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Abstract

In his letter (Israel J. Math. 95 (1996) 281), Serre proves that the systems of Hecke

eigenvalues given by modular forms ðmod pÞ are the same as the ones given by locally constant

functions A�
B=B�-Fp; where B is the endomorphism algebra of a supersingular elliptic curve.

We generalize this result to Siegel modular forms, proving that the systems of Hecke

eigenvalues given by Siegel modular forms ðmod pÞ of genus g are the same as the ones given

by algebraic modular forms ðmod pÞ on the group GUgðBÞ; as defined in Gross (Math. Res.

Notices (16) (1998) 865; Israel J. Math. 113 (1999) 61). The correspondence is obtained by

restricting to the superspecial locus of the moduli space of abelian varieties.
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1. Introduction

Fix positive integers g; p; and N; where NX3 and p is a prime not dividing N: We
study the space of Siegel modular forms ðmod pÞ of genus g; level N; and all weights;
more precisely, we are interested in the systems of Hecke eigenvalues that occur in
this space. The approach that we take is largely inspired by a result of Serre [21] in
genus 1; linking Hecke eigenvalues of (elliptic) modular forms ðmod pÞ and
quaternion algebras. Our main result is
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Theorem 1. The systems of Hecke eigenvalues coming from Siegel modular forms

ðmod pÞ of genus g; level N and any weight r; are the same as the systems of Hecke

eigenvalues coming from algebraic modular forms ðmod pÞ of level U and any weight

rS on the group GUgðBÞ; where O is the endomorphism algebra of a supersingular

elliptic curve over Fp; B :¼ O#Q; and

U :¼Up �
Y
cap

UcðNÞ;

Up :¼ kerðGUgðOpÞ-GUgðFp2ÞÞ;

UcðNÞ :¼fxAGUgðOcÞ : x � 1 ðmod cnÞ; cnjjNg:

How does this result improve our understanding of Siegel modular forms?
As an example, it is a direct consequence of Theorem 1 that there are only finitely
many systems of Hecke eigenvalues coming from the space of Siegel modular
forms ðmod pÞ of genus g; level N: Moreover, one can derive an explicit (albeit far
from sharp) upper bound on this number, which in turn can be applied to
the study of the structure of the Siegel–Hecke algebra, in a manner similar to
Jochnowitz [11,12]. In the other direction, one can use Theorem 1 to study
the relation between algebraic modular forms and Galois representations in
the case g ¼ 2; by employing results of Weissauer and Taylor on the construc-
tion of Galois representations associated to Siegel modular forms of genus 2.
This suggests an approach to Conjectures 8.1 and 9.14 of Gross [7] in this
particular case. Both these applications are subject of work in progress by the
author.

The paper is organized as follows. Section 2 contains preliminary results on
three topics: the definition of algebraic modular forms, the geometric theory
of Siegel modular forms ðmod pÞ; and the properties of superspecial abelian varieties.
Section 3 contains the main technical result on which the approach of the paper is
based. It links a finite set constructed from the superspecial locus to a finite set
constructed from the algebraic group GUgðBÞ; in a way that is compatible with

the Hecke action. We encourage the reader to skip the proof of this result and go
directly to Section 4, which puts everything together and is quite different from
Serre’s approach for the case g ¼ 1: Here we prove that the operation of restricting
Siegel modular forms to the superspecial locus preserves the systems of Hecke
eigenvalues.

2. Preliminaries

The following notation will be fixed throughout the paper: g41 is a positive
integer, p is a prime, and N is a positive integer not divisible by p:
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2.1. Algebraic modular forms

2.1.1. Quaternion hermitian forms

Let B be a quaternion algebra over a field F : Let %
 denote the canonical involution
of B (i.e. conjugation) and let N denote the norm map. Let V be a left B-module
which is free of dimension g: A quaternion hermitian form on V is an F -bilinear map
f : V � V-B such that

f ðbx; yÞ ¼ bf ðx; yÞ; f ðx; yÞ ¼ f ðy; xÞ

for all bAB; x; yAV : We say f is non-degenerate if f ðx;VÞ ¼ 0 implies x ¼ 0:
The following result says that any such form is diagonalizable [22, Section 2.2]:

Proposition 2. For every quaternion hermitian form f on V ; there exists a basis

fx1;y; xgg of V over B such that f ðxi; xjÞ ¼ aidij for 1pi; jpn; where aiAF :

Moreover if f is non-degenerate and the norm map N : B-F is surjective, then there

exists a basis fy1;y; ygg of V over B such that f ðyi; yjÞ ¼ dij:

Furthermore, we have the following result [25, Section 3.4]:

Theorem 3 (The norm theorem). Let B be a quaternion algebra over a field F ;
and let FB be the set of elements of F which are positive at all the real places

of F which ramify in B: Then the image of the reduced norm map n : B-F is

precisely FB:

We conclude that if B is the quaternion algebra over Q ramified at p and N; then
nðBÞ ¼ Q40:

2.1.2. The similitude groups

Let B be a quaternion algebra over a field F : We define the group of unitary g � g

matrices and its similitude group by

UgðBÞ :¼ fMAGLgðBÞ : M�M ¼ Ig;

GUgðBÞ :¼ fMAGLgðBÞ : M�M ¼ gðMÞI ; gðMÞAF�g:

These are algebraic groups over F : let ð fijÞ :¼ M�M; then UgðBÞ is

defined by the equations fij ¼ 0 ðiajÞ; fii ¼ 1; and GUgðBÞ is defined by the

equations

fij ¼ 0 for iaj; f11 ¼ f22 ¼ ? ¼ fgg

(these are automatically in F because they are sums of norms of elements of B).
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We define the group of symplectic 2g � 2g matrices and its similitude group as
follows:

Sp2gðFÞ :¼ fMAGL2gðFÞ : MtJ2gM ¼ J2gg;

GSp2gðFÞ :¼ fMAGL2gðFÞ : MtJ2gM ¼ gðMÞJ2g; gðMÞAF�g;

where J2g ¼ ð 0
�Ig

Ig

0
Þ:

Lemma 4. Let K be a field. The subgroups GUgðM2ðKÞÞ and GSp2gðKÞ are conjugate

inside GL2gðKÞ: In particular, they are isomorphic and the F -algebraic group GUgðBÞ
is an F -form of GSp2g:

Proof. If A :¼ ða
c

b
d
ÞAM2ðKÞ; then the conjugate of A is %A ¼ ð d

�c
�b
a
Þ; therefore the

adjoint of A is

A� ¼
d �c

�b a

� �
¼ J�1

2 AJ2:

Set J̃2g :¼ diagðJ2;y; J2Þ and let M ¼ ðAijÞ1pi; jpgAMgðM2ðKÞÞ: We have

M� ¼ J̃�1
2g MtJ̃2g;

therefore

M�M ¼ J̃�1
2g MtJ̃2gM:

It is clear that there exists a permutation matrix P such that PtJ̃2gP ¼ J2g: We have

J2g ¼ PtJ̃2gP; so J̃2g ¼ PJ2gPt and

M�M ¼ PJ�1
2g PtMtPJ2gPtM:

Now if MAGUgðM2ðKÞÞ; then M�M ¼ gI for some gAK� and a little manipulation

gives

ðPtMPÞt
J2gðPtMPÞ ¼ gJ2g;

i.e. PtMPAGSp2gðKÞ: Conversely, if PtMPAGSp2gðKÞ then

M�M ¼ PJ�1
2g ðPtMPÞt

J2gPtM ¼ PJ�1
2g gJ2gPt ¼ gI

so MAGUgðM2ðKÞÞ: Therefore P�1GUgðM2ðKÞÞP ¼ GSp2gðKÞ; as desired. Since

B# %FDM2ð %FÞ; we conclude that GUgðBÞ# %FDGSpð %FÞ: &
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2.1.3. Algebraic modular forms ðmod pÞ
We give the definition of algebraic modular forms ðmod pÞ on the group G :¼

GUgðBÞ; where B is the quaternion algebra over Q ramified at p and N: See [8,9] for

more details.
The definition given by Gross requires that G be a reductive algebraic group over

Q satisfying a technical condition for which it sufficient to know that G0ðRÞ is a
compact Lie group. Our G is reductive, being a form of the reductive group GSp2g:

We also know that G0ðRÞ is compact, since it is a subgroup of the orthogonal group
Oð4gÞ:

Let Op be the maximal order of B#Qp: We define Up to be the kernel of the

reduction modulo a uniformizer p of Op; i.e.

1-Up-GðOpÞ ��!mod p
GUgðFp2Þ-1:

For cap; we set

UcðNÞ :¼ fxAGðOcÞ : x � 1 ðmod cnÞ; cnjjNg:

The product

U :¼ Up �
Y
cap

UcðNÞ

is an open compact subgroup of Gð #QÞ; called the level ( #Q is the ring of finite adèles).

Set OðNÞ :¼ U\Gð #QÞ=GðQÞ: By Gross [9, Proposition 4.3], the double coset space
OðNÞ is finite.

Now let r : GUgðFp2Þ-GLðWÞ be an irreducible representation, where W is a

finite-dimensional Fp-vector space. We define the space of algebraic modular forms

ðmod pÞ of weight r and level U on G as follows:

Mðr;UÞ :¼ f f : OðNÞ-W : f ðlgÞ ¼ rðlÞ�1
f ðgÞ for all lAGUgðFp2Þg:

Since OðNÞ is a finite set and W is finite dimensional, Mðr;UÞ is a finite-dimensional
Fp-vector space.

Given a prime c not dividing pN; we have the local Hecke algebra Hc ¼
HðGSp2gðQcÞ;GSp2gðZcÞÞ acting naturally on OðNÞ; and hence on Mðr;UÞ (see

Section 3.2.1 for details).

