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Abstract

In his letter (Israel J. Math. 95 (1996) 281), Serre proves that the systems of Hecke
eigenvalues given by modular forms (mod p) are the same as the ones given by locally constant
functions Ay /B> —>Fp, where B is the endomorphism algebra of a supersingular elliptic curve.
We generalize this result to Siegel modular forms, proving that the systems of Hecke
eigenvalues given by Siegel modular forms (mod p) of genus g are the same as the ones given
by algebraic modular forms (mod p) on the group GU,(B), as defined in Gross (Math. Res.
Notices (16) (1998) 865; Israel J. Math. 113 (1999) 61). The correspondence is obtained by
restricting to the superspecial locus of the moduli space of abelian varieties.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Fix positive integers g, p, and N, where N >3 and p is a prime not dividing N. We
study the space of Siegel modular forms (mod p) of genus g, level N, and all weights;
more precisely, we are interested in the systems of Hecke eigenvalues that occur in
this space. The approach that we take is largely inspired by a result of Serre [21] in
genus 1, linking Hecke eigenvalues of (elliptic) modular forms (modp) and
quaternion algebras. Our main result is
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Theorem 1. The systems of Hecke eigenvalues coming from Siegel modular forms
(mod p) of genus g, level N and any weight p, are the same as the systems of Hecke
eigenvalues coming from algebraic modular forms (mod p) of level U and any weight
py on the group GU,(B), where O is the endomorphism algebra of a supersingular
elliptic curve over F,, B:=0®Q, and

U=U,x[] U/,
{#p

Uy =ker(GUy(€)) > GU(F,2)),

Us(N) ={xeGU,(0,) : x = 1 (mod £"), /"||N'}.

How does this result improve our understanding of Siegel modular forms?
As an example, it is a direct consequence of Theorem 1 that there are only finitely
many systems of Hecke eigenvalues coming from the space of Siegel modular
forms (mod p) of genus g, level N. Moreover, one can derive an explicit (albeit far
from sharp) upper bound on this number, which in turn can be applied to
the study of the structure of the Siegel-Hecke algebra, in a manner similar to
Jochnowitz [11,12]. In the other direction, one can use Theorem 1 to study
the relation between algebraic modular forms and Galois representations in
the case g =2, by employing results of Weissauer and Taylor on the construc-
tion of Galois representations associated to Siegel modular forms of genus 2.
This suggests an approach to Conjectures 8.1 and 9.14 of Gross [7] in this
particular case. Both these applications are subject of work in progress by the
author.

The paper is organized as follows. Section 2 contains preliminary results on
three topics: the definition of algebraic modular forms, the geometric theory
of Siegel modular forms (mod p), and the properties of superspecial abelian varieties.
Section 3 contains the main technical result on which the approach of the paper is
based. It links a finite set constructed from the superspecial locus to a finite set
constructed from the algebraic group GU,(B), in a way that is compatible with
the Hecke action. We encourage the reader to skip the proof of this result and go
directly to Section 4, which puts everything together and is quite different from
Serre’s approach for the case g = 1. Here we prove that the operation of restricting
Siegel modular forms to the superspecial locus preserves the systems of Hecke
eigenvalues.

2. Preliminaries

The following notation will be fixed throughout the paper: g>1 is a positive
integer, p is a prime, and N is a positive integer not divisible by p.
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2.1. Algebraic modular forms

2.1.1. Quaternion hermitian forms

Let B be a quaternion algebra over a field F. Let =~ denote the canonical involution
of B (i.e. conjugation) and let N denote the norm map. Let V' be a left B-module
which is free of dimension g. A quaternion hermitian form on V' is an F-bilinear map
[V x V- B such that

f(bxvy) = bf(xay)v f(xvy) :f(yax)

for all be B, x,ye V. We say f is non-degenerate if f(x, V) = 0 implies x = 0.
The following result says that any such form is diagonalizable [22, Section 2.2]:

Proposition 2. For every quaternion hermitian form f on V, there exists a basis
{x1,....x4} of V over B such that f(x; x;) = a;0; for 1<i,j<n, where o€F.
Moreover if f is non-degenerate and the norm map N : B— F is surjective, then there
exists a basis {y1, ...,yq} of V over B such that f(y:,y;) = d;.

Furthermore, we have the following result [25, Section 3.4]:

Theorem 3 (The norm theorem). Let B be a quaternion algebra over a field F,
and let Fg be the set of elements of F which are positive at all the real places
of F which ramify in B. Then the image of the reduced norm map n:B—F is
precisely Fp.

We conclude that if B is the quaternion algebra over Q ramified at p and oo, then
I’l(B) = WUxo.

2.1.2. The similitude groups
Let B be a quaternion algebra over a field F. We define the group of unitary g x g
matrices and its similitude group by

Uy(B) = {MeGL,(B): M*M =1},

GU,(B) = {MeGLy(B) : M*M = y(M)I,y(M)eF*}.
These are algebraic groups over F: let (f;)=M*M, then Uy(B) is

defined by the equations f; =0 (i#j), fi =1, and GUy(B) is defined by the
equations

fi=0fori#j, fii=fon=-=fy

(these are automatically in F' because they are sums of norms of elements of B).



348 A. Ghitza | Journal of Number Theory 106 (2004) 345-384

We define the group of symplectic 2g x 2g matrices and its similitude group as
follows:

Spay(F) = {M eGLyy(F) : M'JoyM = Jo,},

GSqu(F) = {MEGL2g(F) : M[J2gM = V(M)JZwV(M)EFX}v

0 Ig).

where Jo, = (714 ;

Lemma 4. Let K be a field. The subgroups GUy(M>(K)) and GSp,,(K) are conjugate
inside GLy,(K). In particular, they are isomorphic and the F-algebraic group GU4(B)
is an F-form of GSpy,.

Proof. If 4 := (“ %)e M,(K), then the conjugate of A is 4 = (_‘1(, ’ab), therefore the

cd
adjoint of 4 is
* d - -1
A" = b 4 =J, AJ.

Set Jo, = diag(Ja, ..., J») and let M = (Aj)1<i j<g € My(M>(K)). We have
M* = J, M ]y,
therefore
M*M = Jy) M'J,,M.

It is clear that there exists a permutation matrix P such that P'J>,P = J»,. We have
Jog = P'JoyP, 50 Joy = PJoyP' and

M*M = PJ, P'"M'PJ,,P'M.

Now if M e GU,(M,(K)), then M*M = yI for some ye K* and a little manipulation
gives

(P'MP)' Joy(P'MP) = 7Jg,
ie. PPMPeGSp,,(K). Conversely, if P'MPeGSp,,(K) then
M*M = PJ;}(P'MP)'J,yP'M = PJ; ],y P' = y1

s0 M eGU,(M,(K)). Therefore P~'GUy(M»(K))P = GSpy,(K), as desired. Since

B® F=~ M, (F), we conclude that GU,(B)® F~GSp(F). O
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2.1.3. Algebraic modular forms (mod p)

We give the definition of algebraic modular forms (mod p) on the group G =
GU,(B), where B is the quaternion algebra over @ ramified at p and oo. See [8,9] for
more details.

The definition given by Gross requires that G be a reductive algebraic group over
Q satisfying a technical condition for which it sufficient to know that Gy(R) is a
compact Lie group. Our G is reductive, being a form of the reductive group GSp,,.
We also know that Gy(R) is compact, since it is a subgroup of the orthogonal group
O(4g).

Let ¢, be the maximal order of B®Q,. We define U, to be the kernel of the
reduction modulo a uniformizer 7 of @, i.e.

15 Uy = G(0)) ™ GU,(F0) - 1.

For /#p, we set
U;(N) = {xeG(O;) : x=1(mod /"),/"||N}.
The product

U=1U,x[]
(#p

is an open compact subgroup of G(Q), called the level (Q is the ring of finite adéles).
Set Q(N) = U\G(Q)/G(Q). By Gross [9, Proposition 4.3], the double coset space
Q(N) is finite.

Now let p: GUy(F,)—»GL(W) be an irreducible representation, where W is a
finite-dimensional [F,-vector space. We define the space of algebraic modular forms

(mod p) of weight p and level U on G as follows:
M(p,U) ={f:Q(N)>W :f(2g9) = p(2)"'f(g) for all 2eGUy(Fp)}.

Since Q(N) is a finite set and W is finite dimensional, M(p, U) is a finite-dimensional
[F,-vector space.

Given a prime / not dividing pN, we have the local Hecke algebra #, =
H (GSpy, (Qr), GSpy,(Z/)) acting naturally on Q(N), and hence on M(p, U) (see
Section 3.2.1 for details).

2.2. The geometric theory of Siegel modular forms

We review the basic definitions and results from Chai [3].
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All the schemes we consider are locally noetherian. A g-dimensional abelian
scheme A over a scheme S is a proper smooth group scheme

| Yo

S,

whose (geometric) fibers are connected of dimension g.

A polarization of A is an S-homomorphism 2: 4 — A" == Pic"(4/S) such that for
any geometric point s of S, the homomorphism /,: 4;— 4! is of the form A(a) =
£7,®%;" for some ample invertible sheaf #; on 4. Such A is necessarily an
isogeny. In this case, 1,04 is a locally free ¢ ,-module whose rank is constant over
each connected component of S. This rank is called the degree of Z; if this degree is 1
(so 4 is an isomorphism) then 4 is said to be principal. Any polarization is symmetric:
A' = J. via the canonical isomorphism A= A4".

