should be performed in real time.

To the best of our knowledge, the first study that dealt with the
privacy preservation of data streams is [9], in which the specializa-
tion tree for accumulating data streams was introduced. Nodes in
the tree are classified into candidate nodes and work nodes, and
data streams are generalized by the node structure.

The CASTLE scheme generates clusters in which the tuples of
data streams are accumulated [7]. Then, it releases the clusters
when the size of the accumulation reaches the delay-constraint,
d. Basically, CASTLE guarantees k-anonymity, and also provides
an algorithm for l-diversity.

The method presented in [8] uses a probability function to
determine the release of data streams; it also accumulates data
from data streams and decides on the release time according to
this function. The function promotes releases when the accumu-
lated data experience less information loss but a longer delay.
For the sake of data utility, the method proposed in this study also
makes a prediction on the data that may appear in the streams by
considering the data distribution.
The authors of SABRE [14] presented an algorithm for anony-
mizing microdata to satisfy t-closeness, and also extended the
algorithm to anonymize data streams. The SABRE framework
maintains sliding windows that function as buffers of the input tu-
ples. When tuples in a certain window are expired due to newly in-
serted tuples, old tuples should be released. These tuples are
anonymized by SABRE and released to an output stream.

The authors of B-CASTLE [10] presented an improved algorithm
of CASTLE [7]. The algorithm of B-CASTLE considers the distribu-
tion of data in data streams when the input data is clustered, in
an effort to improve data utility. The method presented in [12] also
considers the density distribution to improve the utility of the data
in the anonymized stream. The method constructs a TDS-tree (top-
down specialization tree) of QIs, and considers the density distri-
bution of tuples in each leaf of the tree. The authors of SANATOMY
[11] employed the bucketization approach (i.e. Anatomy [17]) to
anonymize data streams, instead of the generalization approach.
SANATOMY preserves the data correlation, due to the bucketiza-
tion approach. The authors of [13] pointed out that the previous
studies had been based on time-consuming algorithms due to
the k-anonymity model. The algorithm presented in [13] is an effi-
cient anonymization algorithm, which is cluster-based and sup-
ports numerical data streams.

All the studies on data stream privacy preservation thus far
have been based on the tuple accumulation strategy. Consequently,
the existing methods suffer from several limitations in terms of the
real-time release of data and their applicability in a distributed set-
ting, as also mentioned in Section 1.

3. The delay-free anonymization framework

In this section, we present the delay-free anonymization (DF)
framework for protecting the privacy of the data in health data
streams. First, we define the data model of data streams. Then,
we describe our proposed method in detail.

3.1. Data model

We assume real-time health data streams containing personal
information. Among the various attributes in a data stream, we fo-
cus on only three main attributes in order to simplify the problem:
tupleID, QI, and SI. According to the attributes, a data stream can be
described as

ðtupleID; QIs; SIÞ

TupleID indicates the unique number of a tuple. It is usually re-
moved before releasing the data stream, because it can be an iden-
tifier of the tuple. The QI is an attribute of an individual in the
tuple, such as age, sex, nationality, and zipcode. The SI is the pri-
vate attribute, which should not be directly related to the individ-
ual, such as bio-signals and diagnosis. In the following definition of
the data stream, we omit the tupleID, since it is consequentially re-
moved in the anonymization process.

Definition 1 (Data stream). Let QI be the quasi-identifier attri-
butes of a tuple, where QI = {qi1; qi2, . . .,qii}, and let si be the
sensitive information of a tuple. We define a data stream S as a set
of tuples ðQI; siÞ.
3.2. Delay-free anonymization

The goal of the delay-free anonymization scheme is to organize
l-diverse data streams in real time, and guarantee that the
probability of guessing the individual’s sensitive information
should be equal to or less than 1/l. In order to anonymize data
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streams, we adopt the ideas behind the Anatomy technique [17],
which preserves privacy by dividing the QI and SI. Then, we inflate
each si of the input tuples into l-diverse values. Assume that a tuple
tðQIt ; sitÞ has arrived. DF generates a QIT (quasi-identifier tuple) and
an ST (inflated sensitive tuple) and releases them immediately. The
QIT is generated from QIt in the tuple t and the ST is an l-diverse set
of the artificial si that contains sit . The QIT and ST can be joined by
the join key groupID.

