# On Free Conformal and Vertex Algebras

Michael Roitman\*

ed by Elsevier - Publisher Connector

Communicated by Efim Zelmanov

Received April 1, 1998

Vertex algebras and conformal algebras have recently attracted a lot of attention due to their connections with physics and Moonshine representations of the Monster. See, for example, [6, 10, 17, 15, 19].

In this paper we describe bases of free conformal and free vertex algebras (as introduced in [6]; see also [20]).

All linear spaces are over a field  $\Bbbk$  of characteristic 0. Throughout this paper  $\mathbb{Z}_+$  will stand for the set of non-negative integers.

In Sections 1 and 2 we give a review of conformal and vertex algebra theory. All statements in these sections are either in [9, 17, 16, 15, 18, 20] or easily follow from results therein. In Section 3 we investigate free conformal and vertex algebras.

## 1. CONFORMAL ALGEBRAS

## 1.1. Definition of Conformal Algebras

We first recall some basic definitions and constructions; see [16, 15, 18, 20]. The main object of investigation is defined as follows:

DEFINITION 1.1. A conformal algebra is a linear space C endowed with a linear operator D:  $C \to C$  and a sequence of bilinear products (n):  $C \otimes C \to C$ ,  $n \in \mathbb{Z}_+$ , such that for any  $a, b \in C$  one has

\* Partially supported by NSF Grant DMS-9704132.



(i) (Locality) There is a non-negative integer N = N(a, b) such that  $a(\widehat{n})b = 0$  for any  $n \ge N$ ;

(ii) 
$$D(a(n)b) = (Da)(n)b + a(n)(Db);$$

(iii) 
$$(Da)(n) = -na(n-1)b$$
.

## 1.2. Spaces of Power Series

Now let us discuss the main motivation for Definition 1.1. We closely follow [14, 18].

#### 1.2.1. Circle Products

Let *A* be an algebra. Consider the space of power series  $A[[z, z^{-1}]]$ . We will write series  $a \in A[[z, z^{-1}]]$  in the form

$$a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \qquad a(n) \in A.$$

On  $A[[z, z^{-1}]]$  there is an infinite sequence of bilinear products  $(\widehat{n})$ ,  $n \in \mathbb{Z}_+$ , given by

$$(a(n)b)(z) = \operatorname{Res}_{w}(a(w)b(z)(z-w)^{n}).$$
(1.1)

Explicitly, for a pair of series  $a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}$  and  $b(z) = \sum_{n \in \mathbb{Z}} b(n) z^{-n-1}$  we have

$$(a(\underline{n})b)(z) = \sum_{m} (a(\underline{n})b)(m)z^{-m-1}$$

where

$$(a(n)b)(m) = \sum_{s=0}^{n} (-1)^{s} {n \choose s} a(n-s)b(m+s).$$
(1.2)

There is also the linear derivation D = d/dz:  $A[[z, z^{-1}]] \rightarrow A[[z, z^{-1}]]$ . It is easy to see that D and (n) satisfy conditions (ii) and (iii) of Definition 1.1.

We can consider formula (1.2) as a system of linear equations with unknowns a(k)b(l),  $k \in \mathbb{Z}_+$ ,  $l \in \mathbb{Z}$ . This system is triangular, and its unique solution is given by

$$a(k)b(l) = \sum_{s=0}^{k} {\binom{k}{s}} (a(s)b)(k+l-s).$$
(1.3)

Remark. The term "circle products" appears in [18], where the product "( $\hat{n}$ )" is denoted by " $\circ_n$ ." In [15] this product is denoted by " $\circ_n$ ."

#### 1.2.2. Locality

Next we define a very important property of power series, which makes them form a conformal algebra. Let again A be an algebra.

DEFINITION 1.2 (See [1, 17, 15, 18, 20].) A series  $a \in A[[z, z^{-1}]]$  is called *local of order* N to  $b \in A[[z, z^{-1}]]$  for some  $N \in \mathbb{Z}_+$  if

$$a(w)b(z)(z-w)^{N} = 0.$$
 (1.4)

If a is local to b and b is local to a then we say that a and b are mutually local.

Remark. In [18, 20] the property (1.4) is called *quantum commutativity*.

Note that (1.4) implies that for every  $n \ge N$  one has a(n)b = 0. We will denote the order of locality by N(a, b), i.e.,

$$N(a,b) = \min\left\{n \in Z_+ \mid \forall k \ge n, a(k)b = \mathbf{0}\right\}.$$

Note also that if A is a commutative or skew-commutative or skew-commutative algebra, e.g., a Lie algebra, then locality is a symmetric relation. In this case we say "*a* and *b* are local" instead of "mutually local." Let  $a(z) = \sum_{m \in \mathbb{Z}} a(m) z^{-m-1}$  and  $b(z) = \sum_{n \in \mathbb{Z}} b(n) z^{-n-1}$  be some se-

ries. Then the locality condition (1.4) reads

$$\sum_{s} (-1)^{s} {N \choose s} a(m-s)b(n+s) = 0 \quad \text{for any } n, m \in \mathbb{Z}.$$
 (1.5)

The locality condition (1.4) is known to be equivalent to the formula

$$a(m)b(n) = \sum_{s=0}^{N(a,b)-1} {m \choose s} (a(s)b)(m+n-s).$$
(1.6)

#### The following statement is a trivial consequence of the definitions.

**PROPOSITION 1.1.** Let A be an algebra and let  $S \subset A[[z, z^{-1}]]$  be a space of pairwise mutually local power series, which is closed under all the circle products and  $\partial$ . Then S is a conformal algebra.

One can prove (see, for example, [15]) that such families exhaust all conformal algebras.

Finally, we state here a trivial property of local series:

LEMMA 1.1. Let  $a, b \in A[[z, z^{-1}]]$  be a pair of formal power series and assume a is local to b. Then each of the series a, Da, za is local to each of b, Db, zb.

## 1.3. Construction of the Coefficient Algebra of a Conformal Algebra

Given a conformal algebra *C*, we can build its *coefficient algebra* Coeff *C* in the following way. For each integer *n* take a linear space  $\hat{A}(n)$  isomorphic to *C*. Let  $\hat{A} = \bigoplus_{n \in \mathbb{Z}} \hat{A}(n)$ . For an element  $a \in C$  we will denote the corresponding element in  $\hat{A}(n)$  by a(n). Let  $E \subset \hat{A}$  be the subspace spanned by all elements of the form

$$(Da)(n) + na(n-1)$$
 for any  $a \in C, n \in \mathbb{Z}$ . (1.7)

The underlying linear space of Coeff *C* is  $\hat{A}/E$ . By an abuse of notation we will denote the image of  $a(n) \in \hat{A}$  in Coeff *C* again by a(n). The following proposition defines the product on Coeff *C*.

**PROPOSITION 1.2.** Formula (1.6) unambiguously defines a bilinear product on Coeff C.

Clearly (1.6) defines a product on  $\hat{A}$ . To show that the product is well defined on Coeff *C*, it is enough to check only that

$$(Da)(m)b(n) = -ma(m-1)b(n)$$

and

$$a(m)(Db)(n) = -na(m)b(n-1),$$

which is a straightforward calculation.

## 1.4. Examples of Conformal Algebras

#### 1.4.1. Differential Algebras

Take a pair  $(A, \delta)$ , where A is an associative algebra and  $\delta: A \to A$  is a locally nilpotent derivation,

$$\delta(ab) = \delta(a)b + a\delta(b), \quad \delta^n(a) = 0 \quad \text{for } n \gg 0.$$

Consider the ring  $A[\delta, \delta^{-1}]$ . Its elements are polynomials of the form  $\sum_{i \in \mathbb{Z}} a_i \delta^i$ , where only a finite number of  $a_i \in A$  are nonzero. Here we put  $a \delta^{-n} = a(\delta^{-1})^n$  and  $a \delta^0 = a$ . The multiplication is defined by the formula

$$a\delta^k \cdot b\delta^l = \sum_{i\geq 0} {k \choose i} a\delta^i(b)\delta^{k+l-i}.$$

It is easy to check that  $A[\delta, \delta^{-1}]$  is a well-defined associative algebra. In fact,  $A[\delta, \delta^{-1}]$  is the Ore localization of the ring of differential operators  $A[\delta]$ . If in addition A has an identity element 1, then  $\delta(1) = 0$  and  $\delta\delta^{-1} = \delta^{-1}\delta = 1$ .

For  $a \in A$  denote  $\tilde{a} = \sum_{n \in \mathbb{Z}} a \delta^n z^{-n-1} \in A[\delta, \delta^{-1}][[z, z^{-1}]].$ One easily checks that for any  $a, b \in A$ ,  $\tilde{a}$  and  $\tilde{b}$  are local and

$$\tilde{a}(n)\tilde{b} = a\delta^{n}(b).$$
(1.8)

So by Lemma 1.1 and Proposition 1.1 the series  $\{\tilde{a} \mid a \in A\} \subset A[\delta, \delta^{-1}][[z, z^{-1}]]$  generate an (associative) conformal algebra; see Section 1.6.

One can instead consider  $A[\delta, \delta^{-1}]$  to be a Lie algebra, with respect to the commutator [p, q] = pq - qp. If two series  $\tilde{a}$  and  $\tilde{b}$  are local in the associative sense they are local in the Lie sense, too. One computes also

$$\widetilde{a}(\widetilde{n})\widetilde{b} = \widetilde{a\delta^{n}(b)} - \sum_{s \ge 0} (-1)^{n+s} \frac{1}{s!} \partial^{s} (b\delta^{n+s}(a))^{\tilde{}}, \qquad (1.9)$$

where  $\partial = d/dz$ . Note that in (1.9) the circle products are defined by

$$\left(\tilde{a}(\tilde{n})\tilde{b}\right)(m) = \sum_{s=0}^{n} (-1)^{s} \binom{n}{s} [a\delta^{n-s}, b\delta^{m+s}].$$
(1.10)

Again, it follows that  $\{\tilde{a} \mid a \in A\} \subset A[\delta, \delta^{-1}][[z, z^{-1}]]$  generate a (Lie) conformal algebra; see Section 1.6.