Let ¢: A— B be an isogeny of abelian schemes over S. Cartier duality [19,
Theorem I11.19.1] states that ker ¢ is canonically dual to ker ¢’. There is a canonical
non-degenerate pairing

ker ¢ x ker ¢' - G,,,.

An important example is ¢ = [N] for an integer N. The kernel A[N] of multiplication
by N on A is a finite flat group scheme of rank N over S; it is étale over S if and
only if S is a scheme over Z[1]. We get the Weil pairing

A[N] x A'[N]> Gy,

A principal polarization 4 on 4 induces a canonical non-degenerate skew-symmetric
pairing

A[N] x A[N]- py,

which is also called the Weil pairing.
For our purposes, a level N structure on (A, 1) is a symplectic similitude from A[N]

with the Weil pairing to (Z/NZ)z*" with the standard symplectic pairing, i.e. an
isomorphism of group schemes o : A[N]— (Z/NZ)* such that the following diagram
commutes:

A[N] x A[N]\2(7/N7)% x (Z/NT7)%

Weill sth(

KN = Z/NZ

for some isomorphism u, ~Z/NZ.
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If N =3, the functor “isomorphism classes of principally polarized g-dimensional
abelian varieties with level N structure” is representable by a scheme .7, ; y which is
faithfully flat over Z, smooth and quasi-projective over Z[+]. Let

Y

| Jo

g1 ,N

be the corresponding universal abelian variety. Let E = 0*(Qy,.,, ,); this is called
the Hodge bundle.

2.2.1. Twisting the sheaf of differentials

Let X be a scheme and let & be a locally free Ox-module whose rank is the same
integer n on all connected components of X. Let {U; : ieI} be an open cover of X
that trivializes 7, then we have 7|, =(COx|,)", and for all i and ; we have
isomorphisms F |y, .y, = F |y, ~y, given by g;€ GLy(Ox|y,-y,) satisfying the usual
cocycle identities.

Now suppose we are given a rational linear representation p: GL,—GL,,. We
construct a new locally free ¢x-module 7, as follows: set (#,), = (Ux|y,)", and for
any i, define an isomorphism (gzp)i|Uint _’('g;ﬂ)ﬂUmU_/ by p(gy)EGLm(@ﬂUmUj)-
Since the transition functions p(g;) satisty the required properties, we can glue the
(7 ,), together to get the locally free 'y-module & ,. We say that it was obtained by
twisting F by p. It is obvious that & = % gq, where std : GL,, - GL, is the standard
representation.

The correspondence p— # , is a covariant functor from the category of rational
linear representations of GL, to the category of locally free (y-modules. This
functor is exact and it commutes with tensor products.

Let X == o/, v ®F,. This is a smooth quasi-projective variety over [, with ¢(N)
connected components. Given a rational representation p: GL,— GL,,, the global
sections of E, are called Siegel modular forms (mod p) of weight p and level N and
they can be written

M,(N) =H"(X,E,) = {f : {[4,4,2,5]} >F, satisfying
f(Aa /17 OC, M}’]) = p(M)_lf(Aa )“7 OC, '])? VMEGLKI(FP)}7
where 5 is a basis of invariant differentials on A4.

2.2.2. Hecke action
Suppose we have a correspondence
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where a and b are finite étale, and suppose that we are given a coherent sheaf # on
X together with a morphism of ¢z-modules z: a*F —b*F.

We claim that this induces an operator Tz 7 : H*(X,#)—-H(X, 7).

Since b is finite flat, 5,07 is a locally free sheaf of @y-algebras, and therefore we
can define Tracey : b0z — Oy via the diagram

b*ﬁz —>%0m(;x(b*ﬁz, b*ﬁz)

Trace
Tracey, J{

Ox.

We want to extend this trace map to % . By the projection formula, we have b,.b*F =
b.(b*F ®0;) =F ®b.0,. We can now define Tracey : b,.b*F — F via the diagram

F 20,0, 21, 7 0y

b* b*f Tracey, g\

It remains to put these together:
T,7: H(X,7)- H(X,7)
st Tracep(b.z(a"s)).

The Hecke operators considered in this paper are special cases of the T #, with
X = /41 n ®F,. The sheaf Z# will typically be E,. In order to say what Z is we need
some definitions.

Let / be a fixed prime not dividing pN. A quasi-isogeny of polarized abelian
varieties ¢ : (41,41) > (A2,42) is said to be an /-quasi-isogeny if its degree is a
(possibly negative) power of /. Such ¢ induces a symplectic similitude

Ty (TyAr,e1) > (TsA2,e2)

which gives an element ge G = GSp,,(Q/). Since g is defined only up to changes of
symplectic bases for 7,4, and T,A,, ¢ actually defines a double coset HgH , where
H = GSp,,(Z,). We say that ¢ is of type HgH. Since (GSp,,(Q/), GSpy,(Z/)) is a
Hecke pair [1, Section 3.3.1], we can talk about the local Hecke algebra #, :=
(G, H). Finally, we will say that two /-quasi-isogenies are equivalent if they have
the same kernel.

Given some HgH € #;, we let Z be the moduli space of quadruples (4, 4,a; @),
where (4, ) is a g-dimensional principally polarized abelian variety over F,, « is a
level N structure, and ¢ is an equivalence class of /-quasi-isogenies of type HgH.
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This has two natural maps to the moduli space X, namely

a: Z-X

and

b: Z-X
(A, 4y 8) > (D(A). 2, 2p),
where A4, respectively o, are the principal polarization, respectively the level N
structure induced by ¢ on ¢(A4).

Both «a and b are finite étale. The operators Tz » defined in this context are our
Hecke operators.

2.2.3. The Kodaira—Spencer isomorphism
We recall the properties of the Kodaira—Spencer isomorphism. For a detailed
account see [4, Sections I11.9 and VI.4].
If n: A— S is projective and smooth, there is a Kodaira—Spencer map
K: 3‘5—>R17c*(3‘A/s).

If

| )o

S,
is an abelian scheme, set 4/ == O*(Qll/s). Then
T as =1 (0°(F 4y5)) = ' (B )s)-
The projection formula gives
RI”*(n*([EAV/S)) = (Rln*(pA)®€S[Ez\4//S'

Let n' : A’ S be the dual abelian scheme, then

R'm.04 = 0" (T 45) = Efi/s.
So the Kodaira—Spencer map can be written as follows:

Kiysﬁﬂz;/z/s(@@s[EZ/S,
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which after dualizing gives
KV EA’/S@CV'S[EA/S_’Q}S“

Now suppose that 1: 4/S— A"/S is a principal polarization, i.e. an isomorphism.
Then the pullback map 2" :[E,s—[E,s is an isomorphism and we get a map

®2
Ey/s

map Sym?(E, /S)—>Q}9 is an isomorphism. In particular, in the notation of Section

_’ng- This factors through the projection map to Sym?(E 4 /s), and the resulting

2.2.1 we have a Hecke isomorphism Eg, 2 ~Q}.

2.3. Superspecial abelian varieties

For a commutative group scheme A over a perfect field K we define the a-number
of A by a(A) = dimg Hom(a,, 4). If K < L with L perfect, then dimx Hom(o,, 4) =
dim; Hom(o,, A® L) so a(A) does not depend on the base field.

An abelian variety 4 over K of dimension ¢g>2 is said to be superspecial if a(A) =
g. Let k be an algebraic closure of K. By Oort [20, Theorem 2], a(4) = ¢ if and only
if AQk=E, x --- x E,, where the E; are supersingular elliptic curves over k. On the
other hand, for any ¢g>2 and any supersingular elliptic curves E\, ..., Ey, over k we
have [23, Theorem 3.5]

E x .- XEg’EEg+1 X oeee XEzg.

We conclude that A4 is superspecial if and only if 4 ® k= EY for some (and therefore
any) supersingular elliptic curve E over k.

Any abelian subvariety of a superspecial abelian variety A4 is also superspecial. If 4
is superspecial and G< A4 is a finite étale subgroup scheme, then 4/G is also
superspecial.

An F-structure on a scheme S over F, is a scheme S’ over F, such that S is
isomorphic to S'QF,.

Lemma 5. Let E be a supersingular elliptic curve over T,. Then E has a canonical Fpe-
structure E', namely the one whose geometric Frobenius is [—p|. The correspondence
Ew— E' is functorial.

Proof. This is a well-known result which is stated in [21, p. 284]. For a detailed
proof, see [6, Lemma 2.1]. [

Proposition 6. Let A be a superspecial abelian variety over F,. Then A has a canonical
F2-structure A', namely the one whose geometric Frobenius is [—p]. The correspon-
dence A A' is functorial.
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Proof. Let E be a supersingular elliptic curve over F,, then A~EY. By Lemma 5
we know that E has an F-structure E’ with ng = [—p], therefore A4 == (E')? is an
F,2-structure for A such that

Ty =T XA X - XTp = [—plp X [-plp X - X [-plp =[-ply-

The functoriality statement follows from the corresponding functoriality statement
in Lemma 5. Since any superspecial abelian variety over F, is isomorphic to EY, it
suffices to consider a morphism f: EY— EY. This is built out of a bunch of
morphisms E— E, which by Lemma 5 come from morphisms E’— E’. These piece
together to give a morphism f*: (E')? — (E)? over F ., which is just f after tensoring
with F,. O

An easy consequence of the functoriality is that if 4 is a principal polarization on
A, there exists a principal polarization A’ of the canonical F,.-structure A’ of A4 such

that /’®F, = 1. We say that (4’, /') is the canonical F,-structure of (4, 2).