Definition 2 (Delay-free anonymization). Given a tuple tðQIt ; sitÞ
from a data stream and a domain of the sensitive information DSI ,
DF generates the QIT and l-diverse ST. The schema of the QIT is

ðgroupID;QIÞ;

where groupID is a positive integer and QI is from QIt . For a groupID
j; QITj has the schema ðj;QIÞ.

The schema of the ST is

ðgroupID; si; countÞ;

where groupID and count are positive constants, and si is an element
of DSI . For a groupID j; STj has the schema ðj; si; countðsiÞÞ where
countðsiÞ denotes the number of si.
Example 1. [Delay-free anonymization] Let us assume that a data
stream ððage; sexÞ; diagnosisÞ is generated by the hospital and the
anonymization result of the data stream must satisfy 2-diversity.
Given that a tuple t1ðð24;maleÞ;Diag:AÞ has arrived, DF generates
the QIT ð1; ð24;maleÞÞ where 1 is a randomly generated groupID.
The Diag:A, an SI of t1, is inflated into an l-diverse ST ð1;Diag:A;1Þ
and ð1;Diag:B;1Þ with groupID 1 and count 1.

The QI of t1 has 2-diverse SIs as a result of applying DF. Thus, an
adversary cannot find the exact sensitive value of ð24;maleÞ with a
probability greater than 1/2. Therefore, the result of the anonymi-
zation satisfies 2-diversity.

It is important to mention that Diag.B, the inflated SI, is not a
real value. It is counterfeit and invalid, because it is arbitrarily gen-
erated from the domain of the sensitive information to preserve
privacy. The counterfeits can decrease the utility of anonymized
results; thus, in Section 4, we present an effective mechanism for
the generation and management of counterfeits, which aims to
maintain high data utility.

3.3. Privacy preservation

In order to protect privacy of data streams, we aim at guaran-
teeing l-diversity on DF, which allows adversaries to guess the
individual’s sensitive information with a probability equal to or
less than 1/l. Since the aim of l-diversity on DF is slightly different
from the traditional l-diversity, in this section, we discuss the pri-
vacy preservation achieved by DF and define l-diversity in the con-
text of DF.

First, in order to guarantee the 1/l probability, it is essential that
the number of distinct si values in an arbitrary group are equal to
or more than l. Consider an arbitrary group j and its sensitive tuples
STj. The first condition for l-diversity on STj is

l 6 jSTjj ð1Þ

It should be noted that jSTjj, which denotes the size of STj, also rep-
resents the number of distinct values in STj, because there is no
duplicated si in STj (we use the count value to describe repeated
sensitive values).

Second, the frequency of a sensitive value should be considered.
Let us focus on the count attribute in the ST. In Example 1, the
count value of each si is 1. Thus, the ratio of the Diag.A and the
Diag.B is 1:1 for the QI of t1. It is 2-diverse, because the attacker
who has background knowledge (QI of t1) cannot identify an exact
sensitive value with more than 1/2 probability. Meanwhile, let us
assume the count value of Diag.A = 2 and Diag.B = 1. Then, the ratio
becomes 2:1 and the probability that the QI of t1 corresponds to
Diag.A becomes 2/3, which is greater than 1/2 probability. We
can derive a conclusion that the count values in the ST should be
generated such that they guarantee the 1/l probability.

Consider an arbitrary group j, and its sensitive tuples STj. The
probability that the arbitrary sii is a sensitive value of a given qi
is PðSIqi ¼ siiÞ ¼ countðsiiÞ=jjSTjjj, where jjSTjjj is the sum of all
counts in group j. It should be noted that the probability denotes
the proportion of the arbitrary sensitive value sii among all sensi-
tive values in STj. In order to protect privacy, the probability of
every si in STj must be equal to or less than 1/l. Now, we can deter-
mine the count value.

PðSIqi ¼ siiÞ � 1=l

countðsiiÞ=jjSTjjj � 1=l

countðsiiÞ 6 jjSTjjj=l ð2Þ

Finally, we define l-diversity on DF that formalizes the two con-
ditions above.

