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Abstract 

This paper deals with Hermite matrix polynomials expansions of some relevant matrix functions appearing in the 
solution of differential systems. Properties of Hermite matrix polynomials such as the three terms recurrence formula 
permit an efficient computation of matrix functions avoiding important computational drawbacks of other well-known 
methods. Results are applied to compute accurate approximations of certain differential systems in terms of Hermite 
matrix polynomials. @ 1998 Elsevier Science B.V. All rights reserved. 
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I. Introduction and preliminaries 

The evaluation of matrix functions is frequent in the solution of differential systems. So, the 
system 

Y'=AY, Y(0)= y0, (1) 

where A is matrix and Y0 is a vector, arises in the semidiscretization of the heat equation [17]. The 
matrix differential problem 

Y" + A 2 y = 0 ,  Y(0)  ---- P ,  Y ' ( 0 )  = Q, (2 )  
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where A is a matrix and P and Q are vectors, arises from semidiscretization of the wave equa- 
tion [15]. The Sylvester matrix differential equation 

X'  =AX +XB,  X(O) = C, (3) 

where A, B and C are matrices, appears in systems stability and control [4, p. 226]. The solutions 
of problems (1)-(3) can be expressed in terms of exp(At), cos(At), sin(At) and exp(Bt) and the 
computation of these matrix functions has motivated many and varied approaches. An excelent 
survey about the matrix exponential is [11] and the study of cos(At) is treated in [1, 14, 15]. Some 
of the drawbacks of the existing methods are 

(i) The computation of eigenvalues or eigenvectors [11, 16]; 
(ii) The computation of the inverses of matrices (see Pad6 methods, [5, p. 557]) [11, 14]; 

(iii) Storage problems and expensive computational time [5, Chap. 1]; 
(iv) Round-off accumulation errors [5, p. 551]; 
(v) Difficulties for computing approximations of matrix functions with a prefixed accuracy [15, 

16]. 
In this paper we propose a new method for computing the above matrix functions using 

Hermite matrix polynomials which avoids the quoted computational difficulties. Results are applied 
to construct approximations of problems (1)-(3) with a prefixed accuracy in a bounded domain. 

If Do is the complex plane cut along the negative real axis and log(z) denotes the principal 
logarithm of z, [13, p. 72], then z 1/2 represents exP(½1og(z)). If A is a matrix in Cgr×r, its 2-norm 
denoted IIAII2 is defined by IIAII2--IIAxll2/llxll2, where for a vector y in rgr, IlYlI2 denotes the usual 
euclidean norm of y, Hyll2=(yry) ~/2. The set of all the eigenvalues of A is denoted by tr(A). If 
f ( z )  and 9(z) are holomorphic functions of the complex variable z, which are defined in an open 
set f / o f  the complex plane, and A is a matrix in (~r×r such that o'(A) C ~-~, then from the properties 
of the matrix functional calculus, [3, p. 558], it follows that f (A)y (A)= 9(A)f(A). IfA is a matrix 
with tr(A)CD0, then A ~/2= x/~ denotes the image by z 1/2 of the matrix functional calculus acting 
on the matrix A. We say that A is a positive stable matrix if Re(z)>0 for all zE tr(A). 

For the sake of clarity in the presentation we recall some properties of the Hermite matrix 
polynomials which will be used below and that have been established in [7], see also [8]. If A is a 
positive stable matrix in cgr×~, the nth Hermite matrix polynomial is defined by 

[n/2] ( _ _ l ) k ( v ~ ) n  2kxn_2k, 
Z 
k=0 

(4) 

and satisfy the three terms recurrence relationship 

H,(x,A) =Ixx/(2A)H,_~(x,A) - 2(n - 1)H,_z(x,A), 

H_l(X,A)=O, Ho(x,A)=I, 

n~>l 
(5) 

where I is the identity matrix in rgr×r. By [7] we also have 

eXtV~f~-t2'=~>~olH,(x,A)t" , It] < +e<z, (6) 
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and if Hn(x) denotes the classical nth scalar Hermite polynomial, then one gets 