2.3.1. Isogenies

We need to define what it means for two principally polarized abelian varieties
(Ay,41) and (A3, 4,) to be isogenous. The natural tendency is to consider isogenies
¢ : A1 — A, such that the following diagram commutes:

Al L AQ
)\11\’ )\Ql'\’
¢t
Aj——Aj,

i.e. ¢p'odyop = 41. But then deg ¢ = 1 so the only isogenies that satisfy this condition
are isomorphisms. We therefore relax the condition by requiring ¢ to satisfy

P'odaop = miy,
where meN. By computing degrees we get (deg d))2 =mI.

2.3.2. Pairings

We now consider the local data given by the presence of a principal polarization.
Let (4,4) be a g-dimensional principally polarized abelian variety defined over F,.
Let Z be a prime different from p and set as usual Z,(1) .= li‘r_n un. We have the

canonical Weil pairing [15, Section 16]

es:TyA x T/At—>Z/<l),
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which is a non-degenerate Z,-bilinear map. When combined with a homomorphism
of the form o : 4 — A" it gives

eﬁ T/A X T/A—> Z/(l)
(a,d")— es(a,ad).

If « is a polarization then ¢ is an alternating (also called symplectic) form, i.e.
eX(d,a) = ¢i(a,d’)”" for all a,d' e T/A. If f : A— B is a homomorphism, then

e/ (a,d) = &(f(a).f(d))

forall a,d' e T/A, «: B— B'.

An isogeny ¢ : (41, 41)— (Az,2,) of principally polarized abelian varieties induces
an injective Z,-linear map on Tate modules 7,¢ : T,A; — T, A,, with finite cokernel
T,4>/(T;¢)(T;A1) isomorphic to the /-primary part (ker¢), of ker¢. Since
¢ olrop = miy, we have

& (Tr)a (Tr¢)d) =¢f " (a,d) = &) (a,d)

=e/(a,mid) = es(a, )nd)" = €)' (a,d)".
We say that the map T,¢ is a symplectic similitude between the symplectic modules
(T/A] s e}l‘ ) and (T/Az, ejz).
In order to deal with the prime p, we will use Dieudonné theory. Let W = W (k)
for k a perfect field of characteristic p and let M be a free W-module with semi-linear
maps F and V satisfying

FV =VF=p, Fx=x"F, Vx=x'""V.

A principal quasi-polarization on M is an alternating form e: M x M — W which is a
perfect pairing over W, such that F and V' are adjoints:

e(Fx,y) = e(x, Vy)’.
Such a principal quasi-polarization induces a pairing
(Y MJFM x M/FM — k
(x,y) > e(X, F) mod p,

where X, e M are lifts of x,ye M /FM. The pairing <, ) is non-degenerate, linear in
x and o-linear in y. Note that if k = F,» then ¢, ) is a hermitian form.

Let M(-) be the contravariant Dieudonné module functor on the category of p-
divisible groups over [ (see [5]). If 4 is a superspecial abelian variety we say that the
Dieudonné module of A is M(A'[p™]), where A" is the canonical [F.-structure on 4. A
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principal polarization on A defines a principal quasi-polarization e, on the
Dieudonné module M of A [18, Proposition 3.24]. Since A is superspecial we get
as above a hermitian form on M/FM.

An isogeny ¢ : (A1, A1) — (A2, 72) induces a symplectic similitude ¢* : My > M of
principally quasi-polarized Dieudonné modules.

2.3.3. Dieudonné module of a superspecial abelian variety

Let (4,2) be a principally polarized superspecial abelian variety over F,, and let
(4',2") be the canonical [F,-structure given by Proposition 6. We want to describe
the structure of the Dieudonné module M = M (A'[p*]), together with the principal
quasi-polarization e induced by /.

We first need to recall the structure of the Dieudonné module of a supersingular
elliptic curve E. This is well-known, and mentioned for instance in [17, Section 3] or
[16, Appendix]. Define the following Dieudonné module:

) 0 1 0 -1\
Al.l = W7F: O'7V: g .
' -» 0 r 0

Corollary 7. Let E be a supersingular elliptic curve, let E' be its canonical T ,.-structure
and let M .= M(E'[p*]).

(a) We have M= A, .
(b) We have End(M) = 0, = O®Z,, where ¢ = End(E"). Moreover,
reducti
05 (1) = ker(0f ===5F%)

can be identified with the group of automorphisms of M which lift the identity map
on M/FM.

(c) If M; are the Dieudonné modules of the supersingular elliptic curves E;, i = 1,2,
then any isomorphism M, /FM, = M,/Fm; lifts to an isomorphism M= M,.

Proof. (a) As we mentioned, this is well-known. Unfortunately, we do not know a
reference for the proof, so we refer to Ghitza [6, Section 2.3.1] for the computations.

(b) Let ge End(M); it is a W-linear map that commutes with F and V. Suppose ¢
is given by a matrix (g;)e M>(W). We have

Fog:<0 1)0(911 g12>: g g, -
-p 0 g2 gn -pdyy  —pdis

(gll gn)( 0 1) <—Pgl2 gll)
goF = o = ag.
g1 gn/)\-p 0 —pg2n 92
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These should be equal so we get ¢b, = —pg12, g = ¢5,. We also impose the
condition Vog = goV, but this does not give anything new. Therefore

End(M) = { ( ;yp jp) 1x,ye W([sz)}

{3 )G 2)serewen)

But W(F,.) is the ring of integers of the unique unramified quadratic extension L of
Q,. Let © be a solution of X?>+p=0in L. The map o: x> x” is the unique non-
trivial automorphism of L. It is now easy to see that the map

0 End(M) - B,={L-p}=B®Q,
(0 w)7r(@ ) = s
= X T
0 x 0 y? Y
is an injective ring homomorphism. It identifies End(M) with €, = {x+

ny: x,y€r}, the unique maximal order of B,.

It remains to prove the statement about ¢ (1). Let g = (_,, ))€End(M )=

O, . Note that M /FM = {®)+ FM :ae F,}. Let X be the reduction of x modulo =,
then ¢ restricts to multiplication by ¥ on M /FM.

Therefore g restricts to the identity if and only if X = I, which means that the
group of such automorphisms is identified with the kernel of the reduction modulo 7,
ie. with ¢ (1).

(c) It suffices to show that any automorphism of M /FM lifts to an automorphism
of M. From the description of M /FM in part (b) of the proof we know that the
automorphisms are given by multiplication by some )Le[F;z. But then the matrix

()bp 2) represents an automorphism of M which restricts to multiplication by A on

M /FM, which is what we wanted to show. [
We now use the following result [14, Proposition 6.1]:

Proposition 8. Let K be a perfect field containing F ., and suppose {M e} is a quasi-
polarized superspecial Dieudonné module of genus g over W .= W(K) such that
M ;A?’l. Then one can decompose

M=M\ @My ® - ®@Ma (e(M;, M)) =0 if i#]),

where each M; is of either of the following types:

(1) a genus 1 quasi-polarized superspecial Dieudonné module over W generated by
some x such that e(x,Fx) = p"¢ for some reZ and e€ W\pW with ¢° = —¢; or
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(i1) a genus 2 quasi-polarized superspecial Dieudonné module over W generated by
some x, y such that e(x,y)=p" for some reZ, and e(x,Fx)=e(y, Fy) =
e(x,Fy) =e(y, Fx) = 0.

Corollary 9. We have M(A'[p*])=A{, as principally quasi-polarized Dieudonné
modules, where A} | is endowed with the product quasi-polarization.

Proof. In the direct sum decomposition of the proposition, the degree of the quasi-
polarization on M is the product of the degrees of the quasi-polarizations of each of
the summands. Since our M is principally quasi-polarized we conclude that each
summand is also principally quasi-polarized, i.e. the bilinear form {, ) is a perfect
pairing on each summand.

Let M, be such a summand and suppose M, is of type (ii) from the proposition.
This gives a W-basis for M, consisting of x, Fx, y and Fy. The quasi-polarization e
defines a map My— M|, given by zi—f., where f.(v) = e(z,v). Let ¥/, (Fx)', y' and
(Fy)" be the dual basis to x, Fx, y and Fy. It is an easy computation to see that
fe=0V fre =P EY), f, = —p'x" and fr, = —p+!(Fx)". For instance

fry(Fx) = e(Fy, Fx) = e(y, VFx)" = e(y,px)" = —pe(x,y)" = —p.

But the map My— M{ given by z—>f. is an isomorphism, hence p" =p"™! =1,
contradiction.

So M has only summands of type (i). A similar (but even simpler) computation
shows that each summand must have e(x, Fx) =1. O

Corollary 10. Let M = M(A'[p*]). There exists an isomorphism between
End(M,e0)* and GU4(0,), such that the subgroup of symplectic automorphisms

which lift the identity map on (M /FM,ey) is identified with U, defined by the short
exact sequence

11— Up—>GUg(@p)—>GUg([sz) -1,

where the surjective map is reduction modulo the uniformizer n of O,.