2.2. The geometric theory of Siegel modular forms

We review the basic definitions and results from Chai [3].
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All the schemes we consider are locally noetherian. A g-dimensional abelian

scheme A over a scheme S is a proper smooth group scheme

whose (geometric) fibers are connected of dimension g:

A polarization of A is an S-homomorphism l : A-At :¼ Pic0ðA=SÞ such that for

any geometric point s of S; the homomorphism ls : As-At
s is of the form lsðaÞ ¼

t�aLs#L�1
s for some ample invertible sheaf Ls on As: Such l is necessarily an

isogeny. In this case, l�OA is a locally free OAt -module whose rank is constant over
each connected component of S: This rank is called the degree of l; if this degree is 1
(so l is an isomorphism) then l is said to be principal. Any polarization is symmetric:

lt ¼ l via the canonical isomorphism ADAtt:
Let f : A-B be an isogeny of abelian schemes over S: Cartier duality [19,

Theorem III.19.1] states that ker f is canonically dual to ker ft: There is a canonical
non-degenerate pairing

ker f� ker ft-Gm:

An important example is f ¼ ½N� for an integer N: The kernel A½N� of multiplication

by N on A is a finite flat group scheme of rank N2g over S; it is étale over S if and

only if S is a scheme over Z½ 1
N
�: We get the Weil pairing

A½N� � At½N�-Gm:

A principal polarization l on A induces a canonical non-degenerate skew-symmetric
pairing

A½N� � A½N�-lN ;

which is also called the Weil pairing.
For our purposes, a level N structure on ðA; lÞ is a symplectic similitude from A½N�

with the Weil pairing to ðZ=NZÞ2g with the standard symplectic pairing, i.e. an

isomorphism of group schemes a : A½N�-ðZ=NZÞ2g such that the following diagram
commutes:

for some isomorphism lNDZ=NZ:
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If NX3; the functor ‘‘isomorphism classes of principally polarized g-dimensional
abelian varieties with level N structure’’ is representable by a scheme Ag;1;N which is

faithfully flat over Z; smooth and quasi-projective over Z½ 1
N
�: Let

be the corresponding universal abelian variety. Let E :¼ 0�ðOY=Ag;1;N
Þ; this is called

the Hodge bundle.

2.2.1. Twisting the sheaf of differentials

Let X be a scheme and let F be a locally free OX -module whose rank is the same
integer n on all connected components of X : Let fUi : iAIg be an open cover of X

that trivializes F; then we have FjUi
DðOX jUi

Þn; and for all i and j we have

isomorphisms FjUi-Uj
DFjUj-Ui

given by gijAGLnðOX jUi-Uj
Þ satisfying the usual

cocycle identities.
Now suppose we are given a rational linear representation r : GLn-GLm: We

construct a new locally free OX -module Fr as follows: set ðFrÞi ¼ ðOX jUi
Þm; and for

any i; j define an isomorphism ðFrÞijUi-Uj
-ðFrÞjjUi-Uj

by rðgijÞAGLmðOX jUi-Uj
Þ:

Since the transition functions rðgijÞ satisfy the required properties, we can glue the

ðFrÞi together to get the locally free OX -module Fr: We say that it was obtained by

twisting F by r. It is obvious thatF ¼ Fstd; where std : GLn-GLn is the standard
representation.

The correspondence r/Fr is a covariant functor from the category of rational

linear representations of GLn to the category of locally free OX -modules. This
functor is exact and it commutes with tensor products.

Let X :¼ Ag;1;N#Fp: This is a smooth quasi-projective variety over Fp; with fðNÞ
connected components. Given a rational representation r : GLg-GLm; the global

sections of Er are called Siegel modular forms ðmod pÞ of weight r and level N and

they can be written

MrðNÞ :¼H0ðX ;ErÞ ¼ f f : f½A; l; a; Z�g-F
m

p satisfying

f ðA; l; a;MZÞ ¼ rðMÞ�1
f ðA; l; a; ZÞ; 8MAGLgðFpÞg;

where Z is a basis of invariant differentials on A:

2.2.2. Hecke action

Suppose we have a correspondence

X ’
a

Z !b X ;
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where a and b are finite étale, and suppose that we are given a coherent sheaf F on
X together with a morphism of OZ-modules z : a�F-b�F:

We claim that this induces an operator TZ;F : H0ðX ;FÞ-H0ðX ;FÞ:
Since b is finite flat, b�OZ is a locally free sheaf of OX -algebras, and therefore we

can define Traceb : b�OZ-OX via the diagram

We want to extend this trace map toF: By the projection formula, we have b�b
�F ¼

b�ðb�F#OZÞ ¼ F#b�OZ: We can now define Traceb : b�b
�F-F via the diagram

It remains to put these together:

TZ;F : H0ðX ;FÞ-H0ðX ;FÞ

s/Tracebðb�zða�sÞÞ:

The Hecke operators considered in this paper are special cases of the TZ;F; with

X ¼ Ag;1;N#Fp: The sheaf F will typically be Er: In order to say what Z is we need

some definitions.
Let c be a fixed prime not dividing pN: A quasi-isogeny of polarized abelian

varieties f : ðA1; l1Þ-ðA2; l2Þ is said to be an c-quasi-isogeny if its degree is a
(possibly negative) power of c: Such f induces a symplectic similitude

Tcf : ðTcA1; e1Þ-ðTcA2; e2Þ

which gives an element gAG :¼ GSp2gðQcÞ: Since g is defined only up to changes of

symplectic bases for TcA1 and TcA2; f actually defines a double coset HgH; where
H :¼ GSp2gðZcÞ: We say that f is of type HgH : Since ðGSp2gðQcÞ;GSp2gðZcÞÞ is a
Hecke pair [1, Section 3.3.1], we can talk about the local Hecke algebra Hc :¼
HðG;HÞ: Finally, we will say that two c-quasi-isogenies are equivalent if they have
the same kernel.

Given some HgHAHc; we let Z be the moduli space of quadruples ðA; l; a;fÞ;
where ðA; lÞ is a g-dimensional principally polarized abelian variety over Fp; a is a

level N structure, and f is an equivalence class of c-quasi-isogenies of type HgH:
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This has two natural maps to the moduli space X ; namely

a : Z-X

ðA; l; a;fÞ/ðA; l; aÞ

and

b : Z-X

ðA; l; a;fÞ/ðfðAÞ; lf; afÞ;

where lf; respectively af are the principal polarization, respectively the level N

structure induced by f on fðAÞ:
Both a and b are finite étale. The operators TZ;F defined in this context are our

Hecke operators.

2.2.3. The Kodaira–Spencer isomorphism

We recall the properties of the Kodaira–Spencer isomorphism. For a detailed
account see [4, Sections III.9 and VI.4].

If p : A-S is projective and smooth, there is a Kodaira–Spencer map

k :TS-R1p�ðTA=SÞ:

If

is an abelian scheme, set EA=S :¼ 0�ðO1
A=SÞ: Then

TA=S ¼ p�ð0�ðTA=SÞÞ ¼ p�ðE3A=SÞ:

The projection formula gives

R1p�ðp�ðE3A=SÞÞ ¼ ðR1p�OAÞ#OS
E3A=S:

Let pt : At-S be the dual abelian scheme, then

R1p�OA ¼ 0�ðTAt=SÞ ¼ E3At=S:

So the Kodaira–Spencer map can be written as follows:

k :TS-E3At=S#OS
E3A=S;
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which after dualizing gives

k3 : EAt=S#OS
EA=S-O1

S:

Now suppose that l : A=S-At=S is a principal polarization, i.e. an isomorphism.
Then the pullback map l� : EAt=S-EA=S is an isomorphism and we get a map

E#2
A=S

-O1
S: This factors through the projection map to Sym2ðEA=SÞ; and the resulting

map Sym2ðEA=SÞ-O1
S is an isomorphism. In particular, in the notation of Section

2.2.1 we have a Hecke isomorphism ESym2stdDO1
X :

2.3. Superspecial abelian varieties

For a commutative group scheme A over a perfect field K we define the a-number

of A by aðAÞ :¼ dimK Homðap;AÞ: If KCL with L perfect, then dimK Homðap;AÞ ¼
dimL Homðap;A#LÞ so aðAÞ does not depend on the base field.

An abelian variety A over K of dimension gX2 is said to be superspecial if aðAÞ ¼
g: Let k be an algebraic closure of K: By Oort [20, Theorem 2], aðAÞ ¼ g if and only
if A#kDE1 �?� Eg; where the Ei are supersingular elliptic curves over k: On the

other hand, for any gX2 and any supersingular elliptic curves E1;y;E2g over k we

have [23, Theorem 3.5]

E1 �?� EgDEgþ1 �?� E2g:

We conclude that A is superspecial if and only if A#kDEg for some (and therefore
any) supersingular elliptic curve E over k:

Any abelian subvariety of a superspecial abelian variety A is also superspecial. If A

is superspecial and GCA is a finite étale subgroup scheme, then A=G is also
superspecial.

An Fq-structure on a scheme S over Fp is a scheme S0 over Fq such that S is

isomorphic to S0#Fp:

Lemma 5. Let E be a supersingular elliptic curve over Fp: Then E has a canonical Fp2 -

structure E0; namely the one whose geometric Frobenius is ½�p�: The correspondence

E/E0 is functorial.

Proof. This is a well-known result which is stated in [21, p. 284]. For a detailed
proof, see [6, Lemma 2.1]. &

Proposition 6. Let A be a superspecial abelian variety over Fp: Then A has a canonical

Fp2 -structure A0; namely the one whose geometric Frobenius is ½�p�: The correspon-

dence A/A0 is functorial.
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Proof. Let E be a supersingular elliptic curve over Fp; then ADEg: By Lemma 5

we know that E has an Fp2 -structure E0 with pE0 ¼ ½�p�E0 ; therefore A0 :¼ ðE0Þg is an

Fp2 -structure for A such that

pA0 ¼ pE0 � pE0 �?� pE0 ¼ ½�p�E0 � ½�p�E0 �?� ½�p�E0 ¼ ½�p�A0 :

The functoriality statement follows from the corresponding functoriality statement

in Lemma 5. Since any superspecial abelian variety over Fp is isomorphic to Eg; it

suffices to consider a morphism f : Eg-Eg: This is built out of a bunch of
morphisms E-E; which by Lemma 5 come from morphisms E0-E0: These piece

together to give a morphism f 0 : ðE0Þg-ðE0Þg over Fp2 ; which is just f after tensoring

with Fp: &

An easy consequence of the functoriality is that if l is a principal polarization on
A; there exists a principal polarization l0 of the canonical Fp2 -structure A0 of A such

that l0#Fp ¼ l: We say that ðA0; l0Þ is the canonical Fp2 -structure of ðA; lÞ:

2.3.1. Isogenies

We need to define what it means for two principally polarized abelian varieties
ðA1; l1Þ and ðA2; l2Þ to be isogenous. The natural tendency is to consider isogenies
f : A1-A2 such that the following diagram commutes:

i.e. ft
3l23f ¼ l1: But then deg f ¼ 1 so the only isogenies that satisfy this condition

are isomorphisms. We therefore relax the condition by requiring f to satisfy

ft
3l23f ¼ ml1;

where mAN: By computing degrees we get ðdeg fÞ2 ¼ mg:

2.3.2. Pairings

We now consider the local data given by the presence of a principal polarization.