IIH~(x,A)II2~ H ~ ( ~ ) ,  Ixl<a, nEN, (7) i n 

Z n!i . Itl ~ = exp(Itlallv/-~ll 2 + [ t12)' Itl < ce. (8) 
n~>0 

If A(k,n) and B(k,n) are matrices on ~r×r for n~>0, k~>0, in an analogous way to the proof of 
Lemma 11 of [12, p. 57] it follows that 

In/2] 

~-~A(k,n)= y~ZA(k,n--  2k), 
n>~Ok>~O n>~O k=O 

Z Z B(k'n)= Z~-~ B(k'n-k)" 
n~>0 k~>0 n~>0 k=0 

(9) 

I f B  is a matrix in c(~×r and no is a positive integer we denote by ~¢(B, n0), ~(B, n0) and g(B, n0) 
the real numbers: 

~ - ~  (IIBII) "-=* 
~ ( B ,  n0) = k.I--~- _-- ~k~ !, 

n=O k=O 

~°o ~-~ (IIBIIY "-*) ~(B, no)= k!(2(n - k))! '  
k=O 

(lO) 

~o ,~_ ° (II81IY~-*)+' e(B,.o): k!~2-~--~STl)~ (11) 

This paper is organized as follows. In Section 2 some new properties of  Hermite matrix polynomials 
are established. Section 3 deals with the Hermite matrix polynomial series expansions of  e TM, sin(At) 
and cos(At) of  an arbitrary matrix as well as with theirs finite series tnmcation with a prefixed 
accuracy in a bounded domain. Finally, in Section 4 analytic-numerical approximations of  problems 
(1) - (3)  are contructed in terms of  Hermite matrix polynomial series expansions. Given an admissible 
error e > 0 and a bounded domain D, an approximation in terms of  Hermite matrix polynomials is 
contructed so that the error with respect to the exact solution is uniformly upper bounded by 
e i nD.  

2. On Hermite matrix polynomials 

Let A be a positive stable matrix. By (6) it follows that 

Hn(x,A) t~ 
n~>O 

Hence 

n~>0 n~>0 

(12) 
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and by (9) one gets 
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H.(x,A) tn) [n/2} Hn_2k(x,A).n 
n! = ~ ~ k!(n - 2k )! t . 

n~>0 k=0 

By identification of the coefficient of t" in (12) and (13) one gets 

{~/2] n ! 
X " I = ( x / ~ ) - n  Y~ k!(n - 2k)! H"-zk(x'A)' - cx~<x<+cx~. 

k=0 

(13) 

(14) 

by (16)  one gets (15) f o r n + l .  [] 

The following result that may be regarded as a matrix version of the algorithm given in [10], 
provides an efficient procedure for computing finite matrix polynomial series expansions in terms 
of matrix polynomials satisfying a three terms formula. In particular, it is applicable to the Hermite 
matrix polynomials. Note the remarkable fact from a computational point of view that the evaluation 
of a matrix polynomial at ~ is only expressed in terms of P0(x). 

Theorem 2.1. Let {P,(x)},~>0 be a sequence of  matrix polynomials such that 

A.Pn(x)=(xI - B n ) P . _ f f x ) -  C.P. 2(x), n>~l, 

Since 

Lemma 2.1. Let be A a positive stable matrix, K > 2 and n >10 integer. Then 

K 
[[H,(x,A)ll2 <<. ~nV.v~gne x2, Ixl< (15) 

IIv~l12 

Proof. It is clear that for n = 0 the inequality (15) holds true. Suppose that (15) is true for 
k = 0 , 1 , . . . , n .  Taking norms in the three terms formula (5) and using the induction hypothesis 
one gets 

IIn.+,(x,A)[12 <<. Ix[ II (v/-(~ll2llH.(x,A)llz + 2nlln.-~(x,A)ll2 

X~'v~X"eX2 + 2nv /~ -  1)! 2v~X"- ' e  x2 

= x/~.v~K"-'eX~(K 2 + x / ~ )  

= x / ~ +  1) !x/~K"-lex2 ~ +  • (16) 
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where An is an invertible matrix in cgr×~ and the degree of  Pn(x) is n. Let Q(x) be a matrix 
polynomial defined by 

n 

Q(x) = ~ E~Pj(x), 
j-0 

where E~ is a matrix in (~r×r. Let Yc be any real number and consider the sequence of  matrices 
defined by 

Dn=En, 

D,-1 =En-1 + D, A2I(2I - Bn), 

and for j = n  - 2 , . . . , 0 ,  

D~ = E~ + Oj+lA]-21 (21 - Oj+l ) -- Dj+zA~-+I2Cj+z. 