Proof. Recall the identification End(4,;)=~, from the proof of part (b) of
Corollary 7:

Q: EIld(Alvl)—> (9[,

= X y.
_pyp xp Y
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On the other hand, any T'e End(M) = End(4{ ) is a 2g x 2g matrix made of 2 x 2

blocks of the form Tj; = (_;’; » z,’{ ). Therefore we have an isomorphism
¢: End(M)" - GL,(0,)
T = (Ty); ;= (x5 +myy); ;-

We want to prove that under this isomorphism, End(M,ey)* corresponds to
GU,(0,). For this we use Corollary 9, which says that the bilinear form e is given
by the block-diagonal matrix

Therefore we have
End(M,e))* = {TeEnd(M)" : T"E\T = yEy, y€Z,}.

Note that for the 2 x 2 block 7j; we have

<0 1)“T,(o 1)_ Xj o Vi
-1 0 Y\ -1 0 o xi )

which maps under ¢ to xI;—my; =x;+ ny; = ¢(Tj;), where = denotes the

i
conjugation in the quaternion algebra B, = 0, ® Q,. This means that E;'T'E,
maps to ¢(T)", where we write U* = U'. Putting it all together we conclude that for
any TeEnd(M)™ we have

TeEnd(M,e)" < E;' T'E,T = y<=o(T) o(T) =7
< o(T)eGU,(0,),

which is precisely what we wanted to show.
For the second part of the statement note that

M/FM = {(0,a,0,as, ...,0,a,)" + FM : a;eF . }.

Let T = (T;)€End(M,ey)”, then its induced map on M/FM is

T((0,a1,0,a, ...,0,a,) + FM) = (0,2 aj)?’{i, ...,O,Z aﬁfy‘) + FM,

J j
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where X; denotes the reduction modulo 7 of x;. Therefore 7" induces the identity
map on M/FM if and only if

X1 X ... Xy
X211 X2 ... Xy 1
Xg1 X2 ... Xygg

But the matrix above is precisely the matrix of the reduction of ¢(7) modulo =, so T
induces the identity on M /FM if and only if ¢(T)eU,. O

2.3.4. Differentials defined over [,

We know from Proposition 6 that a principally polarized superspecial abelian
variety (4, /) has a canonical [ .-structure (4’,1’). We therefore have a well-defined
notion of invariant differentials on 4 defined over [ .

Lemma 11. Let E be a supersingular elliptic curve over F,. Then a non-zero invariant
differential on E defined over [, is equivalent to a choice of non-zero element of
M /FM, where M = M(E'[p™]) and E' is the canonical F,.-structure of E.

Proof. Differentials of E defined over F, are by definition differentials of E', i.e.
elements of the cotangent space w(E"). Since E'[p] is a closed subgroup-scheme of E’,
there is a canonical surjection on cotangent spaces w(E') - w(E'[p]) —» 0. Since both
vector spaces have dimension one, this map is actually an isomorphism. Similarly, we
get a canonical isomorphism w(E'[p™]) = w(E'[p]), so we have identified w(E") with
o(E'[p*]). By Fontaine [5, Proposition I11.4.3], w(E'[p*]) is canonically isomorphic
to M/FM, so w(E') is identified with M/FM. O

Proposition 12. Let A be a superspecial abelian variety over Fp, let A" be its canonical
F2-structure and M = M(A'[p™]). Then giving a basis of invariant differentials on A
defined over [, is equivalent to giving a basis of M /FM over [ .

Proof. The space of invariant differentials on A defined over [, is by definition
w(A'). We have o(Ad)zw(EY) ~w(E')’. By Lemma 11 we know that
o(E"Y~M(E'[p*])/FM(E'[p™]), and since M(A'[p*])=~M(E'[p*])’ we conclude
that w(A Y =M /FM. O

Note that as we have seen in Section 2.3.2, the presence of a principal polarization
/' on an [F,-abelian variety 4" induces a hermitian form on the g-dimensional [ -
vector space M /FM. We say that a basis of invariant differentials on 4 defined over
F,» is a basis of invariant differentials on (A4, 4) if it respects this hermitian structure.
We can therefore conclude that
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Corollary 13. Let (A, %) be a principally polarized superspecial abelian variety over T,
let (A', ') be its canonical F p-structure and M = M(A'[p™]). Then giving a basis of
invariant differentials on (A, 1) defined over F is equivalent to giving a hermitian basis
of M/FM over .

3. Construction of the bijection

Let 4 be a superspecial abelian variety of dimension g over F,. Let A’'~E"
be its canonical F,.-structure, then A~F9 for E = E’®Fp. Until further notice,
we will write 4 to mean EY and A’ to mean E". Let 1y’ be the principal polariza-
tion on A’ defined by the gxg identity matrix, let 2=/ ®F,, let
o9 : A[N]—(Z/NZ)* be a level N structure on A4, and let 1, be a basis of invariant
differentials on (A4,4¢) defined over [, (i.e. a hermitian basis of M/FM), where
M = M(A'[p™]). The various Weil pairings induced by A, resp. 4y’ will be denoted
ey, resp. ey’

Let X denote the finite set of isomorphism classes of pairs (4,a), where A
is a principal polarization on 4 and o is a level N structure. 2 is a subscheme
of X. We also define £ to be the set of isomorphism classes of triples (4, «,#n) with 4
and « as above and 7 a basis of invariant differentials on (4, 4) defined over F ..
Isomorphism is given by the condition f’(1,) =, and the commutativity of the
diagrams

A—La (A[N],e1) —L——(A[N], e5)

ok T
Ale=— Al ((Z/NZ)*, std) == ((Z/NZ)*, std),

where std denotes the standard symplectic pairing on the various modules.

Let O = End(E) and B:=0®Q. Let G := GU,(B), and recall the notation of
Section 2.1.3. The purpose of this section is to construct a bijection between the finite
sets & and Q = Q(N).

This construction is rather long, but the basic idea is that all principally polarized
superspecial abelian varieties are isogenous, and that one can obtain local data by
studying these isogenies at each prime 7 (including p). The reader is encouraged to
skip to Section 4.

Lemma 14. Given any principal polarization 4 on A, there exists an isogeny of
principally polarized abelian varieties ¢ : (A, o) = (A, 1).

Proof. We want an isogeny ¢ : A — A such that ¢’olo¢p = miy for some meN.
There is an obvious bijective correspondence associating to a homomorphism
Y :A— A a matrix ¥ e M,(0). Under this bijection, y': A'—> A" corresponds to the
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adjoint V" If ¢ : A > A is an isogeny, then e GL,(B). If 1: 4 — A’ is a polarization,
then A’ = 2 so A* = A. Also A is positive-definite. If A is a principal polarization,
then AeGL,(¥) defines a positive-definite quaternion hermitian form f. By
Proposition 2 we know that A can be diagonalized, i.e. there exists M eGL,(B)
such that M~'AM = diag(a, ...,o,), with o;€ @. The form f is positive-definite so
o;€ @~ o. But the norm theorem (Theorem 3) says that the norm map is surjective
onto @+, so by the last part of Proposition 2 there exists M’ e GL,(B) such that
(M) 'aM = 1.

So there is a basis of BY such that the quaternion hermitian form f is
represented by the matrix /. But the matrices representing f are all of the form
040 for Qe GL,(B). Now B = (0 ® Q so there exists a positive integer n such that
nQ has coefficients in . Let ® =nQ and let ¢: 4> A be the homomorphism
corresponding to @. Since $eGL,(B) and the fixed principal polarization Ao
corresponds to the identity matrix, we conclude that ¢ is an isogeny and
¢'odop =n?. O

Lemma 14 allows us to identify > with the set 2° consisting of isomorphism classes
of triples

¢ ((A,70)—(A4,2),0: A[N]—(Z/NZ)™ ),

where (4, 4o) ﬂ(A,/l) is an isogeny of principally polarized abelian varieties and

isomorphism is defined by diagrams (1).

Proposition 15. An isogeny ¢, : (A, L) — (A4, 41) defines for any prime ¢ #p an element
[X/] € U/(N)\G/ If/J(ng ¢1 then [X/] =1.

Proof. Pick a prime /#p and let n satisfy /"||N. As we have seen in Section 2.3.2,
¢ induces an injective symplectic similitude T,¢,: (7,4, ej”) —(TyA4,¢)"), with
finite cokernel isomorphic to (ker ¢,),. To ease notation, we will just write e, for ¢}

and e, for eﬁil (and we use the same letters for the corresponding Weil pairings
on A[/"]).

Letks1:(T,A,e0)— (T/A, e1) be a symplectic isomorphism whose restriction gives
a commutative diagram

(A[£7], e0) 215 (A[€7], €1)

aolw « 1l~

(L)) —— (/")
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Let x, = kZ}oT/d)I, then x,: (T,A4,e0) > (T4, ep) is a symplectic similitude and sits
in the commutative diagram

(TEA, 60) % (TEA, 61)

| % o)

(TZA, 60).

The map x, is not necessarily invertible, but since its injective with finite cokernel it
defines a symplectic automorphism of (V,4, ey), i.e. x, € GSp,,(Q/) = G,. If / {deg ¢
then T,¢ is a symplectic isomorphism so we can take x, = 1.

