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Received April 1, 1998

Vertex algebras and conformal algebras have recently attracted a lot of
attention due to their connections with physics and Moonshine representa-

w xtions of the Monster. See, for example, 6, 10, 17, 15, 19 .
In this paper we describe bases of free conformal and free vertex

Ž w x w x.algebras as introduced in 6 ; see also 20 .
All linear spaces are over a field I- of characteristic 0. Throughout this

paper Z will stand for the set of non-negative integers.q
In Sections 1 and 2 we give a review of conformal and vertex algebra

w xtheory. All statements in these sections are either in 9, 17, 16, 15, 18, 20
or easily follow from results therein. In Section 3 we investigate free
conformal and vertex algebras.

1. CONFORMAL ALGEBRAS

1.1. Definition of Conformal Algebras

wWe first recall some basic definitions and constructions; see 16, 15, 18,
x20 . The main object of investigation is defined as follows:

DEFINITION 1.1. A conformal algebra is a linear space C endowed with
a linear operator D: C ª C and a sequence of bilinear products :n"
C m C ª C, n g Z , such that for any a, b g C one hasq
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Ž . Ž . Ž .i Locality There is a non-negative integer N s N a, b such that
a b s 0 for any n G N;n"

Ž . Ž . Ž . Ž .ii D a b s Da b q a Db ;n n n" " "
U TV WŽ . Ž .iii Da s yna n y 1 b.n"

1.2. Spaces of Power Series

Now let us discuss the main motivation for Definition 1.1. We closely
w xfollow 14, 18 .

1.2.1. Circle Products

ww y1 xxLet A be an algebra. Consider the space of power series A z, z . We
ww y1 xxwill write series a g A z, z in the form

a z s a n zyny1 , a n g A.Ž . Ž . Ž .Ý
ngZ

ww y1 xx nOn A z, z there is an infinite sequence of bilinear products ,"
n g Z , given byq

n
a b z s Res a w b z z y w . 1.1n Ž . Ž . Ž . Ž . Ž .Ž . Ž .w"

Ž . Ž . yny1 Ž .Explicitly, for a pair of series a z s Ý a n z and b z sng Z

Ž . yny1Ý b n z we haveng Z

a b z s a b m zymy1 ,n nŽ . Ž .Ž . Ž .Ý" "
m

where

n
s na b m s y1 a n y s b m q s . 1.2n Ž . Ž . Ž . Ž . Ž .Ž . Ý" ž /s

ss0

ww y1 xx ww y1 xxThere is also the linear derivation D s drdz: A z, z ª A z, z .
Ž . Ž .It is easy to see that D and satisfy conditions ii and iii of Definitionn"

1.1.
Ž .We can consider formula 1.2 as a system of linear equations with

Ž . Ž .unknowns a k b l , k g Z , l g Z. This system is triangular, and itsq
unique solution is given by

k
ka k b l s a b k q l y s . 1.3sŽ . Ž . Ž . Ž .Ž .Ý "ž /s

ss0
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w xRemark. The term ‘‘circle products’’ appears in 18 , where the product
w x‘‘ ’’ is denoted by ‘‘( .’’ In 15 this product is denoted by ‘‘ .’’n n Žn."

1.2.2. Locality

Next we define a very important property of power series, which makes
them form a conformal algebra. Let again A be an algebra.

Ž w x . ww y1 xxDEFINITION 1.2 See 1, 17, 15, 18, 20 . A series a g A z, z is
ww y1 xxcalled local of order N to b g A z, z for some N g Z ifq

Na w b z z y w s 0. 1.4Ž . Ž . Ž . Ž .

If a is local to b and b is local to a then we say that a and b are mutually
local.

w x Ž .Remark. In 18, 20 the property 1.4 is called quantum commutatï ity.

Ž .Note that 1.4 implies that for every n G N one has a b s 0. We willn"
Ž .denote the order of locality by N a, b , i.e.,

< kN a, b s min n g Z ;k G n , a b s 0 .Ž . ½ 5"q

Note also that if A is a commutative or skew-commutative or skew-com-
mutative algebra, e.g., a Lie algebra, then locality is a symmetric relation.
In this case we say ‘‘a and b are local’’ instead of ‘‘mutually local.’’

Ž . Ž . ym y1 Ž . Ž . yny1Let a z s Ý a m z and b z s Ý b n z be some se-mg Z ng Z

Ž .ries. Then the locality condition 1.4 reads

s Ny1 a m y s b n q s s 0 for any n , m g Z. 1.5Ž . Ž . Ž . Ž .Ý ž /s
s

Ž .The locality condition 1.4 is known to be equivalent to the formula

Ž .N a , b y1
ma m b n s a b m q n y s . 1.6sŽ . Ž . Ž . Ž .Ž .Ý "ž /s

ss0

The following statement is a trivial consequence of the definitions.

ww y1 xxPROPOSITION 1.1. Let A be an algebra and let S ; A z, z be a space
of pairwise mutually local power series, which is closed under all the circle
products and  . Then S is a conformal algebra.

Ž w x.One can prove see, for example, 15 that such families exhaust all
conformal algebras.
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Finally, we state here a trivial property of local series:

ww y1 xxLEMMA 1.1. Let a, b g A z, z be a pair of formal power series and
assume a is local to b. Then each of the series a, Da, za is local to each of
b, Db, zb.

1.3. Construction of the Coefficient Algebra of a Conformal Algebra

Given a conformal algebra C, we can build its coefficient algebra Coeff C
Ž̂ .in the following way. For each integer n take a linear space A n

ˆ Ž̂ .isomorphic to C. Let A s [ A n . For an element a g C we willng Z
ˆ ˆŽ . Ž .denote the corresponding element in A n by a n . Let E ; A be the

subspace spanned by all elements of the form

Da n q na n y 1 for any a g C , n g Z. 1.7Ž . Ž . Ž . Ž .
ˆThe underlying linear space of Coeff C is ArE. By an abuse of notation

ˆŽ . Ž .we will denote the image of a n g A in Coeff C again by a n . The
following proposition defines the product on Coeff C.

Ž .PROPOSITION 1.2. Formula 1.6 unambiguously defines a bilinear product
on Coeff C.

ˆŽ .Clearly 1.6 defines a product on A. To show that the product is well
defined on Coeff C, it is enough to check only that

Da m b n s yma m y 1 b nŽ . Ž . Ž . Ž . Ž .
and

a m Db n s yna m b n y 1 ,Ž . Ž . Ž . Ž . Ž .

which is a straightforward calculation.

1.4. Examples of Conformal Algebras

1.4.1. Differential Algebras

Ž .Take a pair A, d , where A is an associative algebra and d : A ª A is a
locally nilpotent derivation,

d ab s d a b q ad b , d n a s 0 for n 4 0.Ž . Ž . Ž . Ž .
w y1 xConsider the ring A d , d . Its elements are polynomials of the form

Ý a d i, where only a finite number of a g A are nonzero. Here we putig Z i i
yn Ž y1 .n 0ad s a d and ad s a. The multiplication is defined by the formula

kk l i kqlyiad ? bd s ad b d .Ž .Ý ž /i
iG0
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w y1 xIt is easy to check that A d , d is a well-defined associative algebra. In
w y1 xfact, A d , d is the Ore localization of the ring of differential operators

w x Ž .A d . If in addition A has an identity element 1, then d 1 s 0 and
ddy1 s dy1d s 1.

n yny1 w y1 xww y1 xxFor a g A denote a s Ý ad z g A d , d z, z .˜ ng Z

˜One easily checks that for any a, b g A, a and b are local and˜
&

n˜a b s ad b . 1.8n Ž . Ž .˜"

� < 4So by Lemma 1.1 and Proposition 1.1 the series a a g A ;˜
w y1 xww y1 xx Ž .A d , d z, z generate an associative conformal algebra; see Section

1.6.
w y1 xOne can instead consider A d , d to be a Lie algebra, with respect to

˜w xthe commutator p, q s pq y qp. If two series a and b are local in the˜
associative sense they are local in the Lie sense, too. One computes also

& 1nqsn s nqs˜ ˜a b s ad b y y1  bd a , 1.9n Ž . Ž . Ž . Ž .Ž .˜ Ý" s!sG0

Ž .where  s drdz. Note that in 1.9 the circle products are defined by

n
s n nys mqs˜ w xa b m s y1 ad , bd . 1.10n Ž . Ž . Ž .˜Ž . Ý" ž /s

ss0

� < 4 w y1 xww y1 xx Ž .Again, it follows that a a g A ; A d , d z, z generate a Lie˜
conformal algebra; see Section 1.6.