Then Q( 2 ) = DoPo( YC ). 

Proof .  See [10]. 

3. Hermite matrix polynomials series expansions 

We begin this section with Hermite matrix polynomial series expansion of exp(Bt), sin(Bt) and 
cos(Bt) for matrices satisfying the spectral property 

IRe(z)l > IIm(z)l for all z E g-(B). (17) 

Theorem 3.1. Let B be a matrix in (£r×r satisfyino (17). Then 

H.(x, ½B 2) 
eBx = e ~--~ n! , --oc < x < + e c ,  (18) 

n>~0 

I ( - 1 ) " H 2 . ( x , ~ B Z ) - e c < x < + o c ,  (19) cos(Bx) = - Z (2n)~ 
e ,~>0 

s in (Bx)=-1  > ~  ° (--1)n H2n+l (x, ~B 2) -cx)<x<-+-oc. (20) 
e ~ (2n + 1)! 

Let E(B,x,n), C(B,x,n) and S(B,x,n) be respectively the nth partial sum of  series (18 ) - (20 )  
respectively. Given e > 0  and c > 0, let a = c + e and let no, n~ and n2 be the first positive integers 
satisfying 

d(Ba,  no) )  exp(allBII2 + 1 ) - - ,  (21) 
e 

~(Ba, n, ) >1 e(cosh(allBll2 ) -e ) ,  (22) 

e(  Ba, n2 ) >~ e( sinh( allBII2 ) -  e ), (23) 
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where ~ ,  ~ and ~ are defined by (10) and (11). Then for [xl<c and n >~ max{no, n,,n2} one 
gets 

][eBX-E(B,x, n)112 < e (24) 

Ncos(Bx)-C(B,x,n)llz <e, (25) 

II sin(Bx)-S(B,x, n)l12 < e. (26) 

l 2 Proof. Let A = iB . By the spectral mapping theorem [3, p. 569] and (17) it follows that 

1 2 1 a(A)= (~b ;bEa(B)} ,  Re (~b  2) =~{(Re(b))2- ( im(b))  :} >0, bEa(B). 

Thus A is a positive stable matrix and taking t = 1 in (6), B = v /~ ,  one gets 

eBX = ~-~ n! x, B 2 - ~  < x < + ~ .  
n~>0 

If no ~> 1 one gets 

e e x - ~ e H  ( ) 2 e Hk(  ) 2 = e  
k = 0  k > n o  k > n o  

By (7) for e>0, e>0, a = c + e  and Ixl<a, it follows that 
no 

e y~ IIH~(x'½B2)II2 < ~ e y ~ H k ( ~ ) - - e Z  H k ( ~ )  
k! k!i k k!i k 

k > no k >~O k=O 

By (8), (10), (27) and (28) one gets 

k=o ~ k x, B 2 ~ exp(a]]B]]z+l)--eZk=o k!i~ 

= exp(a]]B]12+l ) -d (Ba ,  no). 

By [12, p. 57] one gets 

lirn ~ _ ~ 1  /.--~(k --- 2~.v(llnll2a)k-2' - e x p ( a l l g l l 2 + l ) .  

k = 0  l = 0  

Hence, taking the first positive integer no satisfying (21), then by (29) one gets 

e~X-~-~ e H  ( k = o ~ . l  k 1 ) 2 x, LB2 Ixl<e, n>~no. 

1 2 Considering (14) for the positive stable matrix A = 5B , it follows that 

x2,I=B_2, ~ (2n), ( ~ ) 
k=ok!(2(n_k))!H2(, k) x, B 2 . 