How does this depend on the particular choice of k/;? Let

/g/,l :(TyA,e0) =(TsA,e;) be some other symplectic isomorphism that restricts to

oy too. Let
= (ks1)""oks1€GSpyy(Zs) = Uy

Note that u restricts to the identity on A4[¢/"] so actually ue U;(N). Conversely, if
ue Uy(N) then ks jou™': (T/A,e0) — (T, A, e;) is a symplectic isomorphism restricting
to oy loor. Therefore ¢, gives us a well-defined element [x/]e U/(N)\G,. O

What happens at p? The isogeny ¢, induces an injective symplectic similitude
M(dy'): (M, e1)— (M, e)

with finite cokernel. Let &, 1 : (M, e1) > (M, ep) be a symplectic isomorphism whose
reduction (M /FM,e)—(M/FM,ey) maps #; to n,. Set x, == M(‘lsl/)ok;,}» then the
map X, : (M, ey)— (M, ep) is an injective symplectic similitude with finite cokernel.
Hence x, induces a symplectic isomorphism of (M ® Q,, e), so by Corollary 10, x,
gives an element of GU,4(B,). Since k, | is well-defined up to multiplication by U,, we

have that ¢, defines a element [x,] € U,\GU4(B,).

Lemma 16. Any two isogenies (bl,q~51 :(A4,2)— (A, 41) are related by = o, °u,
where u corresponds to a matrix UeGUy(B).

Proof. Suppose ¢, ¢~>1 satisfy

Plediop) = miy,

P oliopr = riidy.
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We treat ¢, ¢; as quasi-isogenies, i.e. elements of End(4) ® Q. Let n = deg ¢,, then
we have that as quasi-isogenies:

(¢;1®%)°¢1 :’7@%: 1= ff)lo(q;]@%)

We can therefore write (}5(1 = <l§1 ®% and we have shown that any isogeny has an
inverse quasi-isogeny—actually a trivial modification of the argument shows that
any quasi-isogeny is invertible. Set u = ¢;'o¢; € (End(4) ® Q)*.

Denote by capital letters the matrices corresponding to the various maps. We have

. RS B
U'U = & (07" ) o7 by = & (—A1>©1 ="
m m
so UeGU,(B). O

The next lemma says that we have indeed constructed a map

732050 = U\G(Q)/G(Q).

Lemma 17. The map vy is well-defined.

Proof. We need to show that y only depends on the isomorphism class [¢p, a1, 7]
Suppose f: (¢, 01,1,) = (P, 00,1,) is an isomorphism of triples. By Lemma 16 we
can assume without loss of generality that ¢, = fo¢,. For /# p, we get the following
diagrams

Top2 ke 2

e ~ —

Ty ;‘j\ /km Tf 3
(T A, eo) 5 (ThA, e1) 25 (ThA, en) (A7), c0) =t (A[%], e1) 5+ (A[€Y], es)

:L"yJ( kz’lTN /{g‘zTN aoJVN OqJN OLQJN

(TiA, o) = (TiA, o) = (TiA,co) (Z/0"Z) — (2/"Z) — (2/" L),

where ko = Tyf k. It is now clear that we end up with the same x, € O (N)\B) as
the one obtained from ¢,. The exact same thing happens at the prime p. [

3.1. The inverse map

We need to construct an inverse. Let [x]eQ and pick a representative x =
(x,) € G(Q). Let /#p. We have x, € G(Q,) = GSpy, (Q/) = Aut(V7,e). Let nyeZ be
the smallest integer such that y, = /" x,eGSp,,(Z,;) = End(T,4,ep). The endo-

morphism y, is injective with finite cokernel C,. Let /¥ be the order of C,. Let K, be
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the kernel of the map induced by y, on A[/*]:
0K, — A[F] 2 A[/F]- ¢, —0.

For / = p we have x,e GU,(B,) = (End(M,e)) ®Q,)*. Write x, = a + nb, where
a,be My(L,) and 7> =-p. We have a=37,a;®; and b=3b;®.}, with
a;,bje End(M,ep). Let n,eZ be the smallest integer such that

Prx,=([d®1)+nb'®1)

and set y, = d + nb'€End(M,ey). This y, is an endomorphism of the Dieudonné
module M which induces an automorphism of M ® Q,, therefore this endomorph-
ism must be injective with finite cokernel C,. Let p* be the order of C,, then y,
induces a map

M(A[PF)) 2% M(A[pH]) - C,—0.

Then C, is the Dieudonné module of a subgroup scheme K, of 4 of rank p.

Since xe G(@), n, = 0 for all but finitely many /. Therefore, it makes sense to set
g =]]¢"eQ and y = xq; the /th component of y is precisely the y, above, and
clearly [x] = [y]. Now set K = @ K/, then K is a finite subgroup of 4. So to the given
[x] € @ we can associate the quotient isogeny A —» 4/K. After picking an isomorphism
A/K = A we get an isogeny ¢ : A — A, and this induces a principal polarization 4 on
A such that ¢ is an isogeny of polarized abelian varieties. For /# p, our construction
gives for any positive integer m

0——ker—— (A[{™], eo) — —— (A[f™], e

O—)ker—) gm] €0 —>(A[€m],€0)

Due to the structure of /”-torsion, it is not hard to see that one can construct a
symplectic isomorphism (actually, there exist many of them) (A[/"],ep) = (A[/™], )
which makes the above diagram commute. On the level of Tate modules, we get

()—> T[A 6’0 TN) (TZAv 3)

0—— TgA 60) ye (TgA,@o).
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In particular, we can set o := ook, !, then the symplectic isomorphisms

o (A[L"], ) S((Z/¢"7)%, std)

for /|N piece together to give a level N structure on (4, ).
For / = p we have similarly

0—— (M, e)M(M, ep) —coker M (¢p) ——0

L

0—— (M, eq) —2— (M, eg) c, 0,

and n = kljl(no) gives a non-zero invariant differential on (4, 1).
The next result tells us that we have indeed constructed a map o : Q— 2°.

Proposition 18. The map ¢ is well-defined.

Proof. First suppose that X = xu, where ueEnd(4, /) is not divisible by any
rational prime. Let /#p, then X, = x,u, so y, = y,u:

0——(ThA, eg) —2— (T, A, eg) —— Cp——0

N

0—— (TgA 60) (TgA 60)—>Cg—>0

The snake lemma gives coker v, = 0, ker v, =~ coker u. Let /¥ be the order of C,, then
we can restrict the above diagram to the /*-torsion and get

0—— Ky —— (A[¥], e0) 2= (A[(¥], e0) —— Cp——0

0—— K, — (A[l*], e0) T (A[¥], e9) —— Cp,——0,

where u, is the restriction of u to A[/*] and g, is the restriction of u to K,. Note that
coker(uy : TyA— T;A) = coker(u: A[/*]— A[¢/¥]). Since there is no snake lemma for
diagrams of long exact sequences, we split the above diagram in two:

0—— Ky—— (A[f*], e0) —— (A[l*], e0) / ker yy ——0

g{ T WT 3)

0—— K, — (A[(*], e0) — (A[¢*], e0) / ker Gy ——0,
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0 Im y, (A[l¥], eq) —— Co——0

NE

0 Im 7, (A[t¥], e9) —— C,——0,

where we have taken the liberty of using the same label 4, for two maps which are
canonically isomorphic. We first apply the snake lemma to diagram 4 and get
ker h, = 0, coker h, ~ker v,. Using this information together with the snake lemma
in diagram 3 gives

ker g, ~keru,, 0-cokerg,—cokeru,—coker h, —0.

But we already have cokeru, = cokeru=~ker v, ~coker s, so the short exact
sequence above becomes 0 — coker g, — 0, i.e. coker g, = 0.
Let g = @g,: K—K and let f: (4,1) — (4, ) be defined by the diagram

0—— K —— (A, M) —25 (A, N) ——0

1 4,

0—— K —— (A, X)) —2— (A

) )\) Oa
where we use some isomorphism 4/K= A to define the isogeny ¢ and the principal
polarization 1. We apply the snake lemma and get an exact sequence

0— ker g — ker u— ker f - coker g = 0— coker u = 0 —coker f —0.

But the map kerg—keru is the sum of the isomorphisms kerg,~keru,, so
keru—kerf is the zero map; therefore ker f = 0. Clearly cokerf =0, so f is an
isomorphism.

We check that this isomorphism preserves level N structures. We have a diagram

(T, A, eo) Teo (T,A, )
Ye Nk;,z
Tyu=uy (/TZA, 80) ~| T f
Ye ke
(TLA, eq) Tié (1A, @),

where we know that the outer square commutes, and that the triangles situated over,
to the left, and under the central (7,4, ey) commute. Therefore the triangle to the
right of the central (7,4, ¢p) also commutes, i.e. k, = T,f ok,. The level N structures
on (A4,4) and (4, 4) are defined in such a way that the inner squares in the following
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diagram commute:

f

~

(A[], &) — T (A[e], e0) — 2 (Al &)

L{N aolw alw

(Z/0"2)%  std) —— ((Z/ 6" L)%, std) —— ((Z/0*Z), std),

therefore the outer rectangle also commutes, i.e. f* preserves the level N structures.
The same argument with reversed arrows shows that f preserves differentials.
Now suppose X = x/, /#p (the case / = p is analogous, even easier). If /'}/p,
then X = xx/ and y, = y»/. Multiplication by / is an isomorphism of (T, A4, ey), so
it induces an isomorphism K, = K, by applying the same argument as before on the
diagram:

0—— Ky —— (A[0%], ) —2 (A[C¥], ) —— Cor ——0

ggl)p\/ ETN U{/Tf\l

0—— Ky —— (A[*"], e0) == (A[*], e0) —— Cp —0.