Let ðA; lÞ be a g-dimensional principally polarized abelian variety defined over Fp:

Let c be a prime different from p and set as usual Zcð1Þ :¼ lim
’

lcn : We have the

canonical Weil pairing [15, Section 16]

ec : TcA � TcA
t-Zcð1Þ;
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which is a non-degenerate Zc-bilinear map. When combined with a homomorphism
of the form a : A-At it gives

eac : TcA � TcA-Zcð1Þ

ða; a0Þ/ ecða; aa0Þ:

If a is a polarization then eac is an alternating (also called symplectic) form, i.e.

eacða0; aÞ ¼ eacða; a0Þ�1 for all a; a0ATcA: If f : A-B is a homomorphism, then

e
f t
3a3f

c ða; a0Þ ¼ eacð f ðaÞ; f ða0ÞÞ

for all a; a0ATcA; a : B-Bt:
An isogeny f : ðA1; l1Þ-ðA2; l2Þ of principally polarized abelian varieties induces

an injective Zc-linear map on Tate modules Tcf : TcA1-TcA2; with finite cokernel
TcA2=ðTcfÞðTcA1Þ isomorphic to the c-primary part ðker fÞc of ker f: Since

ft
3l23f ¼ ml1; we have

el2c ððTcfÞa; ðTcfÞa0Þ ¼ e
ft
3l23f

c ða; a0Þ ¼ eml1
c ða; a0Þ

¼ ecða;ml1a0Þ ¼ ecða; l1a0Þm ¼ el1c ða; a0Þm:

We say that the map Tcf is a symplectic similitude between the symplectic modules

ðTcA1; el1c Þ and ðTcA2; el2c Þ:
In order to deal with the prime p; we will use Dieudonné theory. Let W :¼ WðkÞ

for k a perfect field of characteristic p and let M be a free W -module with semi-linear
maps F and V satisfying

FV ¼ VF ¼ p; Fx ¼ xpF ; Vx ¼ x1=pV :

A principal quasi-polarization on M is an alternating form e : M � M-W which is a
perfect pairing over W ; such that F and V are adjoints:

eðFx; yÞ ¼ eðx;VyÞp:

Such a principal quasi-polarization induces a pairing

/;S : M=FM � M=FM- k

ðx; yÞ/ eðx̃;FỹÞmod p;

where x̃; ỹAM are lifts of x; yAM=FM: The pairing /;S is non-degenerate, linear in
x and s-linear in y: Note that if k ¼ Fp2 then /;S is a hermitian form.

Let Mð
Þ be the contravariant Dieudonné module functor on the category of p-
divisible groups over Fp2 (see [5]). If A is a superspecial abelian variety we say that the

Dieudonné module of A is MðA0½pN�Þ; where A0 is the canonical Fp2 -structure on A: A
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principal polarization on A defines a principal quasi-polarization ep on the

Dieudonné module M of A [18, Proposition 3.24]. Since A is superspecial we get
as above a hermitian form on M=FM:

An isogeny f : ðA1; l1Þ-ðA2; l2Þ induces a symplectic similitude f� : M2-M1 of
principally quasi-polarized Dieudonné modules.

2.3.3. Dieudonné module of a superspecial abelian variety

Let ðA; lÞ be a principally polarized superspecial abelian variety over Fp; and let

ðA0; l0Þ be the canonical Fp2 -structure given by Proposition 6. We want to describe

the structure of the Dieudonné module M ¼ MðA0½pN�Þ; together with the principal
quasi-polarization e induced by l0:

We first need to recall the structure of the Dieudonné module of a supersingular
elliptic curve E: This is well-known, and mentioned for instance in [17, Section 3] or
[16, Appendix]. Define the following Dieudonné module:

A1;1 :¼ W 2;F ¼
0 1

�p 0

� �
s;V ¼

0 �1

p 0

� �
s�1

� �
:

Corollary 7. Let E be a supersingular elliptic curve, let E 0 be its canonical Fp2 -structure

and let M :¼ MðE0½pN�Þ:

(a) We have MDA1;1:
(b) We have EndðMÞ ¼ Op :¼ O#Zp; where O :¼ EndðE 0Þ: Moreover,

O�
p ð1Þ :¼ kerðO�

p ����!reduction
F�p2Þ

can be identified with the group of automorphisms of M which lift the identity map

on M=FM:
(c) If Mi are the Dieudonné modules of the supersingular elliptic curves Ei; i ¼ 1; 2;

then any isomorphism M1=FM1DM2=Fm2 lifts to an isomorphism M1DM2:

Proof. (a) As we mentioned, this is well-known. Unfortunately, we do not know a
reference for the proof, so we refer to Ghitza [6, Section 2.3.1] for the computations.

(b) Let gAEndðMÞ; it is a W -linear map that commutes with F and V : Suppose g

is given by a matrix ðgijÞAM2ðWÞ: We have

F3g ¼
0 1

�p 0

� �
s

g11 g12

g21 g22

� �
¼

g
p
21 g

p
22

�pg
p
11 �pg

p
12

 !
s;

g3F ¼
g11 g12

g21 g22

� �
0 1

�p 0

� �
s ¼

�pg12 g11

�pg22 g21

� �
s:
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These should be equal so we get g
p
21 ¼ �pg12; g11 ¼ g

p
22: We also impose the

condition V3g ¼ g3V ; but this does not give anything new. Therefore

EndðMÞ ¼
x y

�pyp xp

� �
: x; yAWðFp2Þ

� �

¼
x 0

0 xp

� �
þ F

y 0

0 yp

� �
: x; yAWðFp2Þ

� �
:

But WðFp2Þ is the ring of integers of the unique unramified quadratic extension L of

Qp: Let p be a solution of X 2 þ p ¼ 0 in %L: The map s : x/xp is the unique non-

trivial automorphism of L: It is now easy to see that the map

j : EndðMÞ - Bp ¼ fL;�pg ¼ B#Qp

x 0

0 xp

� �
þ F

y 0

0 yp

� �
/ x þ py

is an injective ring homomorphism. It identifies EndðMÞ with Op ¼ fx þ
py : x; yAOLg; the unique maximal order of Bp:

It remains to prove the statement about O�
p ð1Þ: Let g :¼ ð x

�pyp
y

xpÞAEndðMÞ� ¼
O�

p : Note that M=FM ¼ fð0
a
Þ þ FM : aAFp2g: Let %x be the reduction of x modulo p;

then g restricts to multiplication by %xp on M=FM:
Therefore g restricts to the identity if and only if %x ¼ 1; which means that the

group of such automorphisms is identified with the kernel of the reduction modulo p;
i.e. with O�

p ð1Þ:
(c) It suffices to show that any automorphism of M=FM lifts to an automorphism

of M: From the description of M=FM in part (b) of the proof we know that the
automorphisms are given by multiplication by some lAF�p2 : But then the matrix

ðlp

0
0
lÞ represents an automorphism of M which restricts to multiplication by l on

M=FM; which is what we wanted to show. &

We now use the following result [14, Proposition 6.1]:

Proposition 8. Let K be a perfect field containing Fp2 ; and suppose fM; eg is a quasi-

polarized superspecial Dieudonné module of genus g over W :¼ WðKÞ such that

MDA
g
1;1: Then one can decompose

MDM1"M2"?"Md ðeðMi;MjÞ ¼ 0 if iajÞ;

where each Mi is of either of the following types:

(i) a genus 1 quasi-polarized superspecial Dieudonné module over W generated by

some x such that eðx;FxÞ ¼ pre for some rAZ and eAW \pW with es ¼ �e; or
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(ii) a genus 2 quasi-polarized superspecial Dieudonné module over W generated by

some x; y such that eðx; yÞ ¼ pr for some rAZ; and eðx;FxÞ ¼ eðy;FyÞ ¼
eðx;FyÞ ¼ eðy;FxÞ ¼ 0:

Corollary 9. We have MðA0½pN�ÞDA
g
1;1 as principally quasi-polarized Dieudonné

modules, where A
g
1;1 is endowed with the product quasi-polarization.

Proof. In the direct sum decomposition of the proposition, the degree of the quasi-
polarization on M is the product of the degrees of the quasi-polarizations of each of
the summands. Since our M is principally quasi-polarized we conclude that each
summand is also principally quasi-polarized, i.e. the bilinear form /;S is a perfect
pairing on each summand.