Definition 3 (l-diversity on DF). Let us assume that an anonymized
result by the DF framework consists of QIT ðgroupID;QIÞ, and ST
ðgroupID; si; countÞ. Consider that STj ðj; si; countðsiÞÞ is an arbitrary
subset of the ST, whose groupID is j. The anonymized result satisfies
l-diversity on DF if and only if l 6 jSTjj and 8 stj½countðsiÞ� 6 jjSTjjj=l,
where stj 2 STj. jSTjj is the number of distinct si values in group j,
and jjSTjjj is the sum of all counts in group j.
4. Effective counterfeit management

At least l-1 counterfeit values are generated when anonymizing
a tuple by l-diversity. In this section, we propose the late validation
method, which reduces the generation of counterfeits by utilizing
newly input tuples. Then, we show the development of an algo-
rithm for DF with late validation.

4.1. Sensitive group management

Late validation is a process that replaces an existing counterfeit
with a valid sensitive value using an input tuple that will be anon-
ymized. For example, let us assume an input tuple t1 has been
anonymized as Example 1. The anonymized results QIT and ST
might be interpreted by applications as

The sensitive value of ð24;MÞ is related to ST 001

There is only one tuple in QIT1, whereas the sum of the count in
ST1 jjST1jj is 2, which means there is one counterfeit sensitive value
(Diag.B) in addition to the real value (Diag.A) in ST1. Then, assume
an input tuple t2 has arrived and its sensitive value is a Diag.B. If t2

is anonymized according to DF as described in Section 3.2, QIT2 and
ST2, which includes Diag.B as a sensitive value, are generated. Now,
we need to focus on the counterfeit value of ST1, Diag.B. Using this
value, instead of anonymizing the input tuple, we can relate the Di-
ag.B to ST1 as

The sensitive value of ð32; FÞ is related to ST 001

This means that t2 has been included in group 1 and there are
two tuples in QIT1. Since jjST1jj is 2, applications might interpret
the result as that both Diag.A and Diag.B are valid values. In this
manner, the generation of counterfeits can be reduced and existing
counterfeits can be ‘‘late validated’’ with real values.
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Meanwhile, to achieve correct validation, the limit of the count
value must be considered while late validating. For example, as-
sume that the sensitive value of t2 is Diag.A, not Diag.B. Since the
count of Diag.A in ST1 is 1, t1 occupies the count. Hence, t2 must
not be released with QIT1 as in the above case. Thus, the number
of tuples that can be late validated must be restricted to the count
of the sensitive value. To make this possible, the metadata of re-
leased tuples should be maintained in the anonymization system.
We define this information as released tuples RT.

Definition 4 (Released tuples). Given groupID and si, the schema of
an RT is

ðgroupID; si; countrÞ;

where countrðsiÞ is the number of the sensitive information ele-
ments of the tuple that have already been released.
RTj, which denotes the RT with the groupID j, is generated with STj.
Thus, always jRTjj ¼ jSTjj. The RT is the information that is utilized
only in the anonymizing process, but is never released. Now, we
can define late validation as follows.

Definition 5 (Late validation). Given QITj; STj; RTj, and an input
tuple tðtupleIDt ;QIt; sitÞ; t can be released as ðj;QItÞ, if and only if
countðsitÞ and countrðsitÞ exist, countrðsitÞ < countðsitÞ, and
QIt R QITj.

In the anonymized counterpart of a data stream, an individual
can appear multiple times, unlike in those of relational data. How-
ever, when multiple QIs related to an individual appear in the same
group, the l-diversity requirement cannot be guaranteed since the
adversaries can infer the sensitive information with a probability
greater than 1/l. In order to avoid the above problem, the late val-
idation method prevents multiple, repeated deployment of the
same QIs in a group by checking that QIt R QITj.

4.2. Sensitive value generation

In Section 3.2, the l-diverse sensitive values are arbitrarily gen-
erated when ST is organized. The arbitrary generation of sensitive
values may have a significant impact on data utility and privacy
protection.

The generated values significantly affect the data utility result-
ing from the process of late validation, because late validation is
possible when the generated sensitive value matches the value of
the input tuple. For the sake of data utility, it is important to gen-
erate sensitive values that are likely to appear in the input stream.
A good prediction of the input data would be the best way to in-
crease late validations. To achieve this, in this work we assume that
the future is reflected by the past. More specifically, we utilize the
past data for generating the sensitive values. First, we prepare a
pool of sensitive values from the past data streams. An element
of the pool consists of ðsi; countðsiÞÞ, which is analogous to the ele-
ment of ST. Then, by randomly choosing elements from the pool, l-
diverse ST is organized.