Something similar occurs at p. If 7/ = ¢/, we get ¥, = x,/ and §, = y, so K, = K,. We
have an isomorphism K=~K so (A4,1)=(A4,4). We need to check that this
isomorphism is compatible with the level structures and the differentials. Let
/"}{p, then we have a diagram

4

(Tg/A, 6) $ (TglA, 60) L Tg/A, é)
] y ]

(20772, 5td) == ((Z/0"7)%, std) —— ((Z/0"Z)%, std).

Since the top “triangle’” commutes, we see that the level structures commute with
the isomorphism. The same thing happens at p. When // =/, then K, = K, so we
get the same diagram as above, except that the top isomorphism is actually the
identity map.

It remains to check the local choices. The group C, (therefore K,) depends on the
chosen isomorphism (7,4,¢y)= (Z?", std), and this can change y, by right
multiplication by an element of U,(N). Suppose we have another such candidate
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¥, = uyys, then we would get a commutative diagram

0——(TpA, e0) —— (T1A, e0) —— Cp——0
M
0——(TYA, eo) —2 (T, A, eg) — Cp——0,

from which we conclude as before that K, ~ K, and (4,4)=(4, 1). For the level N
structure, we have the diagram

(L\
(A[e"], e) == (A[0"], e0) —2= ((Z./"7)?9, std)

F !
(A[e"], &)= (A[€"], e0) == ((Z/L"Z)*std)

(e
and a similar argument holds for the # and 7. O

Lemma 19. The map vy is bijective with inverse J.

Proof. Suppose we started with [x]€ Q and got [(4, o) ﬁ(A, 2),0,n]. For £ #p we get

the exact sequence
T/
00— (T/A, e()) —)(T/A, 6) —coker T/(f) —0.

We see from diagram (3.1) that y, = k,'oT,¢, where k, is an isomorphism that
restricts to o~ 'oag. Therefore [y/] is exactly the local element that is obtained in the
computation of y([¢,a,n]). The same thing happens at p, so indeed y<d = 1.

Conversely, suppose we start with a triple ((4, 4o) g(A,i),oc,n). We get local
elements x, forming an adéle x. We have ker ¢ =[], coker x,. Now when we apply
0 we already have x, € GSp,,(Z,) so y, = x;, and K = @coker x; = ker ¢. We get an
isogeny (4, /9) — (A4, 1) which has the same kernel as ¢, therefore (4, 1)=(4,2). Itis
clear from the construction of ¢ that the level N structure and the invariant
differential will stay the same. [

We have just proved

Theorem 20. There is a canonical bijection 2° — Q.
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3.2. Compatibilities
We now turn to the proof of the following result:

Theorem 21. The canonical bijection y : 2°(N)— Q(N) is compatible with the action of
the Hecke algebra, with the action of GSp,,(Z/NZ), and with the operation of raising

the level.

3.2.1. Hecke action

In this section ¢ will denote a fixed prime not dividing pN. We have given the
definition of the Hecke operators in Section 2.2.2; we start this section by making the
definition more explicit.

If HgHe #';, we denote by det(HgH) the /-part of the determinant of any

representative of HgH. The action of #, on 20 is defined as follows. If
det(HgH)>1, let C be a subgroup of A of type HgH and let [(A,}vo)g(A,i),

a,17] € £°. The abelian variety 4/C is also superspecial, so it can be identified with 4.
We denote by . the composition 4 > A/C=A, and we denote by A¢ the principal
polarization induced on the image 4. We set

Tug ([(4, 20) 24, 2), 0, 1))

Yy
=Y [0 B4, 55, ), e e
C of type HgH

where - = M(y¢) "' (1), and ac is defined by the diagram:

(A[N], €) —C——(AN], ec)
l e (5)
(Z/NZ)>, std) = ((Z/NZ)*, std).
Note that these definitions make sense because (degy,pN) = 1.

Now suppose det(HgH)<1. Given C a subgroup of A of type Hg'H, let . be

the composition 4 > A/C=A and let ¢ : A— A be the dual isogeny to V. Given a
principal polarization 4 on A, there is a principal polarization A¢ on A such that the
following diagram commutes:

Acte 4

[
(Ye)!

Al—— AL,
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The action is defined by
¢
Trgr ([(4, 20) —(4, 2), 2, 1))

b ,
= Z [(A7AO) _)(A7/L) <_C (A7/“C)7J~C7OCC77]C]7
C of type Hg~'H

where o = M(¢')(), and ac is defined by the diagram

(A[N], )2 (A[N], ec)
al acl (6)
(Z/NZ)», std) —— ((Z/NZ)%, std).
The algebra #, acts on H\G as follows: let HgH =[], Hy;, let Hxe H\G and
choose a representative xe Hx. Then there exist representatives g;€ Hg; such that

Thyu(Hx) = ; Hgix. The algebra &, acts on Q by acting on the component Hx; of
[x]eQ.

Lemma 22. The bijection y: 2° - Q is compatible with the action of the local Hecke
algebra #y, i.e. for all HgH € Ay and [, o, 1] we have

P (Trgr (¢, 2 1)) = Trgr (2([d, 2, 1]))-

Proof. Let HgH € #'4, let [(A, o) ﬂ(A,i)m@n]eZO and let [x] = y([¢,a,n]).

Suppose at first that det(HgH) > 1 and let C be a subgroup of 4 of type HgH. Let
[xc] = (b cod,oc,nel)- If (¢, p/) =1, we have a diagram

(TwA, e0) 225 (Ty A, e) Y% (Tp A, ec).

ko
W

(Tg/A, 60)
Since (Tyyc)oky : (TpA,e0)— (TpA,ec) is a symplectic isomorphism restricting to

actony (see diagram 5), we get that [xc ] = [x/].
A similar argument, based on the following diagram, shows that [xc,] = [x,]:

(M, ee)™e) (01, ¢) 290 (01, )

& sz

(M, 60).
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We now figure out what happens at 7. Fix x, € Hx,, then the symplectic isomorphism
ky: (TyA,e0)— (TyA,e) is fixed and allows us to identify these two symplectic Z,-
modules. Choose a symplectic isomorphism k¢ : (T,A4,¢e)— (T;A,ec) and set y¢ =
kgloT/tpC. Via the identification k,, y¢ induces a map z¢ : (TyA4,e9) — (T/A4,e). We
have a diagram

(TLA, e0) 25 (T, A, ) 2% (T, A, ec).

[

(TvA, eg) (TA, e)

Fe ~
cl -

(ﬂAa 60)

@

Since k¢ok, is a symplectic isomorphism (7,4, e9) — (T4, ec) and z¢ox, satisfies all
the properties x¢, should, we conclude that Hxc, = Hzcx,. The assumption that C
is of type HgH implies that Hz¢c < HgH.

It remains to show that the map C+> Hz¢ gives a bijection between the set of
subgroups C of 4 of type HgH and the set of right cosets Hz contained in HgH. We
start by constructing an inverse map. Let Hz< HgH and pick a representative z. This
corresponds to a map z: (TyA4,e9)— (T,A,e), and hence induces via k, a map
y:(TsA,e)—(T,A,e). We use the same construction as in the definition of the
inverse map J in Section 3.1 to get a subgroup C of A4 which is canonically
isomorphic to the cokernel of y. This C will be of type HgH because Hz< HgH. The
proof of the bijectivity of C+>z¢ is now the same as the proof of Lemma 19.

It remains to deal with the case det(HgH)<1. This works essentially the same,
except that various arrows are reversed. We illustrate the point by indicating how to
obtain the equivalent of the map C+ Hz¢ in this setting. Let C be a subgroup of 4
of type Hg~'H. This defines a new element of 2° which we denote by [/ ' ¢, a.c, ]
(by a slight abuse of notation since 1/}C is not invertible as an isogeny). Let [x¢] =

W[ od, ac,ne)). If (£, pf) = 1, we have a diagram

(Tu A, e0) 2% (Tu A, €) L224(Ty A, eo).

ko
W

(Tf’A7 60)

Since (T/rlﬁc)_lok// :(TpA,ep)— (TrA,ec) is a symplectic isomorphism restricting
to aglon (see diagram 6), we get that [xc ] = [x]. The situation at p is similar and
we have [xc,| = [x,].

What about /? As before, we fix x, € Hx, and with it the symplectic isomorphism
ks : (TyA,e0)— (T,A,e). Choose a symplectic isomorphism k¢ : (T,A4,¢e)— (TsA,ec)
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and set yc¢ = T/lﬁcokc. Via the identification k,, yc induces a map zc¢:
(TyA,e0)— (TyA,ep). We have a diagram

(T, A, ep) LN (Ty A, €) Jeve (Ty A, ec).

x{ / Yo /

(EA, 60) (EA, 6)

ZCT ng
(nAa 60)

It is now clear that zcoxc, = x,. z is only defined up to right multiplication by
elements of H (because of the choice of k¢), so we get the formula Hx¢, = Hzglx/.
The assumption that C is of type Hg~'H guarantees that Hz:! « HgH. The rest of
the proof proceeds similarly to the case det(HgH)>1. O

3.2.2. Action of GSp,,(Z/NZ)

Within this section we will write G to denote GSp,,(Z/NZ). The group G acts on
SO by g- [¢7 ;“7 a, '/I] = [¢7 )w gou, 7]]

The action on Q is more delicate. It is easy to see that since U, = Aut(T,4, ey), we
have U,(N)\U; = Aut(A4[/"],e), where /"||N. Our fixed symplectic isomorphism

o : (A[N],e0)— ((Z/NZ)*,std) identifies G with Aut(A[N],e) via g og togony.
Therefore we get an identification

G= H U/ (N)\U,
/

g [T U(N) (5" ogomo),
l

where the product is finite since the terms with /N are 1. The action of G on Q is
then given by

g .