An important special case is when there is an element  $v \in A$  such that  $\delta(v) = 1$ . Then  $\tilde{v} = \sum_n v \delta^n z^{-n-1} \in A[\delta, \delta^{-1}][[z, z^{-1}]]$  generates with respect to the product (1.10) a (centerless) Virasoro conformal algebra. It satisfies the relations

$$\tilde{v}(\mathbf{0})\tilde{v}=\partial\tilde{v}, \qquad \tilde{v}(\mathbf{1})\tilde{v}=2\tilde{v},$$

and the rest of the products are 0.

#### 1.4.2. Loop Algebras

Let g be a Lie algebra over an algebraically closed field  $\Bbbk$  and let  $\sigma$ :  $g \to g$  be an automorphism of finite order,  $\sigma^p = id$ . Then g is decomposed into a direct sum of eigenspaces of  $\sigma$ :

$$\mathfrak{g} = \bigoplus_{k \in \mathbb{Z}/p\mathbb{Z}} \mathfrak{g}_k, \qquad \sigma|_{\mathfrak{g}_k} = e^{2\pi i k/p}.$$

Define a *twisted loop algebra*  $\tilde{\mathfrak{g}} \subset \mathfrak{g} \otimes \mathbb{k}[t, t^{-1}]$  by

$$\tilde{\mathfrak{g}} = \left\langle \sum_{j} a_{j} t^{j} \middle| a_{j} \in \mathfrak{g}_{j \mod p} \right\rangle.$$

The Lie product in  $\tilde{\mathfrak{g}}$  is given by  $[a \otimes t^m, b \otimes t^n] = [a, b] \otimes t^{m+n}$ . If p = 1, then  $\tilde{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{k}[t, t^{-1}]$ , of course.

Now for any  $a \in \mathfrak{g}_k$ ,  $0 \le k < p$ , define

$$\tilde{a} = \sum_{j \in \mathbb{Z}} at^{pj+k} z^{-j-1} \in \tilde{\mathfrak{g}}\left[\left[z, z^{-1}\right]\right].$$

It is easy to see that any two  $\tilde{a}, \tilde{b}$  are local with  $N(\tilde{a}, \tilde{b}) = 1$  and if  $a \in g_k$ and  $b \in g_l$  we have

$$\tilde{a}(\underline{0})\tilde{b} = \begin{cases} \overline{[a,b]} & \text{if } k+l < p, \\ z\overline{[a,b]} & \text{if } k+l \ge p. \end{cases}$$

As in Section 1.4.1, we conclude that  $\{\tilde{a} \mid a \in \mathfrak{g}\} \subset \tilde{\mathfrak{g}}[[z, z^{-1}]]$  generate a (Lie) conformal algebra. Again, see Section 1.6 for the definition of varieties of conformal algebras.

#### 1.5. More on Coefficient Algebras

Let *C* be a conformal algebra and let A = Coeff C. Define

$$A_{+} = \operatorname{Span}\{a(n) | a \in C, n \ge 0\},$$
$$A_{-} = \operatorname{Span}\{a(n) | a \in C, n < 0\},$$
$$A(n) = \operatorname{Span}\{a(n) | a \in C\}.$$

Define also for each  $n \in \mathbb{Z}$  linear maps  $\phi(n): C \to A(n)$  by  $a \mapsto a(n)$ , and let  $\phi = \sum_{n \in \mathbb{Z}} \phi(n) z^{-n-1}: C \to A[[z, z^{-1}]]$  so that  $\phi a = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}$ . Here we summarize some general properties of conformal algebras and

Here we summarize some general properties of conformal algebras and their coefficient algebras.

**PROPOSITION 1.3.** (a)  $A = A_{-} \oplus A_{+}$  is a direct sum of subalgebras.

(b) 
$$A_+$$
 and  $A_-$  are filtered algebras with filtrations given by

$$A(0) \subseteq A(1) \subseteq \cdots \subseteq A_{+}, \qquad A_{-} = A(-1) \supseteq A(-2) \supseteq \cdots,$$
$$\bigcup_{n \ge 0} A(n) = A_{+}, \qquad \bigcap_{n < 0} A(n) = 0.$$
(c) 
$$\operatorname{Ker} \phi(n) = \begin{cases} D^{n+1}C + \bigcup_{k \ge 1} \operatorname{Ker} D^{k} & \text{if } n \ge 0, \\ \operatorname{Ker} D^{-n-1} & \text{if } n < 0. \end{cases}$$

In particular,  $\phi(-1)$  is injective.

(d) The map  $\phi: C \to A[[z, z^{-1}]]$ , given by  $a \mapsto \sum_{n \in \mathbb{Z}} a(n)z^{-n-1}$ , is an injective homomorphism of conformal algebras; i.e., it preserves the circle products and agrees with the derivation

$$\phi(a(n)b) = \phi(a)(n)\phi(b), \qquad \phi(Da) = D\phi(a). \tag{1.11}$$

(e) The map  $\phi: C \to A[[z, z^{-1}]]$  has the following universal property: For any homomorphism  $\psi: C \to B[[z, z^{-1}]]$  of C to an algebra of formal power series, there is the unique algebra homomorphism  $\rho: A \to B$  such that the corresponding diagram commutes

$$A[[z, z^{-1}]] \xrightarrow{\rho} B[[z, z^{-1}]]$$

$$\swarrow_{\phi} \qquad \swarrow_{\psi}$$

$$C$$

(f) The formula D(a(n)) = -na(n-1) defines a derivation  $D: A \to A$  such that  $DA_{-} \subset A_{-}$ ,  $DA_{+} \subset A_{+}$ .

*Proof.* From formula (1.6) for the product in A it easily follows that  $A_+$  and  $A_-$  are indeed subalgebras. Also none of the linear identities (1.7) contains both generators with negative and non-negative index. This proves (a). Similar arguments establish also (b).

Now we prove that Ker  $\phi(n)$  is included in the right-hand side of (c). Take some  $a \in C$ ,  $a \neq 0$ , and assume that a(n) = 0. Then  $a(n) \in \hat{A}$  is a linear combination of identities (1.7) (see Section 1.3) so we must have in  $\hat{A}$ 

$$a(n) = \sum_{k=k_{\min}}^{k_{\max}} \lambda_k ((Da_k)(k) + ka_k(k-1)).$$

We can assume that  $\lambda_k \neq 0$  for all  $k_{\min} \leq k \leq k_{\max}$  and that  $a_k \neq 0$  for  $k = k_{\min}$  and for  $k = k_{\max}$ . Assume also that  $\lambda_k = 0$  if  $k > k_{\max}$  or  $k < k_{\min}$ .

Comparing terms with index k for  $k_{\min} \le k \le k_{\max}$ , we get

$$\delta_{kn}a = \lambda_k Da_k + \lambda_{k+1}(k+1)a_{k+1}. \tag{1.12}$$

Taking in (1.12)  $k = k_{\min} - 1$ , we see that there are two cases: Either (1)  $k_{\min} = 0$  and  $n \ge 0$  or (2)  $n + 1 = k_{\min} \ne 0$ .

*Case* 1. Taking in (1.12) k = 0, ..., n - 1, we get that  $a_k \in D^k C$  for  $0 \le k \le n$ . Now we have two subcases:  $k_{\max} > n$  and  $k_{\max} \le n$ .

If  $k_{\max} > n$  we substitute in (1.12)  $k = k_{\max}$ ,  $k_{\max} - 1, \ldots, n + 1$  and get that  $D^{k_{\max}-k+1}a_k = 0$ . Now take k = n in (1.12) and get that  $a \in D^{n+1}C$ + Ker  $D^{k_{\max}-n}$ .

If  $k_{\max} \le n$  we have  $\lambda_{n+1} = 0$ , and hence substitution k = n in (1.12) gives  $a \in D^{n+1}C$ .

Case 2. Here we again have two subcases:  $n \ge 0$  or n < 0. If  $n \ge 0$  then, as in the previous case, we get  $D^{k_{\max}-k+1}a_k = 0$  for  $n+1 \le k \le k_{\max}$ . Now taking k = n in (1.12), we get  $a \in \text{Ker } D^{k_{\max}-n}$ .

Finally, if n < 0 then, since  $\lambda_n = 0$ , we have  $a = \lambda_{n+1}(n+1)a_{n+1}$ . Then we substitute k = n + 1, n + 2, ... into (1.12) until for some  $k_0 \le 1$ -1 we get  $\lambda_{k_0+1}(k_0+1)a_{k_0+1} = 0$ . It follows that  $D^{k_0-k+1}a_k = 0$  for  $n+1 \le k \le k_0$ ; therefore  $a \in \operatorname{Ker} D^{k_0-n} \subset \operatorname{Ker} D^{-n-1}$ . This proves one inclusion in (c). It also follows that Ker  $\phi(-1) = 0$ .

Next we show that  $\phi$  is a homomorphism of conformal algebras, that is, formulas (1.11) hold. For the first identity we have

$$\phi(Da) = \sum_{n \in \mathbb{Z}} (Da)(n) z^{-n-1} = \sum_{n \in \mathbb{Z}} (-n) a(n-1) z^{-n-1}$$
$$= \frac{d}{dz} \sum_{n} a(n) z^{-n-1}.$$

The second identity reads

$$(a(\underline{n})b)(m) = \sum_{s} (-1)^{s} {\binom{n}{s}} a(n-s)b(m+s),$$

which is precisely the formula (1.2).

Now (d) is done after we notice that  $\phi$  is injective, since  $\phi(-1)$  is injective.

Now we can prove the other inclusion in (c). If  $a \in \text{Ker } D^k C$ , then  $\phi a$  is a solution of the differential equation  $\partial_z^k \phi a(z) = 0$ . Hence  $\phi a$  is a polynomial of degree at most k - 1, and therefore  $\phi(n)a = 0$  for  $n \ge 0$ and for n < -k. If  $a \in D^k C$ , then  $\phi(n)a = 0$  for  $0 \le n \le k - 1$ , by induction and (1.7).

Statement (e) is clear, since identities (1.7) hold for any homomorphism  $\psi \colon C \to B[[z, z^{-1}]].$ 

Finally, the formula D(a(n)) = -na(n-1) defines a derivative of  $\hat{A}$ . So in order to prove (f) we have to show that D agrees with the identities (1.7). This is indeed the case:

$$D((Da)(n) + na(n-1)) = -n((Da)(n-1) + (n-1)a(n-2)).$$

1.6. Varieties of Conformal Algebras

Consider now a variety of algebras  $\mathfrak{A}$  (see [8, 13]).