Let M0 be such a summand and suppose M0 is of type (ii) from the proposition.
This gives a W -basis for M0 consisting of x; Fx; y and Fy: The quasi-polarization e

defines a map M0-Mt
0 given by z/fz; where fzðvÞ :¼ eðz; vÞ: Let xt; ðFxÞt; yt and

ðFyÞt be the dual basis to x; Fx; y and Fy: It is an easy computation to see that

fx ¼ pryt; fFx ¼ prþ1ðFyÞt; fy ¼ �prxt and fFy ¼ �prþ1ðFxÞt: For instance

fFyðFxÞ ¼ eðFy;FxÞ ¼ eðy;VFxÞs ¼ eðy; pxÞs ¼ �peðx; yÞs ¼ �prþ1:

But the map M0-Mt
0 given by z/fz is an isomorphism, hence pr ¼ prþ1 ¼ 1;

contradiction.
So M has only summands of type (i). A similar (but even simpler) computation

shows that each summand must have eðx;FxÞ ¼ 1: &

Corollary 10. Let M :¼ MðA0½pN�Þ: There exists an isomorphism between

EndðM; e0Þ� and GUgðOpÞ; such that the subgroup of symplectic automorphisms

which lift the identity map on ðM=FM; e0Þ is identified with Up defined by the short

exact sequence

1-Up-GUgðOpÞ-GUgðFp2Þ-1;

where the surjective map is reduction modulo the uniformizer p of Op:

Proof. Recall the identification EndðA1;1ÞDOp from the proof of part (b) of

Corollary 7:

j : EndðA1;1Þ-Op

x y

�pyp xp

� �
/ x þ py:
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On the other hand, any TAEndðMÞ ¼ EndðAg
1;1Þ is a 2g � 2g matrix made of 2� 2

blocks of the form Tij :¼ ð xij

�py
p
ij

yij

x
p
ij

Þ: Therefore we have an isomorphism

j : EndðMÞ�-GLgðOpÞ

T ¼ ðTijÞi; j/ ðxij þ pyijÞi; j:

We want to prove that under this isomorphism, EndðM; e0Þ� corresponds to
GUgðOpÞ: For this we use Corollary 9, which says that the bilinear form e0 is given

by the block-diagonal matrix

E0 :¼

0 1

�1 0

&

0 1

�1 0

0
BBBBBB@

1
CCCCCCA:

Therefore we have

EndðM; e0Þ� ¼ fTAEndðMÞ� : TtE0T ¼ gE0; gAZpg:

Note that for the 2� 2 block Tij we have

0 1

�1 0

� ��1

Tt
ij

0 1

�1 0

� �
¼

x
p
ij �yij

py
p
ij xij

 !
;

which maps under j to x
p
ij � pyij ¼ xij þ pyij ¼ jðTijÞ; where %
 denotes the

conjugation in the quaternion algebra Bp :¼ Op#Qp: This means that E�1
0 TtE0

maps to jðTÞ�; where we write U� ¼ Ut: Putting it all together we conclude that for

any TAEndðMÞ� we have

TAEndðM; e0Þ�3E�1
0 TtE0T ¼ g3jðTÞ�jðTÞ ¼ g

3jðTÞAGUgðOpÞ;

which is precisely what we wanted to show.
For the second part of the statement note that

M=FM ¼ fð0; a1; 0; a2;y; 0; agÞt þ FM : aiAFp2g:

Let T ¼ ðTijÞAEndðM; e0Þ�; then its induced map on M=FM is

Tðð0; a1; 0; a2;y; 0; agÞt þ FMÞ ¼ 0;
X

j

aj %x
p
1j;y; 0;

X
j

aj %x
p
gj

 !
þ FM;
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where %xij denotes the reduction modulo p of xij : Therefore T induces the identity

map on M=FM if and only if

%x11 %x12 y %x1g

%x21 %x22 y %x2g

^ ^ & ^

%xg1 %xg2 y %xgg

0
BBB@

1
CCCA ¼ 1:

But the matrix above is precisely the matrix of the reduction of jðTÞ modulo p; so T

induces the identity on M=FM if and only if jðTÞAUp: &

2.3.4. Differentials defined over Fp2

We know from Proposition 6 that a principally polarized superspecial abelian
variety ðA; lÞ has a canonical Fp2 -structure ðA0; l0Þ: We therefore have a well-defined

notion of invariant differentials on A defined over Fp2 :

Lemma 11. Let E be a supersingular elliptic curve over Fp: Then a non-zero invariant

differential on E defined over Fp2 is equivalent to a choice of non-zero element of

M=FM; where M :¼ MðE0½pN�Þ and E0 is the canonical Fp2 -structure of E:

Proof. Differentials of E defined over Fp2 are by definition differentials of E 0; i.e.

elements of the cotangent space oðE0Þ: Since E0½p� is a closed subgroup-scheme of E0;
there is a canonical surjection on cotangent spaces oðE0Þ-oðE0½p�Þ-0: Since both
vector spaces have dimension one, this map is actually an isomorphism. Similarly, we
get a canonical isomorphism oðE0½pN�ÞDoðE0½p�Þ; so we have identified oðE 0Þ with
oðE0½pN�Þ: By Fontaine [5, Proposition III.4.3], oðE0½pN�Þ is canonically isomorphic
to M=FM; so oðE0Þ is identified with M=FM: &

Proposition 12. Let A be a superspecial abelian variety over Fp; let A0 be its canonical

Fp2 -structure and M :¼ MðA0½pN�Þ: Then giving a basis of invariant differentials on A

defined over Fp2 is equivalent to giving a basis of M=FM over Fp2 :

Proof. The space of invariant differentials on A defined over Fp2 is by definition

oðA0Þ: We have oðA0ÞDoðE0gÞDoðE0Þg: By Lemma 11 we know that

oðE0ÞDMðE 0½pN�Þ=FMðE0½pN�Þ; and since MðA0½pN�ÞDMðE0½pN�Þg we conclude
that oðA0ÞDM=FM: &

Note that as we have seen in Section 2.3.2, the presence of a principal polarization
l0 on an Fp2 -abelian variety A0 induces a hermitian form on the g-dimensional Fp2 -

vector space M=FM: We say that a basis of invariant differentials on A defined over
Fp2 is a basis of invariant differentials on ðA; lÞ if it respects this hermitian structure.

We can therefore conclude that
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Corollary 13. Let ðA; lÞ be a principally polarized superspecial abelian variety over Fp;

let ðA0; l0Þ be its canonical Fp2 -structure and M :¼ MðA0½pN�Þ: Then giving a basis of

invariant differentials on ðA; lÞ defined over Fp2 is equivalent to giving a hermitian basis

of M=FM over Fp2 :

3. Construction of the bijection

Let A be a superspecial abelian variety of dimension g over Fp: Let A0DE0g

be its canonical Fp2 -structure, then ADEg for E :¼ E 0#Fp: Until further notice,

we will write A to mean Eg and A0 to mean E0g: Let l00 be the principal polariza-

tion on A0 defined by the g � g identity matrix, let l0 :¼ l00#Fp; let

a0 : A½N�-ðZ=NZÞ2g be a level N structure on A; and let Z0 be a basis of invariant
differentials on ðA; l0Þ defined over Fp2 (i.e. a hermitian basis of M=FM), where

M ¼ MðA0½pN�Þ: The various Weil pairings induced by l0; resp. l00 will be denoted
e0; resp. e0

0:
Let S denote the finite set of isomorphism classes of pairs ðl; aÞ; where l

is a principal polarization on A and a is a level N structure. S is a subscheme

of X : We also define *S to be the set of isomorphism classes of triples ðl; a; ZÞ with l
and a as above and Z a basis of invariant differentials on ðA; lÞ defined over Fp2 :

Isomorphism is given by the condition f 0ðZ2Þ ¼ Z1 and the commutativity of the
diagrams

where std denotes the standard symplectic pairing on the various modules.
Let O :¼ EndðEÞ and B :¼ O#Q: Let G :¼ GUgðBÞ; and recall the notation of

Section 2.1.3. The purpose of this section is to construct a bijection between the finite

sets *S and O :¼ OðNÞ:
This construction is rather long, but the basic idea is that all principally polarized

superspecial abelian varieties are isogenous, and that one can obtain local data by
studying these isogenies at each prime c (including p). The reader is encouraged to
skip to Section 4.

Lemma 14. Given any principal polarization l on A; there exists an isogeny of

principally polarized abelian varieties f : ðA; l0Þ-ðA; lÞ:

Proof. We want an isogeny f : A-A such that ft
3l3f ¼ ml0 for some mAN:

There is an obvious bijective correspondence associating to a homomorphism

c : A-A a matrix CAMgðOÞ: Under this bijection, ct : At-At corresponds to the
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adjoint C�: If f : A-A is an isogeny, then FAGLgðBÞ: If l : A-At is a polarization,

then lt ¼ l so L� ¼ L: Also L is positive-definite. If l is a principal polarization,
then LAGLgðOÞ defines a positive-definite quaternion hermitian form f : By

Proposition 2 we know that L can be diagonalized, i.e. there exists MAGLgðBÞ
such that M�1LM ¼ diagða1;y; agÞ; with aiAQ: The form f is positive-definite so

aiAQ40: But the norm theorem (Theorem 3) says that the norm map is surjective
onto Q40; so by the last part of Proposition 2 there exists M 0AGLgðBÞ such that

ðM 0Þ�1LM 0 ¼ I :
So there is a basis of Bg such that the quaternion hermitian form f is

represented by the matrix I : But the matrices representing f are all of the form
Q�LQ for QAGLgðBÞ: Now B ¼ O#Q so there exists a positive integer n such that

nQ has coefficients in O: Let F ¼ nQ and let f : A-A be the homomorphism
corresponding to F: Since FAGLgðBÞ and the fixed principal polarization l0
corresponds to the identity matrix, we conclude that f is an isogeny and

ft
3l3f ¼ n2: &

Lemma 14 allows us to identify *S with the set *S0 consisting of isomorphism classes
of triples

f : ððA; l0Þ-ðA; lÞ; a : A½N�-ðZ=NZÞ2g; ZÞ;

where ðA; l0Þ!
f ðA; lÞ is an isogeny of principally polarized abelian varieties and

isomorphism is defined by diagrams (1).