It is known that the l-diversity model suffers from two attacks
(skewness attack and similarity attack) in terms of the privacy pres-
ervation. Consider a group that has two values: flu and cough.
Although it satisfies 2-diversity, the patient’s privacy may not be
preserved since the values are semantically similar. As another
example, consider 3-diverse values of blood pressure (150; 151,
and 153). The patient’s privacy may not be preserved since the
range of the values is too dense. The privacy of l-diverse data is
not properly preserved when the sensitive values are similar. In or-
der to block such attacks, Ninghui Li et al. proposed the concept of
t-closeness [18], which considers the distribution of the sensitive
values. However, this concept is beyond the scope of this paper,
since we focus primarily on the l-diversity model.

4.3. The algorithm

In this section we propose an algorithm for delay-free anonymi-
zation. The algorithm is separated into two parts: late validation
(lines 9–12) and counterfeit generation (lines 14–28). When a tuple
has arrived, the algorithm finds an existing counterfeit value that
can be validated by the input tuple according to Definition 5 (line
7). If there is a suitable counterfeit, the input tuple is released in
the form of a QIT with the groupID of the counterfeit (line 9). Then,
the RT is updated with an increased count value (line 12). If there
are no counterfeits that can be validated, the algorithm generates l-
diverse counterfeit sensitive values. First, the QIs of the tuple are
released in the form of a QIT with an assigned groupID (line 14).
Then, the function l-diverse_ST_Generation generates l-diverse sen-
sitive values including the sensitive value of the input tuple (line
17). Since the set already satisfies l-diversity under Definition 3,
the pairs of the set can be released in the form of an ST with the
assigned groupID (line 19). Then, in order to maintain metadata
for late validation, the RT is stored in the anonymization system
(lines 21–24). The count value of the counterfeit sensitive value
is initialized as 0, while the count value of the input tuple’s sensi-
tive value is initialized as 1.

Algorithm 1. DELAY-FREE ANONYMIZATION(T,l)
1: QIT ¼ ;; ST ¼ ;; RT ¼ ;
2: gcnt ¼ 0; qcnt ¼ 0; scnt ¼ 0
3: let qit; st, and rt be elements of QIT; ST and RT, respectively
4: while t 2 T is not empty do
5: let QIt and sit be t½QI� and t½si�, respectively
6: let QISID be a set of all qit½QI� where qit½groupID� = ID
7: let sti be a randomly chosen st where

st½si� ¼ sit ; rti½count� < sti½count� and QIt R QISst½groupID�
8: if sti is not null then
9: release qitqcnt(st½groupID�;QIt)
10: insert qitqcnt into QIT
11: qcnt ¼ qcnt þ 1
12: update rti into (rti½groupID�; rti½si�; rti½count� þ 1)
13: else
14: release qitqcnt(gcnt;QIt)
15: insert qitqcnt into QIT
16: qcnt ¼ qcnt þ 1
17: let LST be the l-diverse set of pairs (si; count) returned

by l-diverse_ST_Generation (sit , l)
18: for all lst 2 LSTdo
19: release stscnt(gcnt; lst½si�; lst½count�)
20: insert stscnt into ST
21: if lst½si� ¼ sit then
22: insert rtscnt(gcnt; lst½si�, 1) into RT
23: else
24: insert rtscnt(gcnt; lst½si�, 0) into RT
25: end if
26: scnt ¼ scnt þ 1
27: end for
28: gcnt ¼ gcnt þ 1
29: end if
30:end while
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Function l-DIVERSE_ST_GENERATIONðsit ; lÞ
1: let SV be the domain of sensitive values
2: let LST be a set of ðsi; countÞ pairs
3: insert ðsit ;1Þ into LST
4: while jLSTj < l or jjLSTjj=l < 9lst½count� where lst 2 LST do
5: let sv be a randomly chosen element from SV
6: let lsti be an element of LST where lsti½si� ¼ sv
7: if lsti is null then
8: insert ðsv;1Þ into LST
9: else
10: update lsti into ðlsti½si�; lsti½count� þ 1Þ
11: end if
12: end while
13: return LST
l-diverse_ST_Generation is a function that generates an LST
(l-diverse ST) according to Definition 3. First, it inserts sit into the
LST (line 3) because the input tuple’s sensitive value should be in-
cluded. Then, counterfeit sensitive values are inserted into the LST
(lines 5–10), until it satisfies the conditions of l-diversity for the
LST (line 4). The counterfeits are randomly chosen from the SV,
which is the domain of sensitive values. In this process, if the cho-
sen sensitive value already exists in LST, the count of the value is
increased instead of the sensitive value being inserted into the
LST (line 10). We utilize the sampled past dataset for the SV, as
we mentioned in Section 4.2.