An important special case is when there is an element ¨ g A such that
Ž . n yny1 w y1 xww y1 xxd ¨ s 1. Then ¨ s Ý ¨d z g A d , d z, z generates with re-˜ n

Ž . Ž .spect to the product 1.10 a centerless Virasoro conformal algebra. It
satisfies the relations

10¨ ¨ s  ¨ , ¨ ¨ s 2¨ ,˜ ˜ ˜ ˜ ˜ ˜""
and the rest of the products are 0.

1.4.2. Loop Algebras

Let g be a Lie algebra over an algebraically closed field I- and let s :
g ª g be an automorphism of finite order, s p s id. Then g is decom-
posed into a direct sum of eigenspaces of s :

< 2p i k r pg s g , s s e .[ gk k
kgZrpZ
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w y1 xDefine a twisted loop algebra g ; g m I- t, t by˜

jg s a t a g g .˜ Ý j j j mod p½ 5
j

w m n x w x mq nThe Lie product in g is given by a m t , b m t s a, b m t . If˜
w y1 xp s 1, then g s g m I- t, t , of course.˜

Now for any a g g , 0 F k - p, definek

p jqk yjy1 y1w xa s at z g g z , z .˜ ˜Ý
jgZ

˜ ˜Ž .It is easy to see that any two a, b are local with N a, b s 1 and if a g g˜ ˜ k
and b g g we havel

&
w xa, b if k q l - p ,˜0a b s˜ &" ½ w xz a, b if k q l G p.

� < 4 ww y1 xxAs in Section 1.4.1, we conclude that a a g g ; g z, z generate a˜ ˜
Ž .Lie conformal algebra. Again, see Section 1.6 for the definition of
varieties of conformal algebras.

1.5. More on Coefficient Algebras

Let C be a conformal algebra and let A s Coeff C. Define

A s Span a n a g C , n G 0 ,� 4Ž .q

A s Span a n a g C , n - 0 ,� 4Ž .y

A n s Span a n a g C .� 4Ž . Ž .
Ž . Ž . Ž .Define also for each n g Z linear maps f n : C ª A n by a ¬ a n , and

Ž . yny1 ww y1 xx Ž . yny1let f s Ý f n z : C ª A z, z so that f a s Ý a n z .ng Z ng Z

Here we summarize some general properties of conformal algebras and
their coefficient algebras.

Ž .PROPOSITION 1.3. a A s A [ A is a direct sum of subalgebras.y q

Ž .b A and A are filtered algebras with filtrations gï en byq y

A 0 : A 1 : ??? : A , A s A y1 = A y2 = ??? ,Ž . Ž . Ž . Ž .q y

A n s A , A n s 0.Ž . Ž .D Fq
nG0 n-0

¡ nq1 kD C q Ker D if n G 0,D~ kG1c Ker f n sŽ . Ž . ¢ yny1Ker D if n - 0.

Ž .In particular, f y1 is injectï e.
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Ž . ww y1 xx Ž . yny1d The map f : C ª A z, z , gï en by a ¬ Ý a n z , is anng Z

injectï e homomorphism of conformal algebras; i.e., it preser̈ es the circle
products and agrees with the derï ation

f a b s f a f b , f Da s Df a . 1.11n nŽ . Ž . Ž . Ž . Ž .Ž ." "

Ž . ww y1 xxe The map f : C ª A z, z has the following unï ersal property:
ww y1 xxFor any homomorphism c : C ª B z, z of C to an algebra of formal

power series, there is the unique algebra homomorphism r : A ª B such that
the corresponding diagram commutes

ry1 y16w x w xA z, z B z, z

6 6

cf

C

Ž . Ž Ž .. Ž .f The formula D a n s yna n y 1 defines a derï ation D: A ª A
such that DA ; A , DA ; A .y y q q

Ž .Proof. From formula 1.6 for the product in A it easily follows that
Ž .A and A are indeed subalgebras. Also none of the linear identities 1.7q y

contains both generators with negative and non-negative index. This proves
Ž . Ž .a . Similar arguments establish also b .

Ž . Ž .Now we prove that Ker f n is included in the right-hand side of c .
ˆŽ . Ž .Take some a g C, a / 0, and assume that a n s 0. Then a n g A is a

Ž . Ž .linear combination of identities 1.7 see Section 1.3 so we must have
ˆin A

kmax

a n s l Da k q ka k y 1 .Ž . Ž . Ž . Ž .Ž .Ý k k k
kskmin

We can assume that l / 0 for all k F k F k and that a / 0 fork min max k
k s k and for k s k . Assume also that l s 0 if k ) k ormin max k max
k - k .min

Comparing terms with index k for k F k F k , we getmin max

d a s l Da q l k q 1 a . 1.12Ž . Ž .k n k k kq1 kq1

Ž . Ž .Taking in 1.12 k s k y 1, we see that there are two cases: Either 1min
Ž .k s 0 and n G 0 or 2 n q 1 s k / 0.min min

Ž . kCase 1. Taking in 1.12 k s 0, . . . , n y 1, we get that a g D C fork
0 F k F n. Now we have two subcases: k ) n and k F n.max max
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Ž .If k ) n we substitute in 1.12 k s k , k y 1, . . . , n q 1 and getmax max max
k ma xykq1 Ž . nq1that D a s 0. Now take k s n in 1.12 and get that a g D Ck

q Ker Dk ma xyn.
Ž .If k F n we have l s 0, and hence substitution k s n in 1.12max nq1

gives a g Dnq1C.

Case 2. Here we again have two subcases: n G 0 or n - 0.
If n G 0 then, as in the previous case, we get Dk ma xykq1a s 0 fork

Ž . k ma xynn q 1 F k F k . Now taking k s n in 1.12 , we get a g Ker D .max
Ž .Finally, if n - 0 then, since l s 0, we have a s l n q 1 a .n nq1 nq1

Ž .Then we substitute k s n q 1, n q 2, . . . into 1.12 until for some k F0
Ž . k 0yk q1y1 we get l k q 1 a s 0. It follows that D a s 0 fork q1 0 k q1 k0 0

n q 1 F k F k ; therefore a g Ker Dk 0yn ; Ker Dyny1. This proves one0
Ž . Ž .inclusion in c . It also follows that Ker f y1 s 0.

Next we show that f is a homomorphism of conformal algebras, that is,
Ž .formulas 1.11 hold. For the first identity we have

f Da s Da n zyny1 s yn a n y 1 zyny1Ž . Ž . Ž . Ž . Ž .Ý Ý
ngZ ngZ

d
yny1s a n z .Ž .Ýdz n

The second identity reads

s na b m s y1 a n y s b m q s ,n Ž . Ž . Ž . Ž .Ž . Ý" ž /s
s

Ž .which is precisely the formula 1.2 .
Ž . Ž .Now d is done after we notice that f is injective, since f y1 is

injective.
Ž . kNow we can prove the other inclusion in c . If a g Ker D C, then f a is

k Ž .a solution of the differential equation  f a z s 0. Hence f a is az
Ž .polynomial of degree at most k y 1, and therefore f n a s 0 for n G 0

k Ž .and for n - yk. If a g D C, then f n a s 0 for 0 F n F k y 1, by
Ž .induction and 1.7 .

Ž . Ž .Statement e is clear, since identities 1.7 hold for any homomorphism
ww y1 xxc : C ª B z, z .