Proposition 15. An isogeny f1 : ðA; l0Þ-ðA; l1Þ defines for any prime cap an element

½xc�AUcðNÞ\Gc: If c[deg f1 then ½xc� ¼ 1:

Proof. Pick a prime cap and let n satisfy cnjjN: As we have seen in Section 2.3.2,

f induces an injective symplectic similitude Tcf1 : ðTcA; el0c Þ-ðTcA; el1c Þ; with

finite cokernel isomorphic to ðker f1Þc: To ease notation, we will just write e0 for el0c
and e1 for el1c (and we use the same letters for the corresponding Weil pairings

on A½cn�).
Let kc;1 : ðTcA; e0Þ-ðTcA; e1Þ be a symplectic isomorphism whose restriction gives

a commutative diagram
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Let xc ¼ k�1
c;13Tcf1; then xc : ðTcA; e0Þ-ðTcA; e0Þ is a symplectic similitude and sits

in the commutative diagram

ð2Þ

The map xc is not necessarily invertible, but since its injective with finite cokernel it
defines a symplectic automorphism of ðVcA; e0Þ; i.e. xcAGSp2gðQcÞ ¼ Gc: If c[deg f
then Tcf is a symplectic isomorphism so we can take xc ¼ 1:

How does this depend on the particular choice of kc;1? Let

k̃c;1 : ðTcA; e0Þ!
B ðTcA; e1Þ be some other symplectic isomorphism that restricts to

a�1
1 3a0: Let

u :¼ ðk̃c;1Þ�1
3kc;1AGSp2gðZcÞ ¼ Uc:

Note that u restricts to the identity on A½cn� so actually uAUcðNÞ: Conversely, if
uAUcðNÞ then kc;13u

�1 : ðTcA; e0Þ-ðTcA; e1Þ is a symplectic isomorphism restricting

to a�1
1 3a: Therefore f1 gives us a well-defined element ½xc�AUcðNÞ\Gc: &

What happens at p? The isogeny f1 induces an injective symplectic similitude

Mðf1
0Þ : ðM; e1Þ-ðM; e0Þ

with finite cokernel. Let kp;1 : ðM; e1Þ-ðM; e0Þ be a symplectic isomorphism whose

reduction ðM=FM; e1Þ-ðM=FM; e0Þ maps Z1 to Z0: Set xp :¼ Mðf1
0Þ3k�1

p;1; then the

map xp : ðM; e0Þ-ðM; e0Þ is an injective symplectic similitude with finite cokernel.

Hence xp induces a symplectic isomorphism of ðM#Qp; e0Þ; so by Corollary 10, xp

gives an element of GUgðBpÞ: Since kp;1 is well-defined up to multiplication by Up; we

have that f1 defines a element ½xp�AUp\GUgðBpÞ:

Lemma 16. Any two isogenies f1;
*f1 : ðA; l0Þ-ðA; l1Þ are related by *f1 ¼ f13u;

where u corresponds to a matrix UAGUgðBÞ:

Proof. Suppose f1;
*f1 satisfy

ft
13l13f1 ¼ ml0;

*ft
13l13 *f1 ¼ m̃l0:
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We treat f1;
*f1 as quasi-isogenies, i.e. elements of EndðAÞ#Q: Let n ¼ deg f1; then

we have that as quasi-isogenies:

#f1#
1

n

� �
3f1 ¼ n#

1

n
¼ 1 ¼ f13

#f1#
1

n

� �
:

We can therefore write f�1
1 ¼ #f1#

1
n
and we have shown that any isogeny has an

inverse quasi-isogeny—actually a trivial modification of the argument shows that

any quasi-isogeny is invertible. Set u :¼ f�1
1 3 *f1AðEndðAÞ#QÞ�:

Denote by capital letters the matrices corresponding to the various maps. We have

U�U ¼ *F�
1ðF�1

1 Þ�F�1
1

*F1 ¼ *F�
1

1

m
L1

� �
*F1 ¼

m̃

m
I

so UAGUgðBÞ: &

The next lemma says that we have indeed constructed a map

g : *S0-O ¼ U\Gð #QÞ=GðQÞ:

Lemma 17. The map g is well-defined.

Proof. We need to show that g only depends on the isomorphism class ½f1; a1; Z1�:
Suppose f : ðf1; a1; Z1Þ-ðf2; a2; Z2Þ is an isomorphism of triples. By Lemma 16 we
can assume without loss of generality that f2 ¼ f 3f1: For cap; we get the following
diagrams

where kc;2 :¼ Tcf 3kc;1: It is now clear that we end up with the same xcAO�
c ðNÞ\B�

c as

the one obtained from f1: The exact same thing happens at the prime p: &

3.1. The inverse map

We need to construct an inverse. Let ½x�AO and pick a representative x ¼
ðxvÞAGð #QÞ: Let cap: We have xcAGðQcÞ ¼ GSp2gðQcÞ ¼ AutðVc; e0Þ: Let ncAZ be

the smallest integer such that yc :¼ cncxcAGSp2gðZcÞ ¼ EndðTcA; e0Þ: The endo-

morphism yc is injective with finite cokernel Cc: Let c
k be the order of Cc: Let Kc be
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the kernel of the map induced by yc on A½ck�:

0-Kc-A½ck�!yc A½ck�-Cc-0:

For c ¼ p we have xpAGUgðBpÞ ¼ ðEndðM; e0Þ#QpÞ�: Write xp ¼ a þ pb; where

a; bAMgðLpÞ and p2 ¼ �p: We have a ¼
P

i ai#1
pi and b ¼

P
j bj# 1

p j; with

ai; bjAEndðM; e0Þ: Let npAZ be the smallest integer such that

pnp xp ¼ ða0#1Þ þ pðb0#1Þ

and set yp :¼ a0 þ pb0AEndðM; e0Þ: This yp is an endomorphism of the Dieudonné

module M which induces an automorphism of M#Qp; therefore this endomorph-

ism must be injective with finite cokernel Cp: Let pk be the order of Cp; then yp

induces a map

MðA½pk�Þ!
yp

MðA½pk�Þ-Cp-0:

Then Cp is the Dieudonné module of a subgroup scheme Kp of A of rank pk:

Since xAGð #QÞ; nc ¼ 0 for all but finitely many c: Therefore, it makes sense to set

q :¼
Q

cncAQ� and y :¼ xq; the cth component of y is precisely the yc above, and
clearly ½x� ¼ ½y�: Now set K :¼ "Kc; then K is a finite subgroup of A: So to the given
½x�AO we can associate the quotient isogeny A-A=K: After picking an isomorphism
A=KDA we get an isogeny f : A-A; and this induces a principal polarization l on
A such that f is an isogeny of polarized abelian varieties. For cap; our construction
gives for any positive integer m

Due to the structure of cm-torsion, it is not hard to see that one can construct a
symplectic isomorphism (actually, there exist many of them) ðA½cm�; e0ÞDðA½cm�; eÞ
which makes the above diagram commute. On the level of Tate modules, we get
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In particular, we can set a :¼ a03k�1
c ; then the symplectic isomorphisms

a : ðA½cn�; eÞ!B ððZ=cnZÞ2g; stdÞ

for cjN piece together to give a level N structure on ðA; lÞ:
For c ¼ p we have similarly

and Z :¼ k�1
p ðZ0Þ gives a non-zero invariant differential on ðA; lÞ:

The next result tells us that we have indeed constructed a map d :O- *S0:

Proposition 18. The map d is well-defined.

Proof. First suppose that %x ¼ xu; where uAEndðA; l0Þ is not divisible by any
rational prime. Let cap; then %xc ¼ xcu; so %yc ¼ ycu:

The snake lemma gives coker vc ¼ 0; ker vcDcoker u: Let ck be the order of %Cc; then

we can restrict the above diagram to the ck-torsion and get

where uc is the restriction of u to A½ck� and gc is the restriction of u to %Kc: Note that

cokerðuc : TcA-TcAÞ ¼ cokerðu : A½ck�-A½ck�Þ: Since there is no snake lemma for
diagrams of long exact sequences, we split the above diagram in two:

ð3Þ
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ð4Þ

where we have taken the liberty of using the same label hc for two maps which are
canonically isomorphic. We first apply the snake lemma to diagram 4 and get
ker hc ¼ 0; coker hcDker vc: Using this information together with the snake lemma
in diagram 3 gives

ker gcDker uc; 0-coker gc-coker uc-coker hc-0:

But we already have coker uc ¼ coker uDker vcDcoker hc so the short exact
sequence above becomes 0-coker gc-0; i.e. coker gc ¼ 0:

Let g :¼ "gc : %K-K and let f : ðA; %lÞ-ðA; lÞ be defined by the diagram

where we use some isomorphism A= %KDA to define the isogeny %f and the principal

polarization %l: We apply the snake lemma and get an exact sequence

0-ker g-ker u-ker f-coker g ¼ 0-coker u ¼ 0-coker f-0:

But the map ker g-ker u is the sum of the isomorphisms ker gcDker uc; so
ker u-ker f is the zero map; therefore ker f ¼ 0: Clearly coker f ¼ 0; so f is an
isomorphism.

We check that this isomorphism preserves level N structures. We have a diagram

where we know that the outer square commutes, and that the triangles situated over,
to the left, and under the central ðTcA; e0Þ commute. Therefore the triangle to the

right of the central ðTcA; e0Þ also commutes, i.e. kc ¼ Tcf 3 %kc: The level N structures

on ðA; lÞ and ðA; %lÞ are defined in such a way that the inner squares in the following
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diagram commute:

therefore the outer rectangle also commutes, i.e. f preserves the level N structures.
The same argument with reversed arrows shows that f preserves differentials.
Now suppose %x ¼ xc; cap (the case c ¼ p is analogous, even easier). If c0[cp;

then %xc0 ¼ xc0c and %yc0 ¼ yc0c:Multiplication by c is an isomorphism of ðTc0A; e0Þ; so
it induces an isomorphism %Kc0DKc0 by applying the same argument as before on the
diagram:

Something similar occurs at p: If c0 ¼ c; we get %xc ¼ xcc and %yc ¼ yc so %Kc ¼ Kc:We

have an isomorphism %KDK so ðA; %lÞDðA; lÞ: We need to check that this
isomorphism is compatible with the level structures and the differentials. Let
c0[cp; then we have a diagram

Since the top ‘‘triangle’’ commutes, we see that the level structures commute with

the isomorphism. The same thing happens at p: When c0 ¼ c; then %Kc ¼ Kc so we
get the same diagram as above, except that the top isomorphism is actually the
identity map.