DEFINITION 1.3. A conformal algebra C is a  $\mathfrak{A}$ -conformal algebra if Coeff C lies in the variety  $\mathfrak{A}$ .

The identities in  $\mathfrak{A}$ -conformal algebras are all the circle product identities R such that for any integer m, R(m) becomes an  $\mathfrak{A}$ -algebra identity after substitution of (1.2) for every circle product in R. Conversely, given a classical algebra identity r, we can substitute (1.6) for all products in r and get an identity of  $\mathfrak{A}$ -conformal algebras. This way we get a correspondence between classical and conformal identities. See the next section for examples.

Combining Propositions 1.1 and 1.3(d), we get the following well-known fact:

**PROPOSITION 1.4.**  $\mathfrak{A}$ -conformal algebras are exhausted (up to isomorphism) by conformal algebras of formal power series  $S \subset A[[z, z^{-1}]]$  for  $\mathfrak{A}$ -algebras A.

#### 1.7. Associative and Lie Conformal Algebras

The following theorem gives the explicit correspondence between conformal and classical algebras in some important cases.

THEOREM 1.1 [16]. Let C be a conformal algebra and let A = Coeff C be its coefficient algebra.

(a) A is associative if and only if the following identity holds in C:

$$(a(\underline{n})b)(\underline{m})c = \sum_{s=0}^{n} (-1)^{s} {n \choose s} a(\underline{n-s})(b(\underline{m+s})c).$$
(1.13)

(b) The Jacoby identity [[a, b], c] = [a, [b, c]] - [b, [a, c]] in A is equivalent to the following conformal Jacoby identity in C:

$$(a(\underline{n})b)(\underline{m})c = \sum_{s=0}^{n} (-1)^{s} {\binom{n}{s}} \times (a(\underline{n-s})(b(\underline{m+s})c) - b(\underline{m+s})(a(\underline{n-s})c)).$$
(1.14)

504

(c) The skew-commutativity identity [a, b] = -[b, a] in A corresponds to the quasi-symmetry identity

$$a(\underline{n})b = \sum_{s \ge 0} (-1)^{n+s+1} \frac{1}{s!} D^{s}(b(\underline{n+s})a).$$
(1.15)

(d) The commutativity of A is equivalent to

$$a(\underline{n})b = \sum_{s \ge 0} (-1)^{n+s} \frac{1}{s!} D^{s}(b(\underline{n+s})a).$$
(1.16)

The identities (1.13), (1.14), and (1.15) immediately imply the following:

COROLLARY 1.1. Let C be a Lie conformal or an associative conformal algebra and let A = Coeff C be its coefficient algebra. Then C is an  $A_+$ -module with the action given by a(n)c = a(n)c for  $a, c \in C, n \in \mathbb{Z}_+$ . Moreover, this action agrees with the derivations on  $A_+$  and C: (Da(n))c = [D, a(n)]c.

From now on we will deal only with associative or Lie conformal algebras.

#### 1.8. Dong's Lemma

We end this section by stating a very important property of formal power series over associative or Lie algebras. This property allows us to construct conformal algebras by taking a collection of generating series.

LEMMA 1.2. Let A be an associative or a Lie algebra and let a, b,  $c \in A[[z, z^{-1}]]$  be three formal power series. Assume that they are pairwise mutually local. Then for all  $n \in \mathbb{Z}_+$ , a(n)b and c are mutually local. Moreover, in the Lie algebra case,

$$N(a(n)b,c) = N(c,a(n)b) \le N(a,b) + N(b,c) + N(c,a) - n - 1,$$
(1.17)

and, in the associative case,

$$N(a(\underline{n})b, c) \le N(b, c), \qquad N(c, a(\underline{n})b) \le N(c, a) + N(a, b) - n - 1.$$

#### 2. VERTEX ALGEBRAS

#### 2.1. Fields

Let now V be a vector space over  $\Bbbk$ . Denote by gl(V) the Lie algebra of all  $\Bbbk$  -linear operators on V. Consider the space  $F(V) \subset gl(V)[[z, z^{-1}]]$  of *fields* on V, given by

$$\mathbf{F}(V) = \left\{ \sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \middle| \forall v \in V, a(n)v = 0 \text{ for } n \gg 0 \right\}.$$

For  $a(z) \in F(V)$  denote

$$a_{-}(z) = \sum_{n < 0} a(n) z^{-n-1}, \qquad a_{+}(z) = \sum_{n \ge 0} a(n) z^{-n-1}$$

Denote also by  $\mathbb{1} = \mathbb{1}_{F(V)} \in F(V)$  the identity operator, such that  $\mathbb{1}(-1) = \mathrm{Id}_{V}$ ; all other coefficients are 0.

*Remark.* In [18, 20] the elements of F(V) are called *quantum operators* on V.

We view gl(V) as a Lie algebra, and Section 1.2.1 gives a collection of products (n),  $n \in \mathbb{Z}_+$ , on F(V). Now in addition to these products we introduce products (n) for n < 0. Define first (-1) by

$$a(z) - b(z) = a_{-}(z)b(z) + b(z)a_{+}(z).$$
(2.1)

Note that the products in (2.1) make sense, since for any  $v \in V$  we have a(n)v = b(n)v = 0 for  $n \gg 0$ . The -1st product is also known as the normally ordered product (or Wick product) and is usually denoted by :a(z)b(z):.

Next, for any n < 0 set

$$a(z)(n)b(z) = \frac{1}{(-n-1)!}:(D^{-n-1}a(z))b(z):, \qquad (2.2)$$

where  $D = \frac{d}{dz}$ . Taking b = 1, we get

$$a \frown \mathbb{I} = a, \quad a \frown \mathbb{I} = Da.$$
 (2.3)

It is easy to see that

$$\mathbb{I}(n)a = \delta_{-1,n}a.$$

We have the following explicit formula for the circle products: If  $(a(n)b)(z) = \sum_{m} (a(n)b)(m)z^{-m-1}$ , then

$$(a(n)b)(m) = \sum_{s \le n} (-1)^{s+n} {n \choose n-s} a(s)b(m+n-s) - \sum_{s \ge 0} (-1)^{s+n} {n \choose s} b(m+n-s)a(s).$$
(2.4)

Note that if n > 0 then (2.4) becomes

$$(a(n)b)(m) = \sum_{s\geq 0} (-1)^{n+s} {n \choose s} [a(s), b(m+n-s)],$$

which is precisely formula (1.2) for Lie algebras.

It is easy to see that D is a derivation of all the circle products:

$$D(a(n)b) = Da(n)b + a(n)Db.$$
(2.5)

Note also that the Dong's Lemma 1.2 remains valid for negative n and the estimate (1.17) still holds.

#### 2.2. Definition of Vertex Algebras

Instead of giving a formal definition of a vertex algebra in the spirit of Definition 1.1, we present a description of these algebras similar to Proposition 1.4. For a more abstract approach see, e.g., [9, 15, 18, 20].

DEFINITION 2.1. A *vertex algebra* is a subspace  $S \subset F(V)$  of fields over a vector space V such that

(i) Any two fields  $a, b \in S$  are local (in the Lie sense).

(ii) S is closed under all the circle products (n),  $n \in \mathbb{Z}$ , given by (2.4).

(iii)  $\mathbb{I} \in S$ .

Note that from (2.3) it follows that a vertex algebra is closed under the derivation D = d/dz.

Note also that a vertex algebra is a Lie conformal algebra.

Let  $S \subset F(V)$  be a vertex algebra. We introduce the left action map Y:  $S \to F(S)$  defined by

$$Y(a) = \sum_{n \in \mathbb{Z}} (a(\widehat{n}) \cdot) \zeta^{-n-1}.$$
 (2.6)

Clearly,  $Y(\mathbb{1}_S) = \mathbb{1}_{F(S)}$ .

We state here the following characterizing property of Y (see [15, 20]):

**PROPOSITION 2.1.** The left action map  $Y: S \to F(S)$  is an isomorphism of vertex algebras, i.e.,  $Y(S) \subset F(S)$  is a vertex algebra and

$$Y(a(\underline{n})b) = Y(a)(\underline{n})Y(b), \qquad Y(\mathbb{1}_{S}) = \mathbb{1}_{F(S)}.$$
(2.7)

From (2.3) and (2.5) it follows that *Y* also agrees with *D*:

$$Y(Da) = \partial_{\zeta}Y(a) = [D, Y(a)].$$

## 2.3. Enveloping Vertex Algebras of a Lie Conformal Algebra

Let *C* be a Lie conformal algebra and let L = Coeff C be its coefficient Lie algebra.

DEFINITION 2.2 [14, 15]. (a) An *L*-module *M* is called *restricted* if for any  $a \in C$  and  $v \in M$  there is some integer *N* such that for any  $n \ge N$  one has a(n)v = 0

(b) An L-module M is called a highest weight module if it is generated over L by a single element  $m \in M$  such that  $L_+m = 0$ . In this case m is called the highest weight vector.

Clearly any submodule and any factor module of a restricted module are restricted.

Let *M* be a restricted *L*-module. Then the representation  $\rho: L \to gl(M)$ could be extended to the map  $\rho: L[[z, z^{-1}]] \to F(M)$  which combined with the canonical embedding  $\phi: C \to L[[z, z^{-1}]]$  (see Proposition 1.3)(d) gives a conformal algebra homomorphism  $\psi: C \to F(M)$ . Then  $\psi(C) \subset F(M)$ consists of pairwise local fields, and by Dong's Lemma 1.2,  $\psi(C)$  together with  $\mathbb{1} \in F(M)$  generates a vertex algebra  $S_M \subset F(M)$ .

The following proposition is well known; see, e.g., [11].

**PROPOSITION 2.2.** (a) The vertex algebra  $S = S_M$  has the structure of a highest weight module over L with the highest weight vector  $\mathbb{I}$ . The action is given by

$$a(n)\beta = \psi(a)(n)\beta, \quad a \in C, n \in \mathbb{Z}, \beta \in S_M.$$

Moreover this action agrees with the derivations:

$$(Da(n))\beta = [D, a(n)]\beta.$$

(b) Any L-submodule of S is a vertex algebra ideal. If  $M_1$  and  $M_2$  are two restricted L-modules,  $S_1 = S_{M_1}$ ,  $S_2 = S_{M_2}$ , and  $\mu: S_1 \to S_2$  is an L-mod-

ule homomorphism such that  $\mu(\mathbb{1}) = \mathbb{1}$ , then  $\mu$  is a vertex algebra homomorphism.