ˆŽ Ž .. Ž .Finally, the formula D a n s yna n y 1 defines a derivative of A.
Ž .So in order to prove f we have to show that D agrees with the identities

Ž .1.7 . This is indeed the case:

D Da n q na n y 1 s yn Da n y 1 q n y 1 a n y 2 .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .
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1.6. Varieties of Conformal Algebras

Ž w x.Consider now a variety of algebras A see 8, 13 .

DEFINITION 1.3. A conformal algebra C is a A-conformal algebra if
Coeff C lies in the variety A.

The identities in A-conformal algebras are all the circle product identi-
Ž .ties R such that for any integer m, R m becomes an A-algebra identity

Ž .after substitution of 1.2 for every circle product in R. Conversely, given a
Ž .classical algebra identity r, we can substitute 1.6 for all products in r and

get an identity of A-conformal algebras. This way we get a correspondence
between classical and conformal identities. See the next section for exam-
ples.

Ž .Combining Propositions 1.1 and 1.3 d , we get the following well-known
fact:

ŽPROPOSITION 1.4. A-conformal algebras are exhausted up to isomor-
. ww y1 xxphism by conformal algebras of formal power series S ; A z, z for

A-algebras A.

1.7. Associatï e and Lie Conformal Algebras

The following theorem gives the explicit correspondence between con-
formal and classical algebras in some important cases.

w xTHEOREM 1.1 16 . Let C be a conformal algebra and let A s Coeff C be
its coefficient algebra.

Ž .a A is associatï e if and only if the following identity holds in C:

n
s n U T U TV W V Wma b c s y1 a n y s b m q s c . 1.13n Ž . Ž .Ž .Ž . Ý" ž /" s

ss0

Ž . ww x x w w xx w w xxb The Jacoby identity a, b , c s a, b, c y b, a, c in A is
equï alent to the following conformal Jacoby identity in C:

n
s nma b c s y1n Ž .Ž . Ý" ž /" s

ss0

= U T U T U T U TV W V W V W V Wa n y s b m q s c y b m q s a n y s c .Ž . Ž .Ž .
1.14Ž .
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Ž . w x w xc The skew-commutatï ity identity a, b s y b, a in A corresponds
to the quasi-symmetry identity

1nqsq1 s U TV Wa b s y1 D b n q s a . 1.15n Ž . Ž .Ž .Ý" s!sG0

Ž .d The commutatï ity of A is equï alent to

1nqs s U TV Wa b s y1 D b n q s a . 1.16n Ž . Ž .Ž .Ý" s!sG0

Ž . Ž . Ž .The identities 1.13 , 1.14 , and 1.15 immediately imply the following:

COROLLARY 1.1. Let C be a Lie conformal or an associatï e conformal
algebra and let A s Coeff C be its coefficient algebra. Then C is an A -q

Ž .module with the action gï en by a n c s a c for a, c g C, n g Z . More-n q"
Ž Ž ..o¨er, this action agrees with the derï ations on A and C: Da n c sq

w Ž .xD, a n c.

From now on we will deal only with associative or Lie conformal
algebras.

1.8. Dong ’s Lemma

We end this section by stating a very important property of formal
power series over associative or Lie algebras. This property allows us to
construct conformal algebras by taking a collection of generating series.

LEMMA 1.2. Let A be an associatï e or a Lie algebra and let a, b, c g
ww y1 xxA z, z be three formal power series. Assume that they are pairwise

mutually local. Then for all n g Z , a b and c are mutually local.nq "
Moreo¨er, in the Lie algebra case,

N a b , c s N c, a b F N a, b q N b , c q N c, a y n y 1,n n Ž . Ž . Ž .Ž . Ž ." "
1.17Ž .

and, in the associatï e case,

N a b , c F N b , c , N c, a b F N c, a q N a, b y n y 1.n nŽ . Ž . Ž .Ž . Ž ." "
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2. VERTEX ALGEBRAS

2.1. Fields

Ž .Let now V be a vector space over I- . Denote by gl V the Lie algebra
Ž . Ž .ww y1 xxof all I- -linear operators on V. Consider the space F V ; gl V z, z

of fields on V, given by

yny1F V s a n z ;¨ g V , a n ¨ s 0 for n 4 0 .Ž . Ž . Ž .Ý½ 5
ngZ

Ž . Ž .For a z g F V denote

a z s a n zyny1 , a z s a n zyny1 .Ž . Ž . Ž . Ž .Ý Ýy q
n-0 nG0

Ž . Ž .Denote also by | s | g F V the identity operator, such that | y1F ŽV .
s Id ; all other coefficients are 0.V

w x Ž .Remark. In 18, 20 the elements of F V are called quantum operators
on V.

Ž .We view gl V as a Lie algebra, and Section 1.2.1 gives a collection of
Ž .products , n g Z , on F V . Now in addition to these products wen q" U TV Wintroduce products for n - 0. Define first y1 byn"

U TV Wa z y1 b z s a z b z q b z a z . 2.1Ž . Ž . Ž . Ž . Ž . Ž . Ž .y q

Ž .Note that the products in 2.1 make sense, since for any ¨ g V we have
Ž . Ž .a n ¨ s b n ¨ s 0 for n 4 0. The y1st product is also known as the

Ž .normally ordered product or Wick product and is usually denoted by
Ž . Ž .:a z b z :.
Next, for any n - 0 set

1
yny1a z b z s : D a z b z :, 2.2nŽ . Ž . Ž . Ž . Ž .Ž ." yn y 1 !Ž .

dwhere D s . Taking b s |, we getdz

U T U TV W V Wa y1 | s a, a y2 | s Da. 2.3Ž .

It is easy to see that

| a s d a.n y1 , n"
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We have the following explicit formula for the circle products: If
Ž .Ž . Ž .Ž . ym y1a b z s Ý a b m z , thenn nm" "

sqn na b m s y1 a s b m q n y sn Ž . Ž . Ž . Ž .Ž . Ý" ž /n y s
sFn

sqn ny y1 b m q n y s a s . 2.4Ž . Ž . Ž . Ž .Ý ž /s
sG0

Ž .Note that if n ) 0 then 2.4 becomes

nqs na b m s y1 a s , b m q n y s ,n Ž . Ž . Ž . Ž .Ž . Ý" ž /s
sG0

Ž .which is precisely formula 1.2 for Lie algebras.
It is easy to see that D is a derivation of all the circle products:

D a b s Da b q a Db. 2.5n n n Ž .Ž ." " "

Note also that the Dong’s Lemma 1.2 remains valid for negative n and
Ž .the estimate 1.17 still holds.

2.2. Definition of Vertex Algebras

Instead of giving a formal definition of a vertex algebra in the spirit of
Definition 1.1, we present a description of these algebras similar to

w xProposition 1.4. For a more abstract approach see, e.g., 9, 15, 18, 20 .

Ž .DEFINITION 2.1. A ¨ertex algebra is a subspace S ; F V of fields over a
vector space V such that

Ž . Ž .i Any two fields a, b g S are local in the Lie sense .

Ž .ii S is closed under all the circle products , n g Z, given byn"
Ž .2.4 .

Ž .iii | g S.

Ž .Note that from 2.3 it follows that a vertex algebra is closed under the
derivation D s drdz.

Note also that a vertex algebra is a Lie conformal algebra.
Ž .Let S ; F V be a vertex algebra. We introduce the left action map Y:

Ž .S ª F S defined by

Y a s a ? zyny1. 2.6nŽ . Ž .Ž .Ý "
ngZ

Ž .Clearly, Y | s | .S F ŽS .
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Ž w x.We state here the following characterizing property of Y see 15, 20 :

Ž .PROPOSITION 2.1. The left action map Y: S ª F S is an isomorphism of
Ž . Ž .¨ertex algebras, i.e., Y S ; F S is a ¨ertex algebra and

Y a b s Y a Y b , Y | s | . 2.7n nŽ . Ž . Ž . Ž .Ž . S F ŽS ." "

Ž . Ž .From 2.3 and 2.5 it follows that Y also agrees with D:

Y Da s  Y a s D , Y a .Ž . Ž . Ž .z

2.3. En¨eloping Vertex Algebras of a Lie Conformal Algebra

Let C be a Lie conformal algebra and let L s Coeff C be its coefficient
Lie algebra.

w x Ž .DEFINITION 2.2 14, 15 . a An L-module M is called restricted if for
any a g C and ¨ g M there is some integer N such that for any n G N

Ž .one has a n ¨ s 0
Ž .b An L-module M is called a highest weight module if it is

generated over L by a single element m g M such that L m s 0. In thisq
case m is called the highest weight ¨ector.