It remains to check the local choices. The group Cc (therefore Kc) depends on the

chosen isomorphism ðTcA; e0ÞDðZ2g
c ; stdÞ; and this can change yc by right

multiplication by an element of UcðNÞ: Suppose we have another such candidate
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%yc ¼ ucyc; then we would get a commutative diagram

from which we conclude as before that %KcDKc and ðA; %lÞDðA; lÞ: For the level N

structure, we have the diagram

and a similar argument holds for the Z and %Z: &

Lemma 19. The map g is bijective with inverse d:

Proof. Suppose we started with ½x�AO and got ½ðA; l0Þ!
f ðA; lÞ; a; Z�: For cap we get

the exact sequence

0-ðTcA; e0Þ �!Tcf ðTcA; eÞ-coker Tcf-0:

We see from diagram (3.1) that yc ¼ k�1
c 3Tcf; where kc is an isomorphism that

restricts to a�1
3a0: Therefore ½yc� is exactly the local element that is obtained in the

computation of gð½f; a; Z�Þ: The same thing happens at p; so indeed g3d ¼ 1:

Conversely, suppose we start with a triple ððA; l0Þ!
f ðA; lÞ; a; ZÞ: We get local

elements xc forming an adèle x: We have ker f ¼
Q

c coker xc: Now when we apply

d we already have xcAGSp2gðZcÞ so yc ¼ xc and K ¼ "coker xc ¼ ker f: We get an

isogeny ðA; l0Þ-ðA; %lÞ which has the same kernel as f; therefore ðA; %lÞDðA; lÞ: It is
clear from the construction of d that the level N structure and the invariant
differential will stay the same. &

We have just proved

Theorem 20. There is a canonical bijection *S0-O:
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3.2. Compatibilities

We now turn to the proof of the following result:

Theorem 21. The canonical bijection g : *S0ðNÞ-OðNÞ is compatible with the action of

the Hecke algebra, with the action of GSp2gðZ=NZÞ; and with the operation of raising

the level.

3.2.1. Hecke action

In this section c will denote a fixed prime not dividing pN: We have given the
definition of the Hecke operators in Section 2.2.2; we start this section by making the
definition more explicit.

If HgHAHc; we denote by detðHgHÞ the c-part of the determinant of any

representative of HgH: The action of Hc on *S0 is defined as follows. If

detðHgHÞ41; let C be a subgroup of A of type HgH and let ½ðA; l0Þ!
f ðA; lÞ;

a; Z�A *S0: The abelian variety A=C is also superspecial, so it can be identified with A:
We denote by cC the composition A-A=CDA; and we denote by lC the principal
polarization induced on the image A: We set

THgHð½ðA; l0Þ!
f ðA; lÞ; a; Z�Þ

:¼
X

C of type HgH

½ðA; l0Þ!
f ðA; lÞ!cCðA; lCÞ; aC ; ZC �;

where ZC :¼ MðcC
0Þ�1ðZÞ; and aC is defined by the diagram:

ð5Þ

Note that these definitions make sense because ðdeg cC ; pNÞ ¼ 1:

Now suppose detðHgHÞo1: Given C a subgroup of A of type Hg�1H; let cC be

the composition A-A=CDA and let #cC : A-A be the dual isogeny to cC : Given a
principal polarization l on A; there is a principal polarization lC on A such that the
following diagram commutes:
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The action is defined by

THgHð½ðA; l0Þ!
f ðA; lÞ; a; Z�Þ

:¼
X

C of type Hg�1H

½ðA; l0Þ!
f ðA; lÞ’

#cC ðA; lCÞ; lC ; aC ; ZC �;

where ZC ¼ Mð #cC
0ÞðZÞ; and aC is defined by the diagram

ð6Þ

The algebra Hc acts on H\G as follows: let HgH ¼
‘

i Hgi; let HxAH\G and

choose a representative xAHx: Then there exist representatives giAHgi such that
THgHðHxÞ ¼

P
i Hgix: The algebraHc acts on O by acting on the component Hxl of

½x�AO:

Lemma 22. The bijection g : *S0-O is compatible with the action of the local Hecke

algebra Hc; i.e. for all HgHAHc and ½f; a; Z� we have

gðTHgHð½f; a; Z�ÞÞ ¼ THgHðgð½f; a; Z�ÞÞ:

Proof. Let HgHAHc; let ½ðA; l0Þ!
f ðA; lÞ; a; Z�AS0 and let ½x� :¼ gð½f; a; Z�Þ:

Suppose at first that detðHgHÞ41 and let C be a subgroup of A of type HgH: Let
½xC � :¼ gð½cC3f; aC ; ZC �Þ: If ðc0; pcÞ ¼ 1; we have a diagram

Since ðTc0cCÞ3kc0 : ðTc0A; e0Þ-ðTc0A; eCÞ is a symplectic isomorphism restricting to

a�1
C 3a0 (see diagram 5), we get that ½xC;c0 � ¼ ½xc0 �:
A similar argument, based on the following diagram, shows that ½xC;p� ¼ ½xp�:
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We now figure out what happens at c: Fix xcAHxc; then the symplectic isomorphism
kc : ðTcA; e0Þ-ðTcA; eÞ is fixed and allows us to identify these two symplectic Zc-

modules. Choose a symplectic isomorphism kC : ðTcA; eÞ-ðTcA; eCÞ and set yC :¼
k�1

C 3TccC : Via the identification kc; yC induces a map zC : ðTcA; e0Þ-ðTcA; e0Þ: We

have a diagram

Since kC3kc is a symplectic isomorphism ðTcA; e0Þ-ðTcA; eCÞ and zC3xc satisfies all
the properties xC;c should, we conclude that HxC;c ¼ HzCxc: The assumption that C

is of type HgH implies that HzCCHgH:
It remains to show that the map C/HzC gives a bijection between the set of

subgroups C of A of type HgH and the set of right cosets Hz contained in HgH: We
start by constructing an inverse map. Let HzCHgH and pick a representative z: This
corresponds to a map z : ðTcA; e0Þ-ðTcA; e0Þ; and hence induces via kc a map
y : ðTcA; eÞ-ðTcA; eÞ: We use the same construction as in the definition of the
inverse map d in Section 3.1 to get a subgroup C of A which is canonically
isomorphic to the cokernel of y: This C will be of type HgH because HzCHgH: The
proof of the bijectivity of C/zC is now the same as the proof of Lemma 19.

It remains to deal with the case detðHgHÞo1: This works essentially the same,
except that various arrows are reversed. We illustrate the point by indicating how to
obtain the equivalent of the map C/HzC in this setting. Let C be a subgroup of A

of type Hg�1H: This defines a new element of *S0 which we denote by ½ #c�1
C 3f; aC ; ZC �

(by a slight abuse of notation since #cC is not invertible as an isogeny). Let ½xC � :¼
gð½ #c�1

C 3f; aC ; ZC �Þ: If ðc0; pcÞ ¼ 1; we have a diagram

Since ðTc0
#cCÞ�1

3kc0 : ðTc0A; e0Þ-ðTc0A; eCÞ is a symplectic isomorphism restricting

to a�1
C 3a0 (see diagram 6), we get that ½xC;c0 � ¼ ½xc0 �: The situation at p is similar and

we have ½xC;p� ¼ ½xp�:
What about c? As before, we fix xcAHxc and with it the symplectic isomorphism

kc : ðTcA; e0Þ-ðTcA; eÞ: Choose a symplectic isomorphism kC : ðTcA; eÞ-ðTcA; eCÞ
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and set yC :¼ Tc
#cC3kC : Via the identification kc; yC induces a map zC :

ðTcA; e0Þ-ðTcA; e0Þ: We have a diagram

It is now clear that zC3xC;c ¼ xc: z is only defined up to right multiplication by

elements of H (because of the choice of kC), so we get the formula HxC;c ¼ Hz�1
C xc:

The assumption that C is of type Hg�1H guarantees that Hz�1
C CHgH: The rest of

the proof proceeds similarly to the case detðHgHÞ41: &

3.2.2. Action of GSp2gðZ=NZÞ
Within this section we will write G to denote GSp2gðZ=NZÞ: The group G acts on

*S0 by g 
 ½f; l; a; Z� :¼ ½f; l; g3a; Z�:
The action on O is more delicate. It is easy to see that since Uc ¼ AutðTcA; e0Þ; we

have UcðNÞ\Uc ¼ AutðA½cn�; e0Þ; where cnjjN: Our fixed symplectic isomorphism

a0 : ðA½N�; e0Þ-ððZ=NZÞ2g; stdÞ identifies G with AutðA½N�; e0Þ via g/a�1
0 3g3a0:

Therefore we get an identification

G !B
Y
c

UcðNÞ\Uc

g/
Y
c

UcðNÞða�1
0 3g3a0Þ;

where the product is finite since the terms with c[N are 1: The action of G on O is
then given by

g 

Y
c

UcðNÞxc

" #
:¼

Y
c

UcðNÞða�1
0 3g3aÞxc

" #
:

Lemma 23. The bijection g : *S0-O is compatible with the action of the group

GSp2gðZ=NZÞ:

Proof. Let ½
Q

UcðNÞxc� :¼ gð½f; l; a; Z�Þ andY
UcðNÞx0

c

h i
:¼ gðg 
 ½f; l; a; Z�Þ ¼ gð½f; l; g3a; Z�Þ:
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Pick some cap and set H :¼ UcðNÞ; we claim that Hx0
c ¼ Hða�1

0 3g3aÞxc: Recall that

xc ¼ k�1
c 3Tcf; where kc : ðTcA; e0Þ-ðTcA; eÞ is some symplectic isomorphism

extending a�1
3a0: Therefore kc

0 :¼ kc3ða�1
0 3g3a0Þ is a symplectic isomorphism

extending a�1
3g3a0 and is thus precisely what we need in order to define xc

0 ¼
ðk0

cÞ
�1
3Tcf: By the definition of k0

c we have

x0
c ¼ ða�1

0 3g�1
3aÞ3k�1

c 3Tcf ¼ ða�1
0 3g�1

3aÞ3xc;

which is what we wanted to show. &

3.2.3. Raising the level

Suppose N 0 ¼ dN for some positive integer d: A level N 0 structure

a0 : ðA½N 0�; eÞ-ððZ=N 0ZÞ2g; stdÞ

on the principally polarized abelian variety ðA; lÞ induces a level N structure on
ðA; lÞ in the following way. Multiplication by d on A½N 0� gives a surjection d :

A½N 0�-A½N�; and there is a natural surjection p : ðZ=N 0ZÞ2g-ðZ=NZÞ2g given by

reduction mod N: We want to define a map a : A½N�-ðZ=NZÞ2g that completes the
following square:

This is straightforward: let PAA½N� and take some preimage Q of it in A½N 0�: Set
aðPÞ :¼ pða0ðQÞÞ: This is easily seen to be well-defined and a bijection. Since both
surjections d and p respect the symplectic structure, a is a symplectic isomorphism.

We conclude that ½f; l; a0; Z�/½f; l; a; Z� gives a map *S0ðN 0Þ- *S0ðNÞ:
There is a similar map on the O’s. We only need to consider primes cjN 0: Here we

have UcðN 0ÞCUcðNÞ so we get maps UcðN 0Þ\Gc-UcðNÞ\Gc; which can be put
together to form OðN 0Þ-OðNÞ:

We want to show that the bijection g commutes with these maps. This is clear at
primes c[N 0; so suppose c is a prime divisor of N 0; say cmjjN and cnjjN 0: Choose

elements ½f; l; a0; Z�A *S0ðN 0Þ; ½x0� :¼ gð½f; l; a0; Z�Þ and ½x� :¼ gð½f; l; a; Z�Þ: By defini-

tion, we have x0
c ¼ ðk0

cÞ
�1
3f where k0

c : ðTcA; e0Þ-ðTcA; eÞ is a symplectic

isomorphism restricting to
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This defines the local component UcðN 0Þx0
c:We can restrict k0

c even further to the cm-

torsion, and then by the definition of a we have

But this means that kc
0 plays the role of the kc in the definition of xc; so UcðNÞx0

c ¼
UcðNÞxc: This is precisely what the map OðN 0Þ-OðNÞ looks like at c; so we are
done.

4. Restriction to the superspecial locus

Let V be an %Fp-vector space and let r : GUgðFp2Þ-GLðVÞ be a representation. A

superspecial modular form of weight r and level N is a function f : S-V satisfying

f ð½A; l; a;MZ�Þ ¼ rðMÞ�1
f ð½A; l; a; Z�Þ; for all MAGUgðFp2Þ:

The space of all such forms will be denoted Sr: If t is a subrepresentation of r; then
StCSr: If r and t are representations, then Sr#t ¼ Sr#St:

Let I denote the ideal sheaf of i : S+X ; i.e. the kernel in:

0-I-OX-i�OS-0:

The sheaf I is coherent [10, Proposition II.5.9]. Given one of our sheaves Er; we

obtain after tensoring and taking cohomology

0-H0ðX ;I#ErÞ-H0ðX ; ErÞ-H0ðX ; i�OS#ErÞ ¼ H0ðS; i�ErÞ:

We rewrite the part that interests us in a more familiar notation:

0-H0ðX ;I#ErÞ-MrðNÞ!r
SRes r;

where Res restricts representations on GLg to the finite subgroup GUgðFp2Þ:
Let o :¼ LgE ¼ Edet; it is an ample invertible sheaf [4, Theorem V.2.5].

Proposition 24. For nb0; r is a surjective map Mr#detnðNÞ-SResðr#detnÞ:

Proof. Let k be such that ok is very ample. This defines an open immersion j :

X+PN ; such that j�Oð1Þ ¼ ok: By Hartshorne [10, Exercise II.5.15] there exists a

locally free sheaf E0r on PN such that E0rjjðXÞ ¼ Er: Let f ¼ j3i; then we have an exact
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sequence of sheaves on PN :

0-ISCPN#E0r#Oð1Þm-E0r#Oð1Þm-f�OS#E0r#Oð1Þm-0:

By Hartshorne [10, Theorem III.5.2], we know that for mb0 the map

H0ðPN ; E0r#Oð1ÞmÞ-H0ðPN ; f�OS#E0r#Oð1ÞmÞ

is surjective. We get a commutative diagram

The rightmost vertical map is an isomorphism, hence the middle vertical map is also
an isomorphism and therefore

H0ðX ; Er#okmÞ-H0ðX ; i�OS#Er#okmÞ

is a surjection. We have proved the proposition for large enough n which are
congruent to 0 modulo k: In order to do the same for all large enough n congruent to
a modulo k (for 0oaok), we use the above argument replacing Er by Er#oa: Since

there are only finitely many such a; the proposition is proved. &

4.1. Lifting weights

If H is a subgroup of a group G; we say that a representation r of H lifts to G if
there exists a representation %r of G such that r ¼ Res %r: It is clear that if r lifts to %r
and t lifts to %t; then r"t lifts to %r"%t:

Let q be some power of p: The following is a direct consequence of Steinberg [24,
Theorems 6.1 and 7.4]:

Proposition 25. Every irreducible representation of SLgðFqÞ lifts to a unique irreducible

rational representation of SLgð %FpÞ:

We now extend this to

Proposition 26. Every irreducible representation of GLgðFqÞ lifts to an irreducible

rational representation of GLgð %FpÞ:

Proof. It suffices to prove that every irreducible representation lifts to a completely
reducible one. Let r : GLgðFqÞ-GLðVÞ be irreducible.

Via the canonical embeddings SLgðFqÞCGLgðFqÞ and GmðFqÞCGLgðFqÞ; r
induces representations rs : SLgðFqÞ-GLðVÞ and rm : GmðFqÞ-GLðVÞ; such that
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Im rs commutes with Im rm: Since GLgðFqÞ ¼ SLgðFqÞ 
GmðFqÞ and SLgðFqÞ-
GmðFqÞ ¼ lgðFqÞ; we also have that rsðzÞ ¼ rmðzÞ for all zAlgðFqÞ:

Any representation of GmðFqÞ is of the form

GmðFqÞ-GLðVÞ

l/

la1

&

lan

0
B@

1
CA

with aiAZ=ðq � 1ÞZ:We claim that in our case GmðFqÞ acts by scalars on V : Suppose

this is false, then there exists lAGmðFqÞ such that at least two of the diagonal entries

of rmðlÞ are distinct. By changing the basis of V we can assume rmðlÞ is in Jordan
canonical form. Let AASLgðFp2Þ; then the fact that rsðAÞ commutes with rmðlÞ
forces A to have the same shape as rmðlÞ (i.e. it is block-diagonal with blocks of the
same dimensions as rmðlÞ). Since this holds for all AASLgðFqÞ; we conclude that as

an SLgðFqÞ-module, V has a direct sum decomposition V ¼ V1"?"Vj

corresponding to the shape of rmðlÞ (in the chosen basis for V ; V1 is the span of
the first k vectors, where k is the size of the first Jordan block of rmðlÞ; etc.). But this
means that V1 is a proper subspace of V which invariant under both SLgðFqÞ and

GmðFqÞ; contradicting the hypothesis that V is an irreducible representation of

GLgðFqÞ: So GmðFqÞ acts by scalars on V ; say rmðlÞv ¼ lav for some aAZ=ðq � 1ÞZ:
From this it is clear that rm is completely reducible and that any choice of %aAZ

with %a � a ðmod q � 1Þ yields a completely reducible lift %rm : Gmð %FpÞ-GLðVÞ given
simply by l/l %a: Note that %rm is a rational representation. Later on we will need to
choose a lift of a to %aAZ that suits us better.

It is also pretty clear that rs is irreducible: if W is an irreducible SLgðFqÞ-
submodule, then W is also GmðFqÞ-invariant so it is GLgðFqÞ-invariant, hence either
W ¼ 0 or W ¼ V :

By Proposition 25, rs lifts to an irreducible rational %rs : SLgð %FpÞ-GLðVÞ: Since
Gm acts by scalars, Im %rm commutes with Im %rs: We claim that the maps %rm and %rs

agree on lgð %FpÞ ¼ SLgð %FpÞ-Gmð %FpÞ: Assuming this is true, we can construct a

rational representation

%r : GLgð %FpÞ-GLðVÞ

M/ %rmðdet MÞ 
 %rsððdet MÞ�1
MÞ:

Since the restriction of %r to SLgð %FpÞ is %rs and in particular irreducible, we conclude

that %r is irreducible.
It remains to prove that %rm and %rs agree on the gth roots of unity. It suffices to do

this for a primitive gth root z: Write g ¼ psg0 with ðp; g0Þ ¼ 1: We have ðzg0 Þps

¼
zg ¼ 1; so zg0 ¼ 1 since the only psth root of unity in characteristic p is 1: Therefore z
is a g0th root of unity, so without loss of generality we may assume that ðp; gÞ ¼ 1:
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Consider the linear transformation %rsðzÞ: It is diagonalizable if and only if its
minimal polynomial has distinct roots. But the transformation satisfies X g � 1 ¼ 0;
which has distinct roots, and hence the minimal polynomial will also have distinct
roots. So we can choose a basis for V such that %rsðzÞ is diagonal. If it has at least two
distinct diagonal entries, we can apply the same argument as before to conclude that

since it commutes with all of %rsðSLgð %FpÞÞ the representation %rs is reducible, which is a

contradiction. So %rsðzÞ ¼ zb; for some bAZ=gZ:We want to show that %rmðzÞ ¼ %rsðzÞ;
i.e. that we can choose %aAZ such that %a � b ðmod gÞ: Let d :¼ ðg; q � 1Þ and

write g ¼ dm; q � 1 ¼ dn:We have ðzmÞd ¼ zg ¼ 1 so ðzmÞq�1 ¼ ðzmdÞn ¼ 1 so zmAFq:

Therefore zmAlgðFqÞ and hence ðzbÞm ¼ %rsðzmÞ ¼ %rmðzmÞ ¼ ðzmÞ %a: This implies that

m %a � mb ðmod gÞ; i.e. %a � b ðmod dÞ: Since d ¼ ðg; q � 1Þ and djð %a � bÞ there exist
integers u; v such that %a � b ¼ ug þ vðq � 1Þ and therefore

ð %a � vðq � 1ÞÞ � b ðmod gÞ;

which is what we wanted. &

Note that in contrast with Proposition 25 the lift of r to GLgð %FpÞ is not unique.
Fix some lift %r; then any lift can be written in the form detm# %r; where m is a
common multiple of g and q � 1:

Corollary 27. Given an irreducible representation t : GUgðFp2Þ-GLðWÞ; there exists

an irreducible rational representation %r : GLgð %FpÞ-GLðVÞ such that tCRes %r:

Proof. Consider the induced representation from GUgðFp2Þ to GLgðFp2Þ: This has an
irreducible subrepresentation r : GLgðFp2Þ-GLðVÞ with the property that

tCRes r: The result now follows from the previous proposition. &

4.2. Proof of the main result

We have come to the main result of the paper. Recall the notation UcðNÞ :¼
GSp2gðZcÞðNÞ for cap; Up :¼ kerðGUgðOpÞ-GUgðFp2ÞÞ and

U :¼ Up �
Y
cap

UcðNÞ:

Theorem 28. Fix a dimension g41; a level NX3 and a prime p not dividing N. The

systems of Hecke eigenvalues coming from Siegel modular forms ðmod pÞ of dimension

g; level N and any weight r; are the same as the systems of Hecke eigenvalues coming

from algebraic modular forms ðmod pÞ of level U and any weight rS on the group

GUgðBÞ:
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Proof. Let f be a Siegel modular form of weight r : GLg-GLm which is a Hecke

eigenform. If rð f Þ ¼ 0; then fAH0ðX ;I#ErÞ: The quotient map of OX -modules

I-I=I2 induces (after tensoring with Er and taking global sections) a map

H0ðX ;I#ErÞ-H0ðX ;I=I2#ErÞ; which we denote by f/ %f:

Consider %fAH0ðX ;I=I2#ErÞ: We have an exact sequence

0-I#I=I2#Er-I=I2#Er-i�OS#I=I2#Er-0

which gives us a long exact sequence that starts with

0-H0ðX ;I2=I3#ErÞ-H0ðX ;I=I2#ErÞ!
r1
H0ðS; i�ðI=I2#ErÞÞ:

If r1ð %f Þ ¼ 0 then %fAH0ðX ;I2=I3#ErÞ and we can similarly consider r2ð %f Þ; r3ð %f Þ;
etc. There exists some n such that rnð %f Þa0: Let fS :¼ rnð %f ÞAH0ðS; i�ðIn=Inþ1

#ErÞÞ: Note that In=Inþ1 ¼ SymnðI=I2Þ and that i�ðI=I2Þ ¼ i�ðO1
X Þ: Recall

from Section 2.2.3 the Kodaira–Spencer isomorphism O1
XDESym2 std: We conclude

that fSASResððSym2n stdÞ#rÞ: So our process associates to a Siegel modular form f of

weight r a superspecial modular form fS of weight ResððSym2nstdÞ#rÞ for some
integer n depending on f : Moreover, since the restrictions ri and the Kodaira–
Spencer isomorphism are Hecke maps, we conclude that fS is a Hecke eigenform
with the same eigenvalues as f :

Now let fS be a superspecial Siegel modular form of weight rS :

GUgðFp2Þ-GLmð %FpÞ: By applying Corollary 27 we get a rational representation

%r : GLg-GLm such that rSCRes %r: By functoriality we get SrS
CSRes %r: We know

that the map r : M %r#detnðNÞ-SResð %r#detnÞ is surjective for nb0; and therefore there

exists an integer k such that

r : M
%r#detkðp

2�1Þ ðNÞ-S
Resð %r#detkðp

2�1ÞÞ ¼ SRes %r*SrS

is surjective. Since this map is also Hecke-invariant, we conclude from Ash and
Stevens [2, Proposition 1.2.2] that any system of Hecke eigenvalues that occurs in SrS

also occurs in M
%r#detkðp

2�1Þ :

So far we showed that the systems of Hecke eigenvalues given by Siegel modular
forms ðmod pÞ of all weights are the same as the systems of Hecke eigenvalues given
by superspecial modular forms SrS

of all weights. By Theorem 21 we know that SrS

is isomorphic as a Hecke module to the space of algebraic modular forms ðmod pÞ of
weight rS; and we are done. &
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4.3. Agreement with the definition of Gross

In this section we will write G :¼ GUgðFp2Þ:
Recall from Section 2.1.3 that Gross defines algebraic modular forms ðmod pÞ as

follows: let r : G-GLðVÞ be an irreducible representation where V is a finite-
dimensional vector space over Fp; then set

MðrÞ :¼ f f : O-V j f ðlxÞ ¼ rðlÞ�1
f ðxÞ for all lAGg:

For comparison, our spaces of modular forms on O are defined as

MðtÞ :¼ f f : O-W j f ðlxÞ ¼ rðlÞ�1
f ðxÞ for all lAGg;

where t : G-GLðWÞ is an irreducible representation and W is a finite-dimensional

vector space over %Fp:

The purpose of this section is to show that the spaces MðrÞ and MðtÞ for varying
r and t give the same systems of Hecke eigenvalues.

First suppose that ðaT : TÞ is a system of Hecke eigenvalues coming from MðrÞ:
Then there exists fAMðrÞ# %Fp such that Tð f Þ ¼ aT f for all T : Let r# %Fp denote the

composition G !r GLðVÞ+GLðV# %FpÞ: The map

MðrÞ# %Fp-Mðr# %FpÞ

m#a/ am

is an isomorphism compatible with the action of the Hecke operators, so the image

of f in Mðr# %FpÞ is an eigenform with the same eigenvalues as f : Therefore the

system ðaTÞ also comes from Mðr# %FpÞ:
Conversely, suppose that ðaT : TÞ is a system of Hecke eigenvalues coming from

MðtÞ for some t : G-GLðWÞ; W a finite-dimensional %Fp-vector space. Then there

exists fAMðtÞ such that Tð f Þ ¼ aT f for all T : Since G is a finite group there exist
q ¼ pa; a finite-dimensional Fq-vector space W 0 and a representation t0 :
G-GLðW 0Þ such that t0# %Fp ¼ t: Similarly, O is a finite set and f is a map

O-W so by enlarging q if necessary, there exists f 0AMðt0Þ such that f is the image

of f 0#1 under the isomorphism Mðt0Þ# %FpDMðtÞ: Clearly Tð f 0Þ ¼ aT f 0 for all T ;
in particular aTAFq for all T :

We now use the following

Proposition 29. Suppose L=K is a finite Galois extension with Galois group G and V is

a finite-dimensional vector space over L. Let T be a collection of commuting

diagonalizable linear operators on V and let VK be the space V viewed as a vector space

over K. If a T-eigenvector v has system of eigenvalues faT : TATg; then for every

sAG there exists an eigenvector vsAVK with system of eigenvalues fsðaTÞ : TATg:
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Let us first see how this concludes our argument. We apply the proposition to the
finite Galois extension Fq=Fp; the vector space Mðt0Þ; the Hecke operators T ; the

eigenvector f 0 and the identity Galois element s ¼ 1:We conclude that if we consider
Mðt0Þ as a vector space over Fp; there exists an eigenvector f 00 with the same system

of eigenvalues as f 0: This is precisely what we needed to show.

Proof of Proposition 29. The isomorphism j of the next lemma induces an
isomorphism of L-vector spaces

j : L#K V-
M
sAG

Ves

a#w/
X
sAG

sðaÞwes:

Let vs :¼ j�1ðves�1Þ: We have

Tvs ¼ j�1ððTvÞes�1Þ ¼ j�1ððaT vÞes�1Þ ¼ sðaTÞj�1ðves�1Þ ¼ sðaT Þvs;

so vs is an eigenvector of T with eigenvalue sðaTÞ; and this holds for all TAT: &

Lemma 30. Suppose L=K is a finite Galois extension with Galois group G. The map

j : L#K L-
M
sAG

Les

defined by a#b/
P

sAGsðaÞbes is an isomorphism of L-algebras.

Proof. It is pretty clear that j is an L-algebra homomorphism. Since the dimensions
of the domain and of the range are equal (and equal to ½L : K �), it suffices to prove
that j is injective.

Let fa1;y; ang be a basis of L as a K-vector space. Then fai#aj : 1pi; jpng is a

basis of L#K L as a K-vector space. Suppose jð
P

cijai#ajÞ ¼ 0: If we write G ¼
fs1;y; sng; then we have X

i; j

cijskðaiÞaj ¼ 0 for all k: ð7Þ

Let A be the n � n matrix whose ði; jÞth entry is siðajÞ; and let c be the column vector

whose ith entry is
P

jcijaj: Then system (7) can be written as Ac ¼ 0: But it is an easy

consequence of independence of characters [13, Corollary VI.5.4] that AAGLnðLÞ;
therefore we must have c ¼ 0; i.e.X

j

cijaj ¼ 0 for all i:

Since the aj are linearly independent we conclude that cij ¼ 0 for all i and j; hence j
is injective. &
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[25] M.-F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, Vol. 800,

Springer, Berlin, 1980.

ARTICLE IN PRESS
A. Ghitza / Journal of Number Theory 106 (2004) 345–384384


	Hecke eigenvalues of Siegel modular forms (modp) and of algebraic modular forms
	Introduction
	Preliminaries
	Algebraic modular forms
	Quaternion hermitian forms
	The similitude groups
	Algebraic modular forms (modp)

	The geometric theory of Siegel modular forms
	Twisting the sheaf of differentials
	Hecke action
	The Kodaira-Spencer isomorphism

	Superspecial abelian varieties
	Isogenies
	Pairings
	DieudonnÕ module of a superspecial abelian variety
	Differentials defined over Fp2


	Construction of the bijection
	The inverse map
	Compatibilities
	Hecke action
	Action of GSp2g(Z/NZ)
	Raising the level


	Restriction to the superspecial locus
	Lifting weights
	Proof of the main result
	Agreement with the definition of Gross

	Acknowledgements
	References