(28) 

(29) 
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Taking into account the series expansion of cos(Bx) and (9) we can write 

cos, x,=Z  
,~>0 (2n)! ~ - ~ - -  k ! ( 2 ( n - k ) ) !  H2("-*) x, 

n>~0 k=0  

(--l)n+kflB2"~ ( ( ) k )  1 n 9 
Hence 

cos(Bx)=-I ~ H2n x, B 2 , -cx~<x<+c~.  (30) 
e .30 

By [12, p. 57] one gets 

. ~ (llBil~a)~(~-,~ )im Z Z ~.'(-~-£- t-~.' - e cosh(allBIl~). 
k=0  l=0  

Let us consider the n~th partial sum of the series (30). Then in an analogous way to the previous 
computations, for Ixl <c  one gets 

n,)l12 ~< cosh(al lBII2)-!~(aB,  n~), a = c + ~, Ilcos(Bx)-C(B,x, 

where ~C~(aB, nl) is given by (10). Taking the first integer nl/>l satisfying (22) one gets (25). 
By (14) we also have 

n 

x2n+,]=B_(2n+l) Z (2nq-1), ( ~ ) 
k=o k!(2(-n--lc-j~- 1)! H2("-')+' x, B 2 . 

and in an analogous way to the series expansion of cos(Bx), one gets (20). By [12, p. 57] one gets 

l im ~ ~ l ~  2 ~ ] - ) !  = e  sinh(alIBII2 ). 
k=0  l=0  

Then in an analogous way to the previous computations, one gets (26). Hence the result is estab- 
lished. [] 

Now we show that condition (17) can be removed in the construction of accurate Hermite matrix 
polynomial expansions of exp(At), cos(At) and sin(At) of an arbitrary matrix A in ~×r .  

Lemma 3.1. Let  A be a matrix in Cgr×r and let 7 any positive number such that 

> m a x { l R e ( z ) l + l l m ( z ) l ;  z E o-(A)). 

Then the matrix B = A  + ~I satisfies (17). 

Proof. By the spectral mapping theorem a(A + ~1) = {z + ~; z E a(A)} and for z E o-(A) one gets 
IRe(z + ~)1 = IRe(z) + ~'1 ~>~ - IRe(z)l > IIm(z)l = IIm(z + ~)1. Hence the result is established. [] 
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Corollary 3.1. Let A be a matrix in Cgr×r and let 7 be a number satisfying the condition of  
Lemma 3.1. Let ~ > O, c > O, a = c + g. With the notacion o f  Theorem 3.1 it follows that 

(i) I f  no satisfies (21) for B = A  + ~I, then 

IleAx--e-'~'XE(A + 71,x,n)l12<e, n>no, Ixl<c. (31) 

(ii) Let nl and n2 be positive integers satisfying (22) and (23) respectively for ~/2 = d, and 
B = A  + r ,  then for Ix] < c  and n>~ max{nl,n2}, 

II sin(Ax)- {cos(yx)S(A + 7I, x, n ) -  sin(yx)C(A + 71, x, n)} 112 < ~, (32) 

Ilcos(Ax)-{cos(yx)C(A + 7Lx, n)+ sin(Tx)S(A + 7Lx, n)} 112 < e. (33) 

Proofi  (i) The result is a consequence of Theorem 3.1 and the formula eAx= e-;'Xe (A+,'1)x. The proof 
of part (ii) follows from the expressions 

sin(Ax) = sin[(A + 7I)x] cos(yx)-  cos[(A + f l)x] sin(7x), 

cos(Ax) = cos[(A + yI)x] cos(yx)+ sin[(A + 71)x] sin(yx), 

and Theorem 3.1. [] 

In the following example we illustrate the use of Hermite matrix polynomials for computing e A, 
sin A and cos A for a matrix A satisfying (17). As it has been proved in Corollary 3.1, condition 
(17) is not necessary taking an appropiate value of ~ in accordance with Lemma 3.1. It is interesting 
to point out that algorithm of Theorem 2.1 has been adapted for the Hermite matrix polynomials 
using (5). Computations have been perfomed using Mathematica version 2.2.1. 

Example 3.1. Consider the matrix 

(31 i) A =  2 0 , 
1 - 1  

where o-(A)={1,2,2}. Using the minimal theorem [3, p. 571] one gets the exact value of eA: 

e A = 

2e 2 _e  2 e 2 ) 
- e  + 2e 2 e - e z e 2 
- - e  + e 2 e - -  e 2 e 2 

14.7781121978613 

= 12.05983036940225 

4.670774270471604 

-7.38905609893065 

-4.670774270471604 

-4.670774270471604 

7.38905609893065 / 

7.38905609893065 . 