Clearly any submodule and any factor module of a restricted module are
restricted.

Ž .Let M be a restricted L-module. Then the representation r : L ª gl M
ww y1 xx Ž .could be extended to the map r : L z, z ª F M which combined with

ww y1 xx Ž .Ž .the canonical embedding f : C ª L z, z see Proposition 1.3 d gives
Ž . Ž . Ž .a conformal algebra homomorphism c : C ª F M . Then c C ; F M

Ž .consists of pairwise local fields, and by Dong’s Lemma 1.2, c C together
Ž . Ž .with | g F M generates a vertex algebra S ; F M .M

w xThe following proposition is well known; see, e.g., 11 .

Ž .PROPOSITION 2.2. a The ¨ertex algebra S s S has the structure of aM
highest weight module o¨er L with the highest weight ¨ector |. The action is
gï en by

a n b s c a b , a g C , n g Z, b g S .nŽ . Ž . M"

Moreo¨er this action agrees with the derï ations:

Da n b s D , a n b .Ž . Ž .Ž .

Ž .b Any L-submodule of S is a ¨ertex algebra ideal. If M and M are1 2
two restricted L-modules, S s S , S s S , and m: S ª S is an L-mod-1 M 2 M 1 21 2
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Ž .ule homomorphism such that m | s |, then m is a ¨ertex algebra homo-
morphism.

2.4. Unï ersal En¨eloping Vertex Algebras

Now we build a universal highest weight module V over L, which is
often referred to as a Verma module. Take the one-dimensional trivial
L -module I- | , generated by an element | . Then letq V V

Y s IndL I- | s U L m I- | ( U L rU L L .Ž . Ž . Ž .L V UŽL . V qq q

It is easy to see that V is a restricted module and hence we get an
Ž .enveloping vertex algebra S s S ; F V and a homomorphism c : C ª S.V
Ž .Clearly, c is injective, since r : L ª gl V is injective.

Ž . Ž .THEOREM 2.1. a The map x : S ª V gï en by a ¬ a y1 | is anV
Ž .L-module isomorphism, and x | s | .S V

Ž .b S is the unï ersal en¨eloping ¨ertex algebra of C in the following
sense: If m: C ª U is another homomorphism of C to a ¨ertex algebra U,
then there is the unique map m: S ª U which makes up the followingˆ
commutatï e triangle:

m̂ 6

S U

6 6

mc

C

Ž .From now on we identify V and S s S via x and write V s V C forV
the universal enveloping vertex algebra of a Lie conformal algebra C and

Ž . Ž .| s | s |. The embedding c : C ª V s U L rU L L is then givenS V q
Ž . Ž . Ž .by a ¬ a y1 |. By Proposition 1.3 c , the map f y1 : C ª L , definedy
Ž .by a ¬ a y1 , is an isomorphism of linear spaces. Therefore, the image of

Ž .C in V is equal to c C s L | s L| ; V.y

3. FREE CONFORMAL ALGEBRAS

3.1. Definition of Free Conformal and Free Vertex Algebras

Let BB be a set of symbols. Consider a function N: BB = BB ª Z ,q
which will be called a locality function.

Let A be a variety of algebras. In all the applications A will be either
Ž .Lie or associative algebras. Consider the category Conf N of A-confor-

Ž .mal algebras see Section 1.6 generated by the set BB such that in any
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Ž .conformal algebra C g C onf N one has

a b s 0 ;a, b g BB ;n G N a, b .n Ž ."

By an abuse of notation we will not make a distinction between BB and its
Ž .image in a conformal algebra C g C onf N .

Ž .The morphisms of Conf N are, naturally, conformal algebra homo-
Ž .morphisms f : C ª C9 such that f a s a for any a g BB.

Ž .We claim that Conf N has the universal object, a conformal algebra
Ž . Ž .C s C N , such that for any other C9 g Conf N there is the unique

Ž .morphism f : C ª C9. We call C N a free conformal algebra, correspond-
ing to the locality function N.

Ž .In order to build C N , we first build the corresponding coefficient
Ž .algebra A s Coeff C see Section 1.3 .

Let A g A be the algebra presented by the set of generators

X s b n b g BB, n g Z 3.1� 4Ž . Ž .

with relations

s N b , aŽ .y1 b n y s a m q s s 0 a, b g BB, m , n g Z .Ž . Ž . Ž .Ý ž /½ 5ss

3.2Ž .

˜ yny1 y1Ž . ww xx Ž .For any b g BB let b s Ý b n z g A z, z . From 3.2 it followsn
˜that any two a and b are mutually local; therefore by Dong’s Lemma 1.2˜

ww y1 xxthey generate a conformal algebra C ; A z, z .

Ž .PROPOSITION 3.1. a A s Coeff C.
Ž .b The conformal algebra C is the free conformal algebra correspond-

ing to the locality function N.

Ž .Proof. a Clearly, there is a surjective homomorphism A ª Coeff C,
Ž .since relations 3.2 must hold in Coeff C. Now the claim follows from the

Ž Ž ..universal property of Coeff C see Proposition 1.3 e .
Ž . Ž .b Take another algebra C9 g Conf N and let A9 s Coeff C9.

Obviously, there is an algebra homomorphism f : A ª A9 such that
Ž Ž .. Ž .f b n s b n for any b g BB and n g Z. It could be extended to a map f :
ww y1 xx ww y1 xx <A z, z ª A9 z, z . Now it is easy to see that the restriction f C
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gives the desired conformal algebra homomorphism C ª C9:

fy1 y16w x w xA z, z A9 z, z
6 6

f 6

C C9

Ž .Indeed, due to formula 1.2 , f preserves the circle products, and, since 
Ž . Ž .is a derivation of the products, and f  a s  f a , for a g C one has˜ ˜

Ž . Ž .f f s  f f for any f g C.

In the case when A is the variety of Lie algebras, we may consider the
Ž .universal vertex enveloping algebra V C of a free Lie conformal algebra

Ž . Ž .C s C N . In accordance with Theorem 2.1, we call V C a free ¨ertex
algebra.

Though the construction of free conformal and vertex algebras makes
sense for an arbitrary locality function N: BB = BB ª Z , the results ofq
Sections 3.4]3.7 are valid only for the case when N is constant.

Ž .3.2. The Positï e Subalgebra of Coeff C N

Ž .Let again C s C N be a free conformal algebra corresponding to a
locality function N: BB = BB ª Z , BB being an alphabet, and let A sq

Ž .Coeff C. Recall that by Proposition 1.3 a we have the decomposition
A s A [ A of the coefficient algebra into the direct sum of two subalge-y q

� Ž . < 4bras. Denote X s b n b g BB, n G i ; X.i

ˆLEMMA 3.1. The subalgebra A ; A is isomorphic to the algebra Aq q
Ž .presented by the set of generators X and those of relations 3.2 which contain0

only elements of X :0

s N b , aŽ .y1 b n y s a m q s s 0 a, b g BB, m G 0,Ž . Ž . Ž .Ý½ ž /ss

n G N b , a . 3.3Ž . Ž .5
ˆProof. Clearly, there is a surjective homomorphism w : A ª A whichq q

maps X to itself. We prove that w is in fact an isomorphism. We proceed0
in four steps.