#### 2.4. Universal Enveloping Vertex Algebras

Now we build a universal highest weight module V over L, which is often referred to as a *Verma module*. Take the one-dimensional trivial  $L_+$ -module  $\mathbb{R} \mid_{V}$ , generated by an element  $\mathbb{I}_{V}$ . Then let

$$Y = \operatorname{Ind}_{L_+}^L \Bbbk \mathbb{1}_V = U(L) \otimes_{U(L_+)} \Bbbk \mathbb{1}_V \cong U(L)/U(L)L_+.$$

It is easy to see that *V* is a restricted module and hence we get an enveloping vertex algebra  $S = S_V \subset F(V)$  and a homomorphism  $\psi: C \to S$ . Clearly,  $\psi$  is injective, since  $\rho: L \to gl(V)$  is injective.

THEOREM 2.1. (a) The map  $\chi: S \to V$  given by  $\alpha \mapsto \alpha(-1)\mathbb{1}_V$  is an *L*-module isomorphism, and  $\chi(\mathbb{1}_S) = \mathbb{1}_V$ .

(b) *S* is the universal enveloping vertex algebra of *C* in the following sense: If  $\mu: C \to U$  is another homomorphism of *C* to a vertex algebra *U*, then there is the unique map  $\hat{\mu}: S \to U$  which makes up the following commutative triangle:

$$S \xrightarrow{\hat{\mu}} U$$

$$\bigvee_{\psi} \swarrow_{\mu}$$

$$C$$

From now on we identify V and  $S = S_V$  via  $\chi$  and write V = V(C) for the universal enveloping vertex algebra of a Lie conformal algebra C and  $\mathbb{1}_S = \mathbb{1}_V = \mathbb{1}$ . The embedding  $\psi: C \to V = U(L)/U(L)L_+$  is then given by  $a \mapsto a(-1)\mathbb{1}$ . By Proposition 1.3(c), the map  $\phi(-1): C \to L_-$ , defined by  $a \mapsto a(-1)$ , is an isomorphism of linear spaces. Therefore, the image of C in V is equal to  $\psi(C) = L_- \mathbb{1} = L \mathbb{1} \subset V$ .

#### 3. FREE CONFORMAL ALGEBRAS

## 3.1. Definition of Free Conformal and Free Vertex Algebras

Let  $\mathscr{B}$  be a set of symbols. Consider a function  $N: \mathscr{B} \times \mathscr{B} \to \mathbb{Z}_+$ , which will be called a *locality function*.

Let  $\mathfrak{A}$  be a variety of algebras. In all the applications  $\mathfrak{A}$  will be either Lie or associative algebras. Consider the category  $\mathfrak{Conf}(N)$  of  $\mathfrak{A}$ -conformal algebras (see Section 1.6) generated by the set  $\mathscr{B}$  such that in any conformal algebra  $C \in \mathfrak{C}onf(N)$  one has

$$a(n)b = 0$$
  $\forall a, b \in \mathscr{B} \ \forall n \ge N(a, b).$ 

By an abuse of notation we will not make a distinction between  $\mathscr{B}$  and its image in a conformal algebra  $C \in \mathfrak{S}onf(N)$ .

The morphisms of  $\operatorname{Sonf}(N)$  are, naturally, conformal algebra homo-morphisms  $f: C \to C'$  such that f(a) = a for any  $a \in \mathscr{B}$ . We claim that  $\operatorname{Sonf}(N)$  has the universal object, a conformal algebra C = C(N), such that for any other  $C' \in \operatorname{Sonf}(N)$  there is the unique morphism  $f: C \to C'$ . We call C(N) a *free conformal algebra*, corresponding to the locality function N.

In order to build C(N), we first build the corresponding coefficient algebra A = Coeff C (see Section 1.3).

Let  $A \in \mathfrak{A}$  be the algebra presented by the set of generators

$$X = \{b(n) \mid b \in \mathscr{B}, n \in \mathbb{Z}\}$$
(3.1)

with relations

$$\left\{\sum_{s} (-1)^{s} \binom{N(b,a)}{s} b(n-s)a(m+s) = \mathbf{0} \middle| a, b \in \mathscr{B}, m, n \in \mathbb{Z} \right\}.$$
(3.2)

For any  $b \in \mathscr{B}$  let  $\tilde{b} = \sum_{n} b(n) z^{-n-1} \in A[[z, z^{-1}]]$ . From (3.2) it follows that any two  $\tilde{a}$  and  $\tilde{b}$  are mutually local; therefore by Dong's Lemma 1.2 they generate a conformal algebra  $C \subset A[[z, z^{-1}]]$ .

**PROPOSITION 3.1.** (a) A = Coeff C.

(b) The conformal algebra C is the free conformal algebra corresponding to the locality function N.

*Proof.* (a) Clearly, there is a surjective homomorphism  $A \rightarrow \text{Coeff } C$ , since relations (3.2) must hold in Coeff *C*. Now the claim follows from the universal property of Coeff C (see Proposition 1.3(e)).

Take another algebra  $C' \in \mathfrak{Gonf}(N)$  and let A' = Coeff C'. (b) Obviously, there is an algebra  $C \in C \cup n_+(A^r)$  and let  $A \to C \cup C \cup C \cup n_+(A^r)$  and let  $A \to C \cup C \cup C \cup C$ . Obviously, there is an algebra homomorphism  $f: A \to A^r$  such that f(b(n)) = b(n) for any  $b \in \mathscr{B}$  and  $n \in \mathbb{Z}$ . It could be extended to a map  $f: A[[z, z^{-1}]] \to A^r[[z, z^{-1}]]$ . Now it is easy to see that the restriction  $f|_C$  gives the desired conformal algebra homomorphism  $C \rightarrow C'$ :



Indeed, due to formula (1.2), f preserves the circle products, and, since  $\partial$  is a derivation of the products, and  $f(\partial \tilde{a}) = \partial f(\tilde{a})$ , for  $a \in C$  one has  $f(\partial \phi) = \partial f(\phi)$  for any  $\phi \in C$ .

In the case when  $\mathfrak{A}$  is the variety of Lie algebras, we may consider the universal vertex enveloping algebra V(C) of a free Lie conformal algebra C = C(N). In accordance with Theorem 2.1, we call V(C) a *free vertex algebra*.

Though the construction of free conformal and vertex algebras makes sense for an arbitrary locality function  $N: \mathscr{B} \times \mathscr{B} \to \mathbb{Z}_+$ , the results of Sections 3.4–3.7 are valid only for the case when N is constant.

#### **3.2.** The Positive Subalgebra of Coeff C(N)

Let again C = C(N) be a free conformal algebra corresponding to a locality function  $N: \mathscr{B} \times \mathscr{B} \to \mathbb{Z}_+$ ,  $\mathscr{B}$  being an alphabet, and let A =Coeff C. Recall that by Proposition 1.3(a) we have the decomposition  $A = A_- \oplus A_+$  of the coefficient algebra into the direct sum of two subalgebras. Denote  $X_i = \{b(n) \mid b \in \mathscr{B}, n \ge i\} \subset X$ .

LEMMA 3.1. The subalgebra  $A_+ \subset A$  is isomorphic to the algebra  $\hat{A}_+$  presented by the set of generators  $X_0$  and those of relations (3.2) which contain only elements of  $X_0$ :

$$\left\{\sum_{s} (-1)^{s} \binom{N(b,a)}{s} b(n-s)a(m+s) = \mathbf{0} \middle| a, b \in \mathscr{B}, m \ge \mathbf{0}, \\ n \ge N(b,a) \right\}.$$
(3.3)

*Proof.* Clearly, there is a surjective homomorphism  $\varphi: \hat{A}_+ \to A_+$  which maps  $X_0$  to itself. We prove that  $\varphi$  is in fact an isomorphism. We proceed in four steps.

*Step* 1. First we prove that  $A_+$  is generated by  $X_0$  in A. Indeed, we have  $X_0 \subset A_+$ . On the other hand,  $A_+$  is spanned by elements of the form

a(m), where  $m \ge 0$  and  $a \in C$  is a circle product monomial in  $\mathscr{B}$ . By induction on the length of a it is enough to check that if  $a = a_1(k)a_2$ , then a(m) is in the subalgebra, generated by  $X_0$ , which follows from (1.2).

Step 2. Let  $\hat{\tau}: \hat{A}_+ \to \hat{A}_+$  be the homomorphism, which acts on the generators  $X_0$  by  $a(n) \mapsto a(n + 1)$ , so that  $\hat{\tau}(\hat{A}_+)$  is the subalgebra of  $\hat{A}_+$  generated by  $X_1$ . We claim that  $\hat{\tau}$  is injective, and therefore  $\hat{\tau}(\hat{A}_+) \cong \hat{A}_+$ . Indeed,  $\hat{\tau}$  acts on the free associative algebra  $\Bbbk \langle X_0 \rangle$ . Assume that for some  $p \in \hat{A}_+$  we have  $\hat{\tau}(p) = 0$ . Take any preimage  $P \in \Bbbk \langle X_0 \rangle$  of p. Then we have  $\hat{\tau}(P) = \sum_i \xi_i R_i$ , where  $\xi_i \in \Bbbk \langle X_0 \rangle$  and  $R_i$  are relations (3.3), such that in all  $\xi_i$  and  $R_i$  there appear only indexes greater than or equal to 1. But then P itself must be of the form  $\sum_i \xi'_i R'_i$ , where "'" stands for decreasing all indexes by 1; hence p = 0.

Step 3. Next we claim that there is an automorphism  $\tau$  of the algebra A which acts on the generators X by the shift  $a(n) \mapsto a(n + 1)$ . Indeed, relations (3.2) are invariant under the shift, and clearly,  $\tau$  is invertible. For any integer n denote  $A_n = \tau^n A_+$ . We have  $A_n \cong A_+ = A_0$  for every n.