7.38905609893065 
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Given an admissible error e = 10 -5, from (21), taking no = 30 the approximation E(A, 1, 30) provides 
the required accuracy 

3O 

E(A, 1 , 3 0 ) = e Z 1 H , , ( 1 , ~ A  2) 
n = 0  " 

14.77811219786323 

= 12.0598303694045 

4.670774270472778 

-7.389056098931726 

-4.670774270472999 

-4.670774270472778 

lie A - E  (A, 1,30)112 = 3.181762178061584 × 10-~2. 

7.389056098931725 

7.389056098931723 

7.389056098931503 

Of  course, in practice the number of  terms required to obtain a prefixed accuracy uses to be smaller 
than the one provided by (21), because the error bounds given by Theorem 3.1 is valid for any 
matrix satisfying (17). So for instance taking no = 19 one gets 

14.77810950722812 

12.05982687088079 

4.670772244388193 

-7.389054626492605 

-4.670771990145276 

-4.670772244388193 

7.389054626492605 

7.389054626492603 

7.389054880735518 

E (A, 1, 19) = 

IleA--E (A, 1,19)112 =6.356409123149743 × 10 -6. 

In an analogous way we have 

sinA = 

sin(2) + cos(2) - cos(2) cos(2) '~ 

) - sin( l)  + sin(2) + cos(2) s in(l)  - cos(2) cos(2) 

- sin( l)  + sin(2) s in(l)  - sin(2) sin(2) 

0.4931505902785393 0.4161468365471424 

= -0.3483203945293571 1.257617821355039 

0.06782644201778521 -0.06782644201778521 

-0.4161468365471424 

-0.4161468365471424 

0.909297426825682 

Taking no = 8 one gets the Hermite matrix polynomial approximation 

e ,=0 (2n + 1 

0.4931487870648995 0.4161486588860599 

-0.3483221953348546 1.257619641285814 

0.0678264635512047 -0.06782646355120475 

-0.4161486588860598 

-0.4161486588860596 

0.90929744595096 

with 

][ sinA -S(A, 1, 8)[[2 = 4.446422404096298 × 10 -6. 
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The number of  terms provided by (23) for the accuracy e = 10 -5 is no = 19. Finally approximating 
cosA by Herrnite matrix polynomial series we have 

c o s A =  

cos(2) - sin(2) 

- c o s ( l )  + cos(2) - sin(2) 

- cos( l )  + cos(2) 

sin(2) 

cos( l )  + sin(2) 

cos(1 ) - cos(2) 

-1.325444263372824 

= 1.865746569240964 

-0.956449142415282 

0.909297426825682 

1.449599732693821 

0.956449142415282 

Taking no = 8 one gets the approximation 

- sin(2) 
/ 

- sin(2) ] 

cos(2) ] 

-0.909297426825682 

-0.909297426825682 

-0.4161468365471424 

, 

= ~  : o ~ H 2 ,  1, A 2 

-1.325448071525842 

= 1.865751647963166 

-0.956452235323384 

with e~or 

0.909299412639782 

1.449602989077106 

0.956452235323384 

-0.909299412639782 / 

-0.909299412639782 , 

-0.4161486588860598 

[[cosA - C (A, 1,8)112 : 9.1659488356359 x 10 -6. 

For a prefixed accuracy e = 10 -5, the expression (22) gives no -- 14. 

4 .  A p p l i c a t i o n s  

In  this section we construct matrix polynomial approximations of  problems (1) - (3)  expressed in 
terms of  Hermite matrix polynomials. It is well known that the solution of  problem (1) is 

Y(x) = eAXyo. 

Let 7 be as in Lemma 3.1, e > 0, c > 0, a = c + e. Let no be the first positive integer such that 

d((A + 7I)a, no)>~ exp(allA + 7I l l2+1) -  
e(1 + Ily0112) 

Then by Corollary 3.1 it follows that 

IleAXyo--e-~"XE(A + ~'I,x,n)yoH2<e, Ixl <c, n>.no. 