Step 1. First we prove that A is generated by X in A. Indeed, weq 0
have X ; A . On the other hand, A is spanned by elements of the form0 q q
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Ž .a m , where m G 0 and a g C is a circle product monomial in BB. By
kinduction on the length of a it is enough to check that if a s a a , then"1 2

Ž . Ž .a m is in the subalgebra, generated by X , which follows from 1.2 .0

ˆ ˆStep 2. Let t : A ª A be the homomorphism, which acts on theˆ q q
ˆ ˆŽ . Ž . Ž .generators X by a n ¬ a n q 1 , so that t A is the subalgebra of Aˆ0 q q

ˆ ˆŽ .generated by X . We claim that t is injective, and therefore t A ( A .ˆ ˆ1 q q
² :Indeed, t acts on the free associative algebra I- X . Assume that forˆ 0

ˆ Ž . ² :some p g A we have t p s 0. Take any preimage P g I- X of p.ˆq 0
Ž . ² :Then we have t P s Ý j R , where j g I- X and R are relationsˆ i i i i 0 i

Ž .3.3 , such that in all j and R there appear only indexes greater than ori i
equal to 1. But then P itself must be of the form Ý j XRX , where ‘‘9’’ standsi i i
for decreasing all indexes by 1; hence p s 0.

Step 3. Next we claim that there is an automorphism t of the algebra
Ž . Ž .A which acts on the generators X by the shift a n ¬ a n q 1 . Indeed,

Ž .relations 3.2 are invariant under the shift, and clearly, t is invertible. For
any integer n denote A s t nA . We have A ( A s A for every n.n q n q 0

ˆ ˆStep 4. Now for each integer n take a copy A of A . Let t :ˆn q n
ˆ ˆ ˆ ˆ ˆŽ .A ª A be the isomorphism of A onto t A , built in Step 1. Let Aˆn ny1 q q

ˆbe the limit of all these A with respect to the maps t . We identifyˆn n
ˆ ˆgenerators of A with the set X . It is easy to see that w : A ª An n 0 0

ˆ ˆŽ .extends to the homomorphism w : A ª A, such that w A s A andn n
< Ž .w s id. Now we observe that all the defining relations 3.2 of A hold inX

ˆ y1 ˆA; hence there is an inverse map w : A ª A, and therefore w is an
isomorphism.

3.3. The Diamond Lemma

For future purposes we need a digression on the diamond lemma for
w xassociative algebras. We closely follow 2 , but use more modern terminol-

ogy.
Let X be some alphabet and let K be some commutative ring. Consider

² :the free associative algebra K X of non-commutative polynomials with
coefficients in K. Denote by X* the set of words in X, i.e., the free
semigroup with 1 generated by X.

² : Ž .A rule on K X is a pair r s w, f , consisting of a word w g X* and
² :a polynomial f g K X . The left-hand side w is called the principal part

of rule r. We will denote w s r.
² : Ž .Let R be a collection of rules on K X . For a rule r s w, f g RR and

a pair of words u, ¨ g X* consider the K-linear endomorphism r :u r ¨
² : ² :K X ª K X , which fixes all words in X* except for uw¨ , and sends

the latter to uf̈ .
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Ž .A rule r s w, f is said to be applicable to a word ¨ g X* if w is a
subword of ¨ , i.e., ¨ s ¨ 9w¨ 0. The result of application of r to ¨ is,

Ž . ² :naturally, r ¨ s ¨ 9 f̈ 0. If p g K X is a polynomial which involves a¨ 9r ¨ 0

word ¨ , such that a rule r is applicable to ¨ , then we say that r is
applicable to p.

² :A polynomial p g K X is called terminal if no rule from RR is
applicable to ¨ ; that is, no term of p is of the form ur¨ for r g RR.

² :Define a binary relation ‘‘ª ’’ on K X in the following way: Set
p ª q if and only if there is a finite sequence of rules r , . . . , r g RR, and1 n

Ž .a pair of sequences of words u , ¨ g X* such that q s r ??? r p .i i u r ¨ u r ¨n n n 1 1 1

Ž . ² :DEFINITION 3.1. a A set of rules RR is a rewriting system on K X if
there are no infinite sequences of the form

p ª p ª ??? ;1 2

² :i.e., any polynomial p g K X can be modified only finitely many times
by rules from RR.

Ž . ² :b A rewriting system is confluent if for any polynomial p g K X
there is the unique terminal polynomial t such that p ª t.

Ž . ² :Any rule r s w, f g RR gives rise to an identity w y f g K X . Let
Ž . ² :I RR ; K X be the two-sided ideal generated by all such identities.

Let ¨ , ¨ g X* be a pair of words. A word w g X* is called a composi-1 2
tion of ¨ and ¨ if w s w9uw0, ¨ s w9u, ¨ s uw0, and u / 0.1 2 1 2

Finally, take a word ¨ g X*. Let us call it an ambiguity if there are two
rules r, s g RR such that either ¨ is a composition of r and s or if ¨ s r
and s is a subword of r.

Now we can state the lemma.

Ž . Ž .LEMMA 3.2 Diamond Lemma . a A rewriting system RR is confluent
² : Ž .if and only if all terminal monomials form a basis of K X rI RR .

Ž .b A rewriting system is confluent if and only if it is confluent on all the
ambiguities; that is, for any ambiguity ¨ g X* there is the unique terminal

² :t g K X such that ¨ ª t.

Ž . w xRemark. Statement a appears in 21 . A variant of Lemma 3.2 appears
w x Ž w x.in 3, 4 . It was also known to Shirshov see 25 . The name ‘‘diamond’’ is

due to the following graphical description of the confluency property; see
w x Ž .21 . Let RR be a rewriting system in the sense of Definition 3.1 a , and let

² :‘‘ª ’’ be defined as above. Assume p, q , q g K X are such that1 2
² :p ª q and p ª q . Then there is some t g K X such that q ª t and1 2 1
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q ª t:2

q16

6

p t

6

6

q2

w xBergman in 2 uses the existence of a semigroup order with descending
chain condition on the set of words X*. Though in our case there is an

Ž .order on the set 3.1 , this order does not satisfy the descending chain
w xcondition, so we slightly modify the argument in 2 .

Ž .Proof of Lemma 3.2. a Assume that the rewriting system RR is
² : ² : Ž .confluent. Define a map r : K X ª K X by taking r p to be the

Ž .unique terminal monomial such that p ª r p . The crucial observation is
² : Ž .that r is a K-linear endomorphism of K X . So if p s Ý j u w y f ¨i i i i i i

Ž . Ž . Ž . Ž Ž . .g I RR , j g K, u , ¨ g X*, w , f g RR, then r p s Ý j r u w y f ¨i i i i i i i i i i i

s 0; therefore the terminal monomials are linearly independent modulo
Ž .I RR .

Form the other side, if RR is not confluent, then there are a polynomial
² : ² :p g K X and terminals q , q g K X such that p ª q , p ª q , and1 2 1 2

Ž .q / q , and then q y q g I RR .1 2 1 2

Ž . ² :b Take a polynomial p g K X . We prove that there is the
Ž .unique terminal t such that p ª t by induction on the number n p s

� < 4 Ž . Ž .a q p ª q . Condition a of Definition 3.1 assures that n p is always
finite.

Ž .If n p s 0 then p is a terminal itself and there is nothing to prove. By
induction, without loss of generality we can assume that there are at least
two different rules r, s g RR which are applicable to p. This means that

Ž . Ž .there are some words u, ¨ , x, y g X* such that r p / p, r p / p,u r ¨ xs y
Ž . Ž . Ž . Ž .and r p / r p . By induction, both r p and r p are uniquelyu r ¨ xs y u r ¨ xs y

Ž . Ž .reduced to terminals, say, r p ª t and r p ª t . We need tou p¨ 1 xs y 2
show that t s t .1 2

Consider two cases: when r and s have common symbols in p, and
thus ur¨ s xs y is a word in p; and when r and s are disjoint.