5. Data utility considerations

In this section, we discuss data utility considerations in the con-
text of DF. In Section 5.1, we compare the DF method and accumu-
lation-based methods with respect to information loss. In Section
5.2, we discuss sensitive attribute uncertainty generated by counter-
feit sensitive values and devise a measure to evaluate the
uncertainty.

5.1. Discussion of information loss

First, in Section 5.1.1, we present the existing metrics for mea-
suring information loss. Then, in Section 5.1.2, we extend the met-
ric to measure the information loss of the sensitive attribute.

5.1.1. Information loss
Existing information loss metrics are designed to measure the

generalization quality of QI attributes [22]. QI attributes are classi-
fied into continuous and categorical attributes. They are repre-
sented as an interval and a taxonomy tree, respectively. The
information loss of a continuous and a categorical attribute is com-
puted as follows.

ILaðacatÞ ¼
jMP j � 1
jMj � 1

ð3Þ

ILaðaconÞ ¼
Ui � Li

U � L
ð4Þ

M denotes the set of leaf nodes in the tree and MP denotes the set of
leaf nodes of the generalized node. Ui and Li denote the upper
bound and the lower bound of the generalized interval, respec-
tively. U and L denote the maximum and the minimum value of
the whole domain, respectively.

The information loss of a tuple is defined as the average value of
each attribute’s information loss. The information loss is

IL ¼ 1
n

Xn

i¼1

ILaðaiÞ; ð5Þ
where n is the number of QI attributes.

5.1.2. Information loss considering sensitive attribute
DF preserves the QI values. Hence, the above information loss

metric, which considers only the distortion of QI attributes, is not
appropriate for measuring the quality of DF. To verify this, we
would like to join QIT and ST; QIT and RT by a join key groupID.
The schema of QIT fflST with a groupID j is

TA
j ðQI; si; countðsiÞÞ

Let us consider the information loss incurred when input tuple t is
anonymized into TA

j by DF. There might be multiple elements in TA
j ,

with l-diverse sensitive values. Let tA
j be an arbitrary element among

TA
j ; then, ILðtA

j Þ is always zero because DF does not distort QI
attributes.

Instead of distorting QI values, DF inflates sensitive values into
an l-diverse ST. In other words, as tðQI; siÞ has been anonymized,
the original QI gains multiple sensitive values. This means that
the correlation between QI and si diminishes, because counterfeit
values are added to the original sensitive value. Therefore, to mea-
sure the quality of DF, the metric considers the inflation of sensi-
tive values. We measure the information loss based on the size
of counterfeit values over the size of all sensitive values including
counterfeits and an original value in the group. Each size corre-
sponds to the number of distinct values in a given set. It should
be noted that the size of the counterfeit sensitive values is always
jSTjj � 1, since there is always one original value among all the sen-
sitive values in a group. According to this metric, we define the
information loss of the sensitive attribute as

ILaðasensÞ ¼
jSTj � 1j
jSTjj

ð6Þ

Then, to measure the information loss of the tuple considering
the sensitive attribute, we apply Eq. (6) to the existing information
loss metric (i.e., Eq. (5)):

ILðtÞ ¼ 1
nþ 1

Xn

i¼1

ILaðaiÞ þ ILaðasensÞ
" #

ð7Þ

As compared with Eq. (5), Eq. (7) considers one more attribute (i.e.,
the sensitive attribute).