Thus 

~(x)=e(1-,'x) [~-~Hk(x'½ (A + 7I)2)] 
k=o ~ j Yo, (34) 



E. Def ez, L. J6dar l Journal of Computational and Applied Mathematics 99 (1998) 105-117 115 

is an approximate solution of problem (1) such that if Y(x) is the exact solution one gets 

IIY(x)-Y.(x)ll2< , Ixl<c, n~no. (35) 

Problem (2) can be solved considering the extended system 

' - A  2 0 Z; Z ( 0 ) :  , 

but such an approach increases the computational cost [1], and involves a lack of explicitness in 
terms of two vector parameters that is very interesting to study boundary value problems associated 
to (2) using the shooting method [9]. 

Consider problem (2) where A is an invertible matrix in Cgr×r. By [6] the pair {cos(Ax), sin(Ax)} 
is a fundamental set of solutions of the equation 

Y"+A2y=o, -c~  <x < +c~, 

because Yl(X)= cos(Ax), Y2(x)= sin(Ax) satisfy 

w(0) = [ Y((0) Y~(0)] = [ I 0 0 ]  is invertible in CgZr×2,'. 
YI(0) ]12(0) 

Hence, the unique solution of problem (2) is given by 

Y(x)= cos(Ax)P+sin(Ax)A-IQ, - o o < x < + c ~ .  (36) 

If ? is given by Lemma 3.1, the expresion (36) and Corollary 3.1 suggest the approximation 

Y,(x) = {cos(Tx)C (A + 7I, x, n) + sin(~x) (A + ?I,x, n)} P 

+ {cos(Tx)S (A + 7I, x, n) - sin(Tx)C (A + ?Lx, n)} A-IQ 

= C(A + ?I,x,n) (cos(Tx)P- sin(?x)A-IQ) 

+S (A + ?I,x, n) (sin(Tx)P+ cos(yx)A-IQ) , 

~"(x)=[k=~o(-1)kH2k(x'l(A+?l)2)] (c°s(~x)P-sin(?x)A-£ Q J 

+[~-2(-1)kH2k+'(x '½(A+?I)2) '(  P sin(?x) -~ ) .  Q 
~=0 (2k + 1)! + c°s(?x)A (37) 

By Corollary 3.1, for n>~ max{n~,n2}, where nj and n2 are given by the Corollary 3.1, one gets 

IIA-'II211QII2), Ixl<c. (38) 

We conclude this section with the construction of Hermite matrix polynomials approximations of 
the solution of problem (3). By [2, p. 195] the solution of (3) is given by 

X(t)  = e A iCe 8'. (39) 
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Let 7 >~ max{TA, 78} where 

7A > max{[Re(z) + Jim(z)[; z E o-(A)}, 

and 

7e > max{IRe(z) + IIm(z)l; z ~ a(B)} .  

Corollary 3.1 suggests the approximation 

f f , ( t)  = e-~"'E(A + y1,t,n)Ce-~"'E(B + 71,t,n), 

and note that 

X ( t ) - X , ( t )  

(40) 

= (e TM - e "rE(A + yL t, n))Ce 8' + e-:'tE(B + yL t, n)C(e 8t - e-:'tE(B + 71, t, n)). (41) 

Consider the domain Itl <c and take 

g = max{c(lIBII2+y), 2}+1. (42) 

By (15) and (18) it follows that Itl <K/(IIBII2+7) and 

lIE(B+ 71,t,n)l12<<-eC2+~-"~ V ~" - Z .  (43) 
j>~0 

Taking norms in (41) and using (43) one gets 

IIx(t)-2°(t)l l= ~ II eA' - e-;'E(A + 71,t,n)l1211cIIS nBH2 + LIICll211e ~' 
- e - " 'E (B  + 71,t,n)llz. (44) 

Taking the first positive integer n~ such that 

~e-cllBII2 
~ ' ((A +71 )a, n o ) t> exp(w I IA +7111za+ 1 ) 

2e(lICII2 + 1)'  

and the first positive integer n'~ such that 

d ( ( B  + 7I)a,n',)>J exp(llB + 7Ill2a + 1) - 2z(llcll 2 + 1)e' 

then for n~> max{n~,n'~} and Itl <c ,  by Corollary 3.1 and (39), (40), (43) it follows that 

Ilx(t)-2o(t)llz<~, Itl <c .  
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