In the first case, let w g X* be the union of r and s in p. Then w is an
² :ambiguity. By assumption, there is the unique terminal s g K X such

² :that w ª s. Let q g K X be obtained from p by substituting w by s.
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Then we have

Ž .r pu r ¨6

6

p q

6

6

Ž .r pxs y

Ž .3.4

By induction, q is uniquely reduced to a terminal t, and therefore one has
Ž . Ž .r p ª t and r p ª t.u r ¨ xs y

Ž . Ž .In the second case, note that r r p s r r p . Denote thisxs y u r ¨ u r ¨ xs y
Ž .polynomial by q. Then relations 3.4 still hold, and we finish by the same

argument as in the first case.

3.4. Basis of a Free Vertex Algebra

Return to the setup of Section 3.1. From now on we take the locality
Ž . Ž . Ž .function N a, b to be constant: N a, b ' N. Let C s C N be the free

Lie conformal algebra and let L s Coeff C be its Lie algebra of coeffi-
cients; see Proposition 3.1. In this section we build a basis of the universal

Ž .enveloping algebra U L of L and a basis of the free vertex algebra
Ž .V s V C .

We start by endowing BB with an arbitrary linear order. Then we define
Ž .a linear order on the set X of generators of L, given by 3.1 , in the

following way:

a m - b n m m - n or m s n and a - b . 3.5Ž . Ž . Ž . Ž .
On the set X* of words in X introduce the standard lexicographical order:

< < < < < < < <For u, ¨ g X* if u - ¨ , set u - ¨ ; if u s ¨ , then set u - ¨ whenever
< < Ž . Ž . Ž . Ž .there is some 1 F i F ¨ such that u i - ¨ i and u j s ¨ j for all

1 F j - i.
Ž . Ž . Ž .In a defining relation from 3.2 the biggest term has form b n a m

such that

n y m ) N or n y m s N and b ) a or b s a and N is odd .Ž .Ž .Ž .
3.6Ž .

² :Taking it as a principal part, we get a rule on I- X

r b n , a mŽ . Ž .Ž .
N

s Ns b n a m , a m b n y y1 b nys , a mqs ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ý ž /sž /
ss1

3.7aŽ .
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and in the case when a s b, n y m s N, and N is odd,

r a m q N , a mŽ . Ž .Ž .

s a m q N a m , a m a m q NŽ . Ž . Ž . Ž .ž
Ž .Ny1 r21 s Ny y1 a n y s , a m q s . 3.7bŽ . Ž . Ž . Ž .Ý ž /s /2 ss1

Denote the set of all such rules by RR:

RR s r b n , a m 3.6 holds . 3.8� 4Ž . Ž . Ž . Ž .Ž .

² :LEMMA 3.3. The set of rules RR is a confluent rewriting system on I- X .

We prove this lemma in Section 3.5. Here we derive from it and from
Lemma 3.2 the following theorem.

Ž . Ž .THEOREM 3.1. a Let C s C N be the free Lie conformal algebra
generated by a linearly ordered set BB corresponding to a constant locality
function N. Let L s Coeff C be the Lie algebra of coefficients and let

Ž .U s U L be its unï ersal en¨eloping algebra. Then a basis of U is gï en by all
monomials

a n a n ??? a n , a g BB, n g Z, 3.9Ž . Ž . Ž . Ž .1 1 2 2 k k i i

such that for any 1 F i - k one has

N y 1 if a ) a or a s a and N is odd ,Ž .i iq1 i iq1n y n Fi iq1 ½ N otherwise.
3.10Ž .

Ž . Ž . Ž .b A basis of the algebra U L is gï en by all monomials 3.9q
Ž .satisfying the condition 3.10 and such that all n G 0.i

Ž . Ž .c Let V s V C be the corresponding free ¨ertex algebra. Then a basis
of V consists of elements

a n a n ??? a n k |, a g BB, n g Z, 3.11Ž . Ž . Ž . Ž .1 1 2 2 k k i i

Ž .such that the condition 3.10 holds and, in addition, n - 0.k

Ž .Proof. Statement a is a direct corollary of Lemmas 3.3 and 3.2,
Ž .because 3.9 is precisely the set of all terminal monomials with respect

to RR.
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Ž .Statement b follows immediately from Lemma 3.1, since any subset of
rules RR is also a confluent rewriting system. Note also that for a rule r

Ž .given by 3.7 if the principal term r contains only elements from X then0
so does the whole rule r.

Ž . ŽFor the proof of c recall that V ( UrUL as linear spaces and evenq
.as L-modules , where UL is the left ideal generated by L ; see Sectionq q

2.4. By Lemma 3.1, this ideal is the linear span of all monomials
Ž . Ž . Ž .a n a n ??? a n such that n G 0. But under the action of the1 1 2 2 k k k

rewriting system RR the index of the rightmost symbol in a word can only
² :increase; hence the linear span of these monomials in I- X is stable

under RR. It follows that the terminal monomials with a non-negative
Ž .rightmost index form a basis of UL . This proves b .q

3.5. Proof of Lemma 3.3

Ž .First we prove that the set of rules RR, given by 3.8 , is a rewriting
² : Ž . Ž .system on I- X . Take a word u s a m ??? a m g X*. Let p g I-1 1 k k

² :X be such that u ª p. Then any word ¨ that appears in p lies in the
finite set

� 4W s b n ??? b n g X* n G min m and n s m .Ž . Ž . Ý Ýu 1 1 k k i j i i½ 5
1FjFk

3.12Ž .

Ž .Therefore condition a of Definition 3.1 holds.
Thus we are left to prove that RR is confluent. According to Lemma 3.2,

Ž . Ž . Ž .it is enough to check that it is confluent on a composition w s c k b j a i
Ž Ž . Ž .. Ž Ž . Ž ..of principal parts of a pair of rules r b j , a i , r c k , b j g RR. Thus it

is sufficient to prove the following claim.

Ž . Ž . Ž .LEMMA 3.4. Let u s c k b j a i g X* be a word of length 3. Then RR

Ž . ² :is confluent on u; i.e., there is a unique terminal r w g I- X such that
Ž .u ª r w .

Ž Ž . Ž ..Proof. Assume for simplicity that the three rules r b n , a m ,
Ž Ž . Ž .. Ž Ž . Ž .. Ž .r c p , b n , and r c p , a m are of the form 3.7a . The general case is

essentially the same, but requires some additional calculations.
Ž .Consider the set W , given by 3.12 . We prove that the lemma holds foru

all w g W by induction on w. If w is sufficiently small then it is au
Ž . Ž . Ž .terminal itself. By induction, it is enough to consider w s c p b n a m

Ž . Ž . Ž . Ž .g W such that RR is applicable to both b n a m and c p b n . Applyu
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Ž Ž . Ž .. Ž Ž . Ž ..r b n , a m and r c p , b n to w and take the difference of the
results:

N
s N¨ s b n c p a m y y1 c p y s , b n q s a mŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ý ž /s

ss1

N
s Ny c p a m b n q y1 c p b n y s , a m q s .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ý ž /s

ss1

By induction, ¨ is reduced uniquely to a terminal t and we only have to
Ž Ž . Ž .. Ž Ž . Ž ..show that t s 0. First we apply the rules r b n , a m , r c p , b n , and

Ž Ž . Ž ..r c p , a m to ¨ several times and get

N
s N¨ ª y y1 b n c p y s , a m q s q b n a m c pŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ý ž /s

ss1

N
s Nq y1 c p y s , a m q s b n y a m c p b nŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ý ž /s

ss1

N
s Ny y1 c p y s , b n q s a mŽ . Ž . Ž . Ž .Ý ž /s

ss1

N
s Nq y1 c p b n y s , a m q sŽ . Ž . Ž . Ž .Ý ž /s

ss1

N
s Nª y1 a m , c p y s , b n q sŽ . Ž . Ž . Ž .Ý ž /s

ss1

N
s Nq y1 c p y s , a m q s , b nŽ . Ž . Ž . Ž .Ý ž /s

ss1

N
s Nq y1 c p , b n y s , a m q s . 3.13Ž . Ž . Ž . Ž . Ž .Ý ž /s

ss1

Next we introduce two rules acting on the linear combinations of
Ž . Ž . Ž . Ž .formal commutators: For any a m , b n , c p g X let

k s a m , b n , c p , a m , b n , c pŽ . Ž . Ž . Ž . Ž . Ž .Ž
q b n , a m , c p ,Ž . Ž . Ž . .