Step 4. Now for each integer *n* take a copy  $\hat{A}_n$  of  $\hat{A}_+$ . Let  $\hat{\tau}_n$ :  $\hat{A}_n \to \hat{A}_{n-1}$  be the isomorphism of  $\hat{A}_+$  onto  $\hat{\tau}(\hat{A}_+)$ , built in Step 1. Let  $\hat{A}$  be the limit of all these  $\hat{A}_n$  with respect to the maps  $\hat{\tau}_n$ . We identify generators of  $\hat{A}_n$  with the set  $X_n$ . It is easy to see that  $\varphi: \hat{A}_0 \to A_0$  extends to the homomorphism  $\varphi: \hat{A} \to A$ , such that  $\varphi(\hat{A}_n) = A_n$  and  $\varphi|_X = id$ . Now we observe that all the defining relations (3.2) of A hold in  $\hat{A}$ ; hence there is an inverse map  $\varphi^{-1}: A \to \hat{A}$ , and therefore  $\varphi$  is an isomorphism.

### 3.3. The Diamond Lemma

For future purposes we need a digression on the diamond lemma for associative algebras. We closely follow [2], but use more modern terminology.

Let X be some alphabet and let K be some commutative ring. Consider the free associative algebra  $K\langle X \rangle$  of non-commutative polynomials with coefficients in K. Denote by  $X^*$  the set of words in X, i.e., the free semigroup with 1 generated by X.

A rule on  $K\langle X \rangle$  is a pair  $\rho = (w, f)$ , consisting of a word  $w \in X^*$  and a polynomial  $f \in K\langle X \rangle$ . The left-hand side w is called *the principal part* of rule  $\rho$ . We will denote  $w = \overline{\rho}$ .

Let  $\Re$  be a collection of rules on  $K\langle X \rangle$ . For a rule  $\rho = (w, f) \in \mathscr{R}$  and a pair of words  $u, v \in X^*$  consider the K-linear endomorphism  $r_{u\rho v}$ :  $K\langle X \rangle \to K\langle X \rangle$ , which fixes all words in  $X^*$  except for uwv, and sends the latter to ufv. A rule  $\rho = (w, f)$  is said to be *applicable* to a word  $v \in X^*$  if w is a subword of v, i.e., v = v'wv''. The result of application of  $\rho$  to v is, naturally,  $r_{v'\rho v''}(v) = v'fv''$ . If  $p \in K\langle X \rangle$  is a polynomial which involves a word v, such that a rule  $\rho$  is applicable to v, then we say that  $\rho$  is applicable to p.

A polynomial  $p \in K\langle X \rangle$  is called *terminal* if no rule from  $\mathscr{R}$  is applicable to v; that is, no term of p is of the form  $u\bar{\rho}v$  for  $\rho \in \mathscr{R}$ . Define a binary relation " $\rightarrow$ " on  $K\langle X \rangle$  in the following way: Set

Define a binary relation " $\rightarrow$ " on  $K\langle X \rangle$  in the following way: Set  $p \rightarrow q$  if and only if there is a finite sequence of rules  $\rho_1, \ldots, \rho_n \in \mathcal{R}$ , and a pair of sequences of words  $u_i, v_i \in X^*$  such that  $q = r_{u_n \rho_n v_n} \cdots r_{u_1 \rho_1 v_1}(p)$ .

DEFINITION 3.1. (a) A set of rules  $\mathscr{R}$  is a *rewriting system* on  $K\langle X \rangle$  if there are no infinite sequences of the form

$$p_1 \rightarrow p_2 \rightarrow \cdots;$$

i.e., any polynomial  $p \in K\langle X \rangle$  can be modified only finitely many times by rules from  $\mathscr{R}$ .

(b) A rewriting system is *confluent* if for any polynomial  $p \in K\langle X \rangle$  there is the unique terminal polynomial *t* such that  $p \to t$ .

Any rule  $\rho = (w, f) \in \mathscr{R}$  gives rise to an identity  $w - f \in K\langle X \rangle$ . Let  $I(\mathscr{R}) \subset K\langle X \rangle$  be the two-sided ideal generated by all such identities.

Let  $v_1, v_2 \in X^*$  be a pair of words. A word  $w \in X^*$  is called a *composition* of  $v_1$  and  $v_2$  if w = w'uw'',  $v_1 = w'u$ ,  $v_2 = uw''$ , and  $u \neq 0$ . Finally, take a word  $v \in X^*$ . Let us call it an ambiguity if there are two

Finally, take a word  $v \in X^*$ . Let us call it an ambiguity if there are two rules  $\rho$ ,  $\sigma \in \mathscr{R}$  such that either v is a composition of  $\overline{\rho}$  and  $\overline{\sigma}$  or if  $v = \overline{\rho}$  and  $\overline{\sigma}$  is a subword of  $\rho$ .

Now we can state the lemma.

LEMMA 3.2 (Diamond Lemma). (a) A rewriting system  $\mathcal{R}$  is confluent if and only if all terminal monomials form a basis of  $K\langle X \rangle / I(\mathcal{R})$ .

(b) A rewriting system is confluent if and only if it is confluent on all the ambiguities; that is, for any ambiguity  $v \in X^*$  there is the unique terminal  $t \in K\langle X \rangle$  such that  $v \to t$ .

*Remark.* Statement (a) appears in [21]. A variant of Lemma 3.2 appears in [3, 4]. It was also known to Shirshov (see [25]). The name "diamond" is due to the following graphical description of the confluency property; see [21]. Let  $\mathscr{R}$  be a rewriting system in the sense of Definition 3.1(a), and let " $\rightarrow$ " be defined as above. Assume  $p, q_1, q_2 \in K \langle X \rangle$  are such that  $p \rightarrow q_1$  and  $p \rightarrow q_2$ . Then there is some  $t \in K \langle X \rangle$  such that  $q_1 \rightarrow t$  and

 $q_2 \rightarrow t$ :



Bergman in [2] uses the existence of a semigroup order with descending chain condition on the set of words  $X^*$ . Though in our case there is an order on the set (3.1), this order does not satisfy the descending chain condition, so we slightly modify the argument in [2].

*Proof of Lemma* 3.2. (a) Assume that the rewriting system  $\mathscr{R}$  is confluent. Define a map  $r: K\langle X \rangle \to K\langle X \rangle$  by taking r(p) to be the unique terminal monomial such that  $p \to r(p)$ . The crucial observation is that r is a K-linear endomorphism of  $K\langle X \rangle$ . So if  $p = \sum_i \xi_i u_i (w_i - f_i) v_i \in I(\mathscr{R}), \ \xi_i \in K, \ u_i, v_i \in X^*, \ (w_i, f_i) \in \mathscr{R}$ , then  $r(p) = \sum_i \xi_i r(u_i (w_i - f_i) v_i) = 0$ ; therefore the terminal monomials are linearly independent modulo  $I(\mathscr{R})$ .

Form the other side, if  $\mathscr{R}$  is not confluent, then there are a polynomial  $p \in K\langle X \rangle$  and terminals  $q_1, q_2 \in K\langle X \rangle$  such that  $p \to q_1, p \to q_2$ , and  $q_1 \neq q_2$ , and then  $q_1 - q_2 \in I(\mathscr{R})$ .

(b) Take a polynomial  $p \in K\langle X \rangle$ . We prove that there is the unique terminal *t* such that  $p \to t$  by induction on the number  $n(p) = #\{q \mid p \to q\}$ . Condition (a) of Definition 3.1 assures that n(p) is always finite.

If n(p) = 0 then p is a terminal itself and there is nothing to prove. By induction, without loss of generality we can assume that there are at least two different rules  $\rho$ ,  $\sigma \in \mathscr{R}$  which are applicable to p. This means that there are some words  $u, v, x, y \in X^*$  such that  $r_{u\rho v}(p) \neq p$ ,  $r_{x\sigma y}(p) \neq p$ , and  $r_{u\rho v}(p) \neq r_{x\sigma y}(p)$ . By induction, both  $r_{u\rho v}(p)$  and  $r_{x\sigma y}(p)$  are uniquely reduced to terminals, say,  $r_{upv}(p) \rightarrow t_1$  and  $r_{x\sigma y}(p) \rightarrow t_2$ . We need to show that  $t_1 = t_2$ .

Consider two cases: when  $\overline{\rho}$  and  $\overline{\sigma}$  have common symbols in p, and thus  $u\overline{\rho}v = x\overline{\sigma}y$  is a word in p; and when  $\overline{\rho}$  and  $\overline{\sigma}$  are disjoint.

In the first case, let  $w \in X^*$  be the union of  $\overline{\rho}$  and  $\overline{\sigma}$  in p. Then w is an ambiguity. By assumption, there is the unique terminal  $s \in K\langle X \rangle$  such that  $w \to s$ . Let  $q \in K\langle X \rangle$  be obtained from p by substituting w by s.

Then we have

$$\begin{array}{cccc}
r_{u\bar{\rho}v}(p) \\
\swarrow & \searrow \\
p & q \\
\searrow & \swarrow \\
r_{x\bar{\sigma}v}(p)
\end{array}$$
(3.4)

By induction, *q* is uniquely reduced to a terminal *t*, and therefore one has  $r_{u\rho v}(p) \rightarrow t$  and  $r_{x\sigma y}(p) \rightarrow t$ .

In the second case, note that  $r_{x\sigma y}r_{u\rho v}(p) = r_{u\rho v}r_{x\sigma y}(p)$ . Denote this polynomial by q. Then relations (3.4) still hold, and we finish by the same argument as in the first case.

#### 3.4. Basis of a Free Vertex Algebra

Return to the setup of Section 3.1. From now on we take the locality function N(a, b) to be constant:  $N(a, b) \equiv N$ . Let C = C(N) be the free Lie conformal algebra and let L = Coeff C be its Lie algebra of coefficients; see Proposition 3.1. In this section we build a basis of the universal enveloping algebra U(L) of L and a basis of the free vertex algebra V = V(C).

We start by endowing  $\mathscr{B}$  with an arbitrary linear order. Then we define a linear order on the set X of generators of L, given by (3.1), in the following way:

$$a(m) < b(n) \Leftrightarrow m < n \text{ or } (m = n \text{ and } a < b).$$
 (3.5)

On the set  $X^*$  of words in X introduce the standard lexicographical order: For  $u, v \in X^*$  if |u| < |v|, set u < v; if |u| = |v|, then set u < v whenever there is some  $1 \le i \le |v|$  such that u(i) < v(i) and u(j) = v(j) for all  $1 \le j < i$ .