Example 2 (Information loss considering sensitive attribute). Let us
revisit Example 1. There is one QI(24, male) that consists of two
attributes (i.e., age and sex). There are two sensitive values (Diag.A
and Diag.B) in group 1. According to Eq. (6), the information loss of
the sensitive attribute is 1=2. Thus, according to Eq. (7), the
information loss of the tuple is computed as 1

2þ1 ½ð0þ 0Þ þ 1
2� ¼ 1

6.
5.2. Discussion of sensitive attribute uncertainty

As a result of the DF anonymization, counterfeit sensitive values
are generated. These counterfeit sensitive values affect data utility
since they lower the statistical value of the anonymized data. For
example, consider a query ‘‘count the records whose blood pres-
sure is higher than 200 for the past one hour’’. The query result
might have some uncertainty due to the counterfeit blood pressure
values. In order to evaluate the uncertainty of the sensitive values,
we need a new measure. We define the uncertainty as the propor-
tion of counterfeit values among all generated values.

Meanwhile, the objective of late validation is to reduce the num-
ber of counterfeits, thus lower the uncertainty. Since late validation
can occur when a matched input tuple has arrived, the uncertainty
varies according to the arrival time of the matched input tuple.
Thus, the measure of the uncertainty is dependent on time.



Table 1
Attributes of Adult dataset.

Attribute Type No. of distinct values

Age Continuous 74
Education Continuous 16
Workclass Categorical 8
Marital Categorical 7
Race Categorical 5
Sex Categorical 2
Native-country Categorical 40
(Salary–occupation) Sensitive 30

Table 2
Attributes of NPS dataset.

Attribute Type No. of distinct values

Age Continuous 107
Length of stay Continuous 53
Sex Categorical 2
Location of the hospital Categorical 16
Admission route Categorical 6
Disease Sensitive 4848
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In what follows, we define Sensitive Attribute Uncertainty (SAU),
which is the uncertainty of sensitive values at a given time interval
T0 to T, where T0 denotes the time of the initial state of the anon-
ymization process and T denotes the current time. SAU is com-
puted as (the number of counterfeit sensitive values from T0 to
T)/(the number of all generated sensitive values from T0 to T).
The equation can be represented by the count values of RT and
ST as follows, where st½count�ðTÞ and rt½count�ðTÞ denote the count
value of st from T0 to T and the count value of rt from T0 to T,
respectively.

SAUðTÞ ¼
P

st2ST st½count�ðTÞ �
P

rt2RT rt½count�ðTÞP
st2ST st½count�ðTÞ ð8Þ
6. Experiments

We evaluated the effectiveness and the efficiency of DF through
a set of experiments using two datasets: the Adult dataset from the
UCI repository, and the NPS dataset from HIRA (Health Insurance
Review and Assessment service in Korea).

The Adult dataset consists of 32,561 tuples and has 14 attri-
butes of which we utilized the following 9 attributes: age, educa-
tion, workclass, marital, race, sex, native-country, salary, and
occupation. We classified these attributes into continuous, categor-
ical, and sensitive attributes. We considered the first seven
attributes to be QIs and the remaining two attributes to be
Fig. 3. Average process
sensitive attributes. In the experiments, we merged two sensitive
attributes, salary and occupation, into a single attribute salary–
occupation to enlarge the domain size of the sensitive attribute,
so that the value of the attribute is represented as {salary, occupa-
tion}. (We do not consider multiple sensitive values in this paper.)
The domain size of the sensitive attribute becomes 30.

The NPS (National Patients Sample) dataset consists of elec-
tronic medical records of Korean people sampled with 3% rate.
We analyzed 117,047 tuples, which are records of a day (14th, Sep-
tember, 2011). We utilized the following 6 attributes: age, sex,
length of stay, location of the hospital, admission route, and disease.
We considered the first five attributes to be QIs and the remaining
disease attribute to be a sensitive attribute.

Each of Adult-d and NPS-d denotes a subset of the dataset
where the first d attributes among the original attributes are con-
sidered as QIs. Table 1 and Table 2 show the type and the number
of the distinct values of the attributes. The experiments were con-
ducted on a computer equipped with an Intel i3 3.07 GHz CPU and
8 GB RAM.