N
s Nl s b n , a m , y y1 b n y s , a m q s .Ž . Ž . Ž . Ž . Ž .Ý ž /sž /

ss1
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The rule l is the locality relation, and k is nothing else but the Jacoby
identity. The lemma will be proved after we show two things:

Ž .1 There always exists a finite sequence of applications of the rules k
Ž .and l that reduces 3.13 to 0.

Ž . Ž .2 All words which appear in the process of reduction in 1 are
Ž . Ž . Ž .smaller than the initial word u s c p b n a m with respect to the order

Ž .3.5 .

Ž . Ž . Ž .Indeed, assume 1 and 2 hold. Denote the polynomial in 3.13 by p .0
Let

p ª p ª ??? ª 00 1

Ž . Ž .be the reduction, guaranteed by 1 . By 2 and by the induction hypothe-
sis, any two neighboring polynomials p ª p from this sequence arei iq1
uniquely RR-reduced to a terminal, and this terminal must be the same,

RR RR
since either p ª p or p ª p .i iq1 iq1 i

Ž .Denote the three last terms in 3.13 by a , b , and c . In Fig. 1 we

present a scheme of how k and l should be applied in order to reduce
Ž .3.13 to 0.

Each box in Fig. 1 stands for a sum of commutators:

j s y r

N
sq t NNs y1 c p y s y t , a m q t , b n q s ,Ž . Ž . Ž . Ž .Ý ž / ž /s t

s, ts1

FIG. 1. Application of rules k and l.
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N
sq t NNk s y1 c p y s , b n q s y t , a m q t ,Ž . Ž . Ž . Ž .Ý ž / ž /s t

s, ts1

N
sq t NNl s y t s y1Ž .Ý ž / ž /s t

s, ts1

= c p y s , b n y t , a m q s q t ,Ž . Ž . Ž .
N

sq t NNm s y1 b n q t , c p y s y t , a m q s ,Ž . Ž . Ž . Ž .Ý ž / ž /s t
s, ts1

N
sq t NNn s y q s y1Ž .Ý ž / ž /s t

s, ts1

= b n y s q t , c p y t , a m q s ,Ž . Ž . Ž .
N

sq t NNo s y1 b n y s , a m q s q t , c p y t ,Ž . Ž . Ž . Ž .Ý ž / ž /s t
s, ts1

N
sq tqr NN Nv s y y s y1Ž .Ý ž / ž /ž /s rt

s, t , rs1

b n q s y t , a m q t q r , c p y s y r ,Ž . Ž . Ž .
N

sq tqr NN Nw s y1Ž .Ý ž / ž /ž /s rt
s, t , rs1

= a m q s q r , b n q t y r , c p y s y t ,Ž . Ž . Ž .
N

sq tqr NN Nx s y z s y1Ž .Ý ž / ž /ž /s rt
s, t , rs1

= a m q s q t , c p y t y r , b n y s q r .Ž . Ž . Ž .
One can see that all terminal boxes in the above scheme cancel, so that

Ž .a q b q c ª 0. Claim 2 also holds, since every symbol in every

Ž .box in Fig. 1 is less than c p .

3.6. Digression on Hall Bases

Ž .Let again BB be some linearly ordered alphabet, N g Z , C s C Nq
the free Lie conformal algebra generated by BB with respect to the

Ž .constant locality N, and L s Coeff C N . A basis of the Lie algebra L
could be obtained by modifying the construction of a Hall basis of a free

w xLie algebra; see 12, 23, 24 . Here we review the latter construction. We
w xclosely follow 22 , except that all the order relations are reversed.
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As in Section 3.3, take an alphabet X and a commutative ring K. Let
Ž .T X be the set of all binary trees with leaves from X. For typographical$

² : Ž .reasons we will write the tree xy as x, y . Assume that T X is endowed
² : � 4 Ž .with a linear order such that x, y ) min x, y for any x, y g T X .

Ž . Ž .DEFINITION 3.2. A Hall set HH ; T X is a subset of all trees h g T X
Ž .satisfying the following recursive properties:

² :1. If h s x, y then y, x g HH and x ) y.
²² : : ² :2 If h s x, y , z then z G y, so that x, y ) z G y.

In particular, X ; HH.

Ž . Ž . ² :Introduce two maps a : T X ª X* and l: T X ª K X in the
Ž . Ž . Ž² :.following recursive way: For a g X set a a s l a s a and a x, y s

Ž . Ž . Ž² :. w Ž . Ž .xa x a y , l x, y s l x , l y .
Ž w x.It is a well-known fact see, e.g., 22 that

Ž . Ž .a l HH is a basis of the free Lie algebra generated by X and
Ž . <b a is injectï e.HH

Ž .A word w g a HH is called a Hall word.
Ž .On the set X* of words in X introduce a lexicographic order as

follows: If u is a prefix of ¨ then u ) ¨ ; otherwise u ) ¨ whenever for
some index i one has u ) ¨ and u s ¨ for all j - i.i i j j

w xDEFINITION 3.3 25, 7 . A word ¨ g X* is called Lyndon]Shirsho¨ if it
is bigger than all its proper suffices.

Ž . Ž .PROPOSITION 3.2. a There is a Hall set HH such that a HH is the setLS LS
Ž .of all Lyndon]Shirsho¨ words and a : T X ª X* preser̈ es the order.

Ž . Ž . Ž .b For any tree h g HH the biggest term in l h is a h .LS

3.7. Basis of the Algebra of Coefficients of a Free Lie Conformal Algebra

Here we apply general results from Section 3.6 to the situation of
Section 3.1.

Recall that starting from a set of symbols BB and a number N ) 0, we
Ž .build the free conformal algebra C s C N generated by BB such that

a b s 0 for any two a, b g BB and n G N. Let L s Coeff C be then"
corresponding Lie algebra of coefficients. It is generated by the set

� Ž . < 4 Ž .X s a n a g BB, n g Z subject to relations 3.2 .
The set of generators X is equipped with the linear order defined by

Ž .3.5 . W define the order on X* as in Section 3.6. Consider the set of all
Ž .Lyndon words in X* and let HH s HH ; T X be the corresponding HallLS
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² : Ž .set. Recall that there is a rewriting system RR on I- X , given by 3.8 .
Define

HH s h g HH a h is terminal .� 4Ž .term

Ž .LEMMA 3.5. a Let ¨ F ??? F ¨ be a non-decreasing sequence of1 n
terminal Lyndon]Shirsho¨ words. Then their concatenation w s ¨ ??? ¨ g1 n
X* is a terminal word.

Ž .b Each terminal word w g X* can be uniquely represented as a
concatenation w s ¨ ??? ¨ , where ¨ F ??? F ¨ is a non-decreasing se-1 n 1 n
quence of terminal Lyndon]Shirsho¨ words.

Ž .Proof. a Take two terminal Lyndon]Shirshov words ¨ F ¨ . Let1 2
x g X be the last symbol of ¨ and let y g X be the first symbol of ¨ .1 2
Then, since a word is less than its prefix and since ¨ is a Lyndon]Shirshov1
word, we get

x - ¨ F ¨ - y.1 2

Therefore, xy is a terminal, and hence ¨ ¨ is a terminal, too.1 2

Ž .b Take a terminal word w g X*. Assume it is not Lyndon]Shirshov.
Let ¨ be the maximal among all proper suffices of w. Then ¨ is
Lyndon]Shirshov, ¨ ) w, and w s u¨ for some word u. By induction,
u s ¨ ??? ¨ for a non-decreasing sequence of Lyndon]Shirshov words1 ny1
¨ F ??? F ¨ . We are left to show that ¨ G ¨ .1 ny1 ny1

Assume on the contrary that ¨ - ¨ . Then, since ¨ ) ¨ ¨ , ¨ny1 ny1 ny1
must be a prefix of ¨ so that ¨ s ¨ ¨ 9. But then ¨ 9 ) ¨ which contra-ny1
dicts the Lyndon]Shirshov property of ¨ .