In a defining relation from (3.2) the biggest term has form b(n)a(m) such that

$$n - m > N \text{ or } (n - m = N \text{ and } (b > a \text{ or } (b = a \text{ and } N \text{ is odd}))).$$
(3.6)

Taking it as a principal part, we get a rule on  $\mathbb{k}\langle X \rangle$  $\rho(b(n), a(m))$ 

$$= \left(b(n)a(m), a(m)b(n) - \sum_{s=1}^{N} (-1)^{s} {N \choose s} [b(n-s), a(m+s)]\right),$$
(3.7a)

and in the case when a = b, n - m = N, and N is odd,

$$\rho(a(m+N), a(m)) = \left(a(m+N)a(m), a(m)a(m+N) - \frac{1}{2}\sum_{s=1}^{(N-1)/2} (-1)^{s} {N \choose s} [a(n-s), a(m+s)] \right). \quad (3.7b)$$

Denote the set of all such rules by  $\mathcal{R}$ :

$$\mathscr{R} = \{ \rho(b(n), a(m)) | (3.6) \text{ holds} \}.$$
(3.8)

LEMMA 3.3. The set of rules  $\mathscr{R}$  is a confluent rewriting system on  $\Bbbk \langle X \rangle$ .

We prove this lemma in Section 3.5. Here we derive from it and from Lemma 3.2 the following theorem.

THEOREM 3.1. (a) Let C = C(N) be the free Lie conformal algebra generated by a linearly ordered set  $\mathscr{B}$  corresponding to a constant locality function N. Let L = Coeff C be the Lie algebra of coefficients and let U = U(L) be its universal enveloping algebra. Then a basis of U is given by all monomials

$$a_1(n_1)a_2(n_2)\cdots a_k(n_k), \qquad a_i \in \mathscr{B}, n_i \in \mathbb{Z}, \tag{3.9}$$

such that for any  $1 \le i < k$  one has

$$n_{i} - n_{i+1} \leq \begin{cases} N-1 & \text{if } a_{i} > a_{i+1} \text{ or } (a_{i} = a_{i+1} \text{ and } N \text{ is odd}), \\ N & \text{otherwise.} \end{cases}$$
(3.10)

(b) A basis of the algebra  $U(L_+)$  is given by all monomials (3.9) satisfying the condition (3.10) and such that all  $n_i \ge 0$ .

(c) Let V = V(C) be the corresponding free vertex algebra. Then a basis of V consists of elements

$$a_1(n_1)a_2(n_2)\cdots a_k(n_kk)\mathbb{I}, \qquad a_i\in\mathscr{B}, n_i\in\mathbb{Z}, \qquad (3.11)$$

such that the condition (3.10) holds and, in addition,  $n_k < 0$ .

*Proof.* Statement (a) is a direct corollary of Lemmas 3.3 and 3.2, because (3.9) is precisely the set of all terminal monomials with respect to  $\mathcal{R}$ .

Statement (b) follows immediately from Lemma 3.1, since any subset of rules  $\mathscr{R}$  is also a confluent rewriting system. Note also that for a rule  $\rho$  given by (3.7) if the principal term  $\overline{\rho}$  contains only elements from  $X_0$  then so does the whole rule  $\rho$ .

For the proof of (c) recall that  $V \cong U/UL_+$  as linear spaces (and even as *L*-modules), where  $UL_+$  is the left ideal generated by  $L_+$ ; see Section 2.4. By Lemma 3.1, this ideal is the linear span of all monomials  $a_1(n_1)a_2(n_2)\cdots a_k(n_k)$  such that  $n_k \ge 0$ . But under the action of the rewriting system  $\mathscr{R}$  the index of the rightmost symbol in a word can only increase; hence the linear span of these monomials in  $\Bbbk \langle X \rangle$  is stable under  $\mathscr{R}$ . It follows that the terminal monomials with a non-negative rightmost index form a basis of  $UL_+$ . This proves (b).

### 3.5. Proof of Lemma 3.3

First we prove that the set of rules  $\mathscr{R}$ , given by (3.8), is a rewriting system on  $\mathbb{k}\langle X \rangle$ . Take a word  $u = a_1(m_1) \cdots a_k(m_k) \in X^*$ . Let  $p \in \mathbb{k} \langle X \rangle$  be such that  $u \to p$ . Then any word v that appears in p lies in the finite set

$$W_{u} = \left\{ b_{1}(n_{1}) \cdots b_{k}(n_{k}) \in X^{*} \middle| n_{i} \ge \min_{1 \le j \le k} \{m_{j}\} \text{ and } \sum n_{i} = \sum m_{i} \right\}.$$
(3.12)

Therefore condition (a) of Definition 3.1 holds.

Thus we are left to prove that  $\mathscr{R}$  is confluent. According to Lemma 3.2, it is enough to check that it is confluent on a composition w = c(k)b(j)a(i) of principal parts of a pair of rules  $\rho(b(j), a(i)), \rho(c(k), b(j)) \in \mathscr{R}$ . Thus it is sufficient to prove the following claim.

LEMMA 3.4. Let  $u = c(k)b(j)a(i) \in X^*$  be a word of length 3. Then  $\mathscr{R}$  is confluent on u; i.e., there is a unique terminal  $r(w) \in \mathbb{I} \langle X \rangle$  such that  $u \to r(w)$ .

*Proof.* Assume for simplicity that the three rules  $\rho(b(n), a(m))$ ,  $\rho(c(p), b(n))$ , and  $\rho(c(p), a(m))$  are of the form (3.7a). The general case is essentially the same, but requires some additional calculations.

Consider the set  $W_u$ , given by (3.12). We prove that the lemma holds for all  $w \in W_u$  by induction on w. If w is sufficiently small then it is a terminal itself. By induction, it is enough to consider w = c(p)b(n)a(m) $\in W_u$  such that  $\mathscr{R}$  is applicable to both b(n)a(m) and c(p)b(n). Apply  $\rho(b(n), a(m))$  and  $\rho(c(p), b(n))$  to w and take the difference of the results:

$$v = b(n)c(p)a(m) - \sum_{s=1}^{N} (-1)^{s} {N \choose s} [c(p-s), b(n+s)]a(m) - c(p)a(m)b(n) + \sum_{s=1}^{N} (-1)^{s} {N \choose s} c(p) [b(n-s), a(m+s)].$$

By induction, v is reduced uniquely to a terminal t and we only have to show that t = 0. First we apply the rules  $\rho(b(n), a(m))$ ,  $\rho(c(p), b(n))$ , and  $\rho(c(p), a(m))$  to v several times and get

$$v \to -\sum_{s=1}^{N} (-1)^{s} {N \choose s} b(n) [c(p-s), a(m+s)] + b(n)a(m)c(p) + \sum_{s=1}^{N} (-1)^{s} {N \choose s} [c(p-s), a(m+s)] b(n) - a(m)c(p)b(n) - \sum_{s=1}^{N} (-1)^{s} {N \choose s} [c(p-s), b(n+s)] a(m) + \sum_{s=1}^{N} (-1)^{s} {N \choose s} c(p) [b(n-s), a(m+s)] \to \sum_{s=1}^{N} (-1)^{s} {N \choose s} [a(m), [c(p-s), b(n+s)]] + \sum_{s=1}^{N} (-1)^{s} {N \choose s} [[c(p-s), a(m+s)], b(n)] + \sum_{s=1}^{N} (-1)^{s} {N \choose s} [c(p), [b(n-s), a(m+s)]].$$
(3.13)

Next we introduce two rules acting on the linear combinations of (formal) commutators: For any  $a(m), b(n), c(p) \in X$  let

$$\kappa = \left( \left[ a(m), \left[ b(n), c(p) \right] \right], \left[ \left[ a(m), b(n) \right], c(p) \right] \right. \\ \left. + \left[ b(n), \left[ a(m), c(p) \right] \right] \right), \\ \lambda = \left( \left[ b(n), a(m) \right], - \sum_{s=1}^{N} (-1)^{s} {N \choose s} \left[ b(n-s), a(m+s) \right] \right).$$

The rule  $\lambda$  is the locality relation, and  $\kappa$  is nothing else but the Jacoby identity. The lemma will be proved after we show two things:

(1) There always exists a finite sequence of applications of the rules  $\kappa$  and  $\lambda$  that reduces (3.13) to 0.

(2) All words which appear in the process of reduction in (1) are smaller than the initial word u = c(p)b(n)a(m) with respect to the order (3.5).

Indeed, assume (1) and (2) hold. Denote the polynomial in (3.13) by  $p_0$ . Let

$$p_0 \rightarrow p_1 \rightarrow \cdots \rightarrow 0$$

be the reduction, guaranteed by (1). By (2) and by the induction hypothesis, any two neighboring polynomials  $p_i \rightarrow p_{i+1}$  from this sequence are uniquely  $\mathscr{R}$ -reduced to a terminal, and this terminal must be the same, since either  $p_i \xrightarrow{\mathscr{R}} p_{i+1}$  or  $p_{i+1} \xrightarrow{\mathscr{R}} p_i$ .

Denote the three last terms in (3.13) by  $\begin{bmatrix} a \\ b \end{bmatrix}$ ,  $\begin{bmatrix} b \\ c \end{bmatrix}$ , and  $\begin{bmatrix} c \\ c \end{bmatrix}$ . In Fig. 1 we present a scheme of how  $\kappa$  and  $\lambda$  should be applied in order to reduce (3.13) to 0.