H U/(N)X/
3

H U/(N)(aalogoa)x/ .
2

Lemma 23. The bijection y:3°—Q is compatible with the action of the group
GSp,,(Z/NZ).

Proof. Let [[[ Us(N)x/| = 7([¢,4,a,7]) and

T U] =l - 19 2,2 = (8. 2 9o ).
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Pick some 7 #p and set H = U,;(N); we claim that Hx, = H (o 'ogoa)x,. Recall that
P k;lDT/(b, where k,: (T;A,e0)—>(TsA,e) is some symplectic isomorphism
extending o 'oxg. Therefore k/' = kso(o ogong) is a symplectic isomorphism
extending o 'ogooy and is thus precisely what we need in order to define x,/ =
(k,)"'T,¢. By the definition of K/, we have

1 -1 -1 —-1__—1
xl/ = (g(o og oo()ok{ oT/(j) = (g(o og oo()ox/,
which is what we wanted to show. O

3.2.3. Raising the level
Suppose N’ = dN for some positive integer d. A level N’ structure

o : (A[N'],e)— ((Z/N'Z)* std)

on the principally polarized abelian variety (A4, 4) induces a level N structure on
(4,2) in the following way. Multiplication by d on A[N’] gives a surjection d :
A[N'] > A[N], and there is a natural surjection 7 : (Z/N'Z)* —(Z/NZ)* given by
reduction mod N. We want to define a map o : A[N]—(Z/NZ)* that completes the
following square:

A[N"|—2~(Z/N'Z)>

This is straightforward: let Pe A[N| and take some preimage Q of it in A[N']. Set
a(P) = n(o'(Q)). This is easily seen to be well-defined and a bijection. Since both
surjections d and 7 respect the symplectic structure, o is a symplectic isomorphism.
We conclude that [¢, 1, o, n]— [$, 4, o, 5] gives a map ZO(N') - ZO(N).

There is a similar map on the Q’s. We only need to consider primes /|N’. Here we
have U;(N')cU;(N) so we get maps U;(N')\G,— U;(N)\G;, which can be put
together to form Q(N') - Q(N).

We want to show that the bijection y commutes with these maps. This is clear at
primes /} N', so suppose 7 is a prime divisor of N’; say /”'||N and /"||N’. Choose
elements [¢, 1,0/, 7] ZO(N'), [X] = y([p, 2, o, n]) and [x] = y([$, A, ,7]). By defini-
tion, we have x, = (k’/)_lod) where Kk, : (T,A,e0)—(TyA,e) is a symplectic
isomorphism restricting to

!

(A[£"], e0) ——=—— (A[£"), €)

o 6J~ o llm

(Z/0"2)>, std) —— ((Z/0"Z)% , std).
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This defines the local component U, (N')x/,. We can restrict k&, even further to the /-
torsion, and then by the definition of & we have

k!

(A[™], e0) —— s (A[em), ¢)
aglN alN
(Z/0m7)%  std) = ((Z/0™7)%, std).
But this means that &,/ plays the role of the k, in the definition of x,, so U;(N)x), =

U;(N)x,. This is precisely what the map Q(N’) - Q(N) looks like at /, so we are
done.

4. Restriction to the superspecial locus

Let ¥ be an [F-vector space and let p : GU,(F,.) > GL(V) be a representation. A
superspecial modular form of weight p and level N is a function f : ¥ — V satisfying

F([A, 2,0, My)) = p(M)”'f([4,2,0,5]), for all MeGU,(F,).

The space of all such forms will be denoted S,. If 7 is a subrepresentation of p, then
S:<=S,. If p and 7 are representations, then S,g: = S, ®S:.
Let .# denote the ideal sheaf of i : X< X, i.e. the kernel in:

0> ->0x—i,0s—0.

The sheaf .# is coherent [10, Proposition 11.5.9]. Given one of our sheaves [E,, we
obtain after tensoring and taking cohomology

0-H"(X,/®E,)>H"(X,E,)>H(X,i,0s ®F,) = H*(Z,i*E,).
We rewrite the part that interests us in a more familiar notation:

0-H(X,.7 QE,)— M,(N) 5 Skes ,

where Res restricts representations on GL, to the finite subgroup GU(F ).
Let @ := AE = Eq4¢; it is an ample invertible sheaf [4, Theorem V.2.5].

Proposition 24. For n>0, r is a surjective map M,gqer (N) — SRes(p@det")-

Proof. Let k be such that w* is very ample. This defines an open immersion ; :
X &PV such that j,0(1) = o*. By Hartshorne [10, Exercise I1.5.15] there exists a
locally free sheaf [/, on P" such that E,|;x) = Ep. Letf = jei, then we have an exact
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sequence of sheaves on PV:
0> 5 pv ®E,Q0(1)" > E,@0(1)" - £.05 O, ® 0(1)" 0.
By Hartshorne [10, Theorem II1.5.2], we know that for m>0 the map
H(PY,E, @ 0(1)")-»H(P",£,.0s ® E,® O(1)")
is surjective. We get a commutative diagram

H (PY,E, @ 6(m)) »H° (BY, £.0x 9 E, @ O(m)) =H" (3, (E, ® 6(m))|s,)

J(rcstriction to X lrostriction to X J,

H° (X,E, ® ™) —H° (X, 0,05 @ B, ® o) —H° (5, (B, @ o™ ).

The rightmost vertical map is an isomorphism, hence the middle vertical map is also
an isomorphism and therefore

H(X,E, ® ") -H"(X,i.0s ® F, ® &™)

is a surjection. We have proved the proposition for large enough n which are
congruent to 0 modulo k. In order to do the same for all large enough n congruent to
a modulo k (for 0 <a<k), we use the above argument replacing E, by E, ® w®. Since
there are only finitely many such a, the proposition is proved. O

4.1. Lifting weights

If H is a subgroup of a group G, we say that a representation p of H lifts to G if
there exists a representation g of G such that p = Res p. It is clear that if p lifts to g
and 7 lifts to 7, then p @~ lifts to gD 7.

Let ¢ be some power of p. The following is a direct consequence of Steinberg [24,
Theorems 6.1 and 7.4]:

Proposition 25. Every irreducible representation of SL,(F,) lifts to a unique irreducible
rational representation of SL,(F,).

We now extend this to

Proposition 26. Every irreducible representation of GL4(F,) lifts to an irreducible
rational representation of GLy(F,).

Proof. It suffices to prove that every irreducible representation lifts to a completely
reducible one. Let p : GLy(F,) > GL(V’) be irreducible.

Via the canonical embeddings SL,(F,)cGLy(F,) and G, (F,)cGLy(F,), p
induces representations p, : SL,(F,) - GL(V) and p,, : G,,,(F;) > GL(V), such that
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Im p, commutes with Imp,,. Since GL4(F,) =SL,(F,) - Gn(F;) and SL,(F,)n
Gm(Fy) = n,(F,), we also have that p({) = p,,({) for all {ep, (F,).
Any representation of G,,(F,) is of the form

Gu(F;)—> GL(V)

24
A

A

with a;eZ/(q — 1)Z. We claim that in our case G,,(F,) acts by scalars on V. Suppose
this is false, then there exists 1€ G,,([F,) such that at least two of the diagonal entries
of p,,(4) are distinct. By changing the basis of V" we can assume p,,(4) is in Jordan
canonical form. Let AeSL,(F,), then the fact that p(4) commutes with p,,(1)
forces A to have the same shape as p,,(4) (i.e. it is block-diagonal with blocks of the
same dimensions as p,,(4)). Since this holds for all 4eSL,(F,), we conclude that as
an SL,(F,)-module, V' has a direct sum decomposition V=V, @ ---@V;
corresponding to the shape of p,,(4) (in the chosen basis for V', ¥ is the span of
the first k& vectors, where k is the size of the first Jordan block of p,,(4), etc.). But this
means that ¥ is a proper subspace of ¥ which invariant under both SL,(F,) and
Gm(F,), contradicting the hypothesis that V" is an irreducible representation of
GL,(F,). So G,,(F,) acts by scalars on V, say p,,(4)v = A"v for some aeZ/(q — 1)Z.

From this it is clear that p,, is completely reducible and that any choice of aeZ
with @ = a (mod ¢ — 1) yields a completely reducible lift p,, : G,,(F,) > GL(V) given
simply by 4 1%. Note that ,, is a rational representation. Later on we will need to
choose a lift of a to aeZ that suits us better.

It is also pretty clear that p, is irreducible: if W is an irreducible SL,(F,)-
submodule, then W is also G,,(F,)-invariant so it is GL,([F,)-invariant, hence either
W=0or W=V.

By Proposition 25, p, lifts to an irreducible rational p, : SL,(F,) > GL(V). Since
G,, acts by scalars, Im p,, commutes with Im g,. We claim that the maps pg,, and g;
agree on p (F,) = SLy(F,)nG,,(F,). Assuming this is true, we can construct a
rational representation

p: GL,(F,)— GL(V)
M p(det M) - pg((det M)~ M).

Since the restriction of g to SL,(F,) is ps and in particular irreducible, we conclude
that g is irreducible.