The uniqueness is obvious.

² : Ž .Let w : I- X ª U L be the canonical projection with the kernel
Ž .I RR .

Ž Ž ..THEOREM 3.2. The set w l HH is a basis of L.term

� 4Proof. Let s s h , . . . , h ; HH be a non-decreasing sequence of1 n term
Ž . Ž . Ž . ² : Ž .terminal Hall trees. Let l s s l h ??? l h g I- X and a s s1 n

Ž . Ž .a h ??? a h g X*.1 n
By the Poincare]Birkhoff]Witt theorem it is sufficient to prove that the´
� Ž Ž ..4set w l s , when s ranges over all non-decreasing sequences s of

Ž .terminal Hall trees, is a basis of U L .
Ž . Ž . Ž . Ž Ž .. Ž .By Proposition 3.2 b , l s s a s q O a s , where O ¨ stands for a

Ž . ² :sum of terms which are less than ¨ . Now let t s g I- X be a terminal
Ž . Ž . Ž . Ž Ž ..such that l s ª t s . One can view t s as the decomposition of w l s

Ž . Ž . Ž .in basis 3.9 . By Lemma 3.5, a s is a terminal monomial; hence t s has
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Ž . Ž . Ž . Ž .form t s s a s q f s where f s is a sum of terms ¨ g X* satisfying
the following properties:

Ž .1. ¨ is terminal and ¨ - a s .
Ž . Ž .2. If ¨ contains a symbol a n g X then a appears in a s and

n F n F n , where n and n are, respectively, minimum andmin max min max
Ž .maximum of all indices that appear in a s .

Ž .Indeed, due to Proposition 3.2 b properties 1 and 2 are satisfied by all the
Ž . Ž .terms in l s y a s , and they cannot be broken by an application of the

rules RR.
Ž . Ž Ž ..Property 1 implies that all t s and, therefore, w l s are linearly

Ž .independent. So we are left to show that they span U L . For that purpose
we show that any terminal word w g X* can be represented as a linear

Ž .combination of t s .
Ž . Ž .By Lemma 3.5 b any terminal word w could be written as w s a s for

some non-decreasing sequence s of terminal Hall trees. So we can write
Ž . Ž . Ž .w s t s y f s . Now do the same with any term ¨ that appears in f s ,

and so on. This process should terminate, because every term ¨ that
appears during this process must satisfy properties 1 and 2 and there are
only finitely many such terms.

Remark. Alternatively we could use the theorem of Bokut’ and Mal-
w xcolmson 5 .

Ž . Ž Ž ..As in Theorem 3.1 b , we deduce that all the elements of w l HHterm
containing only symbols from X form a basis of L .0 q

Note that we have an algorithm for building a basis of the free Lie
Ž . Ž . Ž .conformal algebra C s C N . Let L s Coeff C, V s V C , and U s U L .

Recall that the image if C in V under the canonical embedding c : C ª V
Ž .is c C s L | s L| ; V. So, the algorithm goes as follows: Take they

Ž .basis of L provided by Theorem 3.2. Decompose its element in basis 3.9
Ž .of the universal enveloping algebra U L , and then cancel all terms of the

Ž . Ž .form a n ??? a n where n G 0. What remains, being interpreted as1 1 k k k
Ž .elements of the vertex algebra V, form a basis of c C ; V.

3.8. Basis of the Algebra of Coefficients of a Free
Associatï e Conformal Algebra

Let again BB be some alphabet, and let N: BB = BB ª Z be a localityq
function, not necessarily constant and not necessarily symmetric. By

Ž .Proposition 3.1, the coefficient algebra A s Coeff C N of the free asso-
Ž .ciative conformal algebra C N corresponding to the locality function N is

presented in terms of generators and relations by the set of generators
� Ž . < 4 Ž .X s b n b g BB, n g Z and relations 3.2 .
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Ž .THEOREM 3.3. a A basis of the algebra A is gï en by all monomials of
the form

a n ??? a n a n , 3.14Ž . Ž . Ž . Ž .1 1 ly1 ly1 l l

where a g BB andi

N y 1 N y 1i iy F n F ,i2 2

N s N a , a for i s 1, . . . , l y 1.Ž .i i iq1

Ž .b A basis of the algebra A is gï en by all monomials of the formq

a n ??? a n a n , 3.15Ž . Ž . Ž . Ž .1 1 ly1 ly1 l l

where a g BB andi

0 F n F N y 1, N s N a , a for i s 1, . . . , l y 1.Ž .i i i i iq1

COROLLARY 3.1. Assume that the locality function N is constant. Con-
sider the homogeneous component A of A, spanned by all the words ofk , l
length l and of the sum of indexes k. Then dim A s N ly1.k , l

Ž .Proof of Theorem 3.3. a Introduce a linear order on BB and define
an order on the set of generators X by the rule

< < < <a m ) b n m m ) n or m s yn ) 0 or m s n and a ) b .Ž . Ž . Ž .

In particular, for some a g BB we have

a 0 - a y1 - a 1 - a y2 - a 2 - ??? .Ž . Ž . Ž . Ž . Ž .

Ž .For any relation r from 3.2 take the biggest term r and consider the
Ž .rule r, r y r . This way we get a collection of rules

N b , a y 1Ž .
RR s r b n , a m a, b g BB, n )Ž . Ž .Ž .1½ 52

N b , a y 1Ž .
j r b n , a m n - y ,Ž . Ž .Ž .2½ 52
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where

r b n , a mŽ . Ž .Ž .1

Ž .N b , a
sq1 N b , aŽ .s b n a m , y1 b n y s a m q s ,Ž . Ž . Ž . Ž . Ž .Ý ž /ž /sss1

r b n , a mŽ . Ž .Ž .2

Ž .N b , a
sq1 N b , aŽ .s b n a m , y1 b n q s a m y s .Ž . Ž . Ž . Ž . Ž .Ý ž /ž /sss1

By Lemma 3.2, we have to prove that these rules form a confluent
² :rewriting system on I- X . Clearly RR is a rewriting system, since it

² :decreases the order, and each subset of I- X , containing only finitely
many different letters from BB, has the minimal element, in contrast to the
situation of Section 3.5.

As before, it is enough to check that RR is confluent on any composition
Ž . Ž . Ž .w s c p b n a m , of the principal parts of rules from RR. Consider the

� Ž . Ž . Ž . < 4set W s c k b j a i k, j, i g Z ; X*. We prove by induction on w g W
that RR is confluent on w. If w is sufficiently small, then it is terminal.

Ž . Ž . Ž .Assume that w s c k b j a i is an ambiguity, for example, that
Ž Ž . Ž .. Ž Ž . Ž ..r c p , b n and r b n , a m are both applicable to w. Other cases1 2

are done in the same way. Let

w s r c p , b n wŽ . Ž . Ž .Ž .1 1

Ž .N c , b
s N c, bŽ .s y1 c p y s b n q s a m ,Ž . Ž . Ž . Ž .Ý ž /sss1

w s r b n , a m wŽ . Ž . Ž .Ž .2 2

Ž .N b , a N b , aŽ .ts y1 c p b n q t a m y t .Ž . Ž . Ž . Ž .Ý ž /tts1

Ž Ž . Ž .. Ž .Applying r b n q s , a m for s s 1, . . . , N b, a to w gives the same2 1
Ž Ž . Ž .. Ž .result as we get from applying r c p , b n q t for t s 1, . . . , N c, b to1

w , namely,2

N b , aŽ .sq t N c, bŽ .y1 c p y s b n q s q t a m y t .Ž . Ž . Ž . Ž .Ý ž / ž /s ts, tG1

3.16Ž .
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By the induction assumption, w y w is uniquely reduced to a terminal,1 2
Ž .and since all monomials in 3.16 are smaller than w, we conclude that this

terminal must be 0.
Ž .b Follows at once from Lemma 3.1.
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