Each box in Fig. 1 stands for a sum of commutators:

$$\begin{bmatrix} \mathbf{j} \end{bmatrix} = -\begin{bmatrix} \mathbf{r} \end{bmatrix}$$
$$= \sum_{s,t=1}^{N} (-1)^{s+t} {N \choose s} {N \choose t} [[c(p-s-t), a(m+t)], b(n+s)],$$



FIG. 1. Application of rules  $\kappa$  and  $\lambda$ .

$$\begin{split} \mathbf{k} &= \sum_{s,t=1}^{N} (-1)^{s+t} {N \choose s} {N \choose t} [c(p-s), [b(n+s-t), a(m+t)]], \\ \mathbf{l} &= -\mathbf{t} = \sum_{s,t=1}^{N} (-1)^{s+t} {N \choose s} {N \choose t} \\ &\times [c(p-s), [b(n-t), a(m+s+t)]], \\ \mathbf{m} &= \sum_{s,t=1}^{N} (-1)^{s+t} {N \choose s} {N \choose t} [[b(n+t), c(p-s-t)], a(m+s)], \\ \mathbf{n} &= -\mathbf{q} = \sum_{s,t=1}^{N} (-1)^{s+t} {N \choose s} {N \choose t} \\ &\times [[b(n-s+t), c(p-t)], a(m+s)], \\ \mathbf{o} &= \sum_{s,t=1}^{N} (-1)^{s+t} {N \choose s} {N \choose t} [b(n-s), [a(m+s+t), c(p-t)]], \\ \mathbf{v} &= -\mathbf{y} = \sum_{s,t,r=1}^{N} (-1)^{s+t+r} {N \choose s} {N \choose t} {N \choose r} \\ &\qquad [b(n+s-t), [a(m+t+r), c(p-s-r)]], \\ \mathbf{w} &= \sum_{s,t,r=1}^{N} (-1)^{s+t+r} {N \choose s} {N \choose t} {N \choose r} \\ &\times [[a(m+s+r), b(n+t-r)], c(p-s-t)], \\ \mathbf{x} &= -\mathbf{z} = \sum_{s,t,r=1}^{N} (-1)^{s+t+r} {N \choose s} {N \choose t} {N \choose r} \\ &\times [a(m+s+t), [c(p-t-r), b(n-s+r)]]. \end{split}$$

One can see that all terminal boxes in the above scheme cancel, so that  $\boxed{a} + \boxed{b} + \boxed{c} \rightarrow 0$ . Claim (2) also holds, since every symbol in every box in Fig. 1 is less than c(p).

#### 3.6. Digression on Hall Bases

Let again  $\mathscr{B}$  be some linearly ordered alphabet,  $N \in \mathbb{Z}_+$ , C = C(N) the free Lie conformal algebra generated by  $\mathscr{B}$  with respect to the constant locality N, and  $L = \operatorname{Coeff} C(N)$ . A basis of the Lie algebra L could be obtained by modifying the construction of a Hall basis of a free Lie algebra; see [12, 23, 24]. Here we review the latter construction. We closely follow [22], except that all the order relations are reversed.

As in Section 3.3, take an alphabet X and a commutative ring K. Let T(X) be the set of all binary trees with leaves from X. For typographical reasons we will write the tree  $\widehat{xy}$  as  $\langle x, y \rangle$ . Assume that T(X) is endowed with a linear order such that  $\langle x, y \rangle > \min\{x, y\}$  for any  $x, y \in T(X)$ .

DEFINITION 3.2. A Hall set  $\mathscr{H} \subset T(X)$  is a subset of all trees  $h \in T(X)$  satisfying the following (recursive) properties:

1. If  $h = \langle x, y \rangle$  then  $y, x \in \mathcal{H}$  and x > y.

2 If 
$$h = \langle \langle x, y \rangle, z \rangle$$
 then  $z \ge y$ , so that  $\langle x, y \rangle > z \ge y$ .

In particular,  $X \subset \mathcal{H}$ .

Introduce two maps  $\alpha: T(X) \to X^*$  and  $\lambda: T(X) \to K\langle X \rangle$  in the following recursive way: For  $a \in X$  set  $\alpha(a) = \lambda(a) = a$  and  $\alpha(\langle x, y \rangle) = \alpha(x)\alpha(y), \ \lambda(\langle x, y \rangle) = [\lambda(x), \lambda(y)].$ 

It is a well-known fact (see, e.g., [22]) that

- (a)  $\lambda(\mathcal{H})$  is a basis of the free Lie algebra generated by X and
- (b)  $\alpha|_{\mathcal{H}}$  is injective.

A word  $w \in \alpha(\mathcal{H})$  is called a *Hall word*.

On the set  $X^*$  of words in X introduce a (lexicographic) order as follows: If u is a prefix of v then u > v; otherwise u > v whenever for some index i one has  $u_i > v_i$  and  $u_i = v_i$  for all j < i.

DEFINITION 3.3 [25, 7]. A word  $v \in X^*$  is called Lyndon–Shirshov if it is bigger than all its proper suffices.

**PROPOSITION 3.2.** (a) There is a Hall set  $\mathcal{H}_{LS}$  such that  $\alpha(\mathcal{H}_{LS})$  is the set of all Lyndon–Shirshov words and  $\alpha: T(X) \to X^*$  preserves the order.

**(b)** For any tree  $h \in \mathscr{H}_{LS}$  the biggest term in  $\lambda(h)$  is  $\alpha(h)$ .

3.7. Basis of the Algebra of Coefficients of a Free Lie Conformal Algebra

Here we apply general results from Section 3.6 to the situation of Section 3.1.

Recall that starting from a set of symbols  $\mathscr{B}$  and a number N > 0, we build the free conformal algebra C = C(N) generated by  $\mathscr{B}$  such that a(n)b = 0 for any two  $a, b \in \mathscr{B}$  and  $n \ge N$ . Let L = Coeff C be the corresponding Lie algebra of coefficients. It is generated by the set  $X = \{a(n) \mid a \in \mathscr{B}, n \in \mathbb{Z}\}$  subject to relations (3.2).

The set of generators X is equipped with the linear order defined by (3.5). W define the order on  $X^*$  as in Section 3.6. Consider the set of all Lyndon words in  $X^*$  and let  $\mathcal{H} = \mathcal{H}_{LS} \subset T(X)$  be the corresponding Hall

set. Recall that there is a rewriting system  $\mathscr{R}$  on  $\mathbb{k}\langle X \rangle$ , given by (3.8). Define

$$\mathscr{H}_{\text{term}} = \{h \in \mathscr{H} | \alpha(h) \text{ is terminal} \}.$$

LEMMA 3.5. (a) Let  $v_1 \leq \cdots \leq v_n$  be a non-decreasing sequence of terminal Lyndon–Shirshov words. Then their concatenation  $w = v_1 \cdots v_n \in X^*$  is a terminal word.

(b) Each terminal word  $w \in X^*$  can be uniquely represented as a concatenation  $w = v_1 \cdots v_n$ , where  $v_1 \leq \cdots \leq v_n$  is a non-decreasing sequence of terminal Lyndon–Shirshov words.

*Proof.* (a) Take two terminal Lyndon–Shirshov words  $v_1 \le v_2$ . Let  $x \in X$  be the last symbol of  $v_1$  and let  $y \in X$  be the first symbol of  $v_2$ . Then, since a word is less than its prefix and since  $v_1$  is a Lyndon–Shirshov word, we get

$$x < v_1 \le v_2 < y.$$

Therefore, xy is a terminal, and hence  $v_1v_2$  is a terminal, too.

(b) Take a terminal word  $w \in X^*$ . Assume it is not Lyndon-Shirshov. Let v be the maximal among all proper suffices of w. Then v is Lyndon-Shirshov, v > w, and w = uv for some word u. By induction,  $u = v_1 \cdots v_{n-1}$  for a non-decreasing sequence of Lyndon-Shirshov words  $v_1 \le \cdots \le v_{n-1}$ . We are left to show that  $v \ge v_{n-1}$ .

 $v_1 \le \cdots \le v_{n-1}$ . We are left to show that  $v \ge v_{n-1}$ . Assume on the contrary that  $v < v_{n-1}$ . Then, since  $v > v_{n-1}v$ ,  $v_{n-1}$  must be a prefix of v so that  $v = v_{n-1}v'$ . But then v' > v which contradicts the Lyndon–Shirshov property of v.

The uniqueness is obvious.

Let  $\varphi \colon \mathbb{k} \langle X \rangle \to U(L)$  be the canonical projection with the kernel  $I(\mathcal{R})$ .

THEOREM 3.2. The set  $\varphi(\lambda(\mathcal{H}_{term}))$  is a basis of L.

*Proof.* Let  $s = \{h_1, \ldots, h_n\} \subset \mathscr{H}_{term}$  be a non-decreasing sequence of terminal Hall trees. Let  $\lambda(s) = \lambda(h_1) \cdots \lambda(h_n) \in \mathbb{K} \langle X \rangle$  and  $\alpha(s) = \alpha(h_1) \cdots \alpha(h_n) \in X^*$ .

By the Poincaré–Birkhoff–Witt theorem it is sufficient to prove that the set  $\{\varphi(\lambda(s))\}\)$ , when s ranges over all non-decreasing sequences s of terminal Hall trees, is a basis of U(L).

By Proposition 3.2 (b),  $\lambda(s) = \alpha(s) + O(\alpha(s))$ , where O(v) stands for a sum of terms which are less than v. Now let  $t(s) \in \mathbb{k} \langle X \rangle$  be a terminal such that  $\lambda(s) \to t(s)$ . One can view t(s) as the decomposition of  $\varphi(\lambda(s))$  in basis (3.9). By Lemma 3.5,  $\alpha(s)$  is a terminal monomial; hence t(s) has

523

form  $t(s) = \alpha(s) + f(s)$  where f(s) is a sum of terms  $v \in X^*$  satisfying the following properties:

1. v is terminal and  $v < \alpha(s)$ .

2. If v contains a symbol  $a(n) \in X$  then a appears in  $\alpha(s)$  and  $n_{\min} \le n \le n_{\max}$ , where  $n_{\min}$  and  $n_{\max}$  are, respectively, minimum and maximum of all indices that appear in  $\alpha(s)$ .

Indeed, due to Proposition 3.2(b) properties 1 and 2 are satisfied by all the terms in  $\lambda(s) - \alpha(s)$ , and they cannot be broken by an application of the rules *R*.

Property 1 implies that all t(s) and, therefore,  $\varphi(\lambda(s))$  are linearly independent. So we are left to show that they span U(L). For that purpose we show that any terminal word  $w \in X^*$  can be represented as a linear combination of t(s).

By Lemma 3.5(b) any terminal word w could be written as  $w = \alpha(s)$  for some non-decreasing sequence s of terminal Hall trees. So we can write w = t(s) - f(s). Now do the same with any term v that appears in f(s), and so on. This process should terminate, because every term v that appears during this process must satisfy properties 1 and 2 and there are only finitely many such terms.