It remains to prove that g,, and p, agree on the gth roots of unity. It suffices to do
this for a primitive gth root {. Write g = p*¢’ with (p,¢') = 1. We have ({) =
9 =1,s0 Y =1 since the only p*th root of unity in characteristic p is 1. Therefore {
is a g'th root of unity, so without loss of generality we may assume that (p,g) = 1.
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Consider the linear transformation g({). It is diagonalizable if and only if its
minimal polynomial has distinct roots. But the transformation satisfies X9 — 1 =0,
which has distinct roots, and hence the minimal polynomial will also have distinct
roots. So we can choose a basis for V" such that g,({) is diagonal. If it has at least two
distinct diagonal entries, we can apply the same argument as before to conclude that
since it commutes with all of ps(SL,(F,)) the representation g is reducible, which is a
contradiction. So g,({) = ¢, for some beZ/gZ. We want to show that g,,({) = p,({),
i.e. that we can choose aeZ such that a=b(modg). Let d = (g9,4—1) and
write g = dm, ¢ — 1 = dn. We have (C’”)d =0 =1s0 (C’”)"_1 = ()" = 1s0 {"eF,.
Therefore (" e u,(F,) and hence ({*)" = p,({") = pm({") = ({™)°. This implies that
ma = mb (mod g), i.e. a=b (modd). Since d = (g,q — 1) and d|(a — b) there exist
integers u, v such that @ — b = ug + v(q — 1) and therefore

(@a—v(g—1))=b(modg),
which is what we wanted. O

Note that in contrast with Proposition 25 the lift of p to GLy(F,) is not unique.
Fix some lift g, then any lift can be written in the form det” ® g, where m is a
common multiple of g and g — 1.

Corollary 27. Given an irreducible representation © : GUy(F ) — GL(W), there exists
an irreducible rational representation p : GLy(F,) > GL(V) such that t<Res p.

Proof. Consider the induced representation from GU,(F ) to GL,(FF,). This has an
irreducible subrepresentation p : GLy(F,)>GL(V) with the property that
1< Res p. The result now follows from the previous proposition. [

4.2. Proof of the main result

We have come to the main result of the paper. Recall the notation U,(N) =
GSpyy(Z/)(N) for £#p, U, = ker(GUy(0,) - GU,(F)) and

U=U,x ][] U/®N).
l#p

Theorem 28. Fix a dimension g>1, a level N =3 and a prime p not dividing N. The
systems of Hecke eigenvalues coming from Siegel modular forms (mod p) of dimension
g, level N and any weight p, are the same as the systems of Hecke eigenvalues coming
from algebraic modular forms (mod p) of level U and any weight ps on the group
GU,(B).
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Proof. Let f be a Siegel modular form of weight p : GL,— GL,, which is a Hecke
eigenform. If r(f) =0, then feH’(X,.#®E,). The quotient map of y-modules
4 —.7/.9% induces (after tensoring with E, and taking global sections) a map

H(X,7®F,)-»H"(X,#/9*®E,), which we denote by ff.
Consider feH(X,.7/.#* ®[E,). We have an exact sequence
0->IR®I)I'QE,—» I/ I RF,»i.0s®F/I*QE,—0
which gives us a long exact sequence that starts with

0-H'(X, .72/ QF,) »H'(X,.7//*QF,) L H'(Z,i* (/)7 ®F,)).

If r1(f) = 0 then feH*(X, #%/.#° ®E,) and we can similarly consider r,(f), r3(f),
etc. There exists some n such that r,(f)#0. Let fs = r,(f)eH"(Z,i*(s")s""!
®E,)). Note that .#"/#" = Sym"(#/.#?) and that i*(#/5%) = i*(Q}). Recall
from Section 2.2.3 the Kodaira—Spencer isomorphism Q% ~[
that fs € Speg(
weight p a superspecial modular form fs of weight Res((Sym*'std)® p) for some
integer n depending on f. Moreover, since the restrictions r; and the Kodaira—
Spencer isomorphism are Hecke maps, we conclude that fg5 is a Hecke eigenform
with the same eigenvalues as f.

Now let fs be a superspecial Siegel modular form of weight pg:

Sym? std- We conclude

Sym? sid)@p)- SO OUT process associates to a Siegel modular form f of

GUg([sz)—>GLm([_Fp). By applying Corollary 27 we get a rational representation
p : GL,— GL,, such that pg=Res p. By functoriality we get S, = Sgres ;. We know
that the map 7 : M;g g (N) = Sres(s@der) 18 surjective for n>0, and therefore there
exists an integer k such that

N)-S

7

: Mﬁ®detk(p?—1>( )y = Sres 5O Spg

Res(ﬁ@detk(pz’])

is surjective. Since this map is also Hecke-invariant, we conclude from Ash and
Stevens [2, Proposition 1.2.2] that any system of Hecke eigenvalues that occurs in S,

also occurs in Mp_@detk(pz,l).

So far we showed that the systems of Hecke eigenvalues given by Siegel modular
forms (mod p) of all weights are the same as the systems of Hecke eigenvalues given
by superspecial modular forms S, of all weights. By Theorem 21 we know that S,
is isomorphic as a Hecke module to the space of algebraic modular forms (mod p) of
weight pg, and we are done. [
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4.3. Agreement with the definition of Gross

In this section we will write G :== GU(F2).

Recall from Section 2.1.3 that Gross defines algebraic modular forms (mod p) as
follows: let p: G>GL(¥V) be an irreducible representation where ¥ is a finite-
dimensional vector space over [,, then set

M(p) ={f:Q-V|f(x) = p(2)'f(x) for all .eG}.
For comparison, our spaces of modular forms on © are defined as
M) ={f:Q->W|f(x) = p(2) 'f(x) for all LG},

where 7 : G—GL(W) is an irreducible representation and W is a finite-dimensional
vector space over [.

The purpose of this section is to show that the spaces M(p) and M (1) for varying
p and 1 give the same systems of Hecke eigenvalues.

First suppose that (a7 : T) is a system of Hecke eigenvalues coming from M (p).
Then there exists f € M (p) ® F, such that T(f) = azf for all T. Let p®[, denote the

composition G GL(V) < GL(V ®F,). The map

M(P)®[_Fp_’M(P®[_Fp)

mor— oun

is an isomorphism compatible with the action of the Hecke operators, so the image
of f in M(p®F,) is an eigenform with the same eigenvalues as f. Therefore the
system (ar) also comes from M(p®F,).

Conversely, suppose that (ar : T) is a system of Hecke eigenvalues coming from
M (z) for some 1t : G—GL(W), W a finite-dimensional [,-vector space. Then there
exists /'€ M(t) such that T(f) = arf for all T. Since G is a finite group there exist
g=p° a finite-dimensional [F,-vector space W’ and a representation 1’:
G—GL(W') such that U ®F, =t. Similarly, Q is a finite set and f is a map
Q— W so by enlarging ¢ if necessary, there exists f'€ M(7’) such that f is the image
of /’®1 under the isomorphism M (7)®F,~ M (7). Clearly T(f’) = arf” for all T;
in particular arelF, for all T.

We now use the following

Proposition 29. Suppose L/K is a finite Galois extension with Galois group G and V is
a finite-dimensional vector space over L. Let I be a collection of commuting
diagonalizable linear operators on V and let Vi be the space V viewed as a vector space
over K. If a T -eigenvector v has system of eigenvalues {ar : T€ T }, then for every
o €@ there exists an eigenvector v, € Vi with system of eigenvalues {c(ar) : Te T }.
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Let us first see how this concludes our argument. We apply the proposition to the
finite Galois extension [F,/F,, the vector space M(7’), the Hecke operators 7', the
eigenvector f” and the identity Galois element ¢ = 1. We conclude that if we consider
M (') as a vector space over [, there exists an eigenvector /" with the same system
of eigenvalues as f”. This is precisely what we needed to show.

Proof of Proposition 29. The isomorphism ¢ of the next lemma induces an
isomorphism of L-vector spaces

¢:LOkV—> P Ve,
oceG

Let v, = ¢~ '(ve,-1). We have
Tv, = ¢~ ((Tv)es1) = ¢~ ((arv)e,1) = a(ar)™ ' (ve,1) = alar)v,,
s0 v, s an eigenvector of T with eigenvalue o(ar), and this holds for all Te 7. O

Lemma 30. Suppose L/K is a finite Galois extension with Galois group G. The map

¢: LR®yL— @ Le,

geCG

defined by 0@ fr— . ;0(a)pe, is an isomorphism of L-algebras.

Proof. It is pretty clear that ¢ is an L-algebra homomorphism. Since the dimensions
of the domain and of the range are equal (and equal to [L : K]), it suffices to prove
that ¢ is injective.

Let {o1, ..., a,} be a basis of L as a K-vector space. Then {o; ®o; : 1<i,j<n}isa
basis of L® kL as a K-vector space. Suppose ¢(>_ c;jo; ®@w;) = 0. If we write G =
{01, ...,0,}, then we have

Z cior(o)o; =0 for all k. (7)
i,j

Let 4 be the n x n matrix whose (,)th entry is ¢;(«;), and let ¢ be the column vector
whose ith entry is ch,;/oqj. Then system (7) can be written as Ac = 0. But it is an easy
consequence of independence of characters [13, Corollary VI.5.4] that 4e GL,(L),
therefore we must have ¢ = 0, i.e.

Z cjo; =0 for all i.
J

Since the o; are linearly independent we conclude that ¢; = 0 for all i and j, hence ¢
is injective. [
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