6.1. Comparative study

We measured the average processing time per tuple (APTT) and
information loss in order to compare the DF method with accumu-
lation-based methods. The average processing time per tuple is the
average elapsed time from the input of the tuples to their release.
We implemented an accumulation-based method based on CASTLE
[7], which is a typical accumulation-based method. CASTLE has an
important parameter d, which represents a delay constraint, i.e.,
the number of tuples that would be accumulated for the anonymi-
zation. The value of d varies from 10 to 10,000, and we represent it
as an alphanumeric ABM-n, which signifies an accumulation-based
method with d ¼ 10n. For example, ABM-2 indicates the accumu-
lated-based method with d of 102. For reference, the default setting
in CASTLE is ABM-4, i.e., d ¼ 104. The value of l is fixed to 10.

Fig. 3 illustrates the average processing time per tuple of DF and
the accumulation-based methods. In the case of accumulation-
based methods, the average processing time per tuple increases
as the value of d increases, since the accumulation continues until
the number of input tuples reaches d. This proves that the accumu-
lation generates the delay. In the result of the Adult dataset, DF
takes about 0.037 ms to anonymize a tuple, regardless of the
dimensionality, which is less time than ABM-1 takes (�0.18 ms)
that accumulates only 10 tuples for offering 10-diversity. In the
case of the NPS dataset, the average processing time per tuple of
DF is about 0.09 ms, which is similar to that of ABM-1 (�0.8 ms).

Fig. 4 presents the information loss of each method. DF shows
significantly low values compared to the accumulation-based
methods. The information loss of DF decreases as the number of
ing time per tuple.



Fig. 4. Information loss.

Fig. 5. Average processing time per tuple by No. of records.

Fig. 6. Information loss by No. of records.

Fig. 7. Effect of l.
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Fig. 8. Sensitive attribute uncertainty.

Fig. 9. Results of the analysis queries on the demographic data streams.
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QIs grows. The reason is that the loss is affected only by the sensi-
tive attributes, and their portion decreases as the dimensionality
grows. In contrast, the information loss of accumulation-based
methods tends to increase as the dimensionality grows, because
the loss is affected by QIs as well as by sensitive attributes.
Fig. 5 illustrates the average processing time per tuple of each
method for increasingly larger subsets of the datasets. In Fig. 5a
and b, the experiments are conducted on Adult-5 and NPS-4,
respectively. Both figures show that the processing time is almost
stable though the number of records grows.
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Fig. 6 presents the information loss of each method for increas-
ingly larger subsets of the datasets. The information loss is almost
stable despite the variance of the number of records, because the
information loss is already stabilized in the initial stage of the
anonymization.

6.2. Effects of l

Fig. 7 shows how the average processing time per tuple and the
information loss change according to the value of l. We chose 5, 10,
15, 20, and 25 for the various l. The average processing time per tu-
ple decreases as l grows, because the computation time is reduced
as a larger l generates a smaller number of groups. In contrast,
information loss slightly increases as l grows, because the propor-
tion of counterfeits among all sensitive values increases. It is also
explained by Eq. (6).

6.3. Sensitive attribute uncertainty

Fig. 8 illustrates sensitive attribute uncertainty (SAU). The x-axis
represents the time, which corresponds to the order of the tuple
input. As the l value increases, SAU tends to increase. The reason
is that the larger l value leads to the generation of more counterfeit
values in the anonymization process. In Fig. 8a, SAU is unstable
before T reaches about 7500. This means that sufficient sensitive
values are prepared for the late validation method after T reaches
Fig. 10. Results of the analysis queri
about 7500. In Fig. 8b, SAU is stabilized more gradually than that
of Fig. 8a. The reason is that late validation occurs more frequently
where the distinct number of sensitive values is smaller. We would
like to note that the NPS dataset has 4848 distinct sensitive values,
while the adult dataset has 30.

Without the late validation method, rt½count�ðTÞ is always 1.
Then, we can easily predict that SAU would be nearly 1, because
Eq. (8) would be changed as

P
st2ST st½count�ðTÞ �

P
rt2RT 1P

st2ST st½count�ðTÞ

However, our experiments show SAU values between 0.05 and 0.2
according to the l value (after the values become stable). This means
that the number of counterfeit sensitive values is significantly re-
duced by the late validation method.

6.4. Example scenarios

In order to illustrate the usefulness of anonymized data
streams, which are produced by DF, let us present a scenario of
data analysis. In the following scenarios, we assume two types of
data streams (i.e., demographic data stream and medical data
stream), which continue for 10 h (9:00–19:00). Each data stream
was generated from the Adult dataset and the NPS dataset, respec-
tively. We anonymized the data streams using the proposed meth-
es on the medical data streams.
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od (l ¼ 10), then analyzed the anonymized data streams through
monitoring queries. The queries were executed every 6 min, thus
a total of one hundred monitoring queries were conducted for
10 h. We further compare the monitoring results of the anony-
mized data streams with those of the original data streams.

6.4.1. Monitoring occupational information over anonymized
demographic data streams

Let us assume that there are researchers who study occupa-
tional information from demographic data streams. The research-
ers execute monitoring queries to analyze the data streams. The
SI (i.e., salary–occupation) and two QIs (i.e., sex and marital) are
used in the monitoring queries. The queries are described as
follows:

� Query D1: SELECT count (�) FROM demographic data stream
WHERE salary–occupation = ‘650 K, sales’ every 6 min.
� Query D2: SELECT count (�) FROM demographic data stream

WHERE salary–occupation = ‘650 K, sales’ sex = ‘female’ every
6 min.
� Query D3: SELECT count (�) FROM demographic data stream

WHERE salary–occupation =‘650 K, sales’ sex = ‘female’ and
marital = ‘divorced’ every 6 min.

Fig. 9 shows results of the analysis queries based on the original
data stream and the anonymized data stream by DF. In each figure,
the result of the anonymized data stream shows similar phases to
that of the original data stream, although there are trivial errors
between them. In Fig. 9a–c, the average errors are 2.59, 1.47, and
0.77, respectively.

6.4.2. Monitoring epidemic diseases over anonymized medical data
streams

Hospitals generate medical records whenever the patients re-
ceive medical treatments. The sequence of medical records com-
poses an electronic health data stream. In this environment, let
us assume a feasible scenario. For research purposes, the Ministry
of Health and Welfare in Korea collects the data streams from hos-
pitals in the entire country. Researchers of the government analyze
the data streams to monitor the occurrence of epidemic diseases in
real time. The SI (i.e., disease) and two QIs (i.e., location of the hos-
pital and sex) are used in the monitoring queries. The queries for
the analysis are described as follows (‘nncd’ is the name set of dis-
eases legally designated as epidemics):

� Query M1: SELECT count (�) FROM medical data stream WHERE
disease in ‘nncd’ every 6 min.
� Query M2: SELECT count (�) FROM medical data stream WHERE

disease in ‘nncd’ and location = ‘Seoul’ every 6 min.
� Query M3: SELECT count (�) FROM medical data stream WHERE

disease in ‘nncd’ and location = ‘Seoul’ and sex = ‘Male’ every
6 min.

Fig. 10 shows results of the analysis queries based on the origi-
nal data stream and the anonymized data stream by DF. In each fig-
ure, the result of the anonymized data stream shows similar
phases to that of the original data stream, although there are trivial
errors between them. In Fig. 10a–c, the average errors are 0.58,
0.47, and 0.42, respectively.
7. Conclusion

In this paper, we presented a delay-free anonymization method
for preserving the privacy of electronic health data streams. The
proposed method does not generate a significant delay during
the anonymization process and release of data streams. Since each
QI has l-diverse sensitive values, the privacy of the data is pre-
served with a probability of 1=l. Late validation significantly de-
creases the number of counterfeit values, and hence, the
anonymization result has high data utility. Our method overcomes
the drawbacks of existing accumulation-based methods in real-
time data stream anonymization.

Several future studies can be considered as an extension of the
study reported in this paper. First, we will devise a method for gen-
erating counterfeit and count values. If the result of statistical anal-
ysis or past data are considered for generating the values, more
reliable anonymization results can be realized. Second, it would
be meaningful to investigate the timing of the late validation. In
this paper, we focus on matching input tuples and counterfeits
for the late validation. The effectiveness can be improved if the
elapsed time of the counterfeits is considered. Additionally, we in-
tend to employ the Slicing [23] instead of the Anatomy [17] tech-
nique for DF anonymization. We predict that the correlation
between the QIs and the sensitive attributes will be preserved by
the Slicing technique. Finally, we would like to design and study
a distributed version of our framework. As the volume of electronic
health data streams is rapidly growing, data streams increasingly
need to be processed in a distributed environment.
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