Remark. Alternatively we could use the theorem of Bokut' and Malcolmson [5].

As in Theorem 3.1(b), we deduce that all the elements of  $\varphi(\lambda(\mathscr{H}_{term}))$  containing only symbols from  $X_0$  form a basis of  $L_+$ . Note that we have an algorithm for building a basis of the free Lie conformal algebra C = C(N). Let L = Coeff C, V = V(C), and U = U(L). Recall that the image if C in V under the canonical embedding  $\psi: C \to V$ is  $\psi(C) = L_{\perp} \mathbb{I} = L \mathbb{I} \subset V$ . So, the algorithm goes as follows: Take the basis of L provided by Theorem 3.2. Decompose its element in basis (3.9) of the universal enveloping algebra U(L), and then cancel all terms of the form  $a_1(n_1) \cdots a_k(n_k)$  where  $n_k \ge 0$ . What remains, being interpreted as elements of the vertex algebra V, form a basis of  $\psi(C) \subset V$ .

## 3.8. Basis of the Algebra of Coefficients of a Free Associative Conformal Algebra

Let again  $\mathscr{B}$  be some alphabet, and let  $N: \mathscr{B} \times \mathscr{B} \to \mathbb{Z}_+$  be a locality function, not necessarily constant and not necessarily symmetric. By Proposition 3.1, the coefficient algebra A = Coeff C(N) of the free associative conformal algebra C(N) corresponding to the locality function N is presented in terms of generators and relations by the set of generators  $X = \{b(n) \mid b \in \mathcal{B}, n \in \mathbb{Z}\}$  and relations (3.2).

THEOREM 3.3. (a) A basis of the algebra A is given by all monomials of the form

$$a_1(n_1) \cdots a_{l-1}(n_{l-1})a_l(n_l),$$
 (3.14)

where  $a_i \in \mathcal{B}$  and

$$-\left\lceil \frac{N_i - 1}{2} \right\rceil \le n_i \le \left\lfloor \frac{N_i - 1}{2} \right\rfloor,$$
  
$$N_i = N(a_i, a_{i+1}) \quad \text{for } i = 1, \dots, l - 1.$$

(b) A basis of the algebra  $A_+$  is given by all monomials of the form

$$a_1(n_1) \cdots a_{l-1}(n_{l-1})a_l(n_l),$$
 (3.15)

where  $a_i \in \mathcal{B}$  and

 $0 \le n_i \le N_i - 1$ ,  $N_i = N(a_i, a_{i+1})$  for i = 1, ..., l - 1.

COROLLARY 3.1. Assume that the locality function N is constant. Consider the homogeneous component  $A_{k,l}$  of A, spanned by all the words of length l and of the sum of indexes k. Then dim  $A_{k,l} = N^{l-1}$ .

*Proof of Theorem* 3.3. (a) Introduce a linear order on  $\mathscr{B}$  and define an order on the set of generators X by the rule

$$a(m) > b(n) \Leftrightarrow |m| > |n| \text{ or } m = -n > 0 \text{ or } (m = n \text{ and } a > b).$$

In particular, for some  $a \in \mathscr{B}$  we have

$$a(0) < a(-1) < a(1) < a(-2) < a(2) < \cdots$$
.

For any relation r from (3.2) take the biggest term  $\bar{r}$  and consider the rule  $(\bar{r}, r - \bar{r})$ . This way we get a collection of rules

$$\mathscr{R} = \left\{ \rho_1(b(n), a(m)) \middle| a, b \in \mathscr{B}, n > \left\lfloor \frac{N(b, a) - 1}{2} \right\rfloor \right\}$$
$$\cup \left\{ \rho_2(b(n), a(m)) \middle| n < -\left\lceil \frac{N(b, a) - 1}{2} \right\rceil \right\},$$

where

$$\rho_{1}(b(n), a(m)) = \left(b(n)a(m), \sum_{s=1}^{N(b, a)} (-1)^{s+1} \binom{N(b, a)}{s} b(n-s)a(m+s)\right),$$
  

$$\rho_{2}(b(n), a(m)) = \left(b(n)a(m), \sum_{s=1}^{N(b, a)} (-1)^{s+1} \binom{N(b, a)}{s} b(n+s)a(m-s)\right).$$

By Lemma 3.2, we have to prove that these rules form a confluent rewriting system on  $\mathbb{R}\langle X \rangle$ . Clearly  $\mathscr{R}$  is a rewriting system, since it decreases the order, and each subset of  $\mathbb{R}\langle X \rangle$ , containing only finitely many different letters from  $\mathscr{R}$ , has the minimal element, in contrast to the situation of Section 3.5.

As before, it is enough to check that  $\mathscr{R}$  is confluent on any composition w = c(p)b(n)a(m), of the principal parts of rules from  $\mathscr{R}$ . Consider the set  $W = \{c(k)b(j)a(i) | k, j, i \in \mathbb{Z}\} \subset X^*$ . We prove by induction on  $w \in W$  that  $\mathscr{R}$  is confluent on w. If w is sufficiently small, then it is terminal. Assume that w = c(k)b(j)a(i) is an ambiguity, for example, that  $\rho_1(c(p), b(n))$  and  $\rho_2(b(n), a(m))$  are both applicable to w. Other cases are done in the same way. Let

$$w_{1} = \rho_{1}(c(p), b(n))(w)$$
  
=  $\sum_{s=1}^{N(c, b)} (-1)^{s} {N(c, b) \choose s} c(p-s)b(n+s)a(m),$   
 $w_{2} = \rho_{2}(b(n), a(m))(w)$   
=  $\sum_{t=1}^{N(b, a)} (-1)^{t} {N(b, a) \choose t} c(p)b(n+t)a(m-t).$ 

Applying  $\rho_2(b(n + s), a(m))$  for s = 1, ..., N(b, a) to  $w_1$  gives the same result as we get from applying  $\rho_1(c(p), b(n + t))$  for t = 1, ..., N(c, b) to  $w_2$ , namely,

$$\sum_{s,t\geq 1} (-1)^{s+t} \binom{N(c,b)}{s} \binom{N(b,a)}{t} c(p-s)b(n+s+t)a(m-t).$$
(3.16)

By the induction assumption,  $w_1 - w_2$  is uniquely reduced to a terminal, and since all monomials in (3.16) are smaller than w, we conclude that this terminal must be 0.

(b) Follows at once from Lemma 3.1.

#### ACKNOWLEDGMENTS

I am grateful to Bong Lian, Efim Zelmanov, and Gregg Zuckerman for helpful discussions. I thank Victor Kac, Bong Lian, and Gregg Zuckerman for communicating unpublished papers [17, 16, 20] and I thank L. A. Bokut' who carefully read this paper and made valuable comments.

#### REFERENCES

- 1. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, *Nuclear Phys. B* 241, No. 2 (1984), 333–380.
- 2. G. M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29, No. 2 (1978), 178-218.
- 3. L. A. Bokut', Unsolvability of the word problem, and subalgebras of finitely presented Lie algebras, *Izv. Akad. Nauk SSSR Ser. Mat.* **36** (1972), 1173–1219.
- 4. L. A. Bokut', Imbeddings into simple associative algebras, *Algebra i Logika* 15, No. 2 (1976), 117–142, 245.
- 5. L. A. Bokut' and P. Malcolmson, Gröbner–Shirshov bases for relations of a Lie algebra and its enveloping algebra, preprint.
- 6. R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, *Proc. Nat. Acad. Sci. U.S.A.* 83, No. 10 (1986), 3068-3071.
- 7. K.-T. Chen, R. H. Fox, and R. C. Lyndon, Free differential calculus IV. The quotient groups of the lower central series, *Ann. of Math.* (2) 68 (1958), 81–95.
- 8. P. M. Cohn, "Universal Algebra," Mathematics and Its Applications, Vol. 6, 2nd ed., Dordrecht, 1981.
- 9. I. B. Frenkel, Y.-Z. Huang, and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, *Mem. Amer. Math. Soc.* **104**, No. 494 (1993).
- 10. I. B. Frenkel, J. Lepowsky, and A. Merman, "Vertex Operator Algebras and the Monster," Academic Press, Boston, 1988.
- 11. I. B. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, *Duke Math. J.* 66, No. 1 (1992), 123–168.
- 12. M. Hall, Jr., A basis for free Lie rings and higher commutators in free groups, *Proc. Amer. Math. Soc.* 1 (1950), 575–581.
- 13. N. Jacobson, "Basic Algebra II," 2nd ed., Freeman, New York, 1989.
- V. G. Kac, "Infinite-Dimensional Lie Algebras," 3rd ed., Cambridge Univ. Press, Cambridge, UK, 1990.
- V. G. Kac, "Vertex Algebras for Beginners," University Lecture Series, Vol. 10, Amer. Math. Soc., Providence, 1996.
- V. G. Kac, Formal distribution algebras and conformal algebras, a talk at the Brisbane Congress on Mathematical Physics, July 1997.

- V. G. Kac, The idea of locality, *in* "Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras (H.-D. Doebner *et al.*, Eds.), pp. 16–32, World Scientific, Singapore, 1997.
- B. H. Lian and G. J. Zuckerman, Commutative quantum operator algebras, J. Pure Appl. Algebra 100, No. 1–3 (1995), 117–139.
- B. H. Lian and G. J. Zuckerman, Moonshine cohomology, Sūrikaisekikenkyūsho Kokyūroku No. 904 (1995), 87–115; Moonshine and vertex operator algebra (Japanese) (Kyoto, 1994).
- 20. B. H. Lian and G. J. Zuckerman, preprint.
- M. H. A. Newman, On theories with a combinatorial definition of "equivalence," Ann. of Math. (2) 43 (1942), 223–243.
- 22. C. Reutenauer, "Free Lie Algebras," London Mathematical Society Monographs, New Series, Vol. 7, Clarendon Press/Oxford Univ. Press, New York, 1993.
- 23. A. I. Shirshov, On free Lie rings, Mat. Sb. N.S. 45, No. 87 (1958), 113-122.
- 24. A. I. Shirshov, Bases of free Lie algebras, Algebra i Logika 1 (1962), 14-19.
- 25. A. I. Shirshov, Some algorithm problems for Lie algebras, *Sibirsk. Mat. Zh.* **3** (1962), 